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Abstract A full coherent Bloch wave calculation is presented to investigate high-

angle annular dark-field image formation for sub-angstrom probes in scan-

ning transmission electron microscopy (STEM). With increasing illumina-

tion angle, the contribution of the 1s bound state increases to a maximum

at an optimum probe angle, after which we find increasing contributions

from high-angle plane wave states around the periphery of the objective

aperture. Examination of image contributions from different depths within

a crystal shows an oscillatory behavior due to the beating between 1s and

non-1s states. The oscillation period reduces with decreasing probe size,

while the relative contribution from a specific depth increases. This signi-

fies a changeover from a projection mode of imaging to a depth-slicing

mode of imaging. This new mode appears capable of resolving three-

dimensional atomic structures in future generation aberration-corrected

STEM.
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Introduction

Scanning transmission electron microscopy (STEM) has
become a powerful tool for quantitative image analysis at
atomic resolution. Especially, with the introduction of high-
angle annular dark-field (HAADF) imaging, incoherent Z
(atomic number)-contrast STEM has been shown to provide
direct, compositionally sensitive structure images without the
phase problem [1,2]. With this advantage over conventional
coherent high-resolution transmission electron microscopy
(HRTEM), HAADF-STEM has enabled imaging not only of
individual atomic columns in crystals [1], but single dopant
atoms on the surface [3] and within the bulk [4,5]. Histori-
cally, there has been much confusion regarding the origin of
incoherence in annular dark-field STEM imaging. The original
claim for incoherent imaging in STEM [2] assumed that the
high-angle scattering would be dominated by incoherent ther-
mal diffuse scattering (TDS), thus, rendering the image inco-
herent. Later analysis of image formation for thin specimens
[6] showed that phonon scattering was not a prerequisite to
form an incoherent image. More recently, Nellist and Penny-

cook [7] used a Bloch wave approach to demonstrate that

incoherent imaging with dynamically scattered coherent

electrons was achieved through a high-pass filtering effect

provided by the annular dark-field detector geometry, with the

result that the image contrast is dominated by the 1s-type

bound Bloch states.

Recently, of particular interest is the pursuit of sub-angstrom

resolution by use of a spherical aberration corrector (for

example, [8,9]). Apart from the spectacular increase in availa-

ble resolution and image contrast, sub-angstrom probes

require much larger probe-forming apertures. In an uncor-

rected microscope, the probe-forming aperture is typically

much smaller than the angular width of the 1s Bloch state, but

with sub-angstrom beams this is no longer the case, especially

with anticipated future generations of aberration correctors.

We might expect, therefore, the dominance of the 1s Bloch

state to disappear. The purpose of this paper is to examine this

behavior and determine the primary contribution to image

contrast in future generation STEM.
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Our aim is not to perform a detailed comparison between
simulated and experimental images. Many other studies have
already been undertaken towards this goal [10–18]. Our
intent is to analyze the contributions to the image from the
various excited Bloch states as a function of depth to deter-
mine the image contrast mechanism. The strength of the
Bloch wave approach is the insight it provides into the physics
of STEM image formation. Bloch waves in high-energy elec-
tron diffraction can be described well as ‘atomic’ or ‘molecu-
lar’ orbitals denoted by quantum numbers 1s, 2s, 2p, etc. [19],
and have provided a powerful method for quantitative under-
standing of imaging and diffraction in high-energy electron
microscopy. We go beyond the analysis presented in [7] by
including all cross terms between different Bloch states,
which allows us to investigate the image contributions from
any Bloch state or combination of states as a function of depth
within a crystal.

It is well known that the intensity falling on the HAADF
detector is predominantly TDS and it is also widely accepted
that this is effectively generated incoherently. However, we do
not want to make this assumption at the outset, since that will
guarantee an incoherent image. Rather, we use a coherent for-
mulation to show how this incoherence arises. A coherent
imaging formulation ensures that the coherent bright-field
and HAADF images are treated on the same theoretical basis
and, therefore, highlights the origins of the very different
nature of the two images. We stress again that our intent is
not an accurate simulation, but a detailed understanding of
the reasons for incoherent imaging and, in particular, the role
of the 1s Bloch state with increasing probe-forming aperture.
The coherent formulation does not assume incoherent imag-
ing will apply simply because phonons are involved. These
results can be viewed as a transition from the coherent phase
object approach valid for thin crystals to the incoherent
scattering assumption that is a good approximation for thick
crystals. We examine the phase object contributions from
thin slices at specific depths within a crystal, but we do not
integrate those contributions into the final image from the
whole crystal. In this way, we see the important contributing
Bloch states at any depth.

