
Process Guided Service Composition in Building SoA Solutions:
A Data Driven Approach

Wei Tan1,3, Zhong Tian2, Fangyan Rao1, Li Wang1, Ru Fang1

 IBM China Research Lab1, IBM China Software Development Lab2, Beijing 100094, China
Dept. Automation, Tsinghua University3, Beijing 100084, China
E-mail: {weitan, tianz, raofy, wanglcrl, fangru} @cn.ibm.com

Abstract

Solution design has been more of an art than an
engineering discipline. Lots of researchers and
practitioners have proposed and exercised different
kinds of approaches with varied success. Most of these
methods seem to have focused on building new
solutions from scratch. However, enterprise solutions
today are mostly built on top of an existing IT
infrastructure. The notion of SoA is trying to pave a
way to integrate heterogeneous components together
to meet new business needs. When a new requirement
is given to a system developer in the form of business
processes, it would be ideal if s/he can make the best of
existing services for many reasons. In this paper we
propose a data driven approach to provide service
composition guidance to implement the given
requirement. Based on the relations among business
domain data and service domain data, we can
generate additional data mediations according to
three composition rules. With these data relations and
composition rules, we give a formal approach to
devise choreography of services from current service
portfolio, plus additional data mediation artifacts to
realize a given requirement. Our work can be seen as
an effort to bridge the gap between business and
service domain.

1. Introduction

The web is evolving from an information-delivering
center to a function offering platform to better support
automated use. Service Oriented Architecture (SoA) is
the architecture for the publication, discovery, binding,
composition, deployment and control of service-based
applications [1].

Reusability is a key issue in SoA to ensure
scalability and proficiency. When new business
requirements emerge, solution designers should devise
a design that makes the best use of existing services,

and SoA provides a way to glue all components
together with least augmentation or modification.
Current practices seem to have focused on building
new solutions from scratch in mind [2]. They address
well the issue of how to reflect the requirements and to
refine them into finer grain of abstraction so that
programmer can take over to implement. They seem to
ignore the fact that enterprise solutions are built on top
of an existing IT infrastructure. Designers need extra
help in putting the solution design in the context of
current IT infrastructure, including the current service
portfolio. There are a number of good research works
and development efforts on web service modeling and
composition [3-5], but there is not much on the linkage
between requirements and services. Academia focuses
on automatic service composition (through the method
of semantic web, AI planning, constraint solving, etc)
and verification of composed service [3-5]. In the
meantime, industry community concentrates more on
service composition languages [5, 6] and the software
tools to support them.

In this paper we propose a data based approach to
provide guidance for process (or service) composition
with a given service portfolio in mind. The data
relations between business domain and service domain
are explored and data mediation constructs are added
to bridge the existing artifacts. We use colored Petri
net as the formalism to represent three composition
rules, which is based on the data relations we get. Then
we propose a formal approach to derive service
compositions from service portfolio, and these service
compositions satisfy the requirement in respect of the
input/output data type. A prototype system is
developed to test the validity of the formal approach
we proposed. To the best of our knowledge, we present
the first formal approach and integrated system that
utilize the data relation in business/service portfolio to
derive composite services.

2. Motivation

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

In software tools such as IBM WBI modeler and
WSAD-IE [7], service composition/process can be
directly derived from business processes. It seems that
business requirements represented by business
processes can be directly transformed to refined
processes realized by available services. In practice,
however, there are some gaps remained.

First, the model elements of business process and
service composition are not identical. In practice, there
are various kinds of specifications, languages and
notations to model business process and service
composition [5, 6]. Second, the data model in business
domain and service domain are heterogeneous.
Therefore, direct or indirect mappings between them
are required to give an integrated and coherent view of
the two domains. The third reason is more critical.
Without proper guidance from the service domain,
there is no guarantee that the refined process model
can be realized by available services. So it would be
best if we can generate certain operational guidance
from the existing service portfolio to help refine a
business domain process into a customized process that
can be realized by existing services to a greater extend.

