$f_0(1370)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See also the mini-reviews on scalar mesons under $f_0(600)$ and on non- $q\overline{q}$ candidates. (See the index for the page number.)

$f_0(1370)$ T-MATRIX POLE POSITION

Note that $\Gamma \approx 2 \operatorname{Im}(\sqrt{s_{pole}})$.

DOCUMENT ID		TECN	COMMENT					
(1200-1500)-i(150-250) OUR ESTIMATE								
ng data for averages	, fits,	limits,	etc. • • •					
¹ BARBERIS	00 C		$450 \ pp \rightarrow \ p_f 4\pi p_s$					
BARBERIS	99 D	OMEG	$\begin{array}{rcl} 450 \ p p \rightarrow & K^+ \ K^-, \\ \pi^+ \pi^- & \end{array}$					
² KAMINSKI	99	RVUE	$\pi \pi \to \pi \pi$, $K \overline{K}$, $\sigma \sigma$					
ANISOVICH	98 B	RVUE	Compilation					
BARBERIS	97 B	OMEG	450 $pp \rightarrow$					
			$pp2(\pi^{+}\pi^{-})$					
BERTIN	97 C	OBLX	$0.0 \ \overline{p} p \rightarrow \pi^+ \pi^- \pi^0$					
ABELE	96 B	CBAR	$0.0 \ \overline{p}p \rightarrow \pi^0 K^0_L K^0_L$					
BUGG	96	RVUE						
³ AMSLER	95 B	CBAR	$\overline{p}p \rightarrow 3\pi^0$					
³ AMSLER	95 C	CBAR	$\overline{p}p \rightarrow \pi^0 \eta \eta$					
⁴ AMSLER	95 D	CBAR	$\overline{p} p \rightarrow 3\pi^0, \pi^0 \eta \eta, \pi^0 \pi^0 \eta$					
^{5,6} JANSSEN	95	RVUE	$\pi\pi \rightarrow \pi\pi$, \overline{K}					
^{6,7} TORNQVIST	95	RVUE	$\pi\pi \to \pi\pi, K\overline{K}, K\pi,$					
AMSLER	94 D	CBAR	$\overline{p}p \xrightarrow{\eta} \pi^0 \pi^0 \eta$					
ANISOVICH	94	CBAR	$\overline{p}p \rightarrow 3\pi^0, \pi^0\eta\eta$					
⁸ BUGG	94	RVUE	$\overline{p} p ightarrow 3\pi^0, \ \eta \eta \pi^0, \ \eta \eta \pi^0, \ \eta \eta \pi^0,$					
⁹ KAMINSKI	94	RVUE	$\pi \pi \rightarrow \pi \pi, K \overline{K}$					
^{6,10} ZOU	93	RVUE	$\pi\pi ightarrow \pi\pi$, $K\overline{K}$					
11 AU	87	RVUE	$\pi\pi ightarrow \pi\pi$, $K\overline{K}$					
	DOCUMENT ID ESTIMATE ag data for averages ¹ BARBERIS BARBERIS ² KAMINSKI ANISOVICH BARBERIS BERTIN ABELE BUGG ³ AMSLER ³ AMSLER ⁴ AMSLER ^{5,6} JANSSEN ^{6,7} TORNQVIST AMSLER ANISOVICH ⁸ BUGG ⁹ KAMINSKI ^{5,10} ZOU ¹¹ AU	DOCUMENT ID ESTIMATE ng data for averages, fits, 1 BARBERIS 00C BARBERIS 99D 2 KAMINSKI 99 ANISOVICH 98B BARBERIS 97B BERTIN 97C ABELE 96B BUGG 96 3 AMSLER 95D 5,6 JANSSEN 95 6,7 TORNQVIST 95 AMSLER 94D ANISOVICH 94 8 BUGG 94 9 KAMINSKI 94 5,10 ZOU 93 11 AU 87	DOCUMENT IDTECNESTIMATE00Cag data for averages, fits, limits, 1 BARBERIS00CBARBERIS99DOMEG2 KAMINSKI ANISOVICH99RVUEBARBERIS97BOMEGBERTIN BARBERIS97COBLXABELE96BCBARBUGG96RVUE3 AMSLER95BCBAR3 AMSLER95DCBAR4 AMSLER95DCBAR5,6JANSSEN TORNQVIST95RVUEAMSLER 8 BUGG94RVUE9KAMINSKI 8 DUG94RVUE9KAMINSKI 1 AU93RVUE					

¹Average between $\pi^+\pi^-2\pi^0$ and $2(\pi^+\pi^-)$.