Methods: coherent Bloch wave 

formulation

Scattering to the HAADF detector occurs primarily by elastic
scattering, as is assumed in a frozen phonon calculation, for
example. This is because typical phonon momenta are much
smaller than typical Bragg momenta and the phonon wave
vector, therefore, represents a minor perturbation to the final
scattered wave vector. Transverse phonon momentum compo-
nents ensure that the pattern on the detector from each suc-
cessive electron is shifted slightly and the end result is a
diffuse pattern. It is well known that the annular dark-field
detector destroys transverse coherence very effectively, just
because it averages over many elastic scattering discs [6,7].

Vertical phonon momentum components can couple the zero
layer reflections to the Ewald sphere. This destroys the coher-
ence in the beam direction quite effectively and the thickness
dependence of the image changes from the oscillatory depend-
ence of perfectly coherent scattering to a dependence that is
monotonically increasing, with the final image being the inco-
herent sum of partial images from all slices. We stress, how-
ever, that the contribution to the image from any one slice
within the crystal is dominated by the elastic scattering to the
detector. Phonons only ensure that the contributions from
different slices add incoherently. Thus, a coherent Bloch state
formulation is able to determine the important Bloch states
contributing to the HAADF image from any depth within a
crystal.

Recent studies of probe propagation have indicated a
reduced depth of field for sub-angstrom probes [20,21]. In this
paper, we wish to examine the role of the 1s state with increas-
ing probe aperture angle and the contribution of the 1s state to
slices at different depths in the crystal. Our results represent
‘partial images’ from specific Bloch states or combinations of
states as a function of depth of the crystal slice within the
crystal. The results show that with increasing probe angle the
1s state contribution first peaks and eventually fades. At the
same time, the contribution from a specific depth increases.
This represents a changeover from the dominance of chan-
neling behavior, and projection imaging, to the dominance of
non-channeling behavior, or depth slicing.

In the framework of the Bloch wave method developed by
Nellist and Pennycook [7], the coherent interference between
excited Bloch states can be split into two components: depth-
independent j = k diagonal terms (named ‘self terms’) and
depth-dependent j ≠ k off-diagonal terms (called ‘cross
terms’). The latter have been shown to decay to zero at the
limit of large depth [7], leaving the so-called residual object
function as being the sum over the self terms only. In the
present paper, we include all self and cross terms, but as a sim-
plification we do not include any phenomenological absorp-
tion, although a thermally smeared potential is used. The
central idea in setting up a Bloch wave method for STEM lies
in that the incident electron wave is expressed in terms of the
eigenstates of the system, which should be stationary Bloch
states in the case of a periodic crystal. For mathematical con-
venience, the electron probe can be described as a coherent
superposition of plane waves and an aberration-free probe is
assumed throughout. To put emphasis on the primary objec-
tive of our study, we neglect the higher-order Laue zone reflec-
tions, which have only a small contribution to the annular
dark-field image [12,22].

Following the deductive derivations in [7] and the notations
therein, the Fourier transform of the real-space STEM image
intensity I (R0 , z) (probe position R0 and specimen depth z) for
a zone-axis-aligned crystal can be given by

(Q, z) = A(Ki)A*(Ki + Q) D(Ki + g)F(g, Ki, Q, z)dKi (1)Ĩ ∫
g
∑
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Here, Q is the image spatial frequency vector in the same units
as the reciprocal lattice vector g; A(Ki), known as the aperture
function, is the complex amplitude of the incident partial
plane wave with transverse wave vector Ki and in STEM usu-
ally has a magnitude given by a circular top-hat function with
radius of the objective aperture; D(Ki + g) is the detector func-
tion taking the value of unity if the wave vector of a Bragg
beam, Ki + g, falls on the detector range and zero otherwise;
and the term F(g, Ki, Q, z) represents the sum of coherent
interference in the following form

F(g, Ki, Q, z) = φ
0

( j)*(Ki)φg( j)(Ki)φQ(k)(Ki)φg(k)*(Ki)

× exp{–i2πz[kz
( j)(Ki) – kz

(k)(Ki)]} (2)

where φg( j)(Ki) is the g-th Fourier component of the j-th Ki-
excited Bloch wave, whose eigenvalue gives the longitudinal
zone-axis wave vector component, kz

( j)(Ki). The rapid variation
of the high-energy electron wave in the z direction denoted by
an overall phase factor, exp(–i2πk0z), where k0 is the incident
electron wave vector, is omitted in this description ([23],
which, however, adopted a different convention for free-space
plane waves, i.e. exp(ik0z)).