On one hand, the difficulties mentioned above
hampers the effective and efficient utilization of
available services. On the other hand, service portfolio
contains abundant information. For example, WSDL
(Web Services Description Language) files contain the
input/output data type of operations, and WSDL files
with associated data definition schema contain the
relations among these data types, such as data
aggregation and generalization. We believe that from
these data relations, much guidance can be derived to
help service composition.

3. Problem statement

In this section we first present how to drive data
structures from WSDL files and how to model data
structures in two domains, then we give the
formulation of service composition.

3.1 Domains and data relations

Various languages exist for modeling, and we need
a common language to represent the artifacts we are
working on. Colored Petri net [8] captures both control
and data aspects of process. In this paper we use
colored Petri net as the common model for both
business processes as well as services, as most other
models can have an equivalent representation in it. For
space limitations we omit the introduction of colored
Petri nets, one can refer to [8] for more information.

There are two domains involved in service
composition scenario, i.e. the business domain and the
service domain. Business domain is also known as the
requirement specification domain, in which
requirements are represented by business processes
consisting abstract activities with input/output data.
Service domain is also known as the implementation
domain, in which service is modeled by a set of
operations with input/output data modeled as messages
in WSDL.

We borrow the ideas from UML class diagram and
type definition in XML schema; here we concern two
kinds of relations, i.e., in-domain relation and cross-
domain relation. From now on, the data types in
business domain are denoted with uppercase strings,
while data elements in service domain are denoted
with lowercase strings.

In-domain relations
1. Aggregation. Has-a relation.
2. Generalization. Is-a relation.
3. Generation: the relation between input and output

data types of a business activity or service
operation is defined as generation.

Let’s explain with a real life example, i.e., an ADSL
Order Processing Service (AOPS) provided by a
telecommunication company. See Fig. 1, the upper part
is a segment extracted form WSDL file. Operation
generate_worksheet receives ADSL application order
(data type order) and generate a worksheet (data type
worksheet). Data type worksheet represents the work-
items to fullfill the order, and it aggregates
inhouse_ws which represents the work-items
undertaken in customer’s house. Data type order is the
generalization of nl_order which represents new-
telephone-line-plus-ADSL business.

With this information the data structure in service
domain is derived and illustrated in the lower part of
Fig. 1. In business domain, there are two data types
ORDER and WORKSHEET, a business requirement is
expressed as ORDER generates WORKSHEET
(ORDER WORKSHEET).

Cross-domain relation
Since we’re trying to make the best of existing

services to meet the needs of business requirements,
ideally data types in service domain should be the
implementation of those in business domain. We note
that realization is defined as a primitive in UML 2.0
specification, and it signifies the specification-
implementation relation between two model elements.
So here we use realization as a cross-domain relation
to signify that one data type in service domain directly
implements one data type in business domain. For
example, in Fig. 1, data type order in service domain is
the realization of data type ORDER in business domain.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

(In the following part of this paper a pair of data types,
one’s name in lower case and the other in upper case,
has realization relation between them.)

Given that the granularity of business data is usually
coarser than that of service data, complete realization
relation between business data and service data are not
guaranteed to be explored. In order to model
incomplete realization relation between data types, we
use two stereotypes to extend realization relation, i.e.,
partial and specialized realization.

1) Partial realization. Partial realization describes
the situation that a service data realizes one
part of a business data. For example, in Fig. 1,
data type inhouse_ws is one part of worksheet,
which realizes WORKSHHET, so we define
inhouse_ws as the partial realization of
WORKSHEET.

2) Specialized realization. Specialized realization
describes the situation that a service data
realizes one special kind of a business data. For
example, in Fig. 1, data type nl_order is one
special class of data type order which realizes
ORDER. So we define nl_order as the
specialized realization of ORDER.

Fig. 1 illustrates all the data relations we discussed
and gives the notations to model these relations.

ORDER

Business domain

Service domain

order

nl_order

WORKSHEET

worksheet

aggregation

gereralization

generation

realization

Legend <<specialized>> specialized
realization

<<partial>> partial
realization

<<specialized>>

<<
pa

rti
al>

>

inhouse_ws

Fig. 1 Domains and data relations

3.2 Problem formulation

Based on the formalization of process and data, we
have the following problem statement. (See Fig. 2)

Requirement is expressed as a colored Petri net with
a single transition t, the data type of the input and
output places of t is denoted as I and O, respectively.
So the requirement can be simply expressed as I O.
Operations in service portfolio can also be expressed
as di do, i.e., the operation consumes one instance of
data type di and yields one instance of data type do.