² T-matrix pole on sheet – – –. ³ Supersedes ANISOVICH 94.

⁴ Coupled-channel analysis of $\overline{p}p \rightarrow 3\pi^0$, $\pi^0\eta\eta$, and $\pi^0\pi^0\eta$ on sheet IV. Demonstrates explicitly that $f_0(600)$ and $f_0(1370)$ are two different poles.

⁵ Analysis of data from FALVARD 88.

⁶ The pole is on Sheet III. Demonstrates explicitly that $f_0(600)$ and $f_0(1370)$ are two different poles.

⁷ Uses data from BEIER 72B, OCHS 73, HYAMS 73, GRAYER 74, ROSSELET 77, CA-SON 83, ASTON 88, and ARMSTRONG 91B. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems.

⁸Reanalysis of ANISOVICH 94 data.

⁹T-matrix pole on sheet III.

 10 Analysis of data from OCHS 73, GRAYER 74, and ROSSELET 77.

¹¹Analysis of data from OCHS 73, GRAYER 74, BECKER 79, and CASON 83.

HTTP://PDG.LBL.GOV

f₀(1370) BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETER

VALUE (MeV)

DOCUMENT ID

1200 to 1500 OUR ESTIMATE

$\pi\pi$ MODE				TECN	COMMENT
VALUE (MeV)	EVIS	DOCUMENT ID		TECN	COMMENT
\bullet \bullet \bullet We do not	use the following da	ata for averages	, fits,	limits,	etc. ● ● ●
$1434 \!\pm\! 18 \!\pm\! 9$	848	AITALA	01A	E791	$D_s^+ \rightarrow \pi^- \pi^+ \pi^+$
$1308\!\pm\!10$		BARBERIS	99 B	OMEG	450 $pp \rightarrow p_s p_f \pi^+ \pi^-$
$1315\!\pm\!50$		BELLAZZINI	99	GAM4	450 $pp \rightarrow pp \pi^0 \pi^0$
$1315\!\pm\!30$		ALDE	98	GAM4	$100 \pi^- p \rightarrow \pi^0 \pi^0 n$
$1280\!\pm\!55$		BERTIN	98	OBLX	$0.05-0.405 \ \overline{n}p \rightarrow$
1186	12,13	TORNQVIST	95	RVUE	$\pi^+ \pi^+ \pi^- \pi \to \pi \pi, \ K \overline{K}, \ K \pi, \ \eta \pi$
1472 ± 12		ARMSTRONG	91	OMEG	$\begin{array}{ccc} 300 \ pp \longrightarrow & pp\pi\pi, \\ ppK\overline{K} \end{array}$
$1275\!\pm\!20$		BREAKSTONE	90	SFM	$62 pp \rightarrow pp \pi^+ \pi^-$
$1420\!\pm\!20$		AKESSON	86	SPEC	$63 pp \rightarrow pp \pi^+ \pi^-$
1256		FROGGATT	77	RVUE	$\pi^+\pi^-$ channel
¹² Uses data from SON 83, AS ⁻	m BEIER 72B, OCH ГON 88, and ARM	IS 73, HYAMS ISTRONG 91B.	73, (Cou	GRAYEI	R 74, ROSSELET 77, CA- annel analysis with flavor

symmetry and all light two-pseudoscalars systems. 13 Also observed by ASNER 00 in $\tau^- \to \ \pi^- \pi^0 \pi^0 \nu_\tau$ decays

KK MODE

VA	ALUE (MeV)	DOCUMENT ID		TECN	COMMENT
•	$\bullet~\bullet~$ We do not use the following d	ata for averages,	fits,	limits,	etc. ● ● ●
	1440 ± 50	BOLONKIN	88	SPEC	40 $\pi^- p \rightarrow K^0_S K^0_S n$
	1463± 9	ETKIN	82 B	MPS	$23 \pi^- p \rightarrow n 2 K_S^0$
	1425 ± 15	WICKLUND	80	SPEC	$6 \pi N \rightarrow K^+ K^- N$
\sim	1300	POLYCHRO	79	STRC	$7 \pi^- p \rightarrow n2K_S^0$

