

Comparison of (γ,f) & (p,X) ²³⁸U Yields and Light Nuclide Yields from Photofission

Marik Dombsky eRIBs'07 Newport News, October 10, 2007

Outline

- Calculation of ²³⁸U(p,X) Yield Estimates for a 100 µA p⁺ driver (ISAC)
- Comparison of Yield Estimates to Observed ²³⁸U(p,X) Yields
- Comparison of Yield Estimates to ²³⁸U(γ,f) Yield Estimates for a 25 MeV/50 kW e⁻ driver
- "Mom, if I got a bicycle for Christmas, I could ride to the store for you"
- Light Nuclei from $^{238}U(\gamma,f)$
- Light Nuclei from (γ,p) reactions (⁸Li for a β-NMR facility)

²³⁸U(p,X) Yield Estimates

- Yield = $\sigma \Phi_{p+} N_t$
- Proton Flux (Φ_{p+}) = 100 μ A
- Target Thickness (N_t) = 30 g ²³⁸U/cm² (proposed HRIBF target)
- Cross sections (σ) from from Silberberg & Tsao, Astrophys.
 J. Suppl. 25 (1973) 315
 - S-T cross section calculations are based on experimental measurements

Comparison of ²³⁸U(p,X) Mass Yield Curves to Measured TISOL Yields

- TISOL ²³⁸U(p,X) yields (/s/µA) for 500 MeV p⁺
- S-T estimates normalized to highest TISOL yield

TRIUME

ISAC

Comparison of ²³⁸U(p,X) Mass Yield Curves to Measured TISOL Yields

Comparison of ²³⁸U(p,X) Mass Yield Curves to Measured TISOL Yields & ISOLDE Yields

Comparison of ²³⁸U(p,X) Mass Yield Curves to Measured TISOL Yields & ISOLDE Yields

Comparison of ²³⁸U(p,X) Mass Yield Curves to Measured TISOL Yields & ISOLDE Yields

Experimental ²³⁸U(γ,f) Yields

- Nuclear Physics Laboratory in Ghent, Belgium:
 - bremsstrahlung from 12–70 MeV electrons.
 - cumulative chain yields
 (% fission events that result in a specific product mass)
 - fractional independent chain yields (fractional yield of a specific isotope in an isobaric chain)
 - Additionally, element isotopic distributions can be calculated based on an assumed Gaussian charge distribution and the Zp value (the most probable charge) for an isobar chain.

<u>Phys. Rev. C</u>: 13 (1976) 1536, 14 (1976) 1058, 19 (1979) 422, 20 (1979) 2249, 21 (1980) 237, 21 (1980) 629, 26 (1982) 1356, 29 (1984) 1777 & 29 (1984) 1908

Experimental ²³⁸U(γ,f) Yields

- JINR, Dubna group :
 - bremsstrahlung from 25 MeV electrons
 - fractional independent chain yields for Kr and Xe isotopes
 - used in conjunction with the Ghent cumulative chain yields to estimate absolute yields for Kr and Xe at 10¹³ fissions/s.

Yu.P. Gangrsky, V.I. Zhemenik, N.Yu. Maslova, G.V. Mishinsky, Yu.E. Penionzhkevich & O. Szöllös, <u>Phys. Atomic Nuclei</u>, **66** (2003) 1211

For In-Target Yield Comparisons

- Extract elemental yields (as possible) from the Ghent & Dubna data for 10¹³ f/s
- Use order-of-magnitude yield estimates for same elements from HRIBF proposal
- Calculate ISAC 100 µA in-target yields for same elements as above on the proposed HRIBF target
- No scaling for release, ionization or transport efficiencies

Sn Mass

Kr Mass

Comparison of in-target (γ ,f) & (p,X) ²³⁸U Yield Estimates

TRIUMF

I Mass

Comparison of in-target (γ ,f) & (p,X) ²³⁸U Yield Estimates (SAC)

TRIUMF

Sb Mass

Comparison of in-target (γ ,f) & (p,X) ²³⁸U Yield Estimates

TRIUMF

Te Mass

Comparison of in-target (γ ,f) & (p,X) ²³⁸U Yield Estimates isac

Xe Mass

Conclusions

- 100 μA 500 MeV p⁺ driver vs 25 MeV/50 kW e⁻ driver:
 - In-target production yields about the same order
 - **p**⁺ driver also produces **n**⁰-deficient nuclides
 - Not clear if (γ,f) will have same release rates as (p,X)

• Radiation enhanced diffusion with (γ, f) ?