Equation (1) is a completely reciprocal-space formulation.
By going back to the primitive form of eq. (2), one can clearly
see the physics of the image formation process. First, we write
down two important property equations for Bloch waves [23]

φg
( j)(Ki + g′) = φg + g′

( j)(Ki) (3)

kz
( j)(Ki + g) = kz

( j)(Ki) (4)

which arise because Bloch functions satisfy ψ( j)(Ki, r) = ψ( j)(Ki

+ g, r) (to within a phase factor, which is also the case for eq.
(3)). The interference term described by eq. (2) was derived
utilizing eqs (3) and (4) from

F(g, Ki, Q, z) = φ
0

( j)*(Ki)φg( j)(Ki)φ0(k)(Ki + Q)φg – Q
(k)*(Ki + Q)

× exp{–i2πz[kz
( j)(Ki) – kz

(k)(Ki + Q)]} (5)

where φ
0

( j)*(Ki), due to the orthogonality between the Bloch
states, is the amplitude of excitation of the j-th Bloch wave for
plane wave Ki illumination. Equation (5) represents the inter-
ference between two Q-related incident partial plane waves, Ki

and Ki +Q. Taking into account the integration over Ki in eq.
(1), one can see that the image contrast at a spatial frequency
of Q arises from the interference between all pairs of incident
partial plane waves whose transverse wave vectors are sepa-
rated from each other by Q. This is also why the objective aper-
ture diameter should not be less than the distance between
neighboring reciprocal g points in order to obtain image con-
trast. Each of two such partial plane waves, due to the scatter-
ing by the specimen, excites a set of depth-dependent Bloch
states (represented in eq. (5) by the summation over j and k,

respectively), which, by definition, can be expanded into a
series of Bragg beams in the reciprocal g space. As eq. (5)
shows, interference occurs between any two scattered Bragg
beams that have the same final wave vector (i.e. Ki + g) and
many such interfering Bragg beams are summed over by the
detector to give the final image contrast. For a HAADF detec-
tor, the summation of a large number of coherently interfering
Bragg beams gives rise to incoherent imaging.

Lattice imaging in STEM has been understood as the inter-
ference between overlapping coherent convergent beam discs
through optical diffraction analysis [24]. Since the Bragg discs
centered on g vectors in the detector plane are images of the
probe-forming illumination cone, the concept of overlapping
discs is the same as interfering Bragg beams described here.
For Q = 0, the interference term described by eq. (5) would
result from the identical incident plane wave, Ki, thus corre-
sponding to the non-overlapping or self-interfering contribu-
tion. On the other hand, since the zero frequency Fourier
component of I (R0 , z) is independent of the probe position,
R0, the value of eq. (1) at zero spatial frequency contributes a
uniform background to the image. That is, the intensity con-
tributed by the non-overlapping interference is insensitive to
the probe position and image contrast comes only from the
overlapping interference (i.e. the non-zero frequency Fourier
components in eq. (1)) falling on the detector, which is in
good agreement with Spence and Cowley’s description [24].

An image function (IF) is the entire evaluation of eq. (1).
We call this a full image function (FIF) as being the sum over
all the j = k self terms and j ≠ k cross terms, and a so-called
residual image function (RIF) is defined as including the sum-
mation over j = k only. From eq. (2) it can be seen that the RIF
is independent of depth, whereas the cross terms are depth-
dependent. The FIF, therefore, represents the image intensity
contribution from an elementary slice of crystal at depth z. It
is obvious that at zero thickness the intensity detected by a
HAADF detector would be zero, which can also be verified
from eq. (2) by considering the orthonormality of the Bloch
states. For z = 0, the right side of eq. (2) reduces to δ

ogδQg
ensuring g = 0, and D(Ki + g) in eq. (1) would remain zero for
all values of Ki since a HAADF detector inner angle is larger
than the probe-forming aperture angle, thus, leading to zero
detected intensity. At the limit of large depth, all the cross
terms would oscillate infinitely quickly in the integral over Ki,
due to the differences between the j and k dispersions in the
argument of the exponential term. Since the dispersion sur-
faces will eventually cancel out the cross terms and leave the
self terms only, the RIF turns out to be the large depth limit of
the FIF.

Calculation and discussion

Throughout this article, all the Bloch wave calculations were
performed at 300 kV for GaAs (lattice constant a = 5.656 Å at
room temperature), which has classic ‘dumbbell’ pairs of Ga
and As columns in its <110> projection. To take into account

j k,
∑

j k,
∑
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the thermal vibration effect on the atomic potential at finite
temperature but avoid possible artifacts induced by the choice
of the somewhat elusive Debye–Waller factors, we set the
Debye–Waller factors as 0.5 Å2 for both Ga (Z = 31) and As (Z

= 33) atoms. The Bloch wave calculations were carried out for
all sampled incident partial plane waves within the illumina-

tion cone as a preliminary step for the integral over Ki in eq.
(1). The probe size is sometimes defined as the full width at
half maximum (FWHM) of its intensity distribution and, in
the absence of lens aberrations, can be estimated by

FWHM = 0.515 (6)

where λ is the incident electron wavelength and θ the objec-
tive aperture semi-angle, and the coefficient is derived from
the Airy function for the probe.

