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Development areas

ELM resilient operation
– hybrid power splitter ELM dump
–  Wideband matching (WBM)

Arc localization
– acoustic techniques
– RF techniques

Arc/ELM discrimination

passive RF network analysis
– JET crossover impedance modification

– ASDEX-U antenna modification
– arc/ELM discrimination
– ELM dump

– decoupler
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Calculated reflection
 coefficient, ANTENNA 
SIDE of splitter

Calculated reflection
coefficient GENERATOR
SIDE of splitter

Calculated fraction of 
input power coupled
to antennas

Shot 79681

Palm Springs RF Top. Conf., May ‘95

Passive Matching System was first simulated using FDAC

FDAC calculation using loading data from DIII-D ELMing plasma

On average, 85% of generator power is coupled to antennas
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Measurements confirmed simultaneous reflection
cancellation - Results presented at IPP-Garching

Fast measurement of rare simultaneous side A/B arc made during plasma operation (shot 86649)

During period that side A reflected voltage is high, with side B low, reflected wave is clearly seen at
generator

During period with both reflected voltages high, reflected wave at generator is suppressed

Almost all arcs occur on one side only – are seen at generator – ELMs are not
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Operation of the DIII-D FWCD Systems in
ELMing H-mode Discharges
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note: produced ~ 50% power increase
into ELMing plasmas!
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Use at JET currently being considered

Simultaneity of ELMS at different ports will be measured in May 00

ORNL will model anticipated performance using FDAC

Incorporation of hybrid couplers for ELM resilient operation
incorporated into JET ICRF enhancement proposal

Use of passive ELM handling compatible with and complementary to
frequency shift matching system
– Biggest drawback, loss of efficiency, is eliminated by frequency shift

matching
– Voltage transient at anode eliminated, removes need for adjustable line

lengths on matched side of stub tuners
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The JET wideband matching “SLIMP” system

Z0= 110 Ω
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Wideband matching method

Pre-matching SLIMP transforms change in
reflection coefficient (ρ) magnitude to
change in angle
Frequency is shifted for each R value the
proper amount to put ρ on the R = Z0 line
on the load side of the stub
Stub adds susceptance to minimize | ρ | at
generator

+�ox

Input impdedances
at marked locations
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+�ox

WBM technique has trouble with π/2 phasing
and strongly coupled antennas

Problem caused by greatly reduced effective loading on one strap

ORNL will model performance of actual system with FDAC

No coupling

Strong coupling
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Status of JET wideband matching system

SLIMP has operated at high power on module C
– “SLIMP off” case tested (high impedance lengths minimized), does not

reduce power handling
– Algorithm for setting SLIMP lengths successfully tested by sweeping

frequency and varying outer gap radius to change loading

Commissioning of other modules to take place starting in May

Fast frequency shift control circuitry will be commissioned this
summer
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RHG Assignment to JET

WBM fast frequency commissioning

FDAC modeling of WBM performance with mutual impedances

ELM simultaneity measurements

Investigate implementation of arc localization on JET
Participate in antenna enhancement discussions, facilitate ORNL
involvement modeling enhancements
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Impact: WBM relevance to US program

WBM technique can significantly increase attractiveness of RDL
configuration if it can be successfully applied to it

– Highest power density conventional antenna is RDL

– Biggest drawback - internal matching components
– Tore Supra is developing alternates to capacitors, but require external

matching in addition to internal pre-match

– Frequency-shift matching can greatly reduce external matching
requirements, allow RDLs to be used more effectively in plasmas with
loading transients

JET has developed general approach to dual-resonance matching -
we will apply to RDL design where internal matching and external
matching are integral to overall matching system design

Developing WBM for RDLs will greatly enhance performance
capabilities of this high power density launcher
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Arc localization / impedance measurement test line

DIII-D 6” coax test line

Arcs produced at spark plug and near other voltage maximum (by
applying higher power)

Arc positions determined independently by microphones 1 and 2 (indicated by circles)
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Acoustic measurements
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•Microphones measure sound through gas
•Transducers measure sound through coax metal walls
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RF measurements: A repeatable ~1µs transient is
followed by 9-10 µs of less stable behavior

Two shots shown to indicate reproducibility
Arc starts at t= 0µs, appears to extinguish near t =10µs
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 1µs transients in RF frequency are observed
|F(V

fw
d )| 2  (a. u.)
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 Phase of the reflection coefficient varies with
arc location at f=46 MHz, but not at f=123 MHz
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To determine distance to arc, reflection coefficient phase
measured while frequency is swept, electrical length added to

make phase again stationary with frequency
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High inductance arcs have a reduced influence on the
reflection coefficient phase

Phase of reflection coefficient ( = V reflected / V forward) measured directly on the generator side of
the arc location

