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1.0 INTRODUCTION

Consider the differential equation

r"(t) = G(r(t)) + u(t) (1-1)

describing the motion of a spaceship, where r is the position vector, G(r)
is the gravitational acceleration, and u denotes the thrust acceleration.

Let us introduce a six-dimensional vector y = (r,v) where v = r'.
Then equation (i-i) can be written in the form

y' = f(t,y,u) (1-2)

where

f(t,y,u) = (v, G(r) + u) (1-3)

Since the velocity of any motion does not exceed the speed of light and

the gravitational acceleration for motions (in a central gravitational field)

which are bounded away from the center can be considered as bounded, the

resulting function f can be assumed to be bounded, at least for physical
motions, and the gravitational acceleration can be written in the form

G(r) = -k(r)r (1-4)

where

k(r) = _I/r3 if r > ro (1-5)

and

k(r) = _/ro3 if r j ro (1-6)

This modification of the gravitational acceleration will not change the mo-

tion provided that the motion is outside the sphere with radius ro with
its center at the origin.



It is easy to prove that after such a modification the function G

is Lipschitzian and its smallest Lipschitz constant (as discussed by
V. M. Bogdan and V. R. Bond in a paper entitled "A priori Global Estimates

of Deviation of Solutions of Differential Equations Due to Perturbation With

Applicatons to Analytical and Celestial Mechanics") is given by the formula

IIGII= (2_)/ro3 (i-7)

Notice that in the above argument it is not essential that the central

gravitational field has its center at the origin. The center of the field

could be in motion and the above regularization procedure would still apply

provided that the distance between the center and the spaceship is always
larger than ro. Notice also that if the gravitation acceleration function

is the sum of several central Newtonian fields then the above procedure
applied to each of them will regularize the function G to make it

Lipschitzian. For details see the paper referenced in the previous paragraph.

Let us assume that the automatic control is given by the formula

u(t) = g(t, y(t), tl, Y(tl) ) (1-8)

where tI denotes the time that the telemetric reading of the position-

velocity vector y(t I) is taken. We assume that this information is trans-

mitted to the control center, which is located at the origin of an inertial
coordinate system. At the control center, this telemetric information is

used to produce a computer program which is then transmitted to the space-
ship. The program represents a function such that, when the program reaches

the spaceship, new telemetric readings of the time and the vector y(t) are
taken, and the program is executed, one obtains as a result the value of the

control vector given by formula (1-8). We assume that this process is per-
formed continuously, as by an analog computer. We shall be interested in

such motions when the transmission time is not negligible, as when the space-
ship is far away from the control center.

Our first objective will be to find the time tI and the position-

velocity vector y(t 1) as an operator of the trajectory function y.

The mathematical terminology and notions to be used in this paper can

be found in the books Optimal Control by Athians and Falb (ref. 2) and

Foundations of Modern Analysis by Dieudonne (ref. 4). For extensive lit-

erature on delay differential equations and related topics, see the survey
by Corduneanu and Lakshmikantham (ref. 3). For regularization of the gravi-

tational acceleration used in this paper and explicit formulas for computing
the smallest Lipschitzian constant for a vector function, see the aforemen-

tioned paper by Bogdan and Bond. Valuable information on delay differential

equations is contained in Driver (ref. 5) and Hale (ref. 6). Papers by

Anderson and Bogdanowicz (ref. i) and Lakshmikantham, Leela, and Moauro

(ref. 7) are closely related to the results presented in this paper.
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2.0 TIME DELAY OPERATOR

Assume that a trajectory is defined by

y(t) = (r(t), v(t)) (2-i)

for all values of time. Let us fix time t and denote by N = t - tI the
delay caused by the transmission of the telemetric data to the control center

and of the program back to the spaceship. This delay can be represented by
the formula

n = P + IrCt)I/c + Ir(t - n) llc (2-2)

where p denotes the processing time required by the computers and c
the velocity of light. (See the following sketch.)

-_/)

Control center



Let us assume that for some number

0 < q < 1 (2-3)

every admissible physical motion is such that

Iv(t)l j cq (2-4)

for any value of t.

Under this assumption, we have the following estimate

13< p + Ir(t)I/c + Ir(t) - j.t v(s) dsllc
-- t-l]

< p + 21r(t)I/c + i]q (2-5)

which yields the inequality

n j (i - q)-l(p + 21r(t)I/c) = a(t) (2-6)

Consider a function s defined by

s(n) = p + Ir(t)l/c + Ir(t - n)l/c (2-7)

for all n _ 0. Observe that the function s maps the closed interval

I = <0,a(t)> (2-8)

into I and it represents a contraction of this interval. Indeed_ we have
the inequality

t-n

Is(i]) - s(p) I <__(l/c) ft-0 Iv(x)ldx < qln- Pl (2-9)

which proves that the function s is a contraction. Thus, there exists a

unique number _ satisfying equality (2-2) for every trajectory function y
satisfying condition (2-4).



