ASTM WIM SPECIFICATION E-1318

Revised for the New Millennium by Clyde E. Lee

Center for Transportation Research The University of Texas at Austin U.S.A. ASTM Designation: E 1318-02 Standard Specification for Highway Weigh-In-Motion (WIM) Systems with User Requirements and Test Methods

First Published 1990
Revised Slightly 1994
Extensively Revised 2000 & 2002

Available for Purchase: www.astm.org

FUNCTION OF A WIM STANDARD SPECIFICATION

To provide a comprehensive, authoritative reference document that aids the buyer (user) and the seller (vender) in procuring, installing, calibrating, testing, operating, and maintaining a satisfactory WIM system for use at a selected site.

ELEMENTS OF A WIM STANDARD SPECIFICATION

1) **TERMINOLOGY**

2) TYPES / CLASSES

According to Application / According to Accuracy Class

3) **PERFORMANCE REQUIREMENTS**

Features/Functions, Applications, Tolerances (estimated tyre loads, speed, axle spacing)

4) USER REQIREMENTS

Road Geometry (Alignment, Cross-Section), Surface Smoothness/Evenness,

Power Supply, Communications

5) **TEST METHODS (to be specified by user)**

- Reference tyre loads and axle spacings for static vehicles
- Calibration Procedure
- Type-approval Test
- On-site Acceptance/Verification Test

<u>REVISIONS FOR ASTM E 1318-02</u>

TERMINOLOGY:

gross-vehicle <u>weight</u>-the local <u>force</u> of gravity acting vertically downwards on the total mass of a stationary vehicle; kg, Mg, or t. wheel/axle <u>load</u>-the <u>portion</u> of the gross-vehicle weight imposed upon the tyres of a wheel or axle at the time of weighing; kg, Mg, or t.

ADDED DEFINITIONS OF TERMS: axle, dynamic vehicle tyre force, single-axle load, tandem-axle load, triple axle load.

PERFORMANCE REQUIREMENTS:

TYPE I: For highest-quality statistical data acquisition – no change.

TYPE II: For lesser-quality statistical data acquisition – no change.

TYPE III:

For screening suspected weight or load limit violators at an enforcement station—speed range increased to between 16 and 130 km/h (previously 10 to 80 km/h) and required acceleration measurement eliminated for Type III systems with sensors installed in main traffic lanes.

PERFORMANCE REQUIREMENTS:

TYPE IV:

Conceptual performance requirements for direct enforcement; WIM not yet approved for enforcement in U.S.A.–

Speeds between 3 and 16 km/h.

 Type IV systems with sensors that support full tyre contact area must indicate tyre loads of moving and stationary vehicles.

PERFORMANCE REQUIREMENTS:

VENDER SHALL SUPPLY:

- 1) Evidence that the offered WIM system has previously performed satisfactorily (within specified tolerances) throughout the user-specified ambient air temperature range expected at the site.
- 2) A certificate showing that every offered tyre-force sensor for use with Type I, Type III, and Type IV systems has been tested under a simulated tyre load prior to installation and found to produce an output signal that was linear within 2% of the applied load up to 90 % of the sensor's rated load capacity throughout the lateral extent of the sensor.
- 3) A test report showing satisfactory performance (different criteria) of every offered sensor (usually piezo) for use with Type II systems.

USER REQUIREMENTS:

NEW EMPHASIS:

To consistently achieve E 1318-02 accuracy, the user is expected to provide the specified pavement smoothness (maximum deviation under a 6-m straightedge when measured with a 3-mm thick, 150-mm diameter metal gage plate for 60 m in advance of and 30 m beyond the WIM sensors) or be willing to accept lessaccurate performance from a Type-approved WIM system.

USER REQUIREMENTS:

CALIBRATION:

A standard Calibration Procedure is required for the Type-approval Test and recommended for the On-site Acceptance Test.

RECALIBRATION:

- 1) when a system is reinstalled,
- 2) when site conditions or system components have changed significantly, and
- 3) no less frequently than annually.

