
www.elsevier.com/locate/compind

Computers in Industry 58 (2007) 381–391
Dynamic workflow model fragmentation for distributed execution

Wei Tan *, Yushun Fan

Department of Automation, Tsinghua University, 100084 Beijing, PR China

Received 18 February 2006; accepted 14 July 2006

Available online 30 August 2006
Abstract
Workflow fragments are partitions of workflow model, and workflow model fragmentation is to partition a workflow model into fragments,

which can be manipulated by multiple workflow servers. In this paper a novel dynamic workflow model fragmentation algorithm is proposed.

Based on the well-known Petri net formalism, this algorithm partitioned the centralized process model into fragments step by step while the process

is executed. The fragments created can migrate to proper servers, where tasks are performed and new fragments are created and forwarded to other

servers to be executed in succession. The advantages of the proposed dynamic model fragmentation method include the enhanced scalability by

outsourcing the business functionalities, the increased flexibility by designating execution sites on-the-fly, the avoidance of redundant information

transfer by judging their pre-conditions before forwarding fragments, etc. An industrial case is given to validate the proposed approach. Later some

discussions are made on the correctness of the algorithm and the structural properties of the workflow model. Finally the future research

perspectives are pointed out.

2006 Elsevier B.V. All rights reserved.

Keywords: Distributed workflow; Dynamic workflow model fragmentation; Petri net
1. Introduction

Workflow management is the key technology for the

coordination of various business processes, such as loan

approval and customer order processing [1]. By setting up the

process model and enacting it in the workflow server, a

workflow system can help to streamline the business process,

deliver tasks and documents among users, and monitor the

overall performance of the process.

Traditional workflow systems are often built on the client/

server architecture, in which a single workflow server takes

the responsibility for the operation of the whole process.

Meanwhile, this sort of centralized systems may bring about

many disadvantages. First of all, with an increasing need of

relocating entire business functions to either self-owned or

third-party service providers, business process outsourcing

(BPO) has been the trend in management as well as IT field.

When an company is leveraging technology vendors to

provide and manage some of its enterprise applications, its
* Corresponding author. Tel.: +86 10 6277 6211; fax: +86 10 6278 9650.

E-mail addresses: tanwei@mails.tsinghua.edu.cn (W. Tan),

fanyus@tsinghua.edu.cn (Y. Fan).

0166-3615/$ – see front matter # 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.compind.2006.07.004
business process may be distributed among geographically

dispersed business partners; therefore the involved workflow

applications are inherently distributed. Secondly, the relia-

bility of the centralized system cannot be guaranteed since

there can be a single point of failure. Last but not the least, the

performance of the centralized system may be drastically

degraded when there are too many process instances to

handle.

The aim of distributed workflow execution is to separate one

integrated workflow model into small partitions and allot them

to different servers to be executed. To solve the difficulties that

centralized workflow system cannot overcome, many dis-

tributed workflow systems have been designed from different

approaches.

In this paragraph we give a brief introduction to the related

work, a detailed comparison of these works with ours is given in

Section 6. Replicated servers and server clusters are used to

address the required levels of scalability and fault tolerance in

commercial workflow systems, which can be seen as a primary

and pragmatic solution to distributed workflow execution [10].

The Exotica project [2] proposes a completely distributed

architecture in which a set of autonomous nodes cooperate to

complete the execution of a process, with persistent message

queue as its information transmission technique. METEOR [3]

mailto:tanwei@mails.tsinghua.edu.cn
mailto:fanyus@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.compind.2006.07.004

W. Tan, Y. Fan / Computers in Industry 58 (2007) 381–391382
and Mentor [4] project are developed with similar approaches.

Aalst introduces his well-known WF-net model to the inter-

organizational paradigm [5]. In [6], an agent-based workflow

management system is proposed. The work in [7–10] has shown

the use of the mobile agents in distributed workflow execution,

the mobile agents which carry parts of the process information

can migrate from host to host to execute the workflow tasks.

In [11,12], innovative approaches to support decentralized

process enactment with the Peer to Peer (P2P) technology are

presented.

However, the research work in this field mainly focuses on

the design of the system architecture and the implementation

technique based on specific communication mechanisms. As

far as we have known, little attention has been paid to the

formal method of workflow model fragmentation.

Workflow model is the basis for workflow execution. In

distributed workflow execution paradigm, the whole process is to

be executed at multiple sites instead of a single one. Therefore,

the workflow model must be partitioned into small parts and

transferred to their designated sites. We call these small parts of a

workflow model fragments, which carry adequate information,

so that they can be manipulated by any given workflow engine.

Workflow model fragmentation is to partition a workflow model

into fragments. We emphasize that model fragmentation is the

basis for distributed workflow execution.

In this paper we propose a Petri net-based approach for

dynamic fragmentation of a workflow model. Our approach is

based on the well-known Petri net formalism. We partition the

centralized process model into fragments step by step while the

process is executed. The fragments created can migrate to

proper servers, where tasks are performed and new fragments

are created and forwarded to other servers to be executed in

succession. The advantages of the proposed dynamic model

fragmentation method include the enhanced scalability by

outsourcing the business functionalities, the increased flex-

ibility by designating execution sites on-the-fly, the avoidance

of redundant information transfer by judging their pre-

conditions before forwarding fragments, etc.

This paper is organized as follows. In Section 2, the problem

to be solved in this paper is formulated. The workflow model,

the centralized and distributed architecture, and some

specifications of workflow fragment are introduced here. In

Section 3, the dynamic fragmentation algorithm, i.e., the

algorithm to create fragments during process execution is

presented. In Section 4, a real case is given to illustrate the

advantage of the proposed approach. In Section 5, some

discussions are made. Section 6 summaries the related work

and compared their approaches with ours. Section 7 concludes

the paper and gives some research perspectives.