This means that the time tI can be treated as an operator of the trajectory
function y and is given by the formula

tI = Tl(Y)(t) = t - n (2-10)

3.0 OPERATORS ASSOCIATED WITH AUTOMATIC CONTROL OF SPACESHIPS

In this section, we will investigate the operator T1 and the operator
defined by the formula

T2(Y)(t) = Y(Tl(Y)(t)) (3-I)

for t belonging to the interval I and y belonging to a suitable space

of continuous functions. Using these operators, we can convert the original
spaceship control problem to the following form:

y'(t) = f(t, y(t), u(t)) (3-2)
for all t > 0

u(t) = g(t, y(t), rl(Y)(t) , T2(Y)(t)) (3-3)

y(t) = x(t) for all t < 0 (3-4)

where the function x is assumed to be known.

Notice that a physical motion must satisfy the following Lipschitzian
constraint

Iv(t) - V(tl) I _ alt - tll (3-5)

since the acceleration of any spaceship cannot exceed a certain limit at which

destructive stresses will be produced. Also, the fact that the velocity of
the spaceship cannot exceed the velocity of light yields another constraint

Or(t) - r(tl) I jclt - tll (3-6)

for any t and tI.



In the sequel, we shall denote by I an interval of the form

<0,b> or <0, =o) (3-7)

Let Y be a Banach space and let x be a Lipschitzian function with

Lipschitz constant w from (-0%0> into Y. We shall denote by

Lxw(Y) (3-8)

the space of all functions y from the interval (-_,m) into the Banach

space Y such that

IY(t) - Y(tl)l ! wlt - tll (3-9)

for all t,t I e I and

y(t) = x(t) (3-10)

for t < 0.

Notice that this set of functions restricted to I can be considered as

a subset of the space C(Y) of all continuous functions y from the interval

I into the Banach space Y. In the space C(Y)_ we shall introduce a family

of norms given by the formula

lYlk = sup {e-ktly(t) I " t e I} < oo (3-ii)

for any fixed real number k. Observe that from this definition follows the

inequality

ly(t)l < lylk ekt (3-12)

for all t e I.

Notice that when the interval I is compact all the norms (3-11) are

equivalent. When the interval I is unbounded, each value of k yields

a different subset Ck(Y) of the space C(Y) of all continuous functions.



Let ZI9 Z2 be two Banach spaces. Let us assume that D is a subset

of the space ZI. We shall denote by

L(D, Z2) (3-13)

the space of all operators U from the set D into the Banach space Z2
satisfying the Lipschitz condition; i.e._ there exists a number L such
that

IU(z) - U(Zl) I j Llz - Zll (3-14)

 eoo eI! 11 re te t
lower bound of all the numbers L satisfying inequality (3-14). The value

llUll considered as a function of the operator U forms a seminorm on the
space L(D, Z2).

Lemma. Let ZI, Z2, Z3 be some Banach spaces and let Di denote a

subset of the space Zi for i = 19 2. If Ui e L(Di_ Zi+ I) for i = I, 27

then the composition operator U = U2U 1 belongs to the space L(DI_ Z3) and
the following inequality

IIU2Ul[I< ][u21JILUlll (3-15)

holds. The proof of the lemma is obvious.

4.0 OPERATORS OF THE EXPONENTIAL TYPE

Assume that given are two Banach spaces Yi (i=i_2). For the sake of

brevity_ let us denote by C i = C(Y i) the Banach space of all continuous

functions from the interval I into the space Yi" Let Di denote a subset

of the space Ci for i = 1, 2.

4.1 Definition

An operator U will be said to be of the exponential type if and only

if it belongs to some space L(DI,C 2) of Lipschitzian operators and there

exist a number b and a positive constant ko such that IIUllk< b for

all k > ko where IIHe denotes the seminorm induced on the space L(DI,C 2)
by the norm I Ik defined on the spaces Ci (i=1,2) of continuous functions.



In the sequel, we shall assume that we are dealing with motions y

from the interval (-%_o) into the space Y = R6 such that

y(t) = (r(t), v(t)) (4-1)

and

y(t) = x(t) (4-2)

for times t < 0.