4π MODE $2(\pi\pi)_S + \rho\rho$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT		
$\bullet~\bullet~\bullet$ We do not use the following d	ata for averages	, fits	, limits,	etc. • • •		
1395 ± 40	ABELE	01	CBAR	$0.0 \ \overline{p}d \rightarrow \ \pi^{-}4\pi^{0}p$		
1374 ± 38	AMSLER	94	CBAR	$0.0 \ \overline{p} p \rightarrow \pi^+ \pi^- 3\pi^0$		
1345 ± 12	ADAMO	93	OBLX	$\overline{n}p \rightarrow 3\pi^+ 2\pi^-$		
1386 ± 30	GASPERO	93	DBC	$0.0 \overline{p} n \rightarrow 2\pi^+ 3\pi^-$		
$\eta\eta$ MODE						
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT		
• • We do not use the following data for averages, fits, limits, etc. • • •						
1430	AMSLER	92	CBAR	$0.0 \ \overline{p} p \rightarrow \pi^0 \eta \eta$		
1220±40	ALDE	86 D	GAM4	$100 \pi^- p \rightarrow n2\eta$		

HTTP://PDG.LBL.GOV Page 2

f₀(1370) BREIT-WIGNER WIDTH

VALUE (MeV) 200 to 500 OUR ESTIMA	ATE	DOCUMENT ID			
$\pi\pi$ MODE VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following d	ata for averages	, fits,	limits,	etc. ● ● ●
$173\!\pm\!32\!\pm\!6$	848	AITALA	01A	E791	$D_s^+ \rightarrow \pi^- \pi^+ \pi^+$
222 ± 20		BARBERIS	99 B	OMEG	$450 \ pp \rightarrow p_s p_f \pi^+ \pi^-$
$255\!\pm\!60$		BELLAZZINI	99	GAM4	$450 \ pp \rightarrow \ pp \pi^0 \pi^0$
190 ± 50			98 08	GAM4	$100 \ \pi^- p \rightarrow \pi^0 \pi^0 n$
323 ± 13		DERTIN	90	UDLA	$\begin{array}{c} 0.05 - 0.405 \ np \rightarrow \\ \pi^+ \pi^+ \pi^- \end{array}$
350	14,15	TORNQVIST	95	RVUE	$\pi \pi \xrightarrow{n} \pi \pi, \ \overline{K} \overline{K}, \ K\pi, \eta \pi$
195 ± 33		ARMSTRONG	91	OMEG	$\begin{array}{ccc} 300 \ pp \longrightarrow & pp\pi\pi, \\ ppK\overline{K} \end{array}$
285 ± 60		BREAKSTONE	90	SFM	$62 pp \rightarrow pp\pi^+\pi^-$
460 ± 50	16	AKESSON	86	SPEC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
~ 400		FROGGATI	((RVUE	π ' π channel
SON 83, ASTON 88 symmetry and all ligh ¹⁵ Also observed by ASI ¹⁶ Width defined as dist	3, and ARM t two-pseud NER 00 in $ au$ ance betwee	ISTRONG 91B. oscalars systems $- \rightarrow \pi^{-} \pi^{0} \pi^{0}$ en 45 and 135°	Coust ν_{τ} coust ν_{τ} coust phase	pled ch decays e shift.	annel analysis with flavor
K K MODE		DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following d	ata for averages	, fits,	limits,	etc. ● ● ●
$250\pm$ 80		BOLONKIN	88	SPEC	40 $\pi^- p \rightarrow K^0_S K^0_S n$
$118 ^{+138}_{-16}$		ETKIN	82 B	MPS	$23 \pi^- p \rightarrow n2K_S^0$
$160\pm$ 30		WICKLUND	80	SPEC	$6 \pi N \rightarrow K^+ K^- N$
~ 150		POLYCHRO	79	STRC	$7 \pi^- p \rightarrow n2K_S^0$
4π MODE $2(\pi\pi)c+d$	00				
