Ethernet Diagnostics IRM options Robert Goodwin Thu, Oct 3, 2002

The IRM ethernet driver supports several diagnostics that can assist diagnosing network problems. This note summarizes various diagnostics that are available in these 68040-based front ends. Most of these tools are unavailable in the PowerPC nodes, because the vxWorks kernel supports all network activity. The exceptions are noted in the text.

Network Frames

All nodes are set up to include the NETFRAME data stream support, which records all network activity seen by the node. One usually views this data via the page application called PAGENETF that is normally found on Page F of the "little consoles." One can view UDP datagrams, ICMP and IGMP packets, IP fragments, and ARP messages. (This data stream support also exists for PowerPC nodes, and one can view UDP datagrams in this way.) Here is an example of network activity captured from node0600, the Linac server node, through which nearly all Acnet requests for Linac data pass.

SrcN	Size	т	^Frame	HrMn Sc Cy+ms	
				1359:41-00+13	15 Hz data from contributing nodes
A62D	0060	R	E6D2A2	1359:41-00+14	in response to active periodic requests
A611	0016	R	E6D316	1359:41-00+14	etc
A610	001A	R	E6D33E	1359:41-00+14	
A625	006E	R	E6D36A	1359:41-00+14	
A622	006E	R	E6D3EA	1359:41-00+14	
A623	006E	R	E6D46A	1359:41-00+14	
A624	006E	R	E6D4EA	1359:41-00+14	
A626	006E	R	E6D56A	1359:41-00+15	
A621	006E	R	E6D5EA	1359:41-00+16	
A627	006E	R	E6D66A	1359:41-00+16	
A620	00A4	R	E6D6EA	1359:41-00+17	
A92E	0208	R	E6D7A2	1359:41-00+17	New RETDAT request from cns46
A9FC	0208	т	E935D4	1359:41-00+18	Multicast to all Linac nodes
A600	0208	R	E6D9BE	1359:41-00+18	Receive own multicast
A613	0016	R	E6DBDA	1359:41-00+19	First of 15 contributing node replies
A611	001A	R	E6DC02	1359:41-00+20	etc
A614	0016	R	E6DC2E	1359:41-00+20	
A612	0016	R	E6DC56	1359:41-00+20	
A615	003E	R	E6DC7E	1359:41-00+20	
A622	0016	R	E6DCCE	1359:41-00+20	
A625	0016	R	E6DCF6	1359:41-00+21	
				1359:41-00+21	
A623	0016	R	E6DD46	1359:41-00+21	
				1359:41-00+21	
A624	0016	R	E6DD96	1359:41-00+21	
				1359:41-00+21	
				1359:41-00+21	
				1359:41-00+21	
				1359:41-00+21	Last contributing node reply
				1359:41-00+21	Return composite reply to cns46
				1359:41-00+48	Usual periodic replies
A9E8	0022	Т	E938DC	1359:41-00+48	etc

Each line represents a datagram that was either transmitted or received, and the node is specified in terms indicating a native node number, with the first digit A representing the Acnet protocol port. When a native node number does not apply, the Acnet node number is specified, such as 92E (trunk 9, node 46) for cns46. The apparent one-shot request was turned around in this example in only 4 ms from the time node0600 received the request from cns46, in spite of the fact that it had to gather data from 15 other front ends before it could deliver the reply. (The times are shown in HrMn:sc-Cy+ms format, indicating time within a particular 15 Hz accelerator cycle down to millisecond resolution.)

Interrupt timing

Recent diagnostics added support measuring particular interrupt activities, including ethernet transmit and receive activitiess separated out. The interrupt timing table (ITT) is located at low memory address 0x800, with a total length of 512 bytes. A 32-byte header is followed by as many as thirty 16-byte entries. The entries have the following format:

Field	Size	Meaning
id	1	Identifier for this entry
flgBit	1	Flags in hi nibble, LEĎ bit# in low nibble.
count	2	Activity counter
elapsed	l 4	Elapsed time
base	4	Base time for measuring elapsed time
cycle	4	Time of interrupt within current 15 Hz cycle.

