Magnetícs measurements in $\mathcal{N} C S X$: $S V D / P C \mathcal{A}$ methods-I

Neil Pomphrey, Ed Lazarus

Stellarator Theory Teleconference Sep. 23, 2004

Introduction

A variety of magnetic diagnostics (MD's) will be installed in NCSX and used for

- Shape Control (during shots)
- Equilibrium Reconstruction (between shots)

1) Define a method for selecting a "good" set of MD's (optimizes the invertible information)
2) How much info. is available directly from external MD signals? more than tokamaks?

This presentation is a partial coverage of topic 2 .

Target Function on Control Surface (CS)

- A database of VMEC equilibria (many hundreds) is being generated with a wide range of shapes and profiles.
- B-fields from each of the equilibria are calculated on a single "Control Surface" (CS) that lies 1 cm outside the envelope of all equilibria. These are distributions, $b_{j}(q, f), j=1 \ldots N_{\text {eq }}$
- Magnetic signals $\mathrm{d}_{\mathrm{j}}\left(\mathbf{x}_{\mathrm{d}}\right)$ are also calculated for each candidate diagnostic using V3RFUN and V3POST.
- The $b_{j}(q, f)$ are targets for the $d_{j}\left(\mathbf{x}_{\mathrm{d}}\right)$. If the targets are reproduced with adequate precision the MD's should provide sufficient information for control and equilibrium reconstruction!

The Equilibria in the Database

 have a wide variety of shapes

A surface is defined (the "Control Surface", CS) which encloses all plasmas in the database. It lies $\mathbf{1 c m}$ outside of the envelope of all equilibria. The B_{\perp} from each equilibrium is calculated by V3RFUN/V3POST and stored for analysis.

Current Profíles in Database

Profiles with <J.B>(s)>0 for all s (last 3 digits of AC id shown)

Profiles with <J.B>(s) changing sign at some s

Equílībrium Database Parameters

I edge

A

Data Preparation and Expansion ín EOF's

- For each equilibrium, labelled by index j, calculate B_{\perp} on a uniform mesh of M points on the CS. (This is $b_{j}(q, f)$)
- Store the signal as an M-element column vector \mathbf{X}_{j}.
- Data from $N_{e q}$ equilibria naturally forms an $M x N_{e q}$ matrix, \mathbf{X}.
- Each column of \mathbf{X} (B_{\perp} signal on the $C S$) has an exact expansion as a linear combination of $\mathrm{min}\left(\mathrm{M}, \mathrm{N}_{\text {eq }}\right.$) orthogonal patterns (called Empirical Orthogonal Eigenfunctions (EOFs)
- The EOFs are eigenfunctions of the correlation matrix $\mathbf{C}=\mathbf{X} \mathbf{X}^{\top}$.
- The calculation of EOFs is most conveniently done by Singular Value Decomposition of \mathbf{X}

Singular Value Decomposition (SVD), Principal Components, and EOF's

SVD: $\quad X_{M \times N_{e q}}=U_{M \times M} \mathbf{W}_{M \times N_{e q}} V^{\top} N_{N_{e q} \times N_{e q}}$
equivalent to

Note: $\quad \mathbf{x}_{\mathrm{j}}{ }^{(\ell)}=\oint \mathrm{Z}_{\mathrm{k}}(\mathrm{j}) \mathbf{u}_{\mathrm{k}}$, minimizes $\mathrm{e}=\left\|\mathbf{x}_{\mathrm{j}}-\mathbf{x}_{\mathrm{j}}{ }^{(\ell)}\right\|$

Interpretation of Princípal Components

- Since $\quad \mathbf{x}_{\mathrm{j}}=\mathrm{S}_{\mathrm{k}=1}^{\mathrm{M}} \mathrm{Z}_{\mathrm{k}}(\mathrm{j}) \mathbf{u}_{\mathrm{k}}$,
orthonormality of the EOFs =>

$$
\mathbf{x}_{\mathrm{j}} \cdot \mathbf{u}_{\mathrm{k}}=\mathrm{Z}_{\mathrm{k}}(\mathrm{j})
$$

LHS is essentially an overlap integral.
For $\mathrm{X}=$ matrix of B_{\perp} signals, Principal Component "score"
$Z_{k}(j)=\iint d q d f B_{\perp}{ }^{(j)}(q, f) u^{(k)}(q, f)$ measures importance of $k^{\text {th }}$ EOF in determining the shape of $j^{\text {th }}$ equilibrium signal on the CS.

Interpretation (Cont)

- SVD on $\mathbf{X}=\mathbf{U} \mathbf{W} \mathbf{V}^{\top}$ can be interpreted as a variable transformation $\mathrm{X}:=\mathrm{Z}=\mathrm{U}^{\top} \mathrm{X} \quad\left(=\mathrm{WV}^{\top}\right)$

$$
\begin{aligned}
& Z_{1 j}=U_{11} X_{1 j}+U_{21} X_{2 j}+U_{31} X_{3 j}+\ldots\left(=W_{1} V_{i 1}\right) \\
& Z_{2 j}=U_{12} X_{1 j}+U_{22} X_{2 j}+U_{32} X_{3 j}+\ldots\left(=W_{2} V_{j 2}\right) \\
& Z_{3 j}=U_{13} X_{1 j}+U_{23} X_{2 j}+U_{33} X_{3 j}+\ldots\left(=W_{3} V_{j 3}\right) \\
& \text {... etc }
\end{aligned}
$$

- The U_{ij} are weights which measure the contribution of each of the original variables to the variance of the data in the transformed coordinates \rightarrow means for selection/rejection of candidate magnetic diagnostics.

