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Hard Di�raction at CDF

K. Borrasa (for the CDF Collaboration)

aThe Rockefeller University,
New York, NY 10021, USA

Recently published and new preliminary results from the analyses of di�ractive events selected with a central

or a forward rapidity gap are summarized. New measurements of the ratio of dijet production in single di�ractive

and non-di�ractive events obtained from the Roman Pot data are discussed.

1. Introduction

In the studies described below di�erent tech-
niques to identify di�ractive events are used. One
of them is the direct measurement of the di�rac-
tively scattered anti-proton with Roman Pots.
Results obtained by those data are described in
section 3. Another technique is to look for a ra-
pidity gap in the event topology.

2. Results from Rapidity Gap Data

Rapidity gaps are large regions in pseudo-
rapidity in which no signal above noise is mea-
sured in the detector. They are devoid of any pro-
duced particle, a clear signature for the exchange
of a colorless object (see �gure 1). The cen-

Figure 1. Dijet production with a central(left) or
a forward(right) rapidity gap.

tral tracker (j�j < 1:8; ptrackT > 300MeV) and the
central calorimeter (j�j < 1:1; EtowerT > 200MeV
[300MeV corrected]) of the CDF detector [1] were
used to select events with a rapidity gap between
two jets. The search for the forward rapidity
gaps was performed with the forward calorime-
ter (2:4 < j�j < 4:2; Etower > 1:5GeV), mea-

suring charged and neutral particles, and the
scintillator systems of the Beam-Beam Counters
(3:2 < j�j < 5:9), sensitive to charged particles.

2.1. Data with a Central Rapidity Gap

In this study opposite side dijets (�1 � �2 < 0)
are compared to same side dijets (�1 � �2 > 0).
Results on the production rate and the proper-
ties of these dijets at a center of mass energy ofp
s = 1800GeV have been published in [2] and [3].

The ratio of dijets with a central gap to those
without a gap is measured to be RJGJ (1800) =
(1:13 � 0:16)% for dijets with EjetT > 20 GeV.
The study of these dijets at the lower center of
mass energy of

p
s = 630GeV is also �nished

and published in [4]. The ratio RJGJ is deter-
mined to RJGJ(630) = (2:7 � 0:9)% for a lower
jet ET threshold of 8 GeV, so that the same � of
a jet corresponds to the same x, the longitudinal
momentum fraction of the interacting parton, at
both values of

p
s and the ratios can be compared:

RJGJ (630=1800) = 2:4� 0:9. The distribution of
the ratio as a function of the average �, ET and
x are measured at both energies and are found to
be 
at within the errors.

2.2. Data with a Forward Rapidity Gap

Already in 1997 the di�ractive production rates
of W bosons [5] and dijets [6] were published.
From these two analyses it was derived, that
the fraction of hard gluons in the pomeron is
fg = 0:7�0:2. Compared to Hera measurements a
discrepancy of D = 0:18�0:04 in the momentum
sum was found. This discrepancy is predicted by
the concept of the renormalized 
ux [7].
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New, preliminary results on di�ractive heavy

avor production are now available, in which the
same rapidity gap criterion has been applied as
in the previous analyses. In both cases, the b-
quark and the J= production, the signal is ex-
tracted from the multiplicity bin with no for-
ward calorimeter tower above noise and no hit
in the Beam-Beam Counters. The background
from non-di�ractive events in this signal bin is
extracted from the extrapolation of the diagonal
and subtracted (�gures 2 and 3). In the study

Figure 2. Di�ractive b-quark production.

of di�ractive b-production the di�ractive events
are required to contain a central(j�j < 1:1) elec-
tron with ET > 9:5GeV from the semi-leptonic b-
decay. The ratio of di�ractive to non-di�ractive
b-production is measured to be Rb

�
SD
ND

� � A =
[0:26 � 0:08(stat)]%. The quoted ratio is uncor-
rected for the rapidity gap acceptance A(� 40%).
In the data selection for the J= production

its decay into 2 muons is used. The di�ractive
events are required to have a central �-pair of
pT > 2GeV. Here again the ratio of di�ractive

Figure 3. Di�ractive J= production.

to non-di�ractive J= production is uncorrected
for the rapidity gap acceptance and evaluated to:
RJ= 

�
SD
ND

��A = [0:64� 0:12]%.

3. Results from Roman Pot Data

In the beginning of 1996 the CDF experiment
was additionally equipped with three Roman Pot
stations in the anti-proton direction and took
the data of Run 1C under high and low lumi-
nosity conditions at both

p
s = 1800GeV andp

s = 630GeV. By requiring a good reconstruct-
ed track single di�ractive events were selected.
The Roman Pots show a good acceptance for
�, the longitudinal momentum fraction taken in
the di�ractive interaction from the scattered anti-
proton, in the range of 0.04 to 0.1. In t, the
squared four-momentum transfer, the Roman pot
acceptance at

p
s = 1800GeV is good up to

jtj < 1GeV2, extending to about 3GeV2, whereas
at

p
s = 630GeV the acceptance is good up to

jtj = 0:2GeV2.
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CDF PRELIMINARY

Figure 4. Distribution of x�p in the single di�rac-
tive dijet data and overlap background events(top
left) and in the non-di�ractive data(top right).
Comparison of the SD and ND distributions (bot-
tom left) and their ratio(bottom right).