Here is an example of what the ethernet entries look like, captured at random:

000860 000868	E000 9A82 0000 0013 9EDC C237 0000 0AA0	Ethernet Output
000870 000878	E100 1F76 0000 0039 9EAC 9150 0000 AA31	Ethernet Input
000910 000918	EC83 BA04 0000 002F 9EDC C222 0000 0A8B	Ethernet Complete

Watching this area of memory gives a rough idea of ethernet interrupt activity, including the elapsed time to perform it. All timings are in microseconds. The last one indicates that interrupt LED #3 is used for exhibiting Ethernet Complete activity, which is the entire duration of the ethernet interrupt routine. (The Ethernet Output and Ethernet Input measure only the time of Output or Input processing, respectively, within the interrupt routine.)

One can perform related timing tests by modifying the flags nibble. As mentioned already, the flags value of 8 specifies using a LED to make the activity externally visible. A value of 4 alters the elapsed time to measure the time between successive activities. The value 2 specifies keeping the maximum duration in the elapsed time field (or the minimum time between successive activities if the flag value of 4 is also set). The value 1 specifies that the elapsed time records should also be logged in the data stream called ITTLOG.

Ethernet Interrupt Times

This is an older version of ethernet interrupt timing that is also available. It is located at low memory address 0x4C00 and has a size of 1024 bytes. Each entry is 8 bytes long and

uses the following format:

Field Size	Meaning
status 2	Status word from System Command Block
cycCnt 2	Cycle counter, low word of CYCLECNT global variable
cycTime 2	Time in present 15 Hz cycle, in 0.5 ms units
elapsed 2	Elapsed time in interrupt routine, in microseconds

Here is an example showing entries that resulted when a device name lookup was initiated:

:00004EC8	6040	B1D6	0007	0074	Multicast name query
:00004ED0	4040	B1D6	001E	0044	Response from node0611
:00004ED8	6040	B1D7	000A	0070	ARP request
:00004EE0	4040	B1D7	000B	0040	ARP reply
:00004EE8	2040	B1D7	000D	0033	Device data request
:00004EF0	4040	B1D7	001D	0045	Device data replies
:00004EF8	4040	B1D8	001B	004A	etc.
:00004F00	4040	B1D9	001B	004E	

The upper 4-bit nibble of the status word indicates that the interrupt was due to a received frame (4), a transmitted frame (2), or both (6). The second nibble indicates the status of the Command unit in the ethernet chip (intel 82596), which includes transmit commands; a value of 0 means the Command unit is idle. The third nibble indicates the status of the Receive unit; a value of 4 indicates that the Receive unit is ready. The name lookup query is indicated in the first entry shown, where the node sending the query also received its own multicast query message. The second line shows the response from the node having the named device. The third line shows the ARP request, which is followed by the ARP reply. The fifth line shows the query for device data as initiated by the parameter page application. This is followed by the immediate first reply, then by additional replies occurring at a 15 Hz rate.

Ethernet Receive Unit Not Ready

As a result of an early experience encountering a condition of Not Ready status for the Receive unit, caused at that time by receiving a frame more than 1500 bytes in length, this diagnostic was added in case it occurs again. This table is based at 0x6000 and is 1024 bytes in size. The first 8 bytes of each 64-byte entry hold the usual BCD time-of-day, followed by the 16-byte RFD (Receive Frame Descriptor), followed by the first 40 bytes of the received frame. The system restarts the Receive unit if this condition is detected. For further details, refer to the ERUREADY code in the Ethernet.a source module.

Ethernet Receive timing

This diagnostic focuses on the number of receive frames processed within one ethernet interrupt activity. It is located at 0x6400, with a size of 1024 bytes. An 8-byte header includes the current offset word to the next entry, a byte containing the maximum number of frames processed during one interrupt, and 5 bytes that show the time when this maximum count was last increased, specified in Mo-Da-Hr-Mn-Sc. Each 4-byte entry consists of a byte count of frames received in one interrupt, and a 3-byte microsecond elapsed time since the previous such receive frame interrupt. Here is an example of such data:

:000064E0	01	0509E4	01	02D9D8
:000064E8	01	00A20A	01	021BED
:000064F0	02	05F5D5	00	000080
:000064F8	01	09C5A9	01	06391B

:00006500	01	06A2FC	01	0270C0
:00006508	01	033319	01	02D8C3
:00006510	01	13C9EA	01	005DF0
:00006518	01	037876	01	00571F

Most of the time, only one received frame is processed per interrupt. But one entry shown here indicates that two frames were proceed in one interrupt, followed by an entry that indicates that no receive frames were processed. This may result from the second frame arriving while the first frame was being processed. With the interrupt having been cleared early in the interrupt routine, the ethernet chip caused another interrupt, but by the time the interrupt routine finished processing both frames, there was nothing more to do.