<u>VALUE (MeV)</u>	~~	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following d	ata for averages	, fits,	limits,	etc. ● ● ●
275 ± 55 375 ± 61 398 ± 26		ABELE	01	CBAR	$0.0 \ \overline{p} d \rightarrow \pi^- 4\pi^0 p$
310 ± 50		AMSLER ADAMO GASPERO	94 93 93	CBAR OBLX DBC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
310±50 nn MODF		AMSLER ADAMO GASPERO	94 93 93	CBAR OBLX DBC	$0.0 \ \overline{p}p \rightarrow \pi^+ \pi^- 3\pi^0$ $\overline{n}p \rightarrow 3\pi^+ 2\pi^-$ $0.0 \ \overline{p}n \rightarrow 2\pi^+ 3\pi^-$
310±50 ηη MODE <i>VALUE</i> (MeV)		AMSLER ADAMO GASPERO DOCUMENT ID	94 93 93	CBAR OBLX DBC	$0.0 \ \overline{p}p \rightarrow \pi^{+}\pi^{-}3\pi^{0}$ $\overline{n}p \rightarrow 3\pi^{+}2\pi^{-}$ $0.0 \ \overline{p}n \rightarrow 2\pi^{+}3\pi^{-}$ $COMMENT$
310 ± 50 $\eta \eta$ MODE <u>VALUE (MeV)</u> ••• We do not use the	following d	AMSLER ADAMO GASPERO <u>DOCUMENT ID</u> ata for averages	94 93 93 , fits,	CBAR OBLX DBC	$0.0 \ \overline{p}p \rightarrow \pi^+ \pi^- 3\pi^0$ $\overline{n}p \rightarrow 3\pi^+ 2\pi^-$ $0.0 \ \overline{p}n \rightarrow 2\pi^+ 3\pi^-$ $\underline{COMMENT}$ etc. • • •
310 ± 50 $\eta \eta$ MODE VALUE (MeV) ••• We do not use the 250	following d	AMSLER ADAMO GASPERO DOCUMENT ID ata for averages AMSLER	94 93 93 , fits, 92	CBAR OBLX DBC <u>TECN</u> limits, CBAR	$0.0 \ \overline{p}p \rightarrow \pi^{+}\pi^{-}3\pi^{0}$ $\overline{n}p \rightarrow 3\pi^{+}2\pi^{-}$ $0.0 \ \overline{p}n \rightarrow 2\pi^{+}3\pi^{-}$ $\underline{COMMENT}$ etc. • • • $0.0 \ \overline{p}p \rightarrow \pi^{0}\eta\eta$
310 ± 50 $\eta \eta$ MODE VALUE (MeV) ••• We do not use the 250 320 ± 40	following d	AMSLER ADAMO GASPERO DOCUMENT ID ata for averages AMSLER ALDE	94 93 93 , fits, 92 86D	CBAR OBLX DBC <u>TECN</u> limits, CBAR GAM4	$0.0 \ \overline{p}p \rightarrow \pi^{+}\pi^{-}3\pi^{0}$ $\overline{n}p \rightarrow 3\pi^{+}2\pi^{-}$ $0.0 \ \overline{p}n \rightarrow 2\pi^{+}3\pi^{-}$ $\underline{COMMENT}$ etc. • • • $0.0 \ \overline{p}p \rightarrow \pi^{0}\eta\eta$ $100 \ \pi^{-}p \rightarrow n2\eta$

HTTP://PDG.LBL.GOV Page 3 Created: 6/12/2002 17:09

	Mode	Fraction (Γ_i/Γ)
Г1	$\pi \pi$	seen
Г2	4π	seen
Г3	$4\pi^0$	seen
Г ₄	$2\pi^+2\pi^-$	seen
Γ ₅	$\pi^+\pi^-2\pi^0$	seen
Г ₆	ho ho	dominant
Γ ₇	$2(\pi\pi)_{S-wave}$	seen
Г ₈	$\pi(1300)\pi$	
Г9	$a_1(1260)\pi$	
Γ ₁₀	η <u>η</u>	seen
Γ_{11}	KK	seen
Γ_{12}	$\gamma\gamma$	seen
Г ₁₃	$e^+ e^-$	not seen

f₀(1370) DECAY MODES

f₀(1370) PARTIAL WIDTHS

$\Gamma(\gamma \gamma)$ See $\gamma \gamma$ widths under $f_0(600)$ and MORGAN 90.	Г ₁₂
Γ(e ⁺ e ⁻)	Г ₁₃

.