Our goal is to find a collection of operations in a
large service portfolio. These operations connect to
form a colored Petri net Proc. (See Fig. 2, data type
attached to one place is denoted as underlined string).

We assert that Proc is a valid composition of the
requirement I O iff:
1. Proc takes i as its only input and o as its only

output.
2. Proc is data coherent, i.e., each place in Proc can

receive correct data type from its preceding
transitions and yield correct data type to its
succeeding transitions.

Fig. 2 Service composition problem
formulation

Before addressing the problem of service
composition, we introduce in the next section data
driven composition rules used to refine processes in
business domain into processes in service domain.

4. Data driven composition rules

The composition rules and other transformation
rules in this paper are all expressed with graph
transformation formalism. We believe this formalism
is intuitive enough for understanding, and more details
on graph transformation can be found at [10].
Sequential composition rule

The sequential composition rule is illustrated in Fig.
3. For a business requirement A C, if there are two
operations in service portfolio, a b and b c, we
can refine the business requirement into a process
realized by existing services, i.e., a b c.

<xs:element name="order" type="order"/>
<xs:complexType name="nl_order">
 <xs:complexContent>

<xs:extension base="order">
 ...
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:complexType name="worksheet">
 <xs:sequence>
 ...

<xs:element name="inhouse_ws"/>
 </xs:sequence>
</xs:complexType>
<operation name="generate_worksheet">
<input message="order"/>
<output message="worksheet"/>
</operation>

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

Fig. 3 Sequential composition rule

Parallel composition rule
Here we explain parallel composition rule through

an example in Fig. 4. If a = a1 a2, b = b1 b2, and we
have two operations {a1 b1, a2 b2}, the requirement
A B can be realized by the AND collection of
{a1 b1, a2 b2}, with two additional mediation
transitions (which are represented black rectangles).
With mediation transitions, a is decomposed to a1 and
a2, and b is decomposed to b1, b2.

Fig. 4 Parallel composition rule

Choice composition rule
Choice composition rule is related to data

generalization, and this rule is explained in Fig. 5.
 In business domain, we have a requirement A B, in
service domain, we have two operations {a1 b, a2 b}
(a = a1 a2, a1 a2 =). Then requirement A B can
be realized by the XOR (exclusive OR) collection of
{a1 b, a2 b}, with two additional mediation
transitions (which are represented by black rectangles).
With mediation transitions, data type a is specified to
either a1 or a2.

Fig. 5 Choice composition rule

In the composition rules we illustrate in this section,
there is direct mapping between business data and
service data. Nevertheless, usually there is no existing
service data that realizes some business data, so we
may need to add newly-created service data to make
the data structure coherent. These newly-created
service data can be regarded as virtual data type to
facilitate service composition. For example, See Fig. 4,
if there is no service data type a(b) which directly
realizes A(B), we should create virtual data type a and
b from the partial realization data types of A and B, s.t.
a = a1 a2, b = b1 b2, then A B is refined to the AND
collection of {a1 b1, a2 b2}. Another circumstance
is that, if a, b, a1 and b1 exist, but a2 and b2 don’t exist
in service portfolio, we should manually add a2 and b2
as virtual data types in service domain to indicate that
there is a missing operation a2 b2 in service portfolio
to fulfill the requirement a b. We believe virtual data
type can be a powerful tool to better glue together
business data and service data, and further glue
together business requirement and service operations.
In this paper we concentrate on the approach and
algorithm for data driven process composition, and
we’ll pay more attention to the issue of virtual data in
our future work.

5. Data driven process composition

Based on the data relations and composition rules,
we are now ready to solve the problem formulated in
Section 3.2. That is, if a business requirement is
represented as I O, find a service composition from
service portfolio to realize this requirement.

5.1 Preliminary Definitions

In this section some definitions which will be used
in the following sections are given.

