TO1'l\{X/Poseidon l'recision Orbitletermination With SLR and G1'S Anti-Spoofing Data

Laureano Cangahuala, Ronald Muellerschoen, Dah-Ning Yuan Ldward Christensen, Liric G raat, Joseph Guinn
Jet l'repulsion Laboratory, California Institute of' Technology, Pasadena, California 91109 USA

Totake advantage of the quality of the TOPIX/Poscidonsea-levelmeasurements, the radial orbit component must be known to better than a decimeter. Orbits have been producedusing Global Positioning System (GPS) and satellite laser ranging (S1 R) tracking data. These orbits are produced with small radial position errors (< 5 cm RMS), on a short production schedule ($\leqslant 4$ days), with minima] resources. The models and estimation strategies for different data type combinations are outlined. Of special interest are the solutions which contain GP'S Anti-Spoofing (AS) data. These orbits are compared to existing precisionorbit ephemerides to demonstrate their relative accuracy as an orbit product

INTRODUCTION

The ' $\mathbf{1 ’ 0 1} \mathbf{1} \mathbf{1}$ iX/Poseidon (' $\mathbf{1}^{\prime} / \mathbf{1}$ ') spacecraft was launched in August 1992, and is in the final months of its primary mission, with a ttme-year extended mission ahead of $j 1$. The mission objective is to measure sea level (and orbit height) to such an accuracy that smallamplitude, basin-wicle sca levelchanges caused by ocean circulation can be detected. Precision orbit ephemerides (hereafter referred to as $1^{\prime} 01$ is), are created once per ten-day cycle, thirty days after the tracking data has beenconecter,
the different data type combinations are described. Results of the initial proof-of-concept arc demonst rated, along with anassessment of the GPS/S I R MOIIs producedto date.

ORBIT DETERMINAT ION MODELS

The MOI: modeling and parameter estimation schence is similar to that used for POL orbit determin at ion [TOPEX/Poseidon POD Team, 1995$]$. For POI: production, the nonconservative force models account for the spacecraft's attitude history, geometry, and mat trial propert its. They are collectively known as the 'Macromodel,' and are tuned with tracking data from cycles 1-48, Jor MOE production, these forces are not modeled; it has been shown that an appropriate set of empirical acceleration estimates (in this case constant downtrack and once per orbit downtrack and crosstrack estimate.s) does effectively compensate for this lack of detailedmodeling.

D) ATA I) ESCRIP'TION

The S1 R quick-look data is co] lected from tile (rustall)ynamics IDat a Jnformation

FHJTER METIIOD(OLOGY

01?111'1, JETERMINATIONEVAIUATION

To demonstrate the proof-of-concept of using GPS Anti-Sp oofing data to the T/P project, a battery of solutions using different data type combinations was created over a complete 1() day ground track cycle. 'Jo evaluate. these solutions, their agreement with the GSI ${ }^{\circ} \mathrm{CPOL}^{2}$ is examined, with the radialand 3-dimensional RSS value.s of tbe comparison being the significant quantities. Since the model structure of both the MOI and $P \mathrm{OL}$? arc similar, this comparison is not heavily comupted by modeling differences. Also, it is necessary to find a figure of merit which is orbit independent. The crossover variances of these orbits is such a measure, since high variances indicate corruption of altimeter data by geographically-correlatedorbit error, all cISc being the same. Inaddition to the proof-ofconcept results, recently created M()$]$ 'sarc compared to the corresponding 1 ' 01 :.

Proof-of-Concept Results

Orbits were created for T/P cycle 90, duringwhich the GPS constellation was in AntiSpoofing mode, and the T/P spacecraft passed fiom one attitude regime to another (fixed yaw to yaw steering), providing a typical level of spaccerafl activity to be encountered during most cycles. The orbitsin]igure lare differencedagainst the CiSFC 110\}<1S/S1 R JGM-3POE: which is considered the most accurate of the set, The comparison of the JGM- 2 and JGM-3 POLs demonstrates the magnitude of the orbit solution change brought about by the geodetic model updates. Likewise, going from the JGM-2 (the original MOI) to JGM-3 S1 R-only solutions shows some improvement in the agreement, but not as much as tile 1$) 01<1$ S/S1 R solutions. The GPS-only solution has a level of agreement similar to the SlR-only solution; merging the two data types together resultsinan orbit that approaches the JGM-2 $1^{\prime} 011$ agreement with the JGM-3P(OE. The altimeter crossover results in ligure 2 tell a similar ar story.

[^0]

Actual MOE R esults

GPS/SLR MOE production mode beganon 01 Junc 1995. From late May to late June 1995, MOI production passed through three data type combinations: SLR-only (with JGM-2 models), GPS (A S on $) / S I$ R, and (iPS (AS off)/SL.R. In Figures 3-4, the radial and 31) RMS agreements between MOEs and JOES are plotted for the daily solution, respectively. The trend amongst the three different solution types is as expected, with the GPS (non-AS)/SLR solution having the best agrement with its corresponding POIE. The difference in the agreement between the MOLS with AS (IPS data and those. with non-AS GPS data canbe considered a measure of the orbit degradation brought about by the ionosphere.

SUMMARY

This paper documents the cooperative effortbetween the Tracking Systems and Applications Section and the Navigation anti Flight Mechanics Section to provide precision orbits with minimal resources. Orbit comparisons and crossover statistics show that the accuracy of these "quick-look" orbits approaches that of the POIsssupplied to the project during most of the prime mission, even under the degrading effects of Anti-Spoofing.

Acknowledgment. The research described inthis paper was carried at the Jet Propulsion 1 aboratory, Californialnstitute of Technology, under contract with the National Aeronautics and Space Administration.

R EFERENCES

Blewitt, G. and Lindqwister, U., "GPS Parameter 1 istimation with Constrained Carrier Phase Biases," JPL Internal Memorandum 335.4-88-149, 1988.
Cangahuala, I.. A., Christensen, £. J., Graat, I, J., Williams, 13. G., Wolff, P. J., "TOPIEX/Poseidon Precision Orbit Determination:‘Quick-Look' Operations and Orbit Verification," Paper AAS 95-228 presentedat AA S/AIAA Spaceflight Mechanics Meeting, Albuquerque, NM, 13-16 February, 1995.
Muellerschoen, R. J., lichten, S., and lindqwister, U., "Results of an Automated GPS Tracking System in Support of JOPIXX/Poscidonand

[^0]: ${ }^{1}$ In a mid-mission undate to the models used for MOE and foli production, the change of gravity field (from JGM-2 to JGM-3) yielded the most dramatic reduction in geographically correlated orbit error. As a result, orbits based on the former and later model sets are teferred to as the "JGM-2" and"IGM-3" orbits, respectively.