2. Problem formulation

2.1. Centralized workflow model

A centralized workflow model is a pre-requisite for

distributed workflow execution. In this paper we adopt WF-

net [13] proposed by Van der Aalst, as the centralized workflow
model. WF-net is a special class of Petri net, which prevails in

workflow modeling field because of its graphic nature and

theoretical foundation. We do not use high-level Petri nets

(colored Petri nets [14], for example) because in this paper we

mainly focus on the issue of structural partition. At the same

time, we acknowledge the need for using colored Petri net when

data or resource issue is further considered, and for workflow

modeling with colored Petri nets, one can refer to [15].

In this paper, a WF-net is denoted as a tuple (P, T, A), in

which P is the set of places, T is the set of transitions, and A is

the set of arcs. We assume that the centralized workflow model

is a well-structured and acyclic WF-net, because it is reasonable

to assume that in the distributed workflow paradigm, the

centralized model is well structured and contains no loop. Well-

structured property of a WF-net implies the balance of AND/

OR-splits and AND/OR-joins, i.e., alternative flows created via

an OR-split should also be joined by an OR-join; parallel flows

created via an AND-split should also be synchronized by an

AND-join. The definition of well-structured WF-net can be

found in [16]. Acyclic property of a WF-net means that the

workflow model contains no recursive flows. Meanwhile, we

also mention how to deal with cyclic models in Section 4. For

the properties of WF-net, one can refer to [13,16], and for the

basic definitions of Petri net, one can refer to [17].

2.2. Centralized and distributed workflow execution

In traditional centralized workflow management system,

there is one central workflow server takes charge of the

operation of the overall process, so the workflow engine must

communicate with each task performer, deliver necessary

information and retrieve the outcome of each task (see

Fig. 1(a)).

With the need of distributed workflow execution, many

approaches have been proposed, ranging from server clusters to

radically distributed architectures [10]. In this paper we present

a novel view on this problem. We classify the distributed

workflow execution paradigms into two categories according to

the model fragmentation method used, i.e., the static paradigm

and the dynamic one. In the static fragmentation paradigm [18],

before the process is initiating, each task in the workflow model

is designated to one workflow server (site) at which it is going to

be executed. By this means the process model is naturally

separated into several fragments. For example, in the workflow

process in Fig. 1(b), tasks t1 and t2 are designated to server 1, t4
is designated to server 2, t3 and t5 are designated to server 3, and

the rest are designated to server 4. Thus, the workflow model is

naturally divided into four fragments, i.e., f1, f2, f3 and f4.

In the static paradigm, the execution site of each task must be

determined before the initiating of a process. Obviously it lacks

flexibility.

Another paradigm is the dynamic one. It is stimulated by the

idea that a workflow process instance can migrate to one server,

executing the immediate tasks, partitioning the remaining part,

and forwarding the remainder to the next servers. Generally

speaking, the model is fragmented step by step with the

execution of the process.

W. Tan, Y. Fan / Computers in Industry 58 (2007) 381–391 383

Fig. 1. Architecture for (a) centralized and (b) distributed workflow execution.
Fig. 2 illustrates how a workflow model is dynamically

fragmented. Fig. 2(a) shows the original workflow model,

denoted as fragment F1. When the first task of F1 (i.e., t1) is

completed at some site, the remaining part of F1 forms a new

fragment F2 (see Fig. 2(b)). The first task of F2 (i.e., t2) is an

AND-split transition, so when t2 is completed, two parallel

fragments are generated (i.e., F3 and F4 in Fig. 2(c)). When t4 is

completed, the token held by p5 in F4 is transferred to p5 in F5,

and then F4 can be neglected. Now let us turn to fragment F3.

After t3 is completed, the remaining part forms fragment F5

(see Fig. 2(d)). When t5 in F5 is completed, the remaining part

again forms two fragments (i.e., F6 and F7 in Fig. 2(e)). This

time the two fragments will not be executed in parallel since p6

is an OR-split place so only one subsequent task can be

executed.
Fig. 2. Process of dyna
During the execution, the fragments can be carried by

mobile agents, moving from one site to another, so Fi

(1 � i � 7) can be executed at different sites.

This sort of fragmentation paradigm has many advantages.

First of all, when the process is enacting among different sites,

the pre-designated sites may become busy or even unavailable,

so designating executing sites at runtime and do fragmentation

dynamically will increase the flexibility and performance of the

system. Secondly, the fragments can be forwarded to the

execution site by mobile agents, so concurrent tasks can be

forwarded to different sites to achieve real parallelism. In

addition, in the choice-block, which flow is to be executed can

be judged on-the-fly, thus, only the executable flow is

forwarded (see F6 and F7 in Fig. 2(e)). Finally, in the data-

intensive processes, instead of transferring a large volume of
mic fragmentation.

W. Tan, Y. Fan / Computers in Industry 58 (2007) 381–391384
data to the workflow server’s site, an agent with process

information can travel to the data site, eliminating intermediate

traffic and ensure data integrity.

Another issue is that when an AND-split/AND-join block is

encountered, two or more parallel fragments will be generated.

Since these fragments will all be executed eventually, the

information of the tasks after the AND-join transition is not

necessarily carried by all parallel fragments. In our dynamic

fragmentation algorithm shown in Section 3, we pay special

attention to this issue.

2.3. Specification of fragment

In this section some definitions which are to be used in the

following part of this paper are given.

