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Liquid metal sputtering data/models & DIlI-D
DIiMES analysis

® Lithium erosion mechanisms: Models and Data
" NSTX Low and High-power cases: sputtering
" Quiescent plasma Li-DIMES experiments: erosion

" Measurements on ionization and sputtered Li velocity
distributions

“ Modeling of physical sputtering
" Erosion/redeposition analysis with WBC/REDEP
" Conclusions
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What we know about liquid-metal
surface mechanisms

" No significant difference in sputtering from the solid to liquid
state when temperature is near melting point

" Non-linear increase in sputtering from liquid-metal when
temperature is about 50% higher than melting point
(accounting for evaporation)

" Two-thirds of lithium sputtered particles are in the charged

state

" Implanted hydrogen leads to a ~ 40% decrease in lithium
sputtering

® High retention of hydrogen in liquid lithium (PISCES-B
results)
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IIAX data on lithium sputtering yield temperature
dependence from oblique He* bombardment

Enhanced erosion of
lithium measured for
temperatures higher
than melting temp. for
lithium, tin-lithium and
tin

Ad-hoc models for
liquid lithium with
smooth surface in
VFTRIM-3D suggest
several temperature-
dependent
mechanisms'are
important

. J.P. Allain, M.D. Coventry, D.N. Ruzic,

J. Nucl. Mater. 313-316 (2003) 645
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Lithium erosion enhancement
measured In various experiments
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lIAX temperature-dependent yields for
various incident particle energies

Lithium Sputtering Yield (atoms/ion)
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Comparison of Sn sputtering with SnLi and
Lithium from He* bombardment
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Liquid-metal erosion mechanisms

“ Near-surface energy deposition to “weakly-bonded”,
mobile lithium atoms lead to non-linear erosion even
for low-incident particle energies

" True for materials with low cohesiveness and
sublimation heat such as: alkali metals or the alkaline
earths, others: Ga, In, Sn, Sn-Li

" |n addition, the nature of the binding of the sputtered
atom relative to its nearest neighbors and how this
changes with system temperature is important to
explain the measured enhancement

" Surface stratification (characteristic of liquid-metals)
could in fact play a role in the enhancement of erosion
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Other possible mechanisms
responsible for erosion enhancement

Formation of surface adatoms with lower binding to surface
(Doerner, et al.)

Bubble formation of implanted He or D could precipitate into nano-
size bubbles reaching the surface and emitting a non-linear
amount of material

* Need more experiments to determine the role of bubble formation
on the enhancement of lithium erosion in a AT ~ 200 °C window.

Localized rise in temperature (in the form of thermal or elastic
spikes) could lead to a larger Li yield due to its low vapor pressure
(a rise of 200 ° C could do this)

Other models for liquid metals?... fluid dynamics model of
sputtering?
 M.M. Jakas, E.M. Bringa, R.E. Johnson, Phys. Rev. B 65 (2002)
165425-1
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Temperature-dependent Liquid
Lithium Models

“ Radiation Activated Adatom Sublimation (RAAS)
model (Doerner, et al.)

« Assumes adatom formation on a liquid surface and
obtains activation energy from MD modeling

 Scales erosion to incident flux
= Allain-Ruzic model

« Utilizes near-surface spatial distribution of energy
cascade from MD models

» Can predict temperature dependence of erosion
“ Other models

- Sigmund, Vaulin, others with: Y(T) = A*T-"2 exp(-B/T)
7 T 0%



Empirical Y(T) model (Allain) for NSTX
erosion/redeposition studies

“ Empirical fits made to calibrated VFTRIM-3D runs

“ Fits are completed for sputtering yields of lithium as
a function of:

* Incident particle energy
« Surface temperature
 Incident angle

" The fit is made to a temperature-dependent function
(from P. Sigmund model)

“ Empirical fits used in WBC/REDEP transport code
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Energy-dependent sputtering yields for
liquid lithium (low-energy levels)
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Sputtering yields for liquid lithium at
higher incident energies

Plasma solution: “case 53”
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Li-DIMES experiments under
quiescent plasma conditions

Magnetic field line i
angle of incidence
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“ DIiMES with a 2.5 cm lithium spot as PFC in quiescent plasma
discharges
“ Plasma diagnostics and atomic lithium visible spectroscopy

“ Diagnostics near outer strike point (OSP) with swept plasmas 14
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Li sputtering yield

Quiescent plasmas in Li-DiMES
experiments

Discharge Time (seconds)
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Li-DIMES sputtering of D* on lithium
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Li-DIiMES able to measure erosion
mechanisms in both PF and SP regions
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Neutral Li line intensity vs distance
from Li-DIMES center
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Calculated Li | (671 nm) brightness
with OSP on DIMES center
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Li-DIMES code/data photon emission
comparison, solid lithium

D.G. Whyte, J.N. Brooks and J.P. Allain
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Summary and Conclusions

Atomistic simulations helping elucidate erosion

enhancement effects in liquid-metals and hot solids (e.qg.
Be)

Further experiments/modeling needed:

« Testing effect of bubble formation on erosion enhancement in
liquid metals

 Charge dynamics of candidate LM PFCs

 Low-energy reflection (need atomistic modeling with proper surface
potentials)

NSTX cases modeled with calibrated surface models

Li-DIMES erosion results from quiescent plasmas

* Measured yield ~ 10% for T, ~ 20 eV

« Sputtered Li readily ionized near surface 21
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