Fig.6 Generation rules for AWSP

Definition 1. (Acyclic Well Structured Process,
AWSP) An Acyclic Well Structured Process is defined
as follows:
1. A transition with one single input place and one

single output place is an AWSP.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

2. All Petri nets obtained by using transformation
rules 1-3 in Fig. 6 are AWSPs.

Based on the composition rules we give in Section 4,
we give the definition of Service Net and the method
to derive a service net with given service portfolio.
Definition 2. (Service Net, SN) A Service Net with
respect to a service portfolio and data mediation is a
colored Petri net (P, T, A, , C), where

1) is a finite set of data types modeled as color
sets.

2) P is a finite set of places.
3) T is a finite set of transitions. T = OT MT, OT

is the set of operation transitions, and MT is
the set of mediation transitions.

4) A is a finite set of arcs.
5) C is a color function defined from P into . C

is injective, i.e., C(p1) = C(p2) p1 = p2.
A Service Net is constructed in the following way:
1) Data relations and mediations are modeled

with mediation transitions.
2) Service operations are modeled with operation

transitions.
3) Places attached with identical data type are

merged into a single one.
Remarks:
1) A service net SN is data coherent since

transitions represents data mediation or
transformation.

2) The refined process in Fig. 3, 4 and 5 are all
Service Nets.

Definition 3. (Conflict place) Given a service net SN
= (P, T, F), T = OT MT, Pc P is the set of conflict
places, p Pc iff p >1 (t p s.t. t OT)
Definition 4. (Reachability) In a Petri net (P, T, A),
we define relation R as the reachability relation
between two nodes. n1, nj P T, R(n1, nj) is true iff
there is a path C from n1 to nj < n1, n2, ,…, nj > such that
(ni, ni+1) A for 1 i j-1, and for any two nodes np

and nq in C, p q np nq. We define R(ni, ni) = true.

5.2 Derive AWSP from Service Net

With the definitions in Section 5.1, the problem
raised in Section 3.2 is interpreted more formally:
Input: I O.
Output: An AWSP Proc, which is a sub graph of SN,
with i as its input and o as its output, and contains no
conflict place.

The solution approach is made up of four steps.
Step 1. Construct a service net SN from given service
portfolio and data mediations in business/service
domain. The method is given in Section 5.1.
Step 2. Derive a Reduced Service Net RSN from SN.

Let’s first define Reduced Service Net.
Definition 5. (Reduced Service Net) A reduced
service net RSN of SN = (P, T, F) with respect to input
data type i and output data type o, or RSN(SN, i, o), is a
sub graph of SN, s.t., n PSN TSN, n PRSN TRSN iff
in SN, R(i,n) = R(n,o) = true.

Remark: when a SN is reduced to a RSN, any
operations, data mediations and data types which are
not on a path from data type i to data type o are
eliminated. We reduce a Service Net in order to
remove the un-related parts, and the reduction process
can be done by slightly modifying the graph traverse
algorithm.
Step 3: Decompose RSN into sub nets, each of which
contains no conflict place.

The branches after each conflict places represent
options from which we can choose for data processing.
A snippet of a RSN is shown in Fig. 7. Place p1 is a
conflict place, so data type a attached to p1 can be
processed by operation t1 or t2, or the XOR-join of
operations {t31, t32}.

A RSN must be decomposed into a set of subnets
which do not contain any conflict places. Simply
speaking, each time a conflict place is encountered,
one branch is selected as the active one, and the other
branches are removed. As Fig. 7 illustrates, three
subnets are generated because p1 has three succeeding
transitions (t31 and t32 is grouped and treated as one
single branch).

