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Absfracf- This paper provides a comprehensive survey of 
spacecraft formation flying guidance (FFG). Here by the term 
guidance we mean both path planning (i.e., reference trajectory 
generation) and optimal, open loop control design. FFG naturally 
divides into two areas: Deep Space (DS), in which relative 
spacecraft dynamics reduce to double integrator form, and 
Planetary Orbital Environments (POE), in which they do not 
(e.g. libration point formations). Both areas consider optimal 
formation reconfigurations. In addition, DS FFG addresses opti- 
mal u, w-coverages for multiple spacecraft interferometers and 
rest-to-rest rotations. The main focus of the POE literature, 
however, is "passive relative orbits" or PROs. PROs are thrust- 
free periodic relative spacecraft trajectories used to design fuel- 
efficient formations. Finally, we present a brief overview of 
robotic path planning and discuss some of the similarities between 
this field and formation flying guidance. 

I. INTRODUCTION 
In 1969, data from US, Soviet, and European Space Re- 

search organization satellites were correlated to study how 
large solar flares interacted with the Earth's magnetic- and 
ionospheres-thereby achieving the first contemporaneous 
spatial sampling by a group of separated spacecraft [83]. 
Less than a decade later, Labeyrie proposed forming a stellar 
interferometer from free-flying telescopes [70]. Today, there 
are dozens of missions either flying, under development or 
proposed [22] that use spacecraft flying in formation. For 
example: Terrestrial Planet Finder (TPF) will look for extra- 
solar, Earth-like planets [76]; XEUS and the Constellation X- 
Ray Mission will explore high-energy astrophysical sources 
with unequaled resolution [ l l ] ;  and both EO-1/L-7 and 
CloudSatPicasso-Cena will study the Earth [34], [621. 

Previous definitions of formation flying have not clearly dif- 
ferentiated it from constellations. We define formation flying 
as a set of more than one spacecraft whose dynamic states are 
coupled through a common control law. In particular, at least 
one member of the set must 1) track a desired state relative to 
another member, and 2) the tracking control law must at the 
minimum depend upon the state of this other member. The 
second point is critical. For example, even though specific 
relative positions are actively maintained, the GPS satellites 
constitute a constellation since their orbit corrections only 
require an individual satellite's position and velocity (state). 

This paper presents a comprehensive survey of the guid- 
ance aspects of spacecraft formation flying. Formation flying 
guidance (FFG) is defined as the generation of any reference 
trajectories used as an input for a formation member's relative 
state tracking control law. This FFG definition includes open- 
loop control design (i.e., an optimal control profile that only 
depends on time and initial conditions). 

The FFG literature can be divided into two main categories 
based on the ambient dynamic environment. In Deep Space 

(DS) relative spacecraft dynamics reduce to double integrator 
form (i.e., no state dependent forces in open loop) [1091. 
The second main category is Planetary Orbital Environments 
(POE), where spacecraft are subjected to significant orbital 
dynamics and environmental disturbances. 

Both DS and POE FFG consider optimal formation re- 
configurations. The DS literature also addresses formation 
rotations and planning u, v-coverages2 for multiple space- 
craft interferometers (MSIs). In POE, the dynamics are the 
dominant consideration. Since tracking arbitrary trajectories 
requires prohibitive amounts of fuel,3 v 4  the POE literature 
focuses on developing periodic, thrust-free relative spacecraft 
trajectories, which are referred to as passive relative orbits (or 
 PROS).^ 

Due to the dynamical environment inherent in POE guid- 
ance, this area has a larger number of associated papers. This 
imbalance, however, is a matter of perspective; when one also 
considers the research in formation flying control, the literature 
is evenly divided between DS and POE. Due to its mission 
focus, JPL and its collaborators have been active contributors 
to the DS FFG area. For example, Wang and Hadaegh [I381 
first addressed formation reconfiguration, precisely defining 
it (see Section 11) and reducing the problem to a study 
of permutation groups. Also, in a series of papers, Beard 
and Hadaegh [ 121-[ 141 analyzed DS formation rotations and 
highlighted the need to balance fuel use across a formation. 

We note that problems in spacecraft formation flying guid- 
ance are similar to those in robotic path planning as well 
as UAV and underwater vehicle guidance. The research in 
these related areas, however, remains largely unexploited in the 
spacecraft formation flying literature. To encourage exchange 
between these fields, we include a brief overview of robotic 
path planning after surveying DS and POE FFG. 