4.2 Theorem

The operator T I considered from the set Lxw(Y) into C(R) is of the
exponential type for any continuous function x from (-_0> into Y having

Lipschitz constant w < c. Moreover,

IITiIIk< 2/(c - w) (4-3)

for all k > 0.

Proof. Take a fixed argument t E I and two functions

Yi e Lxw(Y) (4-4)

for i = i, 2, and let

Yi = (ri, vi) (4-5)

be the decomposition into the radius vector component and the velocity
vector. Let us introduce the notation

Tl(Yi)(t) = t - ni (4-6)

for a fixed value of t. Recall that the numbers Hi satisfy the equations

Hi = (Iri(t)l + Iri(t - Ni)l )/c . P (4-7)
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See equation (2-2).

Relations (4-6_ and (4-7) yield the equality

iTl(Yl)(t ) _ rl(Y2)(t)l = IT]I_ T]21 (4-8)

and thus we get the inequality

c11]1 _ T]21 < Irl(t) _ r2(t)l + Irl( t - T]I) - r2(t - T]2)I (4-9)

Let us estimate the second term on the right-hand side of inequality

(4-9). We have from the triangle inequality

Irl(t - N1 ) - r2(t - N2)I < Irl(t - HI) - rl(t - N2)I

+ Irl(t _ T]2) - r2(t - T]2)I (4-10)

From the Lipschitz condition_ the first term on the right-hand side of

inequality (4-10) can be estimated by

]rl(t - T]I) - rl(t - T]2)[< w]T]l - _2] (4-11)

Notice that the second term on the right-hand side of inequality (4-10) is

equal to zero if

t - T]2 < 0 (4-12)

and it can be estimated in any case by

k( t-D 2)
Irl(t - _2 ) - r2(t - T]2)[ < [rI - r2[k e

kt (4-13)
< IYl - YE]k e

as follows from the definition of the norm ] Ik (see formula (3-12)).



Since we also have the estimate

Irl(t) - r2(t)l J IYl - Y21k ekt (4-14)

for all t g I, we get from estimates (4-10), (4-11), and (4-13) and inequal-
ity (4-9) the following estimate

(c - w) lqI - q21J 21Yl - Y21k ekt (4-15)

for all t in the interval I. Multiplying both sides of inequality (4-15)

by e-kt and dividing by c - w, we get

e-ktlql - q21 < blYl - Y21k (4-16)

for all t in the interval I, where b denotes the constant

b = 2/(c - w) (4-17)

Taking the supremum over all t e I on the left-hand side of inequality

(4-16)_ we get the inequality

ITI(Yl ) - TI(Y2)Ik < blYl - Y21k (4-18)

for all YI' Y2 from the set Lxw(Y) and for k _ 0. Hence, we have the
estimate

liT]Ilk< b (4-19)

for all k > 0. This completes the proof.
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4.3 Theorem

The operator T 2 defined by formula (3-I) is of the exponential type

from the set Lxw(Y) into C(Y) for every fixed function x with Lipschitz
constant w < c. Moreover 9

lITlllk < (c+ w)l(e- w) (4-20)

for all k > 0.

Proof. Take any fixed t E I_ YI_ Y2 e Lxw(Y)_ and notice the inequality

IT2(Yl )(t) - T2(Y2)(t) I = NYI(TI(Yl )(t)) - Y2(TI(Y2)(t))N

< lyl(Tl(Yl)(t)) - Yl(rl(Y2)(t))l

+ lYl(Tl(Y2)(t)) - Y2(Tl(Y2)(t))l (4-21)

The first term on the right-hand side of inequality (4-21) can be

estimated from the Lipschitz condition as follows

lyl(Tl(Yl)(t)) - Yl(Tl(Y2)(t)) < WlTl(Yl)(t) - Tl(Y2)(t)l

< wllTIIIklyI - Y21k ekt

< (2w/(c - w))ly I - Y21k ekt (4-22)

The second term on the right-hand side of inequality (4-21)

lYl(Tl(Y2)(t)) - Y2(Tl(Y2)(t))

is equal to zero if the value Tl(Y2)(t) is negative and it can be estimated
in any case by the quantity

IYl - Y21k ekt (4-23)

as follows from the definition of the norm I Ik (see formula (3-12)).
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From inequality (4-21), we get the estimate

IT2(Yl ) - T2(Y2) Ik < blYl - Y2]k (4-24)

where

b = (c + w)/(c - w) (4-25)

Hence_

IIT2[Ik< b (4-26)

for all k > 0. This completes the proof.