Fig. 7 Illustration of the decomposition
algorithm

When there are more than one conflict places in a
RSN, things get more complicated. If there are n
conflict places each with m branches, possibly we have
mn distinctive sub nets. We use selection function to
decide which branch to choose for each conflict place.
One valuation of selection function corresponds to one
situation of decomposition, and we use decomposition
algorithm to get one subnet for each valuation. Now
we’ll give formal definitions of the functions we
mentioned above.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

Definition 6. (Selection Function) Given a reduced
service net RSN = (P, T, F), T = OT MT, Pc = {pc1,
pc2,…, pcn} P. Selection function Sel maps each p in
Pc to one of its succeeding transitions, i.e.,

Sel(pc1, pc2,…, pcn) = (t1, t2,…, tn)
ti pci , 1 i n

For example, in Fig. 7, the value of Sel(p1) can be t1
or t2 or {t31, t32}. Each valuation of selection function
corresponds to a sub net decomposed from RSN.
Decomposition Algorithm

The decomposition algorithm is intuitively
explained as follows. For each conflict place, the
decomposition algorithm removes the inactive branch
according to the valuation of selection function.
Consider the procedure in the outmost While loop.
First, the branches not selected are isolated (the first

For procedure). Next, the choice places which are also
source places are taken out since they’re to be removed
too (the first While procedure). Then all the source
places in the net are examined; they are deleted with
their succeeding transitions or marked dead (the
second While procedure). These three steps are
iterated until no new node is to be removed.
Input:

RSN = (P, T, F); Pc = {pc1, pc2,…, pcn} P
One valuation of Sel(pc1, pc2,…, pcn)

Output:
Ri = {Pi, Ti, Fi}

Step 4. Check each of the decomposed net derived
from Step 3 to decide whether it is a feasible solution.

5.3 Complexity analysis

The complexity of each run of decomposition
algorithm equals to the complexity of traverse the
reduced service net, i.e., O(V + E). (V and E are the

Given a net N = {P, T, F}, n P T
Function Remove(n, N) modifies the structure
of N by deleting n and the arcs leading and
ending at n, that is,
If n P

P = P – {n}
F = F – {(n, x)| x T (n, x) F}

{(y, n)| y T (y, n) F}
If n T

T = T – {n}
F = F – {(n, x)| x P (n, x) F}

{(y, n)| y P (y, n) F}
If N’ P T, Remove (N’, N) modifies
structure of N by invoking Remove (n, N)
sequentially for all n N’

Given a net N = {P, T, F}, p P, t T, p t
Function Redirect (p, t, p’, N) modifies the
structure of N by redirect (p, t) to (p’, t), that
is:

P = P {p’}; F = (F – {(p, t)}) {(p’, t)}

Given a reduced service net
RSN (pi, po) = (P, T, F):
1. p P, p is a source place iff p pi p= .
2. p P, function SP(p) is a Boolean

function. SP(p) returns true iff p is a
source place, all source place is initially
marked to be non-dead.

3. p P, function DSP(p) is a Boolean
function. DSP(p) returns true iff p is a
source place and is explicitly marked to
be dead.

Ri = RSN(pi, po)
While Pc

Select pci Pc SP(pci)
For every tk s.t. tk pci Sel(pci) tk

Redirect(pci , tk, pcik,.Ri)
EndFor
Pc = Pc – { pci }

While (s Ri s.t. s Pc SP(s))
Pc = Pc – {s}
For all tk s

Redirect(s, tk, sk, Ri)
End for

EndWhile

While (s Ri s.t. SP(s) DSP(s))
t = s

 If t = {s}
 Remove(s , Ri)

Remove(t , Ri);
ElseIf t {s} s’ t – {s} s.t. DSP(s’)

Denote s as dead.
ElseIf t {s} s’ t – {s} DSP(s’)

Remove (t, Ri)
Remove (t, Ri)

EndIf
EndWhile

End while

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

vertex and edge set of reduced service net respectively.)
If a reduced service net RSN contains n OR-split

places, each with m branches, we have mn valuations
of selection function. In the worst case, from each
valuation we run the decomposition algorithm and get
one distinctive sub net, thus we’ll get mn sub nets
altogether. So in worst case, the computation
complexity is O((V + E) mn).

However, it’s observed that some valuations might
derive non-feasible subnets, and some different
valuations will derive identical subnets. By detecting
these circumstances, many valuations can be simply
ignored.

One circumstance is death path elimination, i.e., to
detect whether different valuations of select function
lead to the same decomposition.