Informally, a fragment is a partition of a workflow model,

and it consists of a source transition, all the transitions

reachable from the source transition, and all the linking places

of these transitions. To express all the reachable nodes from one

node in a Petri net, we give a formal definition of reachability.

Definition 1. (Reachability) In a Petri net (P, T, A), for n1,

nj 2 P [T, R(n1, nj) is true iff there is a path C from n1 to nj hn1,

n2, . . ., nji such that (ni, ni+1) 2 A for 1 � i � j � 1, and for any

two nodes np and nq in C, p 6¼ q) np 6¼ nq. We define R(ni,

ni) = true.

Based on Definition 1, we can give a formal definition of

fragment.

Definition 2. (Fragment) Given a WF-net W = (P, T, A), a

fragment F is also a Petri net (Pf, Tf, Af) such that
(i) T
f � T; Pf¼
�
T f [T

�
f ; Af = A \ ((Pf � Tf) [(Tf � Pf));
(ii) F
 has a special transition ts such that
�ð� tsÞ ¼ ? ;
(iii) 8
t 2 Tf, R(ts, t) = true.
A fragment F is also denoted as (ts, F) to emphasize its

source transition. Fig. 2 gives many examples of fragments, for

example, t3 is the source transition of F3.

In Definition 2, we assume that in each fragment there is

only one source transition. We make this assumption to ensure

each fragment has only one immediate task to fulfill, which

enhances the execution parallelism. It is clear that if a WF-net is

not started by an OR-split, this WF-net is also a fragment. By

adding a null task tnull before the starting OR-split place, a WF-

net with starting OR-split place can be transformed to a

fragment, as is shown in Fig. 3.

In fragment F = (Pf, Tf, Af), we define all the transitions

reachable from a given transition tsf and the linking places of

these transitions as the Reachable sub-fragment of tsf. A formal

definition is given below.
Fig. 3. Model transformation to a fragment.
Definition 3. (Reachable sub-fragment, RSF) For F = (Pf, Tf,

Af) and tsf 2 Tf, RSF(tsf, F) = (Prs, Trs, Ars) such that
(i) T
rs � Tf; Prs ¼ Pf \ ð
�
T rs [T

�
rsÞ; Ars = Af \ ((Prs � Trs) [

(Trs � Prs));
(ii) 8
t 2 Tf, if R(tsf, t) = true in F, then t 2 Trs.
From Definition 3, we know that RSF(tsf, F) is also a

Fragment, with tsf as its source transition. The concept of

Reachable sub-fragment will be used in Section 3, when we

build new fragments upon completing one task. Algorithm 1

gives the method to obtain a Reachable sub-fragment of

transition tsf in fragment F.

Algorithm 1. RSF(tsf, F): Returns reachable sub-fragment

start with transition tsf in fragment F. RSF(tsf, F) = (tsf, (Prs,

Trs, Ars)); F = (ts, (Pf, Tf, Af));
Step 1: Pretreatment

Trs = {tsf}; Prs ¼ f�tsfg; Ars = Prs � Trs

Step 2: Calculate RSF(tsf, F)

Let {p1, p2, . . ., pk} = t
�
sf ðk� 1Þ

Prs ¼ Prs [t
�
sf

Ars = Ars [{(tsf, p1), (tsf, p2), . . ., (tsf, pk)}

If ðt�sfÞ
�
¼ ?

Return (tsf, (Prs, Trs, Ars))

Else

For each pi in {p1, p2, . . ., pk}

If p
�
i 6¼?

fti1; ti2; . . . ;ti jg ¼ p
�
i ð j� 1Þ

RSF(tsf, F) = (Prs, Trs, Ars) [RSF(ti1, F) [RSF(ti2, F) � � � [RSF(tij, F)

End If

End For

End If

Step 3: Return RSF(tsf, F)

3. Dynamic workflow model fragmentation method

In [18], we deal with static fragmentation method for

distributed workflow execution. In this section we come to the

dynamic model fragmentation method.

3.1. Issue of information redundancy

As we have mentioned in Section 2.2, when an AND-split/

AND-join block is encountered, two or more parallel fragments

will be generated. Since all these fragments will be executed, the

information of the tasks following the AND-join transition is not

necessarily carried by all parallel fragments. For example, in

Fig. 2(b) and (c), fragment F2 is started by an AND-split t2, and

the corresponding AND-join task is t5. When task t2 is completed,

two fragments will be generated. If we generate two fragments by

function RSF, i.e., F3 = RSF(t3, F2) and F4 = RSF(t4, F2) (see

Fig. 4), we find that the process information behind AND-join

transition t5 is carried by both F3 and F4. Consider that F3 and F4

are to be executed in parallel and to be merged in t5, only one copy

of the process information after t5 needs to be kept. Therefore, in

Fig. 2(c), the transitions and places behind AND-join transition t5
is truncated in one of the following fragments F4.

W. Tan, Y. Fan / Computers in Industry 58 (2007) 381–391 385

Fig. 4. An example to illustrate information redundancy.
To solve this problem, we introduce the concept of transition

restricted reachable sub-fragment (TRRSF), to truncate

fragments with AND-join transitions. A formal definition is

given below.