Foreign Node Capture

Another diagnostic captures unusual accesses via IP, which means here at Fermilab that a node sent an IP datagram from outside the lab. In this case, "outside the lab" indicates that the source IP address is something other than 131.225.x.x. Recently, entries were seen in this table, located at 0x6800 with size 2048 bytes, in which the source IP address was actually a multicast IP address, which is clearly invalid. The captured part of the frame showed these datagrams to be ICMP "port unreachable" messages that were apparently sent by some unsophisticated nodes embedded in commercial equipment. The idea of this diagnostic is to record the kinds of accesses made by nodes outside our lab. The records in this table are 128 bytes long, with the first 8 bytes being the time-of-day of a first access, followed by the first 56 bytes of the initial IP datagram (beginning with the IP header), followed by a count of the number of accesses (using a 30-second timeout), followed by a timeout counter, followed by the 5-byte time-of-day of the final access, as Hr-Mn-Sc-Cy-00, finally followed by up to 56 bytes of the final IP datagram received. Here is an example:

```
0602:006980 0209 2312 3417 0900 first access at 09/23/02 1234:17
0602:006988 4500 0025 F517 0000 first IP header, datagram
0602:006990 7001 2855 420D E3AE IP address 66.13.227.174
0602:006998 83E1 83CE 0800 CE5C ICMP ping request
0602:0069A0 0300 6471 6865 6C6C
0602:0069A8 6F20 3F3F 3F00 0000
0602:0069B0 0000 0000 0000 00F0
0602:0069B8 003C 0000 0E4E 0C00
0602:0069C0 0002 0012 3422 0000 2 accesses, final at 1234:22
0602:0069C8 4500 0025 F5A7 0000 final IP header, datagram
0602:0069D0 7001 27C5 420D E3AE ICMP ping request
0602:0069D8 83E1 83CE 0800 6F5C
0602:0069E0 0300 C371 6865 6C6C
0602:0069E8 6F20 3F3F 3F00 0000
0602:0069F0 0000 0000 0000 00D4
0602:0069F8 0035 0000 0E4D 0C00
```

Ethernet variables

In addition to the diagnostic tables described above, there are a number of variables maintained by the system code that relate to ethernet communications. First are the static variables maintained by the ethernet driver. These are located at 0x160000, of size 160 bytes. For easy correlation with the Memory Dump page, the fields are separated every 8 bytes, and also every 64-byte page.

Offs	Field	Size	Meaning
00	SCBSTAT	2	Status word from 82596
	SCBCMND	2	Command word for 82596
	SCBCPTR	4	(ws) ptr to command block list
08	SCBRPTR	4	(ws) ptr to receive frame area
	SCBNCRC	4	#CRC errors
	Debliente	-	
10	SCBALGN	4	#alignment errors
10	SCBRSRC	4	#resource errors
	DEDROKE	т	
18	SCBOVRN	4	#overrun errors
10	SCBCOLL		#collisions
	SCBCOTT	4	
20	CODCUDE	4	#aboxt fromos
20	SCBSHRT	4	#short frames
	SCBTOFF	2	t_off
	SCBTON	2	t_on
28	SCBNOTC	4	CFN interrupt without C bit set
	RCVBADF	4	Bad frame received
30	RCVBADC	4	No F bit set in RFD
	RCVBADL	4	Bad length received
38	SCBCINT	4	#Command interrupts
	SCBRINT	4	#Receive interrupts.
*			
40	RCVINVM	6	Invalid multicast address
	RCVINVC	2	Invalid multicast address counter
48	SAPQERR	2	Error from Send X call
	SAPOAUX	2	Error status code
	UIZSAP	2	Count uninitialized SAP received
	UIZSAUX	2	SAP value
		_	
50	BADSAP	2	Count unknown SAP value
50	BADSAUX	2	Unknown SAP
	SPARERR	2	
			spare
	SPARAUX	2	spare
F 0	ananna	2	Count involid course address
58	SRCADRC	2	Count invalid source address
	SRCADRA	6	Record invalid network address
60	TRAVAUR	4	Dto to nort DED to be unconcered
60	ERCVCUR	4	Ptr to next RFD to be processed
	SPURINT	4	Count of spurious interrupts
6.0	DT11mc	4	
68	EINTCNT	4	Count of interrupts (total)
	EBUSCNT	4	Count of bus error interrupts
		_	
70	EBUSCOD	1	Error code byte from status register
		3	spare
	XMTCOLL	4	Collisions from status word in transmit command