Larc = ∞

Larc = 14 nH

Larc = 8 nH

Larc = 3 nH
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Use of baseline data restores sensitivity to arc location
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A septate transmission line is an efficient high
frequency diplexer

0.813m

side view

end view

6” dia. 50Ω coaxial line

septum
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Fields, Cutoff Frequencies, and attenuation in
septate coupler
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Near-term possibilities  for arc
localization systems

There is interest in installing arc localization systems at
JET and NSTX (possibly DIII-D as well)
JET has 30 kV limit during plasma, but ~ 45 kV limit in
pressurized lines during plasma, wants to know where
breakdown is occuring
Complicated NSTX feed system is a good application for
swept frequency technique with single high frequency
feed point
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7 nodes

22 nodes

coupled antennas

decouplers

feedlines

FDAC Algorithm

Lossy coupled transmission
line model
Multiple coupled lines
including shunt connections
collapsed into single ABCD
transform equation set:

Common components pre-
modeled by equivalent ABCD
transforms
Simultaneous equation matrix
solved to determine currents
and voltages at nodes

Size of matrix to invert to
calculate I,V at nodes greatly
reduced. Substantial speedup
of parameter scans, optimiz-
ation calculations, etc.

V V I

I V I
out in in

out in in

= +

= +

A B

C D

SPICE model

FDAC model

Note: “ground” counts as 1 node
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The FDAC code can be used to build quick coupled
transmission line models of complicated networks

Key:

generator power
splitter

matching
network

pre-match
stub

decoupler antenna

Power
Splitters

stub phase shifter
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Example: calculation of the effect of antenna mutual
impedances on performance of wideband matching system for

ITER configuration

Unacceptably high VSWR occurs
on the phase lagging line (line 1)
for frequency shift matching with
π/2 phasing
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FDAC can also model complicated antenna circuit behavior:
example: JET A2 Antennas - high impedance crossover

resulted in reduced inner strap loading

Inner Strap Outer Strap

Outer
Feed

Inner
Feed

Crossover

Faraday
Shield

flatbed mockup actual antennas
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ANTMOD Model for the JET
A2 Flatbed Antenna

Each antenna is divided into
sections with varying Zo and vφ

Modelled as coupled cascaded
lossy transmission lines

FDAC will reduce number of
nodes required compared to
ANTMOD: one node per
network junction as in SPICE
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ANTMOD Model Flatbed measurement

Lowering the crossover impedance from 70Ω to 30Ω
improves inner/outer strap loading symmetry

Addresses goal of increasing inner strap loading at frequencies < 40 MHz

Good agreement between ANTMOD lossy coupled transmission line
model and measurement is observed
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Unlike the flatbed mockup, there is significant inner/outer strap residual
asymmetry in actual A2 antenna loading after crossover modification

Some improvement in low frequency loading is still observed
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 JET Loading Measurements in H-mode plasmas showed
improved loading symmetry after crossover modification

Before crossover modification After crossover modification
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Impacts of ORNL RF Network Modeling Codes:

FDAC used to predict performance of hybrid coupler ELM resilient (ELM
dump) circuits
– devices later used to couple high power to ELMing H-mode plasmas at DIII-D and

ASDEX-U

ANTMOD lossy cascaded coupled transmission line model used to
determine circuit frequency dependent behavior of antennas
– used to improve symmetry of JET A2 antenna coupling (together with mockup

measurements)
– similar work done to symmetrize ASDEX-U antenna coupling
– method adopted by ASDEX-U to modify antennas to couple to wider range of

plasma shapes

Decoupler development
– FOCSL - predecessor to FDAC used for JET decoupler modeling

– JET decoupler led to DIII-D design

– DIII-D design now used on NSTX
– Phased operation of strongly coupled ICRF antennas has become increasingly routine

Other work includes development of arc/ELM discrimination techniques,
examination of coupling effects in WBM, and adoption of WBM to RDL
configurations
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 Summary

Investigation into use of hybrid couplers in passive high power ELM
resilient circuits was enabled by JET decoupler work
– has resulted in routine operation with ELMing plasmas at DIII-D and

ASDEX-U
– use at JET under consideration

JET decoupler work also led to installation of decouplers at DIII-D,
improving current drive capabilities. Now in use at NSTX. Phased
operation, once difficult, now nearly routine
Acoustic arc detection has located arcs to within < 8 cm in 6m line.
RF technique with baseline subtraction looks very promising

Decoupler modeling needs led to FDAC & ANTMOD, which enabled
improvements in crossover feeds on JET and ASDEX-U. Improved
“SPICE like” version in progress.

ORNL work has had and will continue to have a significant
impact in the areas of ICRF control and reliability


