Scanning Probe Microscopy

imaging functionality at the nanoscale

An-Ping Li

15

topography
spectroscopy
magnetism

transport

chemistry ferroelectricity

piezoelectricity
manipulation

CNMS Instruments for SPM

Two New Requisitions Last Week: Nanoman V-Advanced AFM Cryogenic 4-probe STM

Existing facilities:

SEMPA
VT AFM/STM
SAM, LEED, AES/XPS
MBE/ BLAG

Available capabilities soon:

High-field low-temperature STM Spin-polarized 4-probe STM

Topography

Atomic Force Microsocopy

Scientific Drivers

- **★** Structural characterization
- ***** Film growth
- ***** Nanostructures

1 µm

SrTiO3

SiN/Si features

L. Folks, IBM

Polymer blend

C. Ton-That
Robert Gordon Univ

Capabilities

- Simple sample handling
- * Large scan range 100x100x20 μm
- ***** Topographic analysis

porous alumina

Ferroelectricity, Magnetism, Piezoelectricity, Transport

Advanced Scanning Force Microscopy

Magnetic Force Microscopy

More development on the way

Potential imaging

Electronic Structure

Scanning Tunneling Microscopy

Scientific Drivers

- ***** Structural characterization at atomic scale
- ***** Electronic structures in reduced dimensionality

***** Electronic reconstructions

Capabilities

- **★** Variable temperature 30-400 K
- Atomic resolution topographic analysis

Si (100)

Dislocation on Ag (100)

UT-BATTELLE

Transport with 4-Probe STM

4 probe STM with SEM/SAM

Scientific Drivers

- **★** Nanoscale electrical transport
- **★** Nanofabrication and manipulation

Capabilities

Four probe STM

- **★** Independent operation 10-500 K
- ***** Molecular-Beam Epitaxy In-situ sample preparation
- **★** Scanning Electron Microscopy
 View the four tips, Electron beam
 induced current
- * Scanning Auger Microscopy

 Map the chemical composition ATTELLE

Transport in Low-dimensional Materials

Co Silicide Nanowires on Si(110)

H. Okino, APL 86, 233108.

Nanoelectronics
Ph. Avouris, IBM

Y-junction carbon nanotube

Rao, Clemson University

Quantum corral of 48 iron atoms on copper surface positioned one at a time with an STM tip.

Corral diameter 14 nm, M. Paniccia, IBM

In/Si(111) atomic chains

Spin-sensitive Imaging for Spintronics

Spin transport imaging: multiple probe SP-STM

Spin injection across interface Spin polarization detection Spin coherence and transport

Magnetic domain imaging: single tip SP-STM

US Patent, pending

Magnetic domains in Fe islands on W(110)

Single Molecule Spectroscopy

Materials Sciences

Low Temperature, High Field STM

Scientific Drivers

- **★** Single molecule spectroscopy
- ***** Atomically-resolved spectroscopy maps
- **★** Quantum response at low T
- **Domain resolution in high magnetic field**

Capabilities

★ Scanning Tunneling Microscopy

Low T - 300 mK
High B - 9 Tesla
STM rotates in magnetic field
Optical access to sample
Extreme stability

***** Sample preparation

Cryogenic UHV cleaving Sample exchange from RT

LT-HF STM The Instrument (6/14/06) Turbo Pump -■ Load Lock 1K Pot Pump STM head **Lead Filled Table** ³He **Air Springs** Fridge Refrigerator design Concrete Legs Cleaver Control unit 9T Magnet Acoustic enclosure Vacuum chambers Air legs Support Active vibration UT-BATTELLE

UHV Growth & VT AFM/STM

NanoTransport System

Scientific Drivers

- **★** Synthesis and characterization without exposure to atmosphere
- ***** Oxide films
- ***** Cryogenic imaging

only one availab

Oxides growth and characterization

Capabilities

★ Pulsed Laser Deposition

High pressure ozone for oxide synthesis High pressure RHEED during growth 1175 K, 1000 mTorr

- ***** MBE Deposition
- ***** Scanning Probe Microscopy Atomic resolution AFM, STM

20-400 K

★ Surface Characterization

LEED, AES, XPS, HREELS
20-1000 K