Singular Value Analysis of Vacuum Signal ($\mathcal{B}_{\perp}{ }^{\text {Total }}-\mathcal{B}_{\perp}{ }^{\text {Plasma }}$) on Control Surface

504 equilibria in database

- Find 8 significant singular values, corresponding to 8 independent, orthogonal, patterns of B_{\perp} on the CS.
- The 8 patterns are to be expected because we have 8 equilibrium coil current groups (M1-3, TF, PF3-6).

Correlation EOF's for Vac. Sígnal on CS (\#S 1, 2)

SVD Analysis of \mathcal{B}_{\perp} Plasma

First 2 dominant patterns of B_{\perp} plasma contribute 94.5% of total variance. Next 3 contribute an additional 4.0\%.
Speculate 2, and possibly up to 5, combined moments of $p(s)$ and <J.B>(s) may be measurable.

How many independent pieces of information (PC's) are available from the Data Matrix?

Several procedures (mainly ad hoc)

- Broken Stick Rule: Retain principal components for which
$L(k)=\left(w_{k} / w_{1}\right)^{2}>1 / N \mathrm{~S}_{\mathrm{j}=\mathrm{k}}^{\mathrm{N}} \mathrm{j}^{-1}$ (expected length of $k^{\text {th }}$ longest segment of a stick of unit length broken at random into N segments)
- Average Based: Retain PC's for which $\left.w_{k}{ }^{2}\right\rangle 0.7\left\langle w_{j}{ }^{2}\right\rangle$
- Cumulative Variance Based: Retain as many PC's as necessary to bring the cumulative variance of the retained PC's up to some desired value, say 95% of the total variance - i.e., find k such that $S_{w_{j}}^{N} / S_{w_{j}}{ }^{2}>0.95$

$$
\mathrm{j}=1 \quad \mathrm{j}=1
$$

Correlation EOF's for PCasma Signal on CS (\#s 1, 2)

More structure (shorter wavelength) seen here than for vacuum signal - simply distance attenuation?

PC Scores (All Equílíbría)

Each dot represents a particular equilibrium.
All equilibria in the 07/15/04 database are shown.

As an attempt to discover what properties of the equilibria are responsible for the dominant B_{\perp} signal patterns, try color coding.

PC2 vs PCi with Color Coding for Various PCasma Properties

Would like to see a separation of colors along one or other of the axes, thereby associating a particular pattern of B_{\perp} with a profile parameter variation. A sensible guess for the appropriate profile parameters for color separation are $\ell_{i} / 2$ and $b_{\text {pol }}$

Current and Pressure Profiles ín Database

Profiles with NO Current Reversal

Pressure Profiles with $p(1)=0$

Profiles with Current Reversal

Pressure Profiles with p(1) finit

PC2 vs PCi with Color Coding for Various Plasma Properties

b and I_{p} not individually responsible for the two dominant B_{\perp} patterns.

Why should we think any of this is possíble?

- Because of results obtained from a similar analysis using equilibria from the plasma flexibility studies made in preparation for the CDR. There, we had a much more limited set of equilibria, but with the advantage of systematic variation of profiles and plasma parameters.

Can we detect current profile variation from external magnetic measurements?

As a test case, consider magnetic measurements for 2 groups of equilibria where the current profile is varied at fixed I_{p} and b.
$1^{\text {st }}$ group: 6 equilibria where <J.B> is varied in core region (red)
$2^{\text {nd }}$ group: $\mathbf{2}$ equilibria where current is added to the edge (blue)

PCA provides a method for distinguisfing equilibría

- The B_{\perp}-matrix on the CS is analysed by Singular Value Decomposition.

$$
\mathrm{X}=\mathrm{UW} \mathrm{~V}^{\top}
$$

- According to this decomposition, the columns of U (denote by \mathbf{u}_{k}) provide a basis for the expansion of any of the field patterns (columns of X) on the CS.
-The \mathbf{u}_{k} are called Empirical Orthogonal Functions (EOF's) and the coefficients of the $\left\{\mathbf{u}_{k}\right\}$ are called Principal Components.
- A linear combination of the first few EOF's can describe much of the variation in the data.

A 2D scatterplot of the first two PC's of the B_{\perp}-matrix data corresponding to the 8 equilibria in the J-profile scan distinguishes equilibria where the current profile was varied in the core (red cluster) and equilibria where edge current was added (blue cluster).

Note: The plasma Goundary shape variation is very small between these 8 equilífría

- Therefore if analysis of the B_{q} signals on the CS can distinguish between these equilibria, it is mainly due to the profile variation, not the consequent shape variation.
\mathcal{B}_{\perp} signals on Control Surface for equilibría with different $\left\langle J, \mathcal{B}>\right.$-profile shapes (fixed I_{p} and b)

Projection onto plane of the leading 2 principal components separates an I_{n}-b equilibrium sequence

Difference between \mathcal{B}_{\perp} signals on CS for $\mathrm{a}=0.0$ and $\mathrm{a}=0.5$