Definition 4. (Transition restricted reachable sub-fragment,

TRRSF) For F = (Pf, Tf, Af), t 2 Tf, Tr = {t1, t2, . . ., tk} 	 Tf

(k � 0) and t =2 Tr, TRRSF(t, F, Tr) = (Prrs, Trrs, Arrs) such that
(i) T
 rrs� T f ; Prrs ¼ Pf \ ð
�
T rrs [T rrs

�Þ; Arrs = Af \ ((Prrs �
Trrs) [(Trrs � Prrs));
(ii) 8
ts 2 Tf if R(t, ts) = true and R(t1, ts) = R(t2, ts) = � � � =
R(tk, ts) = false in F, then ts 2 Trrs.
For example, in Fig. 4, when we truncate RSF(t4, F2) with t5,

we get F4 = TRRSF(t4, F2, {t5}) (see Fig. 2(c)).

Algorithm 2 gives the formal method to obtain a Transition

restricted reachable sub-fragment of transition t in fragment F,

restricted by transitions in set Tr.

Algorithm 2. (Prrs, Trrs, Arrs) = TRRSF(t, F, Tr): Returns the

transition restricted reachable sub-fragment of F, started from

transition t, restricted by transitions in Tr.

Step 1: Pretreatment

Trrs = {t}; Prrs ¼ f�tg; Arrs = Prrs � Trrs

Step 2: Calculating TRRSF(t, F, Tr)

Let f p1; p2; . . . ; pkg ¼ t
� ðk� 1Þ

Prrs ¼ Prrs [t
�

Arrs = Arrs [{(t, p1), (t, p2), . . ., (t, pk)}

If ðt� Þ
�
�T r

Return (Prrs, Trrs, Arrs)

Else

For each pi in {p1, p2, . . ., pk}

If fti1; ti2; . . . ;ti jg ¼ p
�
i � ð p

�
i \T rÞ 6¼?

TRRSF(t, F, Tr) = (Prrs, Trrs, Arrs) [TRRSF(ti1, F, Tr)

[TRRSF(ti2, F, Tr)� � � [TRRSF(tij, F, Tr)

End If

End For

End If

Step 3: Return TRRSF(t, F, Tr)
3.2. Algorithms for dynamic model fragmentation

Here we give a brief explanation of the control flow of

Algorithm 3 which partitions the workflow model into

fragments dynamically. First let us discuss the situation that
the source transition ts of F has only one output place p. If p has

only one output transition, we can just cut off ts from F and

receive a subsequent fragment (see Fig. 2(a)). Else if p has

multiple output transitions, then each transition is the source

transition of a new fragment (see Fig. 2(d) and (e)), multiple

fragments are obtained although only one of them can really be

enabled and executed since they are mutual exclusive.

Another situation, which is more difficult to tackle, is the

case that when ts has multiple output places. In this situation

each output place forms at least one new fragment, and these

fragments are to be executed in parallel. So we take some

measure to avoid information redundancy when multiple

fragments are generated, i.e. we introduce the idea of Transition

restricted reachable sub-fragment, and when we do fragmenta-

tion, the set Tr is updated constantly to prohibit the unnecessary

spanning of sub-fragments (see Fig. 2(b) and (c)).

Algorithms 4–6 are used by Algorithm 3. Algorithm 4 is to

find the join transition of an AND-split transition, and

Algorithm 5 is to find the split transition of an AND-join

transition. Algorithm 6 is used to update Tr. By using Algorithm

6, if a fragment F is started with an AND-join/AND-split block

of which the split transition is ts and the join transition is tj, then

in a newly generated fragment F1, if transition t is between ts
and tj, and partially joins some of the transitions split at ts, then t

is added to the set of restricted transitions Tr.

Algorithm 3. Dynamic model fragmentation
Input: Fragment (ts, F)

Output: A list of fragments, denoted as F_LIST

If ðjt�s j ¼ 1Þ
Let p ¼ t

�
s

If ðj p� j ¼ 1Þ// p has only one output transition

Let tnext ¼ p
�

Add (tnext, RSF(tnext, F)) to F_LIST

Else//p has multiple output transitions

Let {t1, t2, . . ., tk} = p

For each ti in p

Add (ti, RSF(ti, F)) to F_LIST

End For

End If

End If

Else//ts has multiple output places, i.e., ts is a AND-split

Let f p1; p2; . . . ; pkg ¼ t
�
s

Let tjoin = JoinTrans (ts)

Tr = {tjoin}

For each pi in ts

If ðj p�i j ¼ 1Þ

W. Tan, Y. Fan / Computers in Industry 58 (2007) 381–391386
Let ti next ¼ p
�
i

If (i = 1)

Add Fi next = (ti next, RSF(ti next, F)) to F_LIST

Update (Tr, Fi next, F)

Else

Add Fi next = (ti next, TRRSF (p
�
i , F, Tr)) to F_LIST

Update (Tr, Fi next, F)

End If

Else //p has multiple output Transitions

Let fti1;ti2; . . . ;tikig ¼ p
�
i

For each tij in p
�
i

If (i = 1)

Add Fij next = (tij, RSF (tij, F)) to F_LIST

Else

Add Fij next = (tij, TRRSF (tij, F, Tr)) to F_LIST

End If

End For

Update (Tr, Fi1 next, F)

End If

End For

End If

Algorithm 4. JoinTrans (ts)—Returns the corresponding

AND-join transition of an AND-split transition
Let f p1; p2; . . . ; pkg ¼ t

�
s ðk� 2Þ

Let Q be an empty queue

Select one transition from p
�
1, denote as t1

Add t1 to Q

While Q! = NULL

Pop one transition from the head of Q, denote as th
If R(p2, th) = true AND R(p3, th) = true AND � � � AND R(pk, th) = true

Return th
Else

Push ðt�hÞ
�

to the tail of Q

End If

End While

Algorithm 5. SplitTrans (tj)—returns the corresponding AND-

split transition of an AND-join transition
Let f p1; p2; . . . ; pkg ¼

�
t j ðk� 2Þ

Let Q be an empty queue

Select one transition from
�

p1, denote as t1
Add t1 to Q
Fig. 5. The bike custo
While Q! = NULL

Pop one transition from the head of Q, denote as th
If R(th, p2) = true AND R(th, p3) = true AND � � �AND R(th, pk) = true

Return th
Else

Push
� ð� thÞ to the tail of Q

End If

End While

Algorithm 6. Update (Tr, F1, F)
Fragment F is started by an AND-split/AND-join block, in which the split

and join transition is denoted as ts and tj, respectively. F1 is a sub-fragment

of F.

