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Liquid metal sputtering data/models & DIII-D 
DiMES analysis

Lithium erosion mechanisms: Models and Data
NSTX Low and High-power cases: sputtering
Quiescent plasma Li-DiMES experiments: erosion
Measurements on ionization and sputtered Li velocity 
distributions
Modeling of physical sputtering
Erosion/redeposition analysis with WBC/REDEP
Conclusions
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What we know about liquid-metal 
surface mechanisms

No significant difference in sputtering from the solid to liquid
state when temperature is near melting point
Non-linear increase in sputtering from liquid-metal when 
temperature is about 50% higher than melting point 
(accounting for evaporation) 
Two-thirds of lithium sputtered particles are in the charged 
state
Implanted hydrogen leads to a ~ 40% decrease in lithium
sputtering
High retention of hydrogen in liquid lithium (PISCES-B 
results)
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IIAX data on lithium sputtering yield temperature 
dependence from oblique He+ bombardment

• Enhanced erosion of 
lithium measured for 
temperatures higher 
than melting temp. for 
lithium, tin-lithium and 
tin

• Ad-hoc models for 
liquid lithium with 
smooth surface in 
VFTRIM-3D suggest 
several temperature-
dependent 
mechanisms1are 
important

1. J.P. Allain, M.D. Coventry, D.N. Ruzic,
J. Nucl. Mater. 313-316 (2003) 645
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Lithium erosion enhancement 
measured in various experiments

0 100 200 300 400 500
1E-4

1E-3

0.01

0.1

1

10

 

 

 ion flux = 1.6 e18 cm-2s-1

 ion flux = 5 e 17 cm-2s-1

 ion flux = 1.0 e 18 cm-2s-1

  
      ion flux = 1.0 e 14 cm-2s-1

N
or

m
al

iz
ed

 lo
ss

 ra
te

 (a
to

m
s 

/ i
on

)

Sample Temperature (0C)

 PISCES-B, He on lithium (~175 eV)
 PISCES-B, He on lithium
 PISCES-B, D on lithium (~ 50-70 eV)
 IIAX, He on lithium ( 700 eV)
 IIAX, He on lithium ( 300 eV)
 IIAX, D on lithium ( 700 eV)



6

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

IIAX temperature-dependent yields for 
various incident particle energies
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Comparison of Sn sputtering with SnLi and 
Lithium from He+ bombardment
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Liquid-metal erosion mechanisms

Near-surface energy deposition to “weakly-bonded”, 
mobile lithium atoms lead to non-linear erosion even 
for low-incident particle energies 
True for materials with low cohesiveness and 
sublimation heat such as: alkali metals or the alkaline 
earths, others: Ga, In, Sn, Sn-Li
In addition, the nature of the binding of the sputtered 
atom relative to its nearest neighbors and how this 
changes with system temperature is important to 
explain the measured enhancement
Surface stratification (characteristic of liquid-metals) 
could in fact play a role in the enhancement of erosion
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Other possible mechanisms 
responsible for erosion enhancement

Formation of surface adatoms with lower binding to surface 
(Doerner, et al.)
Bubble formation of implanted He or D could precipitate into nano-
size bubbles reaching the surface and emitting a non-linear 
amount of material
• Need more experiments to determine the role of bubble formation 

on the enhancement of lithium erosion in a ∆T ~ 200 °C window.
Localized rise in temperature (in the form of thermal or elastic
spikes) could lead to a larger Li yield due to its low vapor pressure 
(a rise of 200 ° C could do this)
Other models for liquid metals?... fluid dynamics model of 
sputtering?
• M.M. Jakas, E.M. Bringa, R.E. Johnson, Phys. Rev. B 65 (2002) 

165425-1



10

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Temperature-dependent Liquid 
Lithium Models

Radiation Activated Adatom Sublimation (RAAS) 
model (Doerner, et al.)
• Assumes adatom formation on a liquid surface and 

obtains activation energy from MD modeling
• Scales erosion to incident flux

Allain-Ruzic model
• Utilizes near-surface spatial distribution of energy 

cascade from MD models
• Can predict temperature dependence of erosion

Other models
• Sigmund, Vaulin, others with: Y(T) = A*T-1/2 exp(-B/T)



11

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Empirical Y(T) model (Allain) for NSTX 
erosion/redeposition studies

Empirical fits made to calibrated VFTRIM-3D runs
Fits are completed for sputtering yields of lithium as 
a function of:
• Incident particle energy
• Surface temperature
• Incident angle

The fit is made to a temperature-dependent function 
(from P. Sigmund model)
Empirical fits used in WBC/REDEP transport code
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Energy-dependent sputtering yields for 
liquid lithium (low-energy levels)
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Sputtering yields for liquid lithium at 
higher incident energies
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Li-DiMES experiments under 
quiescent plasma conditions

DiMES with a 2.5 cm lithium spot as PFC in quiescent plasma 
discharges
Plasma diagnostics and atomic lithium visible spectroscopy
Diagnostics near outer strike point (OSP) with swept plasmas
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Quiescent plasmas in Li-DiMES
experiments

Electron temperatures ~ 5-25 eV
Electron densities ~ 0.03 – 1.80 × 1019 m-3
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Li-DiMES sputtering of D+ on lithium

• Non-trivial increase in Li sputtering
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Li-DiMES able to measure erosion 
mechanisms in both PF and SP regions
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Neutral Li line intensity vs distance 
from Li-DiMES center

Private flux 
bombardment in H-
mode plasma
Electron 
temperatures are low, 
~ 1eV
Electron densities ~ 
1020 m-3

Ionization occurs a 
centimeter away and 
is confirmed with 
WBC/REDEP 
modeling data
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Calculated Li I (671 nm) brightness 
with OSP on DiMES center
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Li-DiMES code/data photon emission 
comparison, solid lithium

• Good agreement code/data

D.G. Whyte, J.N. Brooks and J.P. Allain
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Summary and Conclusions
Atomistic simulations helping elucidate erosion 
enhancement effects in liquid-metals and hot solids (e.g. 
Be)
Further experiments/modeling needed:
• Testing effect of bubble formation on erosion enhancement in 

liquid metals
• Charge dynamics of candidate LM PFCs
• Low-energy reflection (need atomistic modeling with proper surface 

potentials)

NSTX cases modeled with calibrated surface models
Li-DiMES erosion results from quiescent plasmas
• Measured yield ~ 10% for Te ~ 20 eV
• Sputtered Li readily ionized near surface
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