1s dominance and incoherent imaging

We start by presenting simulated results for three probes with
illumination semi-angles of 12.2, 20.9 and 24.4 mrad, respec-
tively corresponding to probe intensity FWHM of 0.83, 0.49
and 0.42 Å at 300 kV acceleration voltage. These probes are
aberration-free with defocus set to zero, i.e. focused on the
crystal entrance surface. Figure 1 compares FIF intensity pro-
files for a slice near the entrance surface of the crystal (10 Å
depth) with the Ga 1s and As 1s contributions at 10 Å and
with the RIF representing the limit of large depth. In all cases,
clear peaks appear at the positions of the two dumbbell col-
umns with 1.4 Å spacing and the relative intensities show the
expected contrast, with the As column having 11–19% more
intensity (close to the Rutherford scattering value of (33 / 31)2

= 1.13). By comparing the 15 contributions with the RIF, the
1s dominance is obvious and the non-1s states only contribute
an almost uniform background, raising the entire profile. This
background can be understood as a weak contribution from
the non-1s states, which have dispersed at greater depths. This
dispersion also leads to some probe spreading through the
thickness of the crystal, giving a slightly broadened peak
width to the RIF. Nevertheless, the dumbbell remains clearly
resolved with a distinctive signal/background ratio of 6.0–7.0.

With the smaller probe angle of 12.2 mrad (Fig. 1a), the
image contribution at 10 Å is reduced compared with the 1s
contributions alone. With the aperture angle increased to 20.9
mrad, this behavior is reversed (Fig. 1b), with the 10 Å slice
now providing a higher image contribution than the 1s states.
The increased peak intensity from the thin region of crystal
represents the increased contribution of all non-1s states,
which have not dispersed yet. In the thin region the entire

incident probe is contributing to the image, whereas in the thick
region only the 1s state contributions remain in the form of
the dumbbell. As the probe is further sharpened, this behavior
is further enhanced (Fig. 1c). Of course, the peak widths are
also reduced with the wider objective apertures, reflecting the
improved resolution of the sharper probes.

This behavior suggests that the 1s state remains the only
single dominant Bloch state contributing to the HAADF
image, even for a sub-angstrom probe, but there is an increas-
ing importance from the sum of all other Bloch states. We next
show that these are, in fact, plane wave states located around
the periphery of the aperture and determine the optimum
aperture for maximum 1s state excitation.

Fig. 1 Profile plots of the RIF and FIF at 10 Å depth across the
dumbbell pair of <110> GaAs compared with the contribution of As
1s and Ga 1s only, calculated with 849 reflections, 300 kV acceleration
voltage and no absorption. The objective aperture semi-angle, detector
angle range and number of incident beams are, respectively: (a) 12.2
mrad, 49–96 mrad, 219; (b) 20.9 mrad, 45–96 mrad, 637; and (c) 24.4
mrad, 49–96 mrad, 871.

λ

θ
-----
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Excitation of 1s state by the probe due to the 

similarity between them

An aberration-corrected probe may have a very similar form to
the 1s states. In general, if a particle takes an eigenstate of a
filter device, then it will be directly transmitted. Hence, if the
probe enters the crystal over an atomic column matching the
1s states, it will travel down the column with a fraction reach-
ing the annular dark-field detector; this is the so-called chan-
neling effect. If the probe is located between the atomic
columns, its coupling with the 1s state is now weak and the
probe will decompose into a large number of less-localized
Bloch states that do not scatter efficiently into the detector.
Furthermore, if the illumination angle is increased, the probe
will become narrower than a 1s state and the coupling on the
column will become less efficient. Thus, there should exist an
optimum illumination angle for which the probe fits best with
the 1s states of the specimen. Beyond this optimum angle, the
contrast in the image, and possibly the image resolution itself,
might even decrease.

A real-space excitation is first introduced for each Bloch
state. We replace the integral in eq. (5) of [7] by a sum over all
the Q-related Ki’s within the objective aperture for a single ini-
tial Ki

1BZ in the first Brillouin zone. By utilizing the symmetry
properties described by eqs (3) and (4), the resultant excita-
tion coefficient for the j-th Bloch wave branch with the probe
located over the respective column is then a function of Ki

1BZ

α( j)(Ki
1BZ) = CN A(Ki

1BZ + Q)φ
0

( j)*(Ki
1BZ + Q)

= CN φQ
( j)*(Ki

1BZ) (7)

The Q summation is performed over the entire objective
aperture disc and the normalization coefficient CN equals the
reciprocal of the number of eligible Q-values.