Let (P1, T1, A1) = F1

For each t 2 T1

If R(t, tj) = true in F AND t 6¼ ts, t 6¼ tj AND j� tj> 1 AND SplitTrans

(t) = ts in F

Tr = Tr [{t}

End If

End For

4. Case study

In this section we give a real case on how we use the proposed

approach to implement a distributed workflow management

system in a bike manufacturing company. For the integrity of the

content, we concentrate on model fragmentation method,

omitting some of the implementation details.

4.1. Background

XBike is a company offering bike customization services. As

a small and medium sized enterprise (SME), XBike outsources

some of its business functions (e.g., production and logistics)

because of a will to concentrate on its core competence, i.e., the

ability to design and deliver various customized bikes.

Although later we still use the term department to indicate the

performers of the business, we emphasize that actually the stock,

the production and the logistics department are independent

partners collaborate with XBike based on contracts.
mization process.

W. Tan, Y. Fan / Computers in Industry 58 (2007) 381–391 387
Fig. 5 illustrates the bike customization process of XBike.

When a customer wants to place an order, he visits XBike’s

website and fills in the related information, including the

customer information, bike information (type, brakes, pedals,

tires, etc.) and some extra-specifications. Then a bike

customization process starts. First, the sales department checks

the order and completes possible missing fields. Afterwards three

tasks are performed in parallel: the financial department

calculates the price, the stock department checks the stock,

and the design department checks the technical feasibility. After

all these three steps completes, the system decides whether this

order is feasible or not. If it is feasible, an order confirmation

letter is sent to the customer, a worksheet containing product,

package and delivery information is generated, and the bike will

be produced by the production department. If the bike passes

quality check, it is packaged and delivered to the customer by the
Fig. 6. Model fragmentation of th
logistics department; if it fails to pass quality check, a quality

check report is generated and redirected to the task produce bike

(this task may be complex and nested, however, we do not cover

the details here). While if the order is not feasible due to some

reason, an order modification letter with suggestions will be sent

to the customer and the process terminates.

4.2. System implementation

In this project, we have made some modifications to our

formerly developed central workflow management system—

the CIMFlow system [19], as the cross-enterprise workflow

management system.

Our architecture is built based on the P2P scheme, which

means that the components in each site are identical. The main

components of each workflow suite are shown as follows.
e bike customization process.

W. Tan, Y. Fan / Computers in Industry 58 (2007) 381–391388

Fig. 6. (Continued).
4.2.1. Process modeler

Process modeler allows the users at current site to establish

workflow model. For example, the Sales Department of XBike

can set up an order-processing model.

4.2.2. Task allocator

Task allocator receives the task allocation request and

allocates tasks to specific sites at which they will be performed.

For example, the task Tech. Check is suggested to be allocated

to one of the several sites at Design department, while the task

Send confirmation letter is mandatory to be allocated to the site

at which the email server locates.

4.2.3. Task monitor

Task monitor keeps a log on the allocated sites for each task,

their performance and other issues (for example, the charge for

consuming the service). Task monitor is of great importance in

the collaborative environment in virtual enterprises since it

provides feedback mechanism for business process monitoring

and improvement.

4.2.4. Task client

Task client maintains a task list for each site, and workflow

users at this site can access this task list and manipulate tasks in it.
4.2.5. Fragment pool

Fragment pool keeps all the information about the fragments

allocated to this site.

4.2.6. Fragment manager

Fragment manager serves as the engine to drive the workflow

process. When a new fragment is put into the fragment pool, the

fragment manager checks whether the first task of this fragment

can be executed at once. If the condition is valid (for example, in

the AND-join case, all the preceding tasks have finished), the

fragment manager put this task to the task list to be executed.

When this task completes, new succeeding fragments will be

generated and sent to the fragment pools at their designated sites.

By this means the execution is propagated until all the tasks have

been accomplished.

4.3. Dynamic model fragmentation

Now let us consider how the process in Fig. 5 is fragmented

and performed among the multiple workflow servers (sites)

located at different departments (or partners), and we will also

show how the proposed fragmentation method have increased

the flexibility and productivity of the order processing business.

The fragments are presented in Fig. 6.

W. Tan, Y. Fan / Computers in Industry 58 (2007) 381–391 389
When an order from customer comes, a workflow fragment

F1 is created (see Fig. 5). F1 is sent to one of the workflow

servers in the sales department to be executed. When task t1 is

completed, three fragments are generated. First, fragment F2 is

generated by RSF(t2, F1). In F2, task t5 is the AND-join

transition of t1, then t5 is added to Tr, i.e., Tr = {t5}. So other two

fragments (i.e., F3 and F4) are generated by function

TRRSF(t3, F1, Tr) and TRRSF(t4, F1, Tr), respectively. F2,

F3 and F4 are sent to the financial, stock and design department

respectively, where they will be handled by three workflow

servers and thus, real parallelism is achieved. Note that F3 is

handled by a different company to which the production

business it outsourced.