78	XMTSTAT XMTADDR	2 6	Transmit status word last collision Destination address last collision
*			
80	EITIMEO	2	Offset into interrupt times diagnostic array
	ERUDCNT	2	Delay after re-init Receive Unit
	ERUDIN	2	Offset to next entry in Receive Unit diagnostics
	ERUDTOT	2	Receive Unit not ready status total count
88 A0	ESPARE (end)	24	spare

Here is an example that illustrates some of these variables:

0509:160000	0040	0000	B5C0	0019	word-swapped ptr to command block list
0509:160008	0200	0016	0000	0000	word-swapped ptr to receive frame area
0509:160010	0000	0000	0000	0000	
0509:160018	0000	0000	0000	0000	
0509:160020	0000	0000	0019	00AF	
0509:160028	0000	0000	0000	0000	
0509:160030	0000	0000	0000	0000	
0509:160038	0000	ADE7	001B	DA41	<pre>#command ints, #receive ints.</pre>
0509:160040	3333	FF98	99A6	8000	invalid multicast address, counter
0509:160048	0000	0000	0000	0000	
0509:160050	6BE2	00E0	0000	0000	unknown SAP counter, value
0509:160058	0000	0000	0000	0000	
0509:160060	0016	5600	0000	0128	ptr to next RFD to process, spurious cnt
0509:160068	001C	82EE	0000	0000	<pre>#interrupts (total)</pre>
0509:160070	0000	0000	0000	0018	#collisions from status word in xmit cmnd
0509:160078	2001	0030	7B92	C170	status word last collision, net address
0509:160080	01D8	0000	0000	0000	offset into EITimes array
0509:160088	0000	0000	0000	0000	
0509:160090	0000	0000	0000	0000	
0509:160098	0000	0000	0000	0000	

SNAP variables

The SNAP task supports IP protocols, and it uses a number of variables. Here is the layout of this structure:

<i>Offs</i> FFD4	<i>Field</i> FNCAPO FNCAPTC	Size 2 2	<i>Meaning</i> Foreign node capture buffer offset to next record Foreign node capture timer countdown period
FFD8	FNCAPNT	4	Foreign node capture total number of records written
	ARPREQI	4	ARP request ignored counter
FFE0	ARPREQC	4	ARP request for this node counter
	ARPRPYC	4	ARP replies counter
FFE8	ICMPCNT	4	ICMP received counter
	IPSNAPC	4	IP using SNAP on ethernet counter

FFF0	IPSNAPA ARPSNAPC		IP using SNAP on ethernet source IP address ARP using SNAP on ethernet counter
FFF8	ARPSNAPA	4	ARP using SNAP on ethernet source IP address
			Data stream index for net frame diagnostics
	NETFDSS	2	Error return status from DSWrite call
*			
* Fra	me message	queue b	ouffer (6 longwords)
0000			reserved
	FMHOME	4	home xid
0008	FMSIZE	2	Frame contents size
		2	Frame message count
	FMSOURCE		Offset to source address
	FMDEST	2	Offset to destination address
0010	FMPTR	4	Ptr to frame contents
	FMSRCN	2	Pseudo source node#
	FMIPOFF	2	Offset to IP header
*			
0018	SNAPXID	4	SNAP queue id
	SNAPCREE		Error return from Create_X call
		1	Ethernet flag
	SNAPREQE	2	Error return from Req_X call
0020	BADOERL	4	Unknown organization id
	BADOERC	2	
0026	SRCNETA	6	Source network address
	IPHLNG	2	IP header length
002E	BADIPERR	4	Invalid destination IP address
	BADIPERC	2	
0034	FMSIZERR	2	Bad frame size
	FMSIZERC	2	
0038	UPEVERR	2	UDP Signal_V error code
	UPEVERC	2	
	UPSQERR	2	UDP Send_X error
*	UPSQERC	2	
0040	UPCKERR	2	UDP checksum error
	UPCKERC	2	
	BADPERR	2	Unknown protocol type
	BADPERC	2	
0048	UIZPERR	2	Uninitialized port#
	UIZPERC	2	
	TCPPERR	2	TCP unsupported yet
	TCPPERC	2	
0050	UNKPERR	2	Unexpected protocols besides TCP
	UNKPERC	2	
	TTLERR	2	Invalid TTL value
	TTLERC	2	
0058	IPFOERR	2	IP fragment offset nonzero
	IPFOERC	2	-
	IPFLERR	2	IP fragment length invalid
	IPFLERC	2	