REVISED TEST METHODS BASIC TEST-VEHICLE LOADING UNIT

- Two loaded, pre-weighed and pre-measured test vehicles Each makes multiple passes over sensors in each lane at prescribed speeds and lateral positions
- 2-axle, single-unit (rigid) truck (lorry) with dual tyres on drive axle-provides a single-axle, dual-tyre test load
- 5-axle, tractor, semi-trailer truck with dual tyres on the tandem drive axle and semi-trailer axle
- Loaded to at least 90 % of registered gross-vehicle weight with a non-shifting, approximately-symmetric (side-to-side) load.
- Used for Calibration Procedure, Type-approval Test, and On-site Acceptance/Verification Test
- 51 additional vehicles from traffic stream used for Typeapproval Test

REFERENCE LOADS AND WEIGHTS OF STATIC VEHICLES

- Type and quality of weighing apparatus specified
- Recent certification required
- Procedures for using apparatus specified
- Repeated measurements required
- Instructions for interpreting data to assure quality

CALIBRATION PROCEDURE

- To define factors for later application in WIM-system calculations that will help correlate observed vehicle speed and dynamic tyre force signals with corresponding estimated tyre-load and axle-spacing values for the static vehicle.
- Minimum of 3 runs of each test vehicle in each lane at 3 speeds and in 3 lateral positions of wheels in the lane
- Required for Type-approval Test and recalibration
- Recommended for On-site Acceptance/Verification Test

TYPE-APPROVAL TEST

- A rigorous test to demonstrate convincingly that the type and model of WIM system being tested is capable of meeting the E 1318-02 Performance Requirements when excellent (E 1318-02 or better) site conditions are provided.
- Requires multiple runs of 2 test vehicles and a single pass by at least 51 other vehicles selected in random order from the traffic stream and weighed on static scales near the site.
- Test needed only once

ON-SITE ACCEPTANCE TEST

- An abbreviated version of the Type-approval Test
- Requires only two loaded, pre-weighed and pre-measured test vehicles
 - Demonstrates that the delivered and installed WIM system has performance capabilities similar those of the specimen system that passed the Type-approval Test
 - Can be used on-site at any time to verify the performance of an operating WIM system

<u>COMPARISON OF APPROACHES TO WIM</u> <u>STANDARDS</u>

(COST 323, 1999) – COST 323 "Weigh-in-Motion of Road Vehicles," Final Report, APPENDIX 1, *European WIM Specification*, Version 3.0, August 1999

(ASTM, 2002) – ASTM Designation: E 1318-02 Standard Specification for Highway Weigh-In-Motion (WIM) Systems with User Requirements and Test Methods

TERMINOLOGY: Nearly verbatim, and consistent with OIML

CLASSIFICATION:

(COST 323, 1999) Systems designated by

- 7 Accuracy Classes: A (5) through E, via performance requirements with associated calibration procedures and road conditions – Elegant Tests
- 3 Applications with suggested accuracy:
 1. Statistics, 2. Infrastructure and Preselection,
 - and 3.Legal Purposes
- Road Geometry (similar to ASTM)
- 3 Site Classes: I, excellent; II good; III, Acceptable– via Rutting, Deflection, Evenness (IRI, m/km, or APL)

CLASSIFICATION:

(ASTM, 2002) Systems designated by

- Type according to Application: Types I, II, III, and IV
- Minimum Accuracy Level (95% conformity) required for each Type – Pass-or-Fail Tests
- Road Geometry (similar to COST 323)
- User responsible for providing smooth (even) road surface (6-m straight edge) 60 m in advance and 30 m beyond sensors or accepting less-accurate performance than specified for Type
- Wheel Load measurements required Type I

GROSS VEHICLE WEIGHT

GROSS VEHICLE WEIGHT

STEERING AXLE LOAD

STEERING AXLE LOAD

STEERING AXLE LOAD

DRIVE AXLE LOAD

DRIVE AXLE LOAD

TESTED VEHICLE

DRIVE AXLE LOAD

50 Tandem Drive Axles

Average Drive Axle Load = 14.3 Mg

10 9

8

65432

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12

% DIFFERENCE (Limits Shown = + 10 %, - 12%)

All Drive Axle Values w/in +/- 11.7 % of Static

TRAILER AXLE LOAD

50 Tandem Trailer Axles

TRAILER AXLE LOAD

50 Tandem Trailer Axles

TRAILER AXLE LOAD