The illumination angle evolution of the overlap integral
between the probe and the 1s state is then shown in Fig. 2a for
the As 1s state with the probe located over the As column. A
maximum normalized excitation of 0.87 for the As 1s state
appears with a ~20.2 mrad aperture. At this optimum angle,
the probe size is 0.50 Å according to eq. (6), which is signifi-
cantly larger than the FWHM for the As 1s (0.31 Å). Interest-
ingly, van Aert et al. [25] reached a similar conclusion based on
an optimal signal/noise criterion. Intuitively, one would antic-
ipate the optimum probe to have a similar FWHM to the 1s
state. The apparent discrepancy of ~0.2 Å originates from the
different forms of the probe and the 1s state: the 1s state bears
a Gaussian-like shape, whereas the probe-forming aperture
has a top-hat form in reciprocal space, leading to a real-space
probe described by an Airy function. This is illustrated for the
optimal coupling in real (Fig. 2b) and reciprocal space (Fig. 2c).

It is interesting to note that although the As 1s state appears
close to Gaussian in form and takes a slightly smaller FWHM
than the latter (Fig. 2c), the 1s state contains slightly higher
values at larger angles. In real space, therefore, the 1s state is
narrower than the Fourier transform of the Gaussian, with

Fig. 2 (a) Angular dependence of the coupling between the incident
probe located over the As column and the As 1s state. The optimum
probe-forming aperture for maximum 1s state excitation is ~20.2
mrad. Calculations are for K

i
= (0,0,0) including all Q-related points in

the incident cone. For other K
i
’s in the first Brillouin zone, very similar

plots would be obtained. (b) Real part of the 300 kV aberration-free
probe profile (solid line) formed with an aperture semi-angle of 20.2
mrad compared with the As 1s state amplitude (dashed line). For a
probe without aberrations its imaginary part is zero. (c) Same as (b),
but in reciprocal space. The dotted line is the Gaussian fit to the As 1s
state magnitude and the dashed square denotes the optimal coupling
of objective aperture with the As 1s state.

Q

∑

Q

∑
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FWHM of 0.47 and 0.63 Å, respectively. The difference would

be further enhanced if one simply adopts a Gaussian with

identical reciprocal-space FWHM to replace the 1s state and,

thus, care should be taken with such an approximation.

The strong excitation of the 1s state by a STEM probe can

also be demonstrated by comparison with the non-1s Bloch

states, as shown in Fig. 3 for Ki = (0,0,0). In view of eq. (3),

one can easily see φ
0

( j)*(Ki = Q) = φQ( j)*(Ki = 0), which says

that the excitation amplitude of a Bloch state for non-normal

incidence is just the corresponding Bloch wave component for

normal incidence. That is, Fig. 3 can also be regarded as an

excitation plot as a function of incident Ki for different Bloch

states. Moreover, eq. (7) has stated that the real-space excita-

tion before normalization can be expressed by the summation

of reciprocal excitations for all Q-related Ki values over the

objective aperture. It is clear that the 1s state is the broadest in

reciprocal space, while the non-1s states, especially those of

higher order, have a very localized distribution, closely resem-

bling plane waves. Although the reciprocal space excitation

φ
0

(ls)*(Ki) is maximum for normal incident Ki, the optimum

illumination angle for maximum 1s real-space excitation

occurs with a ~20.2 mrad aperture as a result of competition

between the 1s and all the non-1s states excited by the probe.

Beyond this angle, the excitations for more and more higher-

order states would be gradually switched on at the cost of
reduced normalized excitations for 1s and lower-order states.

Simulation evidence for the convolution description

A perfectly incoherent image is given by a convolution
between an object function representing the scattering power
of the specimen and a resolution function. It is, thus, appeal-
ing to test the validity of the simple incoherent description for
the available data from Bloch wave calculations. We would
expect the small-thickness image slice to approximate a con-
volution of the probe with the detector-filtered high-angle
scattering potential, whereas the high-thickness image slice
would approximate a convolution of the probe with the 1s
state. In our case, the FWHM of the intensity profile for the As
1s state is 0.31 Å, which is slightly broader than the square of
the projected potential (0.24 Å), as shown in Fig. 4. The
FWHM of the convolutions and calculated FIF contributions
(as showed in Fig. 1) are compared in Table 1 for the As col-
umn. The error in the FWHM is only 0.04 Å for the 10 Å slice
and 0.03 Å for the 1000 Å slice. Also parenthesized in the last
row of Table 1 is the FWHM value for the RIF, which is equal
to the FIF at the limit of infinite depth, providing good agree-
ment again with the 1s convolution results.

For very thin samples of tens of angstroms, the resolution
would basically rest upon the probe size since the projected

Fig. 3 Distribution of the Fourier components φ
g
( j)(Ki) along <111>

for various Bloch waves in <110> GaAs, plotted for Ki= (0,0,0) with
849 reflections.

Fig. 4 Profile plots of the intensity of the As and Ga 1s Bloch states
(solid) compared with the square of projected full potential (dashed)
for GaAs <110>, scaled to the same peak values.

.....................................................................................................................................................................................................................

Table 1. Test of the convolution description in terms of FWHM of the As column

aSymbol ⊗ denotes the convolution operation.

..........................................................................................................

Illumination semi-angle
....................................