Since formation flying is dependent upon state coupling in 
spacecraft control laws, the intended use of a reference trajec- 
tory determines whether it is formation flying or constellation 
guidance. A number of formation flying papers deal with PROs 
in the Hill-Clohessy-Wiltshire (HCW) equations; however, 

'In synthetic aperture imaging, spacecraft are generally restricted to a plane, 
and the critical variables are not the physical positions, ("1, y1) and ( r z ,  yz), 
but relative positions. Scaling by the wavelength observed (A) and the distance 
to the target (2 )  results in (u, v) = (91 - 1 2 ,  y1 - yz)/(zX). A u,v-set is 
then a set of ordered pairs representing planar relative spacecraft locations, 
and a u,v-coverage is an ordered u,v-set. See [92]. 

3For example, given a geostationary reference orbit, [68] shows that 
spacecraft placed in an arbitrarily oriented, 20 km diameter circular formation 
can each require a Av of 7 m/s  per orbit (assuming a five year lifetime). 

4Exceptions are XEUS and the MSI described in [123]. Both missions 
would use space station refueling. 

'A PRO is also commonly called a "passive aperture." 
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trajectories) bidding algorithms [94], linear programming [241, 
[129] and dynamic programming [143] have been used. In 
particular, [143] and [129] contain in-depth studies of POE 
reconfiguration. 

The most common linear PROs are solutions to the Hill- 
Clohessy-Wiltshire (HCW) Equations, referred to in [68] as 
Free Elliptical Trajectories (or FETs) [3], [65], [68], [1071, 
[ 1441 and [ 1251. Two particular types of FETs are emphasized: 
the circular FET (CFET), and the circular-projection FET 
(CPFET). The CPFET has elliptical relative orbits’ that project 
circles onto a plane perpendicular to the reference orbit’ plane. 
The interjhmetric cartwheel FET is useful for synthetic 
aperture radar applications [33], [84]. 

The FETs rotate with the local-vertical, local-horizontal 
frame and are useful for looking at the Earth. For astronomical 
targets there are also PROs that remain in inertially fixed 
planes [29], [57]. The relative orbit plane may be arbitrarily 
oriented, but the eccentricity of the relative orbit depends on 
the target direction. Also using a linear model, [55] and 191 
derive constraints on relative states for a PRO to exist about 
an eccentric reference orbit. 

Turning to nonlinear models, [142] derives a similar initial 
condition constraint for the existence of a PRO about an 
eccentric reference orbit, while [ 1321 and [ 1061 numerically 
search for PROs. The energy-matching condition is also used 
to design formations [27], [ 1131. First, a point in the reference 
orbit is selected and spacecraft are put in a desired configura- 
tion. Next, their velocities are directed parallel to the reference 
orbit’s. Finally, their velocity magnitudes are selected to match 
the energy of the reference orbit. Tetrahedral formations have 
been designed in this manner. See [43] for further references 
on tetrahedral formations.’ 

Another common approach in nonlinear PRO design, pio- 
neered in [32], is to expand the formation geometry parameters 
(e.g. angular extent of formation) in a series based on eccen- 
tricity and then select relative orbital elements to eliminate first 
order terms [28], [51], [136]. Using this approach the CFET 
is recovered with the addition of a second order term in the 
series that captures the variation from the exact circular HCW 
solution [32], [91]. 

Purely geometrical arguments can also be used to obtain 
a nonlinear model-based PRO. In particular, one dimensional 
MSIs based on inclination differences [ 1241, two-dimensional 
MSIs with spacecraft in the same circular orbit [54], and 
planar formations with constant inter-spacecraft distances and 
eccentric reference orbits [ 1261 have been developed. Still an- 
other approach to designing a PRO is to introduce a formation 
performance metric, such as the number of u, v-points sampled 
in one orbit, and numerically search for optimum spacecraft 
positions 161, [43], 1501, [52], [821, [1161. 

*We adopt the following terminology to avoid confusing three types of 
“orbits:’ An orbit is the periodic motion of a spacecraft about a planetary 
center or libration point. A relative orbit is the periodic motion of one 
spacecraft with respect to a reference point tracing out an orbit. The reference 
orbit is the orbit of this reference point. A spacecraft may or may not occupy 
the reference orbit. 

