## Interconnects

# A Buyers Point of View 

Jim Tomkins

ACS Workshop<br>Baltimore, MD<br>June 13-14, 2007

## 2011 COTS Technology Trends

- Moore's Law - Transistor density is still on the curve ( 32 nm )
- Multi-Core Chips
- Clock Speed Increases Stalled
- Wider Functional Units - 8 to 16 Flops/clock
- Greater Parallelism - 4, 8, 16, 32 cores
- Large General Purpose Systems may have a million or more cores by 2011
- Memory System
- Memory per Processor Core is Decreasing
- B/F Ratio is Decreasing
- Latency is Constant or Increasing
- System Interconnect Performance
- B/F Ratio is Decreasing - SERDES speed and pin count are limiting
- Absolute latency is Decreasing - Smart NICs


## 2015 COTS Technology Trends

- Moore's Law Continues to hold ( 15 nm )
- Multi-Core Chips - More Cores
- Clock Rate Increases still stalled
- Greater Parallelism in functional units - maybe vectors
- Greater Parallelism-32-128 cores
- Large General Purpose Systems may have 4 million or more cores
- Memory System
- Memory per Processor Core is probably Decreasing
- Memory per Op is Decreasing
- Memory Bandwidth - Capacitive Coupling? Direct Optics off Chip? Could stop slide in B/F ratio, memory Banks per DiMM
- Latency is Constant or Increasing
- System Interconnect Performance
- Bandwidth - Direct Optics off Chip will be needed to maintain B/F ratio
- Absolute Latency is slowly Decreasing - Smarter NICs could help


## 2019 COTS Technology Trends

- Moore's Law Continues to hold ( 8 nm ) - Will cost of Fabs end it?
- Multi-Core Chips - Still More Cores
- Clock Rate Increases still stalled - New Technology?
- Greater Parallelism in functional units - more vector pipes
- Greater Parallelism-128-512 cores
- Large General Purpose Systems may have 16 million or more cores
- Memory System
- Memory per Processor Core is probably Decreasing
- Memory per Op is Decreasing
- Memory Bandwidth - WDM Direct Optics off Chip should boost Bandwidth, memory Banks per DiMM
- Latency is Constant at best
- System Interconnect Performance
- Bandwidth - WDM Direct Optics off Chip should boost Bandwidth
- Absolute Latency is slowly Decreasing - Need even smarter NICs


## Possible 2011 Systems

|  | System 1 | System 2 |
| :--- | :---: | :---: |
| Peak PF | $5-6$ | $15-32$ |
| Sockets | 32,768 | 32,768 |
| Cores/Socket | 8 | $16-32$ |
| Clock Speed (GHz) | $2.4-3.0$ | $2.4-3.0$ |
| Socket Peak (GF) | $150-190$ | $600-1000$ |
| Memory B/W (B/F) | $\sim 0.25$ | $\sim 0.1$ |
| Memory per Socket (GB) | $16-32$ | $16-32$ |
| Link B/W (B/F) | $\mathbf{0 . 0 4 - 0 . 5}$ | $0.01-0.1$ |
| System Power (MW) | $7-10$ | $10-15$ |
| Floor Space (sq ft) | $\sim 5000$ | $\sim 5000$ |
| Programming Model | Explicit Message |  |
| Passing | Explicit Message |  |

## Possible 2015 Systems

|  | System 1 | System 2 |
| :--- | :---: | :---: |
| Peak PF | $20-50$ | $80-200$ |
| Sockets | 32,768 | 32,768 |
| Cores/Socket | 32 | $64-128$ |
| Clock Speed (GHz) | $2.4-3.0$ | $2.4-3.0$ |
| Socket Peak (GF) | $600-1500$ | $2400-6100$ |
| Memory B/W (B/F) | $0.05-0.1(1.0)$ | $0.025-0.05(1.0)$ |
| Memory per Socket (GB) | $64-128$ | $64-128$ |
| Link B/W (B/F) | $0.02-0.12(0.1-1.0)$ | $0.005-0.03(0.025-0.25)$ |
| System Power (MW) | $9-12$ | $15-20$ |
| Floor Space (sq ft) | $\sim 5000$ | $\sim 5000$ |
| Programming Model | Explicit Message | Passing? |

## Possible 2019 Systems

|  | System 1 | System 2 |
| :--- | :---: | :---: |
| Peak PF | $80-200$ | $325-820$ |
| Sockets | 32,768 | 32,768 |
| Cores/Socket | 128 | $256-512$ |
| Clock Speed (GHz) | $2.4-3.0$ | $2.4-3.0$ |
| Socket Peak (GF) | $2,400-6,000$ | $10,000-25,000$ |
| Memory B/W (B/F) | $0.1-1.0$ | $0.025-0.25$ |
| Memory per Socket (GB) | $256-512$ | $256-512$ |
| Link B/W (B/F) | $0.1-1.0$ | $0.025-0.25$ |
| System Power (MW) | $12-15$ | $20-25$ |
| Floor Space (sq ft) | $\sim 5000$ | $\sim 5000$ |
| Programming Model | Explicit Message <br> Passing? | Explicit Message <br> Passing? |

## COTS Processor On Chip Interconnects

- Internal Chip Topology
- Small numbers of Cores - Cross Bars
- Small to medium numbers of Cores - Rings
- Medium to large numbers of Cores - Meshes, Fat Trees
- 2011: small to medium
- 2015: medium to large
- 2019: Large
- Issue - How to maintain internal Bandwidth and Latency balance as the number of cores increases dramatically


## System Interconnects

|  | 2011 |  | 2015 |  | 2019 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| System Size <br> Sockets Peak PF TF/Socket | $\begin{gathered} 32,768 \\ 32 \\ 1.0 \end{gathered}$ |  | $\begin{gathered} 32,768 \\ 200 \\ 6.1 \end{gathered}$ |  | $32,768$ <br> 800 <br> 25.0 |  |
|  | Expect | Want | Expect | Want | Expect | Want |
| NIC B/W (B/F) | 0.01-0.1 | 1.0 | $\begin{gathered} 0.005- \\ 0.03 \end{gathered}$ | 1.0 | $\begin{gathered} 0.025 \\ 0.25 \end{gathered}$ | 1.0 |
| Link B/W (B/F) | 0.01-0.1 | 1.0 | $\begin{gathered} 0.005- \\ 0.03 \end{gathered}$ | 1.0 | $\begin{gathered} 0.025 \\ 0.25 \end{gathered}$ | 1.0 |
| MPI Latency (ns) | 750-1500 | 500 | 500-1000 | 400 | 400-750 | 300 |
| MPI Throughput (M Msg/s) | 20 | 50 | 80 | 300 | 300 | 1200 |
| Load/Store (M Msg/s) | 75 | 400 | 150 | 1,600 | 300 | 6400 |
| Load/Store <br> Latency (ns) | 300 | 100 | 300 | 100 | 300 | 100 |

## Final Thoughts

- Will Moore's Law continue for 6 more generations?
- The level of parallelism is growing rapidly with the growth of the number of cores per chip and wider functional units.
- Scalability will depend on paying attention to data locality.
- Performance per socket is likely to continue to become less well balanced as system peak grows. We will get a smaller and smaller fraction of the peak unless we can convince the computer companies to pay more attention to getting more data on and off of the processor chip.
- System interconnect performance will become even more important to overall system performance as the number of cores continues to rapidly increase and the memory per core decreases.
- Maintaining even the current level of system balance is going to be very difficult between now and 2019.