HTTP://PDG.LBL.GOV

					- 13
VALUE (eV)	CL%	DOCUMENT ID	TECI	I COMMENT	
<20	90	VOROBYEV 8	88 ND	$e^+e^- \rightarrow \pi^0 \pi^0$	

f₀(1370) BRANCHING RATIOS

$\Gamma(\pi\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>	
\bullet \bullet \bullet We do not use the following a	lata for averages	s, fits	, limits,	etc. • • •	
0.26 ± 0.09	BUGG	96	RVUE		
<0.15	⁷ AMSLER	94	CBAR	$\overline{p}p \rightarrow \pi^+$	$\pi^{-} 3\pi^{0}$
<0.20	GASPERO	93	DBC	$0.0 \ \overline{p} n \rightarrow$	hadrons
¹⁷ Using AMSLER 95B ($3\pi^0$).					
$\Gamma(4\pi)/\Gamma_{total}$			Г	$\Gamma_2/\Gamma = (\Gamma_3)$	₃ +Γ ₄ +Γ ₅)/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
\bullet \bullet \bullet We do not use the following a	lata for averages	s, fits	, limits,	etc. • • •	
0.80 ± 0.04	GASPERO	93	DBC	$0.0 \ \overline{p} n \rightarrow$	hadrons
$\Gamma(4\pi^0)/\Gamma_{total}$					Г ₃ /Г
VALUE	DOCUMENT ID		TECN	COMMENT	
\bullet \bullet \bullet We do not use the following a	lata for averages	s, fits	, limits,	etc. • • •	
seen	ABELE	96	CBAR	$0.0 \ \overline{p} p \rightarrow$	$5\pi^0$

Page 4

Created: 6/12/2002 17:09

Citation: K. Hagiwara et al. (Particle Data Group), Phys. Rev. D 66, 010001 (2002) (URL: http://pdg.lbl.gov)

 $\Gamma(2\pi^+2\pi^-)/\Gamma(4\pi)$ $\Gamma_4/\Gamma_2 = \Gamma_4/(\Gamma_3 + \Gamma_4 + \Gamma_5)$ TECN COMMENT DOCUMENT ID VALUE • • • We do not use the following data for averages, fits, limits, etc. • • • ¹⁸ GASPERO 93 DBC $0.0 \overline{p}n \rightarrow 2\pi^+ 3\pi^ 0.420 \pm 0.014$ 18 Model-dependent evaluation. $\Gamma(\pi^+\pi^-2\pi^0)/\Gamma(4\pi)$ $\Gamma_5/\Gamma_2 = \Gamma_5/(\Gamma_3 + \Gamma_4 + \Gamma_5)$ VALUE DOCUMENT ID _____ TECN _____ COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹⁹ GASPERO 93 DBC $0.0 \overline{p}n \rightarrow \text{hadrons}$ 0.512 ± 0.019 ¹⁹ Model-dependent evaluation. Γ_6/Γ_7 $\Gamma(\rho\rho)/\Gamma(2(\pi\pi)_{S-wave})$ VALUE DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • BARBERIS 00C 450 $pp \rightarrow p_f 4\pi p_s$ large 94 CBAR $\overline{p}p \rightarrow \pi^+\pi^-3\pi^0$ $1.6\ \pm 0.2$ AMSLER $0.0 \ \overline{p} n \rightarrow 2\pi^+ 3\pi^ 0.58 \pm 0.16$ GASPERO 93 DBC $\Gamma(2(\pi\pi)_{S-wave})/\Gamma(4\pi)$ Γ_7/Γ_2 VALUE DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ²⁰ ABELE 01 CBAR 0.0 $\overline{p}d \rightarrow \pi^- 4\pi^0 p$ 5.6 ± 2.6 Γ_7/Γ_2 $\Gamma(2(\pi\pi)_{S-wave})/\Gamma(4\pi)$ DOCUMENT ID VALUE TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • $0.51 \!\pm\! 0.09$ ABELE 01B CBAR 0.0 $\overline{p} n \rightarrow 5\pi$ Γ_6/Γ_2 $\Gamma(\rho\rho)/\Gamma(4\pi)$ DOCUMENT ID _____ TECN _____ COMMENT VALUE • • • We do not use the following data for averages, fits, limits, etc. • • • 0.26 ± 0.07 01B CBAR 0.0 $\overline{p}n \rightarrow 5\pi$ ABELE $\Gamma(\pi(1300)\pi)/\Gamma(4\pi)$ Γ_8/Γ_2 VALUE DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 0.17 ± 0.06 ABELE 01B CBAR 0.0 $\overline{p}n \rightarrow 5\pi$ $\Gamma(a_1(1260)\pi)/\Gamma(4\pi)$ Γ_9/Γ_2 DOCUMENT ID _____ TECN _____ COMMENT VALUE • • • We do not use the following data for averages, fits, limits, etc. • • • 0.06 ± 0.02 ABELE 01B CBAR 0.0 $\overline{p}n \rightarrow 5\pi$ $\Gamma(K\overline{K})/\Gamma_{total}$ Γ_{11}/Γ DOCUMENT ID TECN • • • We do not use the following data for averages, fits, limits, etc. • • • BUGG $0.35 \!\pm\! 0.13$ 96 RVUE HTTP://PDG.LBL.GOV Page 5 Created: 6/12/2002 17:09