’To date, tetrahedral missions have only been designed as constellations. 

Given a PRO, the next step is to study its robustness in 
the presence of disturbances [8], 1411, [55], [107]. Electric 
forces due to spacecraft charges and luni-solar gravitational 
perturbations are studied in [64] and [141]. In [117], dimen- 
sional analysis is used to estimate the magnitudes of various 
disturbances with emphasis on the division of J2-induced 
motion into bulk and differential parts. The bulk portion may 
be removed by carefully selecting the semi-major axis of the 
spacecraft orbits [65], [loll, [117]. This strategy reduces the 
control cost for an ARO designed for removing the remaining 
differential motion. Two strategies that do yield a PRO when 
J 2  effects are included are (i) to set the J2-induced secular 
drifts of two orbits equal and derive constraints on the orbital 
elements [l], [2], [52], [112], [132], and (ii) to use dynamical 
system theory to select appropriate initial conditions [69], 
[ 1391. In [42], the conditions €or a PRO to exist in the presence 
of solar pressure are derived. 

If PROs are too restrictive or are not known for a particular 
disturbance, then control can be used to maintain relative orbits 
that satisfy formation objectives. Both linear [73], [97] and 
nonlinear [93] programming have been used to find open loop 
control profiles that reject J 2  and aerodynamic drag. Formulas 
for the Av needed to reject J 2  for various formations have 
also been derived [ 13, [2], [107]. Considering aerodynamic 
drag, an ARO has been developed that maximizes the drift 
time between control inputs for two spacecraft with different 
ballistic coefficients [35], [62], [85], [115]. The strategy places 
the spacecraft with the larger ballistic coefficient at a slightly 
higher altitude. 

To improve the robustness of PROs designed using linear 
models, the HCW equations have been modified to include the 
effect of drag [26] and J 2  [89], [114], [117], [131]. However, 
[55] shows that for an eccentricity of 0.005, the error induced 
in the HCW equations due to ignoring eccentricity dominates 
the error due to ignoring J 2 .  Addressing eccentricity, [23] 
surveys exact and approximate solutions for the unperturbed 
motion of a spacecraft relative to an eccentric reference orbit. 

The primary approach for incorporating both J 2  and ref- 
erence orbit eccentricity is to express the relative motion in 
the local-vertical, local-horizontal frame as a function of the 
known solutions to the diferential mean orbital elements; see 
[5], [36], [38] and references therein. Osculating solutions 
require an eccentricity series-based approximation. 

In the disturbance free case, a similar approach using (non- 
differential) orbital elements and a circular reference orbit is 
developed in [42] and [147].’O The advantage of this approach 
is that the solutions are not required to be “near” the reference 
orbit, as is the case for the HCW equations. A complementary 
approach for increasing the accuracy and range of applicability 
of the HCW equations is to augment the equations themselves 
with second and third order gravitational terms [60], [103], 
[134]. Note that [61] derives the full, nonlinear equations of 
motion of a spacecraft subjected to drag and J 2  with respect 
to an eccentric reference orbit. 

‘ORef. [8] uses a similar approach with an eccentric reference orbit, but 
does not obtain closed-form solutions. 



positions are known at best to within tens of kilometers. 
Therefore, before formation control can take place, the for- 
mation spacecraft must search for each other with limited 
field-of-view (FOV) sensors subject to various constraints. 
Subsequently, spacecraft sensor FOV occultations should be 
avoided during formation maneuvers. 

In regard to 6-DOF guidance, connections were drawn 
between robotic path planning and formation flying guidance. 
While spacecraft dynamics are generally simpler than robotic 
dynamics (e.g. robots often have non-holonomic constraints), 
spacecraft constraints are generally more difficult to include 
(e.g. dynamic collision avoidance as opposed to static obstacle 
avoidance). We believe that the UAV and underwater vehicle 
literatures can also provide valuable techniques for formation 
guidance [87], [120]. 

Finally, POE formations are built upon PROS. Since for- 
mation design for other than circular reference orbits is still 
largely an art, recently developed solutions for perturbed and 
unperturbed motion about eccentric reference orbits should be 
utilized for PRO design [381, [421. 
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