0060	IPCKERR	2	IP checksum error
	IPCKERC	2	
	IPVNERR	2	IP version# error
	IPVNERC	2	
0068	ARPOERR	2	Unsupported ARP operation
	ARPOERC	2	
	ARPLERR	2	Unexpected address lengths
	ARPLERC	2	
0070	ARPPERR	2	Unexpected ARP protocol type
	ARPPERC	2	
	ARPHERR	2	Unexpected hardware type
	ARPHERC	2	
0078	ICCKERR	2	ICMP checksum error
	ICCKERC	2	
	ICPUERR	2	Port unreachable error
	ICPUERC	2	
*			
0080	ICTCERR	2	ICMP type/code not supported
	ICTCERC	2	
	ICEVERR	2	ICMP Signal_V error code
	ICEVERC	2	
0088	ICSQERR	2	ICMP Send_X error status
	ICSQERC	2	
	IGCKERR	2	IGMP checksum error
	IGCKERC	2	
0090		•	Local appl for UDP port inaccessible
0090	LAPROERR	2	LOCAL APPT TOT ODP POIL INACCESSIBLE
0090	LAPROERR LAPROERC	2 2	Local appl for our port inaccessible
0090			Dest UDP port# as taskName
0090	LAPROERC	2	

Here is an example of these variables:

:0004CE10	xxxx	xxxx	xxxx	xxxx	
:0004CE18	xxxx	xxxx	xxxx	XXXX	
:0004CE20	xxxx	xxxx	0780	001E	Foreign node capture offset, countdown.
:0004CE28	0000	005F	000C	FEA6	Foreign node capture count, #ARPs ignored
:0004CE30	0000	0002	0000	00ED	<pre>#ARP requests for this node, #ARP replies</pre>
:0004CE38	0000	003D	0000	0000	ICMP received count 003D
:0004CE40	0000	0000	0000	0000	
:0004CE48	0000	0000	0000	0000	
:0004CE50	0000	0000	0000	0000	FMRSVD, FMHOME
:0004CE58	0020	FFE4	FFFC	FFF6	FMSIZE, FMMSGC, FMSOURCE, FMDEST
:0004CE60	0017	941A	0000	0000	FMPTR, FMSRCN, FMIPOFF
:0004CE68	0002	05FA	00FF	0000	SNAP queue id
:0004CE70	0000	0000	0000	0240	source net address 0240 0000 0593
:0004CE78	0000	0593	0014	83E1	IP hdr lng, invalid dest IP 83E17DFF
:0004CE80	7DFF	1D52	0000	0000	invalid dest count = 1D52
:0004CE88	0000	0000	0000	0000	
:0004CE90	0000	0000	8137	1986	unknown protocol type 8137, count
:0004CE98	0043	B85A	0006	05B1	unknown port 43, count, TCP, count
:0004CEA0	0000	0000	0000	0000	
:0004CEA8	0000	001B	0000	0000	invalid TTL value, count

:0004CEB0 0000 0000 0000 0000	
:0004CEB8 0000 0000 0000 0000	
:0004CEC0 0000 0000 0000 0000	
:0004CEC8 0000 0000 0000 0000	
:0004CED0 0A00 0003 0000 0000 unknown ICMP type/code 0A00, count	
:0004CED8 0000 0000 0000 0000	
:0004CEE0 0000 0000 0011 1A90 dest UDP port# as taskname 00111A90)
:0004CEE8 0003 9C78 0000 0000	