Citation: K. Hagiwara et al. (Particle Data Group), Phys. Rev. D 66, 010001 (2002) (URL: http://pdg.lbl.gov)

$\Gamma(\overline{K}\overline{K})/\Gamma(\pi\pi)$				Γ_{11}/Γ_1
VALUE	DOCUMENT ID	TECN	COMMENT	
$\bullet~\bullet~\bullet$ We do not use the following	data for averages,	fits, limits,	etc. • • •	
$0.46\!\pm\!0.15\!\pm\!0.11$	BARBERIS	99d OMEG	$\begin{array}{c} 450 \ p p \rightarrow \\ \pi^+ \pi^- \end{array}$	<i>К</i> ⁺ <i>К</i> ⁻ ,
Γ(ηη)/Γ(4 π) VALUE	DOCUMENT ID	Г ₁₀ /Г сомме	¯ ₂ = Γ ₁₀ /(Γ ₃ +Γ ₄ +Γ ₅)
$\frac{\Gamma(\eta\eta)}{VALUE}$ ••• We do not use the following	<u>DOCUMENT ID</u> data for averages,	F₁₀/I <u>COMME</u> fits, limits,	$\Gamma_2 = \Gamma_{10} / (\Gamma_{NT})$ etc. • • •	Γ ₃ +Γ ₄ +Γ ₅)
$\frac{\Gamma(\eta\eta)/\Gamma(4\pi)}{\frac{VALUE}{\bullet \bullet \bullet}}$ We do not use the following $(4.7\pm2.0)\times10^{-3}$	<u>DOCUMENT ID</u> data for averages, BARBERIS (F₁₀/I <u>COMME</u> fits, limits, DOE 450 pp	$\Gamma_2 = \Gamma_{10} / (I_{NT})$ etc. • • • $\rightarrow p_f \eta \eta p_s$	Γ <mark>3+Γ4+Γ5)</mark>