12.2 mrad
....................................

20.9 mrad
....................................

24.4 mrad

..........................................................................................................

Probe intensity size
....................................

0.83 Å
....................................

0.49 Å
....................................

0.42 Å

..........................................................................................................

Detector inner radius
....................................

49 mrad
....................................

45 mrad
....................................

49mrad

..........................................................................................................

Square of detector-filtered projected object potential
....................................

0.12 Å
....................................

0.14 Å
....................................

0.12 Å

..........................................................................................................

(High-angle potential)2 ⊗ probea
....................................

0.86 Å
....................................

0.53 Å
....................................

0.46 Å

..........................................................................................................

FWHM of FIF at 10 Å
....................................

0.87 Å
....................................

0.56 Å
....................................

0.50 Å

..........................................................................................................

FWHM of As 1s intensity
....................................

0.31 Å
....................................

0.31 Å
....................................

0.31 Å

..........................................................................................................

As 1s intensity ⊗ probea
....................................

0.89 Å
....................................

0.59 Å
....................................

0.53 Å

FWHM of FIF at 1000 Å 0.90 Å (0.92 Å) 0.60 Å (0.58 Å) 0.56 Å (0.52 Å)
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potential filtered by HAADF detectors is usually much sharper.
In the case of thicker specimens, the width of the image again
appears to be in accord with the convolution description, now
involving the 1s state. However, questions arise with even
sharper probes, because of the reduced contribution of the 1s
Bloch state compared with all other states. Above a certain
‘critical’ probe angle, the non-1s states and the high-angle

incident Ki’s give more and more significant contribution to
the non-local background of the image, and may finally
counteract the 1s dominance. We, therefore, examine the
depth dependence in more detail for selected aperture angles.

Depth evolution of FIF intensity from Bloch wave 

calculation

Since the specimen depth z is encoded in the exponential term
of eq. (2), the FIF intensity contribution can be calculated for
a slice at any desired depth by including the off-diagonal
terms within the Bloch wave model. Figure 5 gives an evolu-
tion of the depth dependence of the FIF intensity for GaAs
<110> with the three illumination angles used earlier, i.e. (a)
conventional 12.2 mrad, (b) 20.9 mrad close to the optimal
aperture and (c) smaller probe of 24.4 mrad. An obvious fea-
ture is the oscillatory intensity resulting from the phase term
of eq. (2). The oscillation period or effective extinction dis-
tance remains approximately constant for the first few peri-
ods, in agreement with the channeling model. However, the
extinction distance covers a range of ~40–100 Å and turns out
to be probe size-related. That is, the oscillation period becomes
compressed with increased illumination angle; the sharper the
probe, the smaller the extinction distance. This can be attrib-
uted to the fact that higher Ki’s for increased illumination angle
would introduce more non-1s components and, as a result, the
extinction distance shrinks due to the increased separation
between wave vectors for the 1s and the average of the high-
order Bloch states. In the next subsection, a simple model is
proposed for estimating the effective extinction distance.

In the thinnest part of the crystal, the 1s dominance has yet
to establish itself, so the highest peak arising in the first period
represents the contribution from all Bloch states. At increased
depth, one can see from Fig. 5 that the oscillations tend to
become non-periodic and attenuate in amplitude. This indi-
cates the disorder and decay in the cross terms as a function of
depth. It is worth mentioning that the first major valley
appearing around 101, 50 and 42 Å in Figs 5a–c, respectively,
corresponds to diffusive images for As and Ga columns. We
show in the next subsection that this represents probe propa-
gation in the thin specimen. When the objective aperture size
is sufficiently large, this diffusive image can take a doughnut
shape, which can be double the size of the usual image spot.

A small dip arises at 15 Å in Fig. 5b and 14 Å in Fig. 5c, and
it is incipient even in Fig. 5a for the 0.83 Å probe. The physical
origin can be understood as the kinematical z-coherence effect
discussed in [6]. Based on the scattering geometry shown in
Fig. 12b of [6], destructive interference would occur at a depth
of z = 2λ / θi2, where λ is the electron wavelength and θi the
detector inner angle. For θi = 45 and 49 mrad, as in Figs 5b
and 5c, respectively, the above formula would give a dip at a
respective column length of around 19 and 16 Å, providing a
good account for the corresponding results from the coherent
Bloch wave calculations. In addition, such sharp dips do not
occur in the subsequent oscillation periods, which can be
attributed to the fact that the dynamical scattering dephases

Fig. 5 The FIF intensity contributions as a function of depth within a
GaAs <110> crystal for a 300 kV probe located over a Ga column and
an As column, calculated without absorption. Objective aperture,
detector angle range, number of reflections and incident beams are,
respectively: (a) 12.2 mrad, 35–66 mrad, 411, 219; (b) 20.9 mrad, 45–
96 mrad, 849, 637; and (c) 24.4 mrad, 49–96 mrad, 849, 871.
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the Bloch states and dominates over the kinematical effect at
larger depth.