Broadcast diagnostics

Another class of diagnostics captures records of several kinds of broadcasts. Each kind is selected by storing a key word value in the first word of the memory used for this purpose at 0x5000, with size 1024 bytes. Besides the 2-byte keyword value, the header includes a 2-byte count of active entries, and a 4-byte total count. Each entry following the header is 8 bytes in length, the format of which depends on the type of diagnostics chosen. Each type is described in turn:

Type 'AR' = 0x4152

This type monitors ARP requests received. Each 8-byte record indicates the sender's IP address, the operation code (1=ARP, 3=RARP), and a counter.

Type '11' = 0x3131

This type monitors ARP requests from 131.225.1.1 specifically. Each record indicates the sender's IP address, the ARP/RARP operation code, and a counter. (This type was installed long ago when a network problem occurred that presumably no longer exists.)

Type 'BC' = 0x4243

This type monitors non-IP broadcasts. The 8-byte record format includes the 6-byte network address and a counter.

Type 'MC' = 0x4D43

This type monitors datagrams received via multicast that are not registered in the multicast table at TRING+0x240, or 0x405240. Each entry includes the 6-byte multicast network address followed by a counter.

Here is an example of this kind of diagnostic, with the keyword set to '**AR**' = **0x4152** to monitor ARP request activity.

0509:00005000	4152 002C 0000 021H	2C active entries, total count = 21E
:00005008	83E1 88C8 0001 0048	popular ARP requester .136.200
:00005010	83E1 7B34 0001 0023	
:00005018	83E1 8896 0001 0020)
:00005020	83E1 8801 0001 0040	2 popular ARP requester .136.1
:00005028	83E1 887F 0001 0001	
:00005030	83E1 7B97 0001 002A	A popular ARP requester .123.151
:00005038	83E1 8872 0001 0002	2
:00005040	83E1 7B08 0001 0003	
:00005048	83E1 7BC8 0001 0015	ò
:00005050	83E1 7B01 0001 0017	7
:00005058	83E1 10A8 0001 0014	
:00005060	83E1 7D83 0001 0003	3

:00005068	83E1	10C8	0001	0093	popular	ARP	requester	.16.200	
:00005070	83E1	88FD	0001	0002					
:00005078	83E1	7B80	0001	0003					
:00005080	83E1	7DC8	0001	0011					
:00005088	83E1	1089	0001	0004					
:00005090	83E1	7D93	0001	0002					
:00005098	83E1	1083	0001	0006					
:000050A0	83E1	7BF2	0001	0001					
:000050A8	83E1	7DD7	0001	0001					
:000050B0	83E1	7DBB	0001	0002					
:000050B8	83E1	7D7D	0001	0002					
:000050C0	83E1	104B	0001	0001					
:000050C8	83E1	8878	0001	0005					
:000050D0	83E1	105B	0001	0001					
:000050D8	83E1	1008	0001	0001					
:000050E0	83E1	7B2F	0001	0001					
:000050E8	83E1	7BF5	0001	0001					
:000050F0	83E1	883D	0001	0002					
:000050F8	83E1	7B43	0001	0002					

The ARP requesters pointed out above are

131.225.136.200	vlan3.r-ad-6509-xgc108-1.fnal.gov
131.225.16.200	<pre>vlan3.r-ad-6509-xgc108-1.fnal.gov (same)</pre>
131.225.136.1	beamssrv1.fnal.gov
131.225.123.151	beams-pdc.fnal.gov

The first two are apparently a router used by Beams division. It is of course natural that a router should make lots of ARP requests.