f₀(1370) REFERENCES

ABELE	01	EPJ C19 667	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ABELE	01B	FP1 C21 261	A Abele et al	(Crystal Barrel Collab.)
	01A	PRI 86 765	FM Aitala <i>et al</i>	(ENAL E791 Collab.)
ASNER	00	PR D61 012002	D M Asner et al	(CLEO Collab.)
BARBERIS	000	PI B471 440	D Barberis et al	(WA 102 Collab.)
BARBERIS	00C	PL B470 50	D Barberis et al	(WA 102 Collab.)
BARBERIS	00E	PL B453 316	D. Barberis et al.	(Omera expt.)
BARBERIS	00D	PL B462 462	D. Barberis et al.	(Omega expt.)
RELLAZZINI	99D	PL B467 206	P. Bollozzini ot al	(Olliega expt.)
KAMINSKI	99	FPI (9 141	R Kaminski I Jesniak R J	oiseau (CRAC PARIN)
ALDE	99	EP J A3 361	D Alde et al	(GAM4 Collab.)
ALDE	00	DAN 62 405	D. Aldo et al.	(CAMS Collab.)
AISO	99	Translated from YAF 62	446	(GANIS Collab.)
ANISOVICH	98B	UFN 41 419	V.V. Anisovich <i>et al.</i>	
BERTIN	98	PR D57 55	A. Bertin <i>et al.</i>	(OBELIX Collab.)
BARBERIS	97B	PL B413 217	D. Barberis <i>et al.</i>	(WA 102 Collab.)
BERTIN	97C	PL B408 476	A. Bertin <i>et al.</i>	(OBELIX Collab.)
ABELE	96	PL B380 453	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ABELE	96B	PL B385 425	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ABELE	96C	NP A609 562	A Abele et al	(Crystal Barrel Collab.)
BUGG	96	NP B471 59	DV Bugg AV Sarantsev F	3.5 Zou (LOQM PNPI)
AMSLER	95B	PL B342 433	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
AMSLER	95C	PL B353 571	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
AMSLER	95D	PL B355 425	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
JANSSEN	95	PR D52 2690	G. Janssen <i>et al.</i>	(STON, ADLD, JULI)
TORNOVIST	95	ZPHY C68 647	N.A. Torngvist	(HELS)
AMSLER	94	PL B322 431	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.) JPC
AMSLER	94D	PL B333 277	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
ANISOVICH	94	PL B323 233	V.V. Anisovich et al.	(Crystal Barrel Collab.) JPC
BUGG	94	PR D50 4412	D.V. Bugg et al.	(LOQM)
KAMINSKI	94	PR D50 3145	R. Kaminski, L. Lesniak, J.P.	Maillet (CRAC+)
ADAMO	93	NP A558 13C	A. Adamo <i>et al.</i>	(OBELIX Collab.) JPC
GASPERO	93	NP A562 407	M. Gaspero	(ROMAI) JPC
ZOU	93	PR D48 R3948	B.S. Zou, D.V. Bugg	(LOQM)
AMSLER	92	PL B291 347	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
ARMSTRONG	91	ZPHY C51 351	T.A. Armstrong <i>et al.</i>	(ÀTHU, BARI, BIRM+)
ARMSTRONG	91B	ZPHY C52 389	T.A. Armstrong et al.	(ATHU, BARI, BIRM+)
BREAKSTONE	90	ZPHY C48 569	A.M. Breakstone <i>et al.</i>	(ISU, BGNA, CERN+)
MORGAN	90	ZPHY C48 623	D. Morgan, M.R. Pennington	(RAL. DURH)
ASTON	88	NP B296 493	D. Aston <i>et al.</i>	(SLAC, NAGO, CINC, INUS)
BOLONKIN	88	NP B309 426	B.V. Bolonkin <i>et al.</i>	(ITEP. SERP)
FALVARD	88	PR D38 2706	A. Falvard <i>et al.</i>	(CLER, FRAS, LALO+)
VOROBYEV	88	SJNP 48 273	P.V. Vorobiev <i>et al.</i>	(NOVO)
	-	Translated from YAF 48	436.	(

I

AU	87	PR D35 1633	K.L. Au, D. Morgan, M.R.	Pennington (DURH, RAL)
AKESSON	86	NP B264 154	T. Akesson <i>et al.</i>	(Axial Field Spec. Collab.)
ALDE	86D	NP B269 485	D.M. Alde et al.	(BELG, LAPP, SERP, CERN+)
CASON	83	PR D28 1586	N.M. Cason <i>et al.</i>	(NDAM, ANL)
ETKIN	82B	PR D25 1786	A. Etkin <i>et al.</i>	(BNL, CUNY, TUFTS, VAND)
WICKLUND	80	PRL 45 1469	A.B. Wicklund et al.	(ANL)
BECKER	79	NP B151 46	H. Becker <i>et al.</i>	(MPIM, CERN, ZEEM, CRAC)
POLYCHRO	79	PR D19 1317	V.A. Polychronakos et al.	(NDAM, ANL)
FROGGATT	77	NP B129 89	C.D. Froggatt, J.L. Peterse	en (GLAS, NORD)
ROSSELET	77	PR D15 574	L. Rosselet et al.	(GEVA, SACL)
GRAYER	74	NP B75 189	G. Grayer <i>et al.</i>	(ČERN, MPIM)
HYAMS	73	NP B64 134	B.D. Hyams <i>et al.</i>	(CERN, MPIM)
OCHS	73	Thesis	W. Ochs	(MPIM, MUNI)
BEIER	72B	PRL 29 511	E.W. Beier et al.	(PENN)