• For (γ ,f) to be a clear winner, need > 10¹³ f/s

Light Nuclei from ²³⁸U(γ,f) (Value Added?)

- Ternary fission:
 - 3-body breakup with 2 fission fragments proper + 1 light fragment
 - ~10⁻³ probability of binary fission
 - 97% of ternary fragments are H (7%) & He (90%)
- Ternary fission yields from ²⁴¹Pu(n_{th},f) relative to ⁴He
 ⁴He yield =1.86 × 10⁻³/binary fission
 U. Köster et al., Nucl. Phys. A 652 (1999) 371
- ²³⁸U(γ,f) ⁴He yield =1.28 × 10⁻³/binary fission Sinha, Nadkarni & Mehta, Pramãna-J. Phys. 33 (1989) 85
- ²³⁸U(γ,f) ⁴He yield =1.37 × 10⁻³/binary fission
 Verboven, Jacobs & De Frenne, Phys. Rev. C 49 (1994) 991

Ternary Fission Yield Estimates from ²³⁸U(γ,f)

TRIUME

ISAC

Α

⁸Li for a β-NMR facility

- ⁸Li @ ~ 5 × 10⁶/s required for reasonable experiment times (according to ISAC β-NMR group)
- ~ 25% transmission through ISAC polarizer line (according to Phil Levy)
- ~1% ⁸Li released from ISAC Ta foil targets
 ~0.2% ⁸Li released from ISAC SiC targets
- Requires ⁸Li @ ~ 1 × 10¹⁰/s in-target production
 - <u>BUT</u> ²³⁸U(γ ,f) @ 10¹³ f/s yield ~ 5 × 10⁶/s

However, All is not lost

- (γ,p) cross sections in the GDR region are HIGH
- So try another target material:
- ⁹Be(γ,p)⁸Li integrated cross section to ≤ 26 MeV = 13 Mev·mb Haslam, Katz, Crosby,Summers-Gill & Cameron, Can. J. Phys. 31 (1953) 210
- ⁹Be(γ,p)⁸Li integrated cross section to ≤ 25 MeV = 13 Mev·mb Clikeman, Bureau & Stewart, Phys. Rev. C 126 (1962) 1822

⁹Be(γ ,p)⁸Li for a β -NMR facility

- Assume:
 - 60% dense BeO target, same volume as HRIBF proposal
 N_t = 1.6 × 10²⁴ /cm²
 - $1 \gamma/2 e^{-1}$ on converter (according to Pierre Bricault)
 - 45% of \leq 25 MeV γ on target (according to Pierre Bricault) $\Phi_{\gamma} = 3 \times 10^{15}/s$
 - $\sigma = 5 \times 10^{28} \text{ cm}^2$
 - Then:
 - ⁸Li in-target production ~ 1 × 10¹²/s for 25 MeV e⁻ driver
 100 times higher than required!

• Could be ~ 3×10^{13} /s for 50 MeV/1MW e⁻ driver

- 25 MeV/50 kW e⁻ driver good idea for HRIBF
- 25 MeV/50 kW e⁻ driver probably won't improve ISAC capabilities
- Higher power (50 MeV/1MW) e⁻ driver required for ISAC
- Ternary ²³⁸U(γ,f) may produce some usable yields of light nuclides (^{6,8}He) but not enough ⁸Li for β-NMR
- ⁹Be(γ,p)⁸Li with 25 MeV/50 kW e⁻ driver could more than sustain a β-NMR materials science facility
- $^{7}Li(\gamma,p)^{6}He$ could also produce high yields

Thanks to John Behr for Light Nuclei from ²³⁸U(γ,f) &

⁹Be(γ,p)⁸Li ideas