Frame Monitor local application

There is a local appplication called FMON that can be used to capture selected network frame activity. Its parameters specify an area of memory to use for a circular buffer, which is often chosen to be based at 0x300000, using the 4th megabyte of an IRM's 4 MB memory. A target node number is also specified, and one can elect to capture frames being sent from the local node to the target node, frames received by the local node from the target node, or both. In addition, one specifies a word offset from the start of the frame, because the amount of data captured is limited. Each 64-byte record starts with the usual 8-byte time-of-day, followed by up to 56 bytes of frame contents, beginning at the specified word offset. If the offset is 7, for example, it means that the 14-byte ethernet frame header is skipped. If the offset is 17, or 0×0011 , then both the frame header and the IP header are skipped, so that the captured frame contents begin with the 8-byte UDP header. The time-of-day fields show time down to the half millisecond of the given 15 Hz cycle. Since IP node numbers are pseudo node numbers, one may need to consult the contents of the IPARP table in order to come up with the pseudo node number of interest. To make this step easier for capturing Acnet protocol frames, one can specify an Acnet node number, and the pseudo node number will be worked out automatically.

RETDAT Log

Acnet RETDAT requests are logged in a data stream called RETDLOG, if it is defined inside a node. The 16-byte entries are comprised of the following fields:

Field	Size	Meaning
node	2	node number from which request was received
bytes	2	<pre>#reply bytes expected, including 2-byte status word(s)</pre>
dev	2	#devices in request
ftd	2	frequency-time descriptor
msgId	2	message id from Acnet header
time	6	time-of-day request received, as Da-Hr-Mn-Sc-Cy-ms

The main purpose of this diagnostic is to show the timing of RETDAT requests and what kind of requests they are. (This diagnostic also exists in the PowerPC nodes.) For example, an ftd value of 0000 means a one-shot request, which is very common. An ftd value of 003C would be used for a request that asks for 1-second replies. A cancel message is recorded as a special record in which the bytes, dev, and ftd are all 0000. Use the msgId field to associate a cancel with a prior request.

One can apply filtering to the logging in order to select requests from certain nodes. To do this, find the "user area" portion of the data stream queue header, which consists of 4 words that can be set to Acnet node numbers of interest. By default after system initialization, all four words are zero. But if the first word is set nonzero, it means that the *inclusive* mode of filtering is used, so that a request from any of up to 4 nodes specified will be logged, while requests from nodes not specified will be ignored. If the first word is zero, but one or more of the other words are nonzero, then the *exclusive* mode of filtering is used, so that a requesting node matching any of up to 3 nodes specified will be ignored, and a request from any node not listed will be logged. The data stream queue is usually located at 0x9000, with a size of 4096 bytes, so that the user area is found at 0x9018. Here is an example of some of such records as sampled from node0600, which receives lots of Acnet requests.

:00009560	092E	00F0	003C	0000	6402	0313	1501	0030	
:00009570	0901	0010	0004	0000	440C	0313	1501	0030	
:00009580	0908	0004	0001	0000	4003	0313	1501	0865	
:00009590	0905	0010	0004	0000	A802	0313	1502	024F	
:000095A0	0B21	0028	000A	0000	AB00	0313	1503	0433	
:000095B0	091E	0004	0001	0000	C40F	0313	1504	1435	
:000095C0	0908	0004	0001	0000	3403	0313	1505	1463	
:000095D0	090C	0004	0001	0000	8001	0313	1509	0031	
:000095E0	091C	0014	0005	0000	B002	0313	1511	0004	
:000095F0	092E	007C	001F	0000	6002	0313	1511	0024	
:00009600	09E8	0004	0001	003C	942D	0313	1511	1284	<
:00009610	0908	0004	0001	0000	2003	0313	1512	0864	
:00009620	090D	0004	0001	0000	0404	0313	1515	0024	
:00009630	09E8	0000	0000	0000	942D	0313	1515	0455	<

During the 15 seconds of RETDAT request activity logged here, most entries seem to be one-shot requests, likely initiated by data logger clients. This brief snapshot does show a 1-second request (using msgId = 942D) from node 09E8, which is cfss, that was canceled about 3.5 seconds later.

Task activity

Although not limited to ethernet diagnostics, a data stream called TASKLOG is often implemented in front ends. In a similar way that the NETFRAME data stream captures network datagram activity, as described early in this document, TASKLOG captures all task activity in a

system. (This is also supported for PowerPC nodes.) Here is an example of task activity featuring some network-related support.