Fig. 8 Methods to reduce computation
complexity

See Fig. 8(a), if Sel(pc1, pc2, pc3,) = (t1, *, *) (*
stands for arbitrary value), when we impose the
decomposition algorithm on the net, pc3 is removed.
We can conclude that once pc1 selects t1, the selection
of pc3 do not make a difference on the result. So many
different valuations of selection function will lead to
the same decomposition result, and by detecting this
fact we do not have to run the decomposition
algorithm for each valuation of selection function..

The other circumstance is lack-of-synchronization
detection, i.e., to detect whether one valuation will
derive non-feasible subnets. When we run the
decomposition algorithm, if t, | t|>1 (p t, p is a
dead source place) (p t s.t. any path from i to p do
not contain places in set Pc), then this subnet must be
lack-of-synchronization. At this point, decomposition
algorithm can stop and we conclude no feasible
solution will be derived from this valuation. (See Fig.
8(b) for an example.)

6. System Implementation and an Example

Based on the concepts and algorithms we proposed
in this paper, we’ve developed a prototype system
Ddscs (Data driven service composition system).

Fig. 9 System architecture of Ddscs

The system architecture is presented in Fig. 9, and is
briefly explained as follows:
1) A new business requirement is fed into

Requirement Manager, where it’s normalized
based on the business rules stored in Business
Rule Manager. After normalization, business
requirement is expressed in the form of {i1 o1,
i2 o2, …} and is put into Solution Composer.

2) Business Portfolio (BP) and Service Portfolio
(SP) maintain business and service data/relations,
respectively. Data Mediation Manager (DMM)
maintains the cross-domain data relations. These
data/relations are expressed in XML format for
transformation convenience.

3) Based on BP, SP and DM, service net can be
derived and managed by Service Net Manager.
Service net is stored in PNML [11] format, which
is an XML-based interchange format for Petri
nets. Given the normalized requirement, a service
net can be decomposed by Service Net
Decomposer to derive candidate solutions which
are presented to users in Solution Composer. In
Solution Composer we use Petri Net Kernel [12],
a Petri net modeling and analyses tool, to display
the decomposed net to users. Here we use Petri
Net Kernel because it support PNML format
input and this tool is easy for further extension.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

We take the AOPS example mentioned in Section 1
to illustrate the validity of the proposed approach. The
service net is derived from one WSDL file. For
simplicity, here we omit the unrelated parts and only
give the RSN.

The requirement is ORDER CUS_REC (given an
ADSL business order, do all the necessary operations
and return a customer receipt).

Fig. 10 illustrates the reduced service net and
decomposed net displayed in Petri Net Kernel. The
uppermost Petri net is the reduced service net. The
operation and mediation transitions are explained as
follows:

mt11, mt12: mediation transition, to classify order
into two sub-types, i.e., ADSL order (adsl_order) and
new- telephone-line order (nl_order).

t2: operation transition, to search a corresponding
worksheet according to an order.

t3/t4: operation transition, to generate a worksheet
based on an ADSL/new-telephone-line order.

mt21: mediation transition, to decompose worksheet
into two parts, i.e., line worksheet (line_ws) and in-
house worksheet (inhouse_ws).

mt22: mediation transition, to compose line and in-
house worksheet confirmation (line_con/inhouse_con)
into worksheet confirmation (ws_con).

t5/t7: operation transition, to carry through line/in-
house construction work based on the given worksheet.

t6: operation transition, to search an in-house

worksheet according to its corresponding line
worksheet.

t8: operation transition, to generate a customer
receipt (cus_rec) based on a worksheet confirmation
(ws_con).

The 2nd to 4th Petri nets in Fig. 10 illustrate three
subnets decomposed from RSN. The 2nd net
corresponds to the valuation ({mt11, mt12}, t5). The 3rd

net corresponds to the valuation (t2, t5). They’re both
feasible service composition candidates. The 4th net
corresponds to the valuation (*, t6). In this case lack-
of-synchronization is encountered, and the
decomposed net is not a feasible solution. Till now we
get two solution candidates based on the data driven
approach we proposed. If we manually check the 3rd

net we’ll found it does not fulfill the requirement since
operation t2 does a search job instead of a worksheet
generation job.