We know that t2, t3 and t4 are all data-intensive tasks, i.e.,

when performing these tasks, a large volume of data (the

financial, stock and technical data) is needed. In traditional

mode, a central workflow server must retrieve these data from a

remote site and manipulate them locally. While in the dynamic

fragmentation mode, we just forward the fragment to the data

site to be executed, by this means unnecessary data transfer is

avoided and data security is guaranteed.

When t2, t3 and t4 have all been completed, fragment F5 is

generated. When task t5 in F5 is completed, F6 and F7 are

generated. Since F6 and F7 are mutual exclusive, only one of

them will eventually be executed according to whether the

order is feasible or not. So when t5 is completed, only feasible

fragment will be forwarded.

If the order is feasible, F6 is generated. When task t6 is

completed (order confirmation letter is sent to the customer),

fragment F8 is generated. When t7 (generate worksheet) is

completed, three tasks are going to be executed in parallel, i.e.,

t8 (produce bike), t11 (produce package) and t12 (arrange

transportation). Three fragments (i.e., F9, F10 and F11) will be

created. F9 and F10 are sent to the production department,

where the bike is produced and packaged. At the same time, F11

is sent to the logistics department, where transportation is

arranged.

Fragment F9 contains a loop which is annotated by a dashed

rectangle. (Strictly speaking, F9 is not a fragment since no tasks

can be seen as the source transition. In this case we can extend

Definition 2 and define t8 as the source transition. Similarly,

F12, F14 and F15 can all be seen as fragments.) In this case,

when the process is executed inside this loop, no tasks should be

deleted since they may be executed again (t8 will be executed

again if the result of t9 is QUALITY CHECK NOT PASSED).

Therefore, we should not directly use our algorithm here. When

t8 in F9 completes, we simply keep the original fragment and

denote the next task t9 as the source task of this fragment (the

task filled with black in F12). When t9 completes, if quality

check passes, fragment F13 is created, else we again keep the

original fragment and denote the next task t10 as the source task

of this fragment (the task filled with black in F14). When t10 in

F14 completes, we again keep the original fragment and denote

the next task t8 as the source task of this fragment (the task filled

with black in F15). When t13 in F13 completes, fragment F16

which contains the last task is created, then the bike is delivered

to the customer by the logistics department.
This case manifests all the advantages of the approach we

proposed. Moreover, we stress that our algorithm can support

arbitrary complex workflow models, which can be nested. And

as is shown in this case, we can deal with workflow model with

loop structure by simply adding notations in fragments.

Through this real case, we see that the distributed workflow

management system and the dynamic model fragmentation

method have helped XBike coordinate its business processes

which span over several partners. Feedback from XBike has

shown that this approach has helped to increase the flexibility of

process execution, reduce data transfer and enhance data

integrity.

5. Discussions

5.1. Proof on correctness

The correctness issue of the fragmentation algorithm covers

the following three aspects: completeness of the fragmentation,

completeness of each fragment and the behavioral equivalence

after fragmentation. We are going to discuss these three aspects

respectively.

The completeness of the fragmentation concerns whether all

the fragments can be put together to rebuild the original model.

Given F = (ts, (P, T, A)), let us suppose that by applying

Algorithm 3, F is partitioned into m fragments, i.e., {F1, F2,

. . ., Fm}, and f i = (Pi, Ti, Ai) for 1 � i � m. Then we get

T1; T2; . . . ;Tm� T;T1 [T2 [� � � [Tm [ftsg ¼ T ;

Pi ¼
�
Ti [T

�

i ; Ai ¼ A\ ððPi � TiÞ [ðTi � PiÞÞ

We know that no information about the original workflow

net is lost after fragmentation.

The completeness of each fragment concerns whether each

fragment has sufficient information to execute. From Algorithm

3 we know that each fragment is started by places which denote

the pre-conditions for tasks, and ended by places which denote

the post-conditions for tasks. So each fragment has sufficient

information to execute. (Note that in this paper we only concern

the structure perspective of the process model, in real business

processes data and resource perspective should also be

addressed.)

The behavioral equivalence concerns whether the fragments

generated by Algorithm 3 have the same behavioral character-

istics with the original fragment.

Consider a fragment F = (P, T, A) with source transition ts.

From the definition of fragment and source transition we know

that if every source place of F holds one token respectively,

only ts is enabled. After ts is completed, F can be further

fragmented into one or more fragments, denoted as {F1, F2, . . .,
Fm}. For 8t 2 T/{ts}, t must exist in at least one fragment in

{F1, F2, . . ., Fm}. Suppose that t exists in {Fi1, Fi2, . . ., Fik} for

8Fij in {Fi1, Fi2, . . ., Fik},

t
� ðin every Fi j infFi1;Fi2; . . . ;FikgÞ ¼ t

� ðin FÞ

�
t ðin every Fi j in fFi1;Fi2; . . . ;FikgÞ ¼

�
t ðin FÞ

W. Tan, Y. Fan / Computers in Industry 58 (2007) 381–391390
That is to say, for any subsequent task of ts in F, the

fragmentation keeps their pre-condition and post-condition,

which means that the fragmentation method preserves their

behavioral characteristic.

5.2. Discussions on workflow model

As we have stressed earlier, our approach only consider

well-structured and acyclic workflow nets. These assumptions

have been required by the necessity of starting from a simplified

model, yet covering important and typical features required, to

undertake an interesting and relevant topic that has not been

given much attention in the literature so far.