Task	Evnt		HrMn:Sc-Cy+ms	
QMon	0000		1721:55-10+ 0	
Updt	0000		1721:55-10+ 0	Normal data pool update, including BLMS
QMon	0001		1721:55-10+ 4	
DTim	0000		1721:55-10+ 5	
Alrm	0000	.16	1721:55-10+ 5	Alarm scanning
Appl	0000	.29	1721:55-10+ 5	Page application
Updt	0000	.1	1721:55-10+ 5	
QMon	0000	.06	1721:55-10+ 5	
IDLE	0000	25.33	1721:55-10+ 5	
SNAP	0000	.32	1721:55-10+31	Request arrival, IP processing
ANet	0000	.13	1721:55-10+31	Acnet dispatching
ACRq	0000	.54	1721:55-10+31	RETDAT handling
Updt	0000	1.1	1721:55-10+32	Build reply
QMon	0000	.18	1721:55-10+33	Clean up
IDLE	0000	.3	1721:55-10+33	
SNAP	0000	.9	1721:55-10+33	(unrelated request arrival)
ANet	0000	.15	1721:55-10+34	(Acnet dispatching)
ACRq	0000	.23	1721:55-10+34	(RETDAT handling, ignored)
IDLE	0000	5.68	1721:55-10+34	
Cons	0000	.07	1721:55-10+40	
Serv	0000	.13	1721:55-10+40	
Updt	0000	.11	1721:55-10+40	
QMon	0000	.25	1721:55-10+40	
IDLE	0000	26.09	1721:55-10+41	
SrcN	Size T	^Frame	HrMn:Sc-Cy+ms	
A562	0040 R	165C22	1721:55-10+31	Request received
80FF	0018 T	18E90A	1721:55-10+32	Reply ready, but ARP request first
			1721:55-10+33	(unrelated request received)
0562	0018 R	166E22	1721:55-10+33	ARP response
A562	042C T	18E93C	1721:55-10+34	Send reply

For this example, a request for 1024 bytes of waveform data from a Booster beam charge signal was issued as a one-shot request. Both the task level processing and the corresponding network diagnostics are indicated in support of this request. At the task level, the request was handled in 2.27 ms, although at the network level, we see 3 ms, in part due to the test request being a surprise, so that an ARP request was needed to obtain the 6-byte network address of the requesting node in order to deliver the reply. An unrelated request was received from the Booster server node, which was ignored, since we see no further task activity resulting from its RETDAT processing. From the task level processing, we can see that in this same 15 Hz cycle, the CPU was only 14% busy.

References

A number of other documents relate to subjects covered in this one. For detail on the ethernet chip used in the MVME-162 boards, see the intel document "32-bit LAN Component User's Manual." Other documents concerning particular diagnostic support are:

Network Frames Page, Built-in network diagnostics

Network Diagnostic, *Page application addition* Network Diagnostics, *What tools are available?* Ethernet Receive Failure, *Analysis of problem* Ethernet Receive Timing, *Diagnostic table* Foreign Node Capture, *Network diagnostic* Low Memory Layout, 10/27/00 Interrupt Timing, *Implementation* Task Timing for IRMs, *Diagnostic tool for pSOS* Task Activity Analysis, *Page application* Network Frame Monitor, *Local application* FMON Addition, *Setup facility*

Source code documents, of course, are behind all IRM code execution.

System code modules:

Name	Support
Ethernet.a	Ethernet driver, interrupts, diagnostics
ITTStart.a	Interrupt timing table
Switch.a	Task switch hook
SNAP.a	Internet protocols
ACReq.a	RETDAT
FMON.p	Frame Monitor capture (local application)
-	
FMON.p NETF.p TASK.p	Frame Monitor capture (local application) Network frames listing (Page F) Task activity listing (Page ?)
NETF.p	Network frames listing (Page F)
NETF.p TASK.p	Network frames listing (Page F) Task activity listing (Page ?)

For the PowerPC system support, several similar modules exist, as follows:					
Name	Support				
ITTStart.c	Interrupt timing table				
TrigTask.c	Task switch hook, vmeSwitchHook()				
	Datagram diagnostic logging, calls recvfrom()				
	Datagram diagnostic logging, calls sendto()				
foreignNodeCapture.c	Foreign node capture logging				
ACReq.c	RETDAT				
LOOPFMON.c	Frame Monitor capture				
PAGENETF.c	Network frames listing (Page F)				
PAGETASK.c	Task activity listing				
PAGEMDMP.c	Display memory contents				