In the mean time, we’ll find the 2nd net is a
satisfactory solution. The result for service
composition is made up of three steps, i.e., Apply,
Construct and Offering. In step Apply, AOPS receives
customer’s ADSL order and generate a worksheet
according to the type of business; in step Construct,
AOPS undertakes required construction work
according to the worksheet content and generates
confirmation form; in step Offering, AOPS delivers a
receipt to the customer.

Fig. 10 The reduced service net and decomposition results of AOPS (in Petri net kernel)

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

Through this example we can see that data driven
approach is well suited for service composition as long
as the business/service data and their relations are
available.

7. Conclusion

In this paper we try to bridge a gap between business
domain and service domain in building SoA solutions
from data perspective.

It is very important to have a way that enhances the
reusability of service portfolio by generating service
composition guidance on implementing a business
process. We utilize data relations in business and
service domain, and we add data mediation constructs
to make the data model in these domains complete and
coherent. We devise three composition rules, i.e.,
sequential, parallel and choice composition rule based
on the augmented data model. Based on the data
relations and composition rules we propose a formal
approach to derive all the possible composition
candidates from given service portfolio. First we get a
connected service net from service portfolio; then we
reduce the service net with respect to the given
requirement (i.e. the input/output signature); later we
decompose the reduced service net into subnets, each
of which represents a composition candidate. A
prototype system is developed and an example is given
to validate our approach as well as the algorithm.

Briefly speaking, through our approach we can
quickly pick out operations related to the business
requirement, and chain them together as a process.
Our work can be seen as the first step towards the
effort to bridge the gap between business domain and
service domain. Future work includes the formal
definition and derivation of virtual data types, the
validation of our approach in real industry scenario,
and extending this idea to other issues in SoA, for
example, service lifecycle management.

References

[1] N. H. Michael, P. S. Munindar, “Service-Oriented
Computing: Key Concepts and Principles”, IEEE Internet
Computing, 2005(9), pp. 75-81.
[2] Z. Olaf, D. Vadim, G. Jonas and H. Kerard, “Service-
Oriented Architecture and Business Process Choreography in
an Order Management Scenario: Rationale, Concepts,
Lessons Learned”, Proceedings of Conference on Object
Oriented Programming Systems Languages and Applications,
ACM Press, New York, 2005, pp. 301-312.
[3] J. Cardoso, A. Sheth, “Introduction to Semantic Web
Services and Web Process Composition”, Lecture Notes In
Computer Science 3387, Springer-Verlag, Berlin, 2005, pp.
1-13.
[4] H. Richard, S. Jianwen, “Tools for composite web
services: a short overview”, SIGMOD Record, 2005, 34(2),
pp. 86-95.
[5] N. Milanovic, M. Malek, “Current Solutions for Web
Service Composition”, IEEE Internet Computing, 2004, 8(6),
pp. 51-59.
[6] W.M.P van der Aalst, M. Dumas and A.H.M. ter
Hofstede, “Web Service Composition Languages: Old Wine
in New Bottles?”, Proceedings of 29th Euromicro
Conference, IEEE Press, 2003, pp. 298 – 305.
[7] M. Tilak, “From business modeling to Web services
implementation: Part 1: Modeling a business process”,
http://www-128.ibm.com/developerworks/websphere/library/
techarticles/0502_mitra1/0502_mitra1.html, 2005.
[8] Web Services Description Language. http://www.w3.org/
TR/wsdls, 2001.
[9] Jensen K., Coloured Petri nets: basic concepts, analysis
methods, and practical use, Springer-Verlag, Berlin, 1992.
[10] Grzegorz R., Handbook of graph grammars and
computing by graph transformation: volume I. foundations,
World Scientific Publishing, River Edge, NJ USA, 1997.
[11] J. Billington, S. Christensen, K. van Hee, et al, “The
Petri Net Markup Language: Concepts, Technology, and
Tools”, Proceedings of Applications and Theory of Petri Nets
2003, Lecture Notes In Computer Science 2679, Springer-
Verlag, Berlin, 2003 pp. 483-505
[12] K. Ekkart, W. Michael, “The Petri Net Kernel An
infrastructure for building Petri net tools”, International
Journal on Software Tools for Technology Transfer (STTT),
Sept. 2001, pp. 486-497.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