Our approach resembles the approach proposed in [9] in

many aspects. In [9], the author defined a decentralized

workflow model, known as self-describing workflows, which

allows each task execution agents to receive a self-describing

workflow, executes its task, and prepares and forwards self-

describing workflows to the next agents. The workflow model is

based on direct graph, and there are no restrictions on the model

structure (i.e., it may be acyclic and non well-structured), and

the fragmentation is done by a simple combination of the

reachable successive tasks.

With the assumption we imposed on the workflow model,

our work differentiates theirs in the following aspects. First, our

model is based on Petri net, so it is relatively easy to analyze the

structural and behavioral properties of the workflow model in

the future.

Secondly, in [9] usually there will be redundant information

between fragments. For example, in Fig. 4, when t2 in F2

completes, by the approach proposed in [9], two fragments (F3

and F4 in Fig. 4) are generated, the process information after t5
is redundant since it only needs to be kept in one fragment (F3

or F4). However, with our approach, redundant information is

avoided so the fragments are more compact (see F3 and F4 in

Fig. 2(c)). What is more, when redundant information exists,

sophisticated measure must be taken to prevent redundant

execution. While in our approach, we assume the workflow

model to be well-structured and acyclic, and we introduce the

concept of Transition restricted reachable sub-fragment by

which we guarantee that no redundant fragment will be

generated, therefore there will be no redundant execution.

6. Related work

Several approaches and architectures have been proposed to

support distributed workflow execution. In Section 5.2, we have

compared our work with [9], and in this section we will

introduce other relevant researches. Here we focus on the

difference between our perspective and theirs, and the

advantages of our approaches.

6.1. Exotica

The Exotica system [2] proposes a completely distributed

architecture, in which the information among servers is

transferred by the persistent message queue. By this means,
the reliability of the system is highly enhanced. METEOR [3]

project proposes a similar approach. However, these

approaches mainly concentrate on system architecture and

implementation technique based on specific communication

mechanisms, little attention has been paid to the model

fragmentation issue.

6.2. Inter-organizational workflow

Aalst extends his WF-net model to the inter-organizational

paradigm [5], in which the global workflow model is made up

of several local ones. By transferring an inter-organizational

workflow into a WF-net, the correctness issue can be solved

easily. Our work is also based on WF-net, yet we focus on the

dynamic model fragmentation method, which is not covered in

[5].

6.3. Mentor

The Mentor Project [4] of the University of Saarland

developed a traceable and scalable workflow architecture. A

formal model known as state chart is utilized for workflow

specification, and a model partitioning method is proposed by

mapping a centralized state chart to distributed ones. But the

workflow model in Mentor is statically partitioned, so it lacks

the advantages we have with our approach.

6.4. Dartflow

The Dartflow [7] project has shown the use of the mobile

agents in distributed workflow execution. In Dartflow, the

workflow model is fragmented dynamically, and the partitions

are carried by mobile agents and sent to different sites which are

responsible for them. But their work focuses on the system

architecture, and the model fragmentation method is not well

established in [7].

7. Conclusion

In this paper a formal model fragmentation method for

distributed workflow execution is proposed. We present a novel

method to stepwisely partition the centralized workflow model

into fragments, and these fragments can migrate to servers to be

executed, further fragmented and forwarded. The advantages of

the proposed dynamic fragmentation method include the

increased flexibility by designating execution sites on the fly,

the avoidance of redundant information transfer, etc. Moreover,

we have validated the approach we propose in a cross-

organizational workflow management system of a bike

manufacturing company. This case has shown that our approach

can handle distributed workflow execution in dynamic

environment, with considerable flexibility and performance.

We make the restriction on the workflow model that it must

be well-structured and acyclic, future research might develop

more elaborated algorithms which are able to deal with more

expressive modeling features. However, we still stress that this

restriction on the model can bring about many conveniences in

W. Tan, Y. Fan / Computers in Industry 58 (2007) 381–391 391
workflow execution (for example, no redundant part will exists

in fragments).

Under some circumstances, doing fragmentation whenever

one task is completed can be over elaborated. Suppose that N

tasks are going to be executed sequentially at the same site, we

have no reason to do fragmentation for N�1 times. One way to

deal with this issue is to combine the static and dynamic

fragmentation method. For instance, we can first sort the tasks

which can be executed at the same site into one group. When we

do fragmentation, the tasks belong to the same group are

regarded as one atomic task, and we only partition the model

when the entire group of tasks (i.e., the atomic task) is

completed. Further on we will device more powerful method to

reduce the fragmentation overhead.

Acknowledgements

This research is supported by Hi-Tech Research &

Development Program of China (863) under grant

2003AA414032 and the National Natural Science Foundation

of China under grant 60274046.

References

[1] D. Georgakopoulos, M. Hornick, A. Sheth, An overview of workflow

management: from process modeling to workflow automation infrastruc-

ture, Distributed and Parallel Databases 3 (2) (1995) 119–153.

[2] C. Mohan, G. Alonso, R. Guenthoer, M. Kamath, B. Reinwald, An

overview of the exotica research project on workflow management

systems, in: Proceedings of the 6th International Workshop on High

Performance Transaction Systems, Asilomar, 1995.

[3] J. Miller, A. Sheth, K. Kochut, X. Wang, CORBA-based run-time archi-

tectures for workflow management systems, Journal of Database Manage-

ment 7 (1) (1996) 16–27 (special issue on multidatabases).

[4] P. Muth, D. Wodtke, J. Weissenfels, A.K. Dittrich, G. Weikum, From

centralized workflow specification to distributed workflow execution,

Journal of Intelligent Information Systems 10 (2) (1998) 159–184.