- OTHER RELATED PAPERS

ANISOVICH	01H	EPJ A12 103	A.V. Anisovich, V.V. Anisovich, V.A. Niko	nov
KOPP	01	PR D63 092001	S. Kopp <i>et al.</i>	(CLEO Collab.)
LI	01B	EPJ C19 529	DM. Li, H. Yu, QX. Shen	· · · · ·
SUROVTSEV	01	PR D63 054024	Y.S. Surovtsev, D. Krupa, M. Nagy	
AKHMETSHIN	00C	PL B476 33	R.R. Akhmetshin <i>et al.</i> (Novosibirsk	CMD-2 Collab.)
BEVEREN	00	PL B495 300	E. van Beveren, G. Rupp, M.D. Scadron	,
Also	01	PL B509 365 (erratum)	E. van Beveren, G. Rupp, M.D. Scadron	
KAMINSKI	00	APP B31 895	R. Kaminski, L. Lesniak, K. Rybicki	
SADOVSKY	00	NP A655 131c	S.A. Sadovsky	
BEVEREN	99	EPJ C10 469	E. Van Beveren, G. Rupp	
GODFREY	99	RMP 71 1411	S. Godfrey, J. Napolitano	
ISHIDA	99	PTP 101 661	M. Ishida	
MINKOWSKI	99	EPJ C9 283	P. Minkowski, W. Ochs	
TORNQVIST	99	EPJ C11 359	N. Tornqvist	
ACHASOV	98D	PAN 61 224	N.N. Achasov, V.V. Gubin	
ACHASOV	98E	PR D58 054011	N.N. Achasov, G.N. Shestakov	
AMSLER	98	RMP 70 1293	C. Amsler	
ANISOVICH	98	PL B437 209	V.V. Anisovich et al.	
BLACK	98	PR D58 054012	D. Black <i>et al.</i>	
LOCHER	98	EPJ C4 317	M.P. Locher <i>et al.</i>	(PSI)
NARISON	98	NP B509 312	S. Narison	
ANISOVICH	97	PL B395 123	A.V. Anisovich, A.V. Sarantsev	(PNPI)
ANISOVICH	97B	ZPHY A357 123	A.V. Anisovich et al.	(PNPI)
ANISOVICH	97C	PL B413 137	A.V. Anisovich, A.V. Sarantsev	
ANISOVICH	97E	PAN 60 1892	A.V. Anisovich et al.	(PNPI)
		Translated from YAF 60	2065.	(
KAMINSKI	97	ZPHY C74 79	R. Kaminski, L. Lesniak, K. Rybicki	(CRAC)
PROKOSHKIN	97	SPD 42 117	Y.D. Prokoshkin <i>et al.</i>	(SERP)
	00	Iranslated from DANS 3	53 323.	
	96	PRL 70 1575	N.A. Tornqvist, IVI. Roos	(HELS)
GASPERU	95	NP A588 801	M. Gaspero	(ROMA)
KLEMPT	95	PL B361 160	E. Klempt <i>et al.</i>	(10014)
200	94B	PR D50 591	B.S. Zou, D.V. Bugg	(LOQM)
CLOSE	93A	PL B319 291	F.E. Close <i>et al.</i>	
CLUSE	93B	NP B389 513	F.E. Close, N. Isgur, S. Kumano	
MORGAN	93	PR D48 1185	D. Morgan, M.R. Pennington	(RAL, DURH)
	91	PK D43 2101	Z.P. LI <i>et al.</i>	(TENN)
BAKNES	85 60	PL B105 434	I. Barnes	
	09 66	NP B14 169	K. Bizzarri et al.	(LEKN, LDEF)
BELLINI	00	NC 42A 095	A. Bettini <i>et al.</i>	(PADU, PISA)