5.0 LIPSCHITZIAN FUNCTIONS INDUCE OPERATORS OF THE EXPONENTIAL TYPE

Let us assume that Y_ Z denote two Banach spaces. Let f be a con-

tinuous function from the product I x Y into the space Z such that

If(t, yl ) - f(t, y2)l _ Lly I - Y21 (5-i)

for all t _ I and all YI_Y2 _ Y" Moreover_ let us assume that the func-
tion satisfies the inequality

If(t , Y) I J L (5-2)

for all t e I and all y 8 Y. The infimum of all such constants L appear-

ing in inequalities (5-I) and (5-2) will be denoted by llfll. Denote by

Lip(I×Y,Z) (5-3)

the set of all such functions. It is easy to prove that this set of func-

tions with the norm llfll as defined above forms a Banach space.
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For a positive number w, we define the set

Bw(Z) = {z e C(Z) : Iz(t) I ! w} (5-4)

Lemma. If f e Lip(IxY,Z), then the operator F, defined by z = F(y)

if and only if

z(t) = f(t,y(t)) (5-5)

for all t _ I and y E C(Y), is of the exponential type from the space

C(Y) into the set Bw(Z) , where w = IIfll. Moreover, the estimate

llFllk< Ilfll (5-6)

holds for all k > 0.

Proof of the lemma. Notice that the operator F maps the set C(Y)

into Bw(Z). To prove that it is of the exponential type, take any two
functions

Yl,Y2 _ C(Y) (5-7)

From the inequality

If(t,Yl(t)) - f(t,Y2(t)) I < llfllIYl(t) - Y2(t)l

< IlfllIYl - Y21k ekt (5-8)

valid for all t belonging to the interval I, we get the inequality

IF(Yl ) - F(Y2) Ik <IIfll lyl - Y21k (5-9)

for all functions Yl,Y2 e C(Y) and all k _ 0. This completes the proof.
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6.0 PROPERTIES OF A VOLTERRA INTEGRAL OPERATOR

We shall define the operator J by the condition

z = J(y) (6-1)

if and only if

t

z(t) = x(0) + f0 y(s) ds (6-2)

for every t E I and

z(t) = x(t) (6-3)

for every t _ 0 and every y e Lxw(Y).

Theorem. The Volterra integral operator J is of the exponential type

from every set Bw(Y) into the set Lxw(Y) for any fixed function x with
Lipschitz constant w. Moreover,

llJllk_< 1/k (6-4)

holds for all k > 0.

Proof. The operator J is well defined from the set Bw(Y) into the

set Lxw(Y). To prove that this operator is of the exponential type, take

any two functions Yl,Y2 e Bw(Y)" Notice the inequality

t

IJ(Yl)(t) - J(Y2)(t)l _ f0 lYl(S) - Y2(S)l ds

t lyI _ Y21kekS as! f0

(I/k)ekt IYl - Y21k (6-5)

Hence, we get the inequality

IJ(Yl ) - J(Y2)Ik ! (l/k) lyI - Y21k (6-6)

for any two functions Yl,Y2 from the set Bw(Y). This completes the proof.
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7.0 DYNAMICAL SYSTEMS WITH AUTOMATIC CONTROLS OF THE EXPONENTIAL TYPE

Consider a dynamical system with the state equation

y'(t) = f(t,y(t),u(t)) (7-1)

where the control satisfies the equation

u(t) = U(y)(t) (7-2)

for all t _ I. The following theorem establishes the existence and unique-

ness of solutions of the system of equations (7-i) and (7-2) under the assump-
tion that the function f is Lipschitzian and the operator U is of the
exponential type.

Theorem. If f _ Lip(IxYxZ,Y) and the operator U is of the expon-

ential type from the set Lxw(Y) into C(Z) for every function x from

(-_,0> into Y with eipschitz constant w = IIfll,then for every such func-

tion x there exists a unique solution to the automatic control problem ex-
pressed by equations (7-i) and (7-2) such that y(t) = x(t) for t < 0.