In addition to the analysis of the single di�rac-
tive events a study for double pomeron exchange
has been performed.

3.1. Dijets in Single Di�ractive Events

In the single di�ractive data we select events
with two jets of ET � 7GeV and evaluate the mo-
mentum fraction of the parton in the anti-proton,
which took part in the jet production from the
equation

x�p =
Ejet1T � e��1 +Ejet2T � e��2

2 � pbeam : (1)

The measurement of this quantity is independent
of any assumption on the di�ractive scattering
process, since these events are only required to
have a Roman Pot track. The analysis of the ratio
of its distribution in single di�ractive events(SD)
to that in non-di�ractive events(ND) is therefore
completely model independent. Figure 4 illus-
trates the separate steps of the evaluation. The

CDF Preliminary

Figure 5. Ratio of single di�ractive to non-
di�ractive dijet events as a function of x�p at a
center of mass energy of

p
s = 630GeV.

advantage of calculating a ratio is the cancelation
of detector in
uences, like jet energy calibration
or cracks in the calorimeter, because jets at the
same x�p have similar ET and �. In addition some
uncertainties in eventual theoretical calculations
will also cancel.
In �gure 4 bottom right the ratio is shown for

the center of mass energy of
p
s = 1800GeV and

in �gure 5 for
p
s = 630GeV. In both cases di-

jets with an ET � 7GeV were required and the
single di�ractive events were taken in the range
0:04 < � < 0:1 and jtj < 1GeV2(

p
s = 1800GeV),

jtj < 0:2GeV2(
p
s = 630GeV). No Roman Pot

acceptance has been applied so far, but the con-
clusions are not in
uenced by this. The left dot-
ted line in �gure 5 denotes the approximate low-
er limit for x�p given by the minimum jet ET
and detector size, whereas the right dotted line
shows the upper limit determined by the smallest
accepted � of 0.04. All events with a x�p > 0:04
stem from events with a larger � up to the highest
accepted value of 0.1.
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The level of the ratio of di�ractive to non-
di�ractive dijet production lays below 1% in con-
trast to the ratios of about 10% observed at
Hera in inclusive DIS measurements. The range
covered in x�p is quite large, it starts as low as
4:0 � 10�4 and spans over two orders of mag-
nitude. The observed ratio can be interpreted
as the di�ractive structure relative to the proton
structure probed in the non-di�ractive case. The
ratio decreases with increasing x�p as 1=xn�p . This
dependence is similar at both values of

p
s. Since

the proton structure also decreases as 1=xr�p in this
range of x�p, the di�ractive structure is expected

to have a 1=x
(n+r)
�p behavior.

Turning now to the assumption that a pomeron
was exchanged in the di�ractive interaction (see
�g. 1 right) the measurement of � by the Roman
Pots makes it possible to calculate the distribu-
tion of �, the momentum fraction of the parton
in the pomeron, which took part in the hard sub-
process, according to the relation � = x�p=�. To
interpret the distribution of � observed in the da-
ta, it is necessary to unfold the in
uences from the
�nite detector size and the physics process depen-
dencies. This can be achieved by dividing the da-
ta by Monte Carlo simulations generated with a

at parton distribution in the pomeron, in which
all values of � are equally distributed, and which
have been passed through the detector simula-
tion and reconstruction. Studies performed with
the POMPYT generator [8] of version 2.61 show
the expected behavior of the di�ractive struc-
ture. Using the standard parameterization of the
pomeron 
ux a discrepancy between the mea-
sured and the predicted cross section is observed
of the same magnitude as already found in the
di�ractive W and dijet production. The appli-
cation of the renormalized pomeron 
ux resolves
this discrepancy. With simulations also direct
comparisons with predictions from the pomeron
model and its parton densities as measured by the
H1 Collaboration [9] can be performed.

3.2. Dijets in Double Pomeron Exchange

Candidates for a double pomeron exchange
(DPE) have been selected by asking for a for-
ward rapidity gap opposite to the Roman Pots.
Compared to the already reported results [10] the

study has be re�ned in several aspects, like jet re-
construction, but the conclusions stay the same:

- the kinematic properties of the DPE can-
didates are in agreement with predictions
from DPE simulations,

- the rate R(DPESD ) predicted by simulations
become consistent with the measured rate
if both pomeron 
uxes are renormalized by
the measured discrepancy D,

- the ET spectrum of the leading jet in DPE,
SD and ND look similar.
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