[5] W.M.P. Van der Aalst, Loosely coupled interorganizational workflows:

modeling and analyzing workflows crossing organizational boundaries,

Information & Management 37 (2) (2000) 67–75.

[6] Y. Yan, Z. Maamar, W. Weiming Shen, Integration of workflow and agent

technology for business process management, in: Proceedings of CSCW in

Design 2001, London, Ontario, Canada, (2001), pp. 420–426.

[7] T.P. Cai, A.S. Gloor, DartFlow: a workflow management system on the

web using transportable agents, Technical Report of Dartmouth College,

Computer Science, Hanover, NH, 1996.

[8] J.M. Vidal, P. Buhler, C. Stahlet, Multiagent systems with workflows,

IEEE Internet Computing 8 (1) (2004) 76–82.

[9] V.S.A. Atluri, S.A. Chun, P. Mazzoleni, A Chinese wall security model for

decentralized workflow systems, in: Proceedings of the 8th ACM con-

ference on Computer and Communications Security, Philadelphia, Penn-

sylvania, USA, 2001.

[10] R.S. Silva, J. Wainer, E.R.M. Madeira, A fully distributed architecture for

large scale workflow enactment, International Journal of Cooperative

Information Systems 12 (4) (2003) 411–440.

[11] G.J. Fakas, B. Karakostas, A peer to peer (P2P) architecture for dynamic

workflow management, Information and Software Technology 46 (6)

(2004) 423–431.
[12] J. Yan, Y. Yang, G.K. Raikundalia, Enacting business processes in a

decentralised environment with p2p-based workflow support, Proceedings

of Advances in Web-Age Information Management, Lecture Notes in

Computer Science 2762, 2003, pp. 290–297.

[13] W.M.P. Van der Aalst, The application of Petri nets to workflow manage-

ment, Journal of Circuits Systems and Computers 8 (1) (1998) 21–66.

[14] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods, and

Practical Use, Springer-Verlag, Berlin, 1992.

[15] D.S. Liu, J.M. Wang, S.C.F. Chan, J.G. Sun, L. Zhang, Modeling workflow

processes with colored Petri nets, Computers in Industry 49 (3) (2002)

267–281.

[16] W.M.P. Van der Aalst, A.H.M. ter Hofstede, Verification of workflow task

structures: a Petri net-based approach, Information Systems 25 (1) (2000)

43–69.

[17] T. Murata, Petri nets: properties, analysis and applications, Proceedings of

the IEEE 77 (4) (1989) 541–580.

[18] W. Tan, Y. Fan, Model fragmentation for distributed workflow execution: a

Petri net approach, Proceedings of the 5th IEEE International Symposium

and School on Advance Distributed Systems (ISSADS 2005), Guadala-

jara, Mexico; Lecture Notes in Computer Science vol. 3563, Springer-

Verlag, Berlin, 2005. pp. 207-214.

[19] H. Luo, Y. Fan, CIMflow: a workflow management system based on

integration platform environment, in: Proceedings of the 7th IEEE Inter-

national Conference on Emerging Technologies and Factory Automation

(ETFA’99), Barcelona, Spain, 1999.

Wei Tan received his B.S. degree in Automation

from Tsinghua University, Beijing, China, in 2002.

He is currently a Ph.D. candidate in control theory

and engineering at the Department of Automation in

Tsinghua University. His research interests include

business process management, distributed workflow

technology, CIMS, Petri net, etc.
control from Beijing University of Aeronautics and

Astronautics, Beijing, China, in 1984, and his M.S. and

Ph.D. degrees in control theory and application from
Yushun Fan received his B.S. degree in automatic

Tsinghua University, Beijing, in 1987 and 1990,

respectively. He is currently Professor of the Depart-

ment of Automation, Vice Director of the System

Integration Institute, and Director of the Networking

Manufacturing Laboratory, Tsinghua University. His

research interest includes enterprise modeling meth-
ods and optimization analysis, business process re-engineering, workflow man-

agement, system integration and integrated platform, object-oriented

technologies and flexible software systems, Petri nets modeling and analysis,

workshop management and control. He authored nine books in enterprise

modeling, workflow technology, intelligent agent, and object oriented complex

system analysis, computer integrated manufacturing, respectively, and published

more than 250 research papers in journals and conferences. He is a member of the

IFAC Advanced Manufacturing Technology Committee. From September 1993 to

March 1994, he was a Visiting Scientist at the University Bochum, Germany,

supported by Federal Ministry for Research and Technology. From April 1994 to

July 1995, he was a Visiting Scientist, supported by Alexander von Humboldt

Stiftung, at Fraunhofer Institute for Production System and Design Technology

(FhG/IPK), Germany. Dr. Fan served on the Program Committees of the 1992

International Symposium on CIM, Beijing, China, 1997 IEEE International

Conference on Factory Automation and Emerging Technology, Los Angeles,

CA, and 2002 International Workshop on Emergent Technologies in Engineering

Cooperative Information Systems, Beijing, China.

	Dynamic workflow model fragmentation for distributed execution
	Introduction
	Problem formulation
	Centralized workflow model
	Centralized and distributed workflow execution
	Specification of fragment

	Dynamic workflow model fragmentation method
	Issue of information redundancy
	Algorithms for dynamic model fragmentation

	Case study
	Background
	System implementation
	Process modeler
	Task allocator
	Task monitor
	Task client
	Fragment pool
	Fragment manager

	Dynamic model fragmentation

	Discussions
	Proof on correctness
	Discussions on workflow model

	Related work
	Exotica
	Inter-organizational workflow
	Mentor
	Dartflow

	Conclusion
	Acknowledgements
	References