Proof. First, notice that every solution of the system of equations (7-1)

and (7-2), if it exists, has to belong to the set Lxw(Y) , where w = IlfIl-

To prove the existence of the solution, notice that the system of equa-

tions with the initial condition y(t) = x(t) for all t < 0 is equivalent
to the following integral equation

t f(s, y(s) U(y)(s)) ds (7-3)y(t) = x(0) + f0

to be satisfied for all t _ I. To analyze the integral equation, let us

introduce the operator X from the space Lxw(Y) into the space C(Y×Z)
defined by means of the formula

X(y) = (y, U(y)) (7-4)

for all y e Lxw(Y). Notice that the operator X is of the exponential type
on every set Lxw(Y ).
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Using the Volterra operator J and the operator F induced by the

function f over the space C(Y×Z), we can write integral equation (7-3) in

the equivalent form

y = JFX(y) (7-5)

Notice that the operator JFX maps every set Lxw(Y) into itself, where
w = IIflI,and that it is of the exponential type. Moreover, we have the
estimate

IIJFxlIk< (I/k)llfll b (7-6)

for all k > 0, where b denotes a constant such that

IIX[Ik< b (7-7)

for all k > ko. Thus, if we select a value of k such that

k > max{ bllf[[ , ko } (7-8)

the operator JFX will become a contraction map as follows from formula (7-6).

Since the set Lxw(Y) can be considered as closed in the Banach space Ck(Y) ,
it represents a complete metric space. Hence, by the Banach contraction

mapping theorem there exists a unique fixed point y e Mxw(Y) for the
operator; i.e.,

y = JFX(y) (7-5)

This completes the proof of the theorem.

8.0 APPLICATION TO AUTOMATIC CONTROL OF SPACESHIPS

Consider the original problem. Let us assume that we are given the

motion of a spaceship

y'(t) = f(t,y(t),u(t)) = (v(t), G(r(t)) + u(t)) (8-1)

16



with controls given by

u(t) = g(t, y(t), Tl(Y)(t) , T2(Y)(t)) (8-2)

We assume that Y = R6 and Z = R3. The operators TI,T 2 are defined as in
the previous sections. We assume that the motion of the spaceship y(t) = x(t)
is known for t < 0.

Theorem. If f 8 Lip(IxYxZ_Y) and g 8 Lip(IxYxR×Y,Z) and the oper-

ators TI and T2 are defined as before_ then for every function x from
(-=,0> into Y with Lipschitz constant w = llfll< c there exists a
unique solution to the automatic control problem given by equations (8-1)
and (8-2) such that

y(t) = x(t) (8-3)

for t < 0.

Proof. The operator U_ defined by the condition

u = U(y) (8-4)

if and only if

u(t) = g(t, y(t), Tl(Y)(t) , T2(Y)(t)) (8-5)

for all t 8 I_ maps the set Lxw(Y) into the space C(Y) of continuous
functions and is of the exponential type. To prove this_ take any two func-

tions Yl,Y2 _ Lxw(Y)" We assume that ui = U(y i) for i = i, 2. Then we
have the following estimates

lul (t) - u2(t)l J IIgll(lyl (t) - y2(t)I + ITI(Yl )(t) - TI(Y2)(t)I

+ Ir2(Yl)(t) - T2(Y2)(t)l )

bly I - Y21k ekt (8-6)

for all t 8 1 and YI_Y2 8 Lxw(Y)9 where

b = IIgll(i + 2/(c - w) + (c + w)/(c - w)) (8-7)
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Multiplying the expressions in inequality (8-6) by e-kt and taking the

supremum over all t e I, we get the inequality

lUl - U21k < blYl - Y21k (8-8)

for all k _ 0 and Yl,Y2 E Lxw (Y)" The last inequality proves that

nlUlUk< b (8-9)

for all k _ 0; i.e., the operator U is of the exponential type from every

set Lxw(Y) into the space C(Z) of continuous functions.

The above proves that the conditions of the theorem in section 7.0 are

satisfied, and thus for every initial condition

y(t) = x(t) for t < 0 (8-3)

there exists a unique solution to the automatic control problem given by
formulas (8-I) and (8-2). This concludes the proof of the theorem.

9.0 CONCLUSION

The main result of this paper is the proof of the existence and unique-
ness of the solution to the automatic control problem with nonlinear state

equation of the form

y' = f(t,y,u) (9-1)

and nonlinear operator controls

u = U(y) (9-2)

acting onto the state function y which satisfies the initial condition

y(t) = x(t) (9-3)

for t < O.
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The required regularity conditions on the function f and the operator

U are the following: The function is of Lipschitzian type in the variables

y and u and is bounded and continuous on its domain. The operator U is

Lipschitzian from every set Lxw(Y) into the space of continuous functions

for every initial function x with Lipschitz constant w = IIfll" Moreover,

the induced seminorm IIUIIk as a function of k should be bounded for suf-
ficiently large k. This class of nonlinear operators is said to be of the

exponential type. Generalization of these results will appear in reference 8.
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