Finally, it should be pointed out that, although the curves in
Fig. 5 are not an accurate representation of the physical image
intensity that would be recorded in the presence of absorption
and TDS, they do illustrate how interference between all the
excited Bloch states leads to an extinction distance in the
order of ~40–100 Å. As for the TDS effect, if we assume that
all the high-angle beams reaching the detector suffer diffuse
scattering, the total detected signal would be proportional to
the integral of eq. (1) over the entire specimen thickness,
providing an alternative way to account for the TDS within
the coherent Bloch wave model.

Estimating the depth oscillations

Since the form of Fig. 5 also suggests that the non-1s part of
the wave function propagates through the crystal largely in
the form of plane waves, the depth oscillation of FIF intensity
can be understood as the beating between the 1s Bloch state
and the non-1s part of the probe as they propagate in the spec-
imen. We write the wave function in terms of 1s and non-1s
components

ψ(R, z) =ψnon-1s(R, z) + ψ1s(R) × exp(–i2πk
z

[1s]z) (8)

Applying eq. (8) at zero depth, we can write the non-1s com-
ponent in the equation as

ψnon-1s(R, z = 0) = P(R) – ψ1s(R) (9)

where P(R) is the probe wave-function. The non-1s compo-
nent of the wave function will consist mostly of plane wave
components at angles close to the aperture edge, as implied by
eq. (9) and Fig. 2c. We can assume, therefore, that these plane
waves have a wave vector of

k
z

plane = cosθ · (10)

where θ is the semi-angle of the probe-forming aperture.

The depth plot will be again a minimum when the plane
waves and the 1s state interfere at the extinction distance, i.e.

k
z

[1s]z – cosθ ·  = 1 (11)

where k
z

[1s] can be calculated using the eigenvalue of the 1s
state that comes out of the Bloch wave calculations, as shown
in the following. Since the eigenvalues from the Bloch calcula-
tions are –23.8689 Å–2 for the As 1s state and –20.7850 Å–2 for
the Ga 1s state, the corresponding wave vectors k

z

(1s) are,
respectively, 0.0060 and 0.0052 Å–1 according to (compare eq.
(11) of [23])

k
z

(1s) = – (12)

The total wave vector along the z direction for the 1s state
can be obtained by putting back the overall phase factor
exp(–i2πk0z) omitted in eq. (2)

k
z

[1s] = k0 + k
z

(1s) (13)

The wavelength for incident electrons at 300 kV is λ = 0.0197
Å and the corresponding wave vector is k0 = 1 / λ = 50.7614
Å–1. Hence, we have k

z

[1s] = 50.7674 Å–1 for the As 1s and
50.7666 Å–1 for the Ga 1s. Substituting them into eq. (11) gives
rise to the depth corresponding to the first minima for differ-
ent probe semi-angles, providing a good fit to the values from
the Bloch wave calculations, as shown in Table 2.

In addition to the good agreement between the two differ-
ent approaches, it can be noticed also that the effective extinc-
tion distance for Ga is slightly larger than that for As. This is
because the As 1s state is lower in energy than the Ga 1s state,
due to its deeper potential well, thus, leading to a larger k

z

[1s]

and smaller extinction distance for heavier atoms according to
eqs (13) and (11). Similar results [26] were reported within a
simple channeling description testified by multi-slice calcula-
tions.

Detector inner angle range

Before concluding this section, some test results are presented
concerning the minimum detector inner radius. Generally, a
factor of at least 3 for the ratio of detector inner radius to the
illumination convergence semi-angle has been regarded as
necessary for a HAADF-STEM image to be well described as
incoherent [27]. Here, we temporarily neglect the cross terms

Fig. 6 Profiles of the RIF intensity for detector inner radius of 35
mrad, 49 mrad and 70 mrad scaled to the same peak value at the As
column. Other calculation parameters are the same as in Fig. 1c.
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Table 2. Estimated depth for the first valley compared with calcula-
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.........................
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.........................
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101 Å
.........................
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.........................
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...........................................................
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.........................

103 Å
.........................
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.........................
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...........................................................

Ga column: calculation
.........................

104 Å
.........................

51 Å
.........................

43 Å

Ga column: estimation 112 Å 62 Å 50 Å

z
λ⁄

2 2π λ⁄( )⋅
-----------------------------Eigenvalue 1

2π
------



Peng et al. Bloch wave analysis of STEM imaging 265

to focus on the basic image features in the case of sub-
angstrom probes. Figure 6 shows calculated RIFs for a probe-
forming semi-angle of 24.4 mrad. It is seen that the forms of
the RIFs remain almost unchanged with the inner radius
above a ratio of 2. This is reasonable, since the semi-angle of a
sub-angstrom probe is already greater than a typical Bragg
scattering angle. A detector inner angle of twice the size of the
illumination cone is sufficient to guarantee the requirement
that the detector should eliminate the unscattered or low-
angle scattered electron beams. On the other hand, it can be
seen from Fig. 6 that for a given probe, a larger inner angle
gives lower background and a contrast that increases towards
Z2. This is achieved at the expense of reduced signal.

Future prospects

We have shown that a HAADF-STEM image can still be a
direct image of the 1s states even with sub-angstrom probes,
but the non-1s component, which propagates essentially as
plane waves, gains in contribution as the objective aperture
angle is increased above that for optimal 1s coupling. There-
fore, it is instructive to reflect on the nature of the image
formed from this component.

Figure 5 shows that with increasing probe aperture there is
an increasingly enhanced contribution from slices close to the
entrance surface, and the oscillatory behavior at higher thick-
ness slices is reduced both in intensity and in period. From
Fig. 1 we know that this behavior comes from the enhanced
non-1s component with increased probe-forming aperture.
For an objective aperture as large as, for example, ~60 mrad,
one can extrapolate from Fig. 5 and eq. (11) that the peak for
the first oscillation period would fall within 10 Å, with a peak
value much higher than those for the subsequent oscillation
periods. This behavior indicates a reduced depth of field and a
changeover from a channeling to a depth-slicing mode of
imaging.

Therefore, if we defocus a ‘superprobe’ so that it is brought
to focus within the specimen, what the HAADF detector
finally sees, due to the much reduced depth of field in the
order of angstroms, would be mostly the image from that
specific depth. Depth slicing and three-dimensional imaging,
thus, may be realized as images are generated at different
focal planes with next generation aberration-corrected STEM.

As a justification of the above extrapolation, Fig. 7 compares
the depth-dependence of the FIF intensity for an illumination
semi-angle of 34.8 mrad with and without defocus. For this
small probe of 0.29 Å FWHM, the depth-dependence without
defocus (Fig. 7a) has a compressed oscillation period and the
first major valley lies at 28 Å, agreeing well with the estima-
tion of eq. (11). Meanwhile, the small dip occurs at 8 Å, in
good comparison once again with the z-coherence prediction
(8.0 Å). Moreover, the difference between peak values at 5 Å
and any other regions is significantly enhanced to reach a ratio
of more than 3. With the introduction of a defocus of 50 Å
(Fig. 7b), since the probe is expected to have a less effective
focusing inside the specimen, it is reasonable that the FIF
results have a reduced contrast, resolution and intensity com-
pared with the case without defocus. In spite of that, Fig. 7b
still shows a steep peak in the region of 40 Å depth, where the
dumbbell structure can be distinctively resolved and the real
image, thus, would be dominated by this characteristic depth
region. In future generation aberration-corrected microscopes,
larger illumination angles will allow depth slicing over a larger
range of defocus with better depth resolution.

Concluding remarks

We have used a full Bloch wave model of coherent dynamical
diffraction of an incident STEM probe by a crystal to under-
stand the physics of HAADF image formation with sub-
angstrom probes. The Bloch wave approach is extended to
include the depth-dependent cross terms and it is confirmed
that the dominance of the 1s state is maintained with a sub-
angstrom probe down to an optimum size, which corresponds
to the maximum real-space 1s state excitation.

Beyond the optimum aperture for 1s state excitation, new
behavior appears as the 1s dominance is replaced by domi-
nance of the non-1s part of the probe. This part of the probe is

Fig. 7 Similar to Fig. 5, but for a probe semi-angle of 34.8 mrad (a)
without defocus and (b) with defocus = 50 Å, calculated using 1405
reflections, detector angles of 70–128 mrad, 117 incident beams and
no absorption.



J O U R N A L O F E L E C T R O N M I C R O S C O P Y, Vol. 53, No. 3, 2004266

formed predominantly from high-angle plane wave compo-
nents of the probe. With large probe-forming apertures these
components are incident many Bragg angles from the zone
axis and, therefore, are relatively unaffected by dynamical
diffraction that occurs for the lower-angle components of the
probe. They come, therefore, to a focus at a specific depth even
in a zone-axis crystal. Interference occurs between this com-
ponent and the 1s Bloch state giving an extinction distance
that depends not only on the specimen, but also on the probe
size. With increasing probe-forming apertures, the behavior of
the beam becomes increasingly classical as the 1s part of the
probe becomes progressively reduced compared with the high-
angle components. The image comes increasingly from a
specific depth within the specimen.

The next generation superprobe, therefore, presents a very
interesting opportunity. By exploiting the plane wave-like,
non-1s Bloch wave components, it appears possible to achieve
three-dimensional information via depth slicing, even in a
zone-axis crystal, and potentially to achieve atomic resolution
in three dimensions with future generations of aberration-
corrected STEM.
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