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5. Taylor Series and Propagation of Uncertainties
6. NIST Policy on reporting uncertainties



NIST 2006 Laser Measurements Short Course 4

SECTION – 1
The GUM & TN1297

BRIEF HISTORY
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• In 1977, the International Committee for Weights and Measures
(CIPM) requested the International Bureau for Weights and Measures 
(BIPM) that it should investigate the question of reaching an 
international consensus on expressing uncertainty in measurement.  
• The request was initiated by then CIPM member and NBS Director 
E. Ambler. 
• A Working Group on the Statement of Uncertainties was convened 
in 1980 by the BIPM. 
• This group made several recommendations concerning the 
statement of uncertainties in measurements.
• The CIPM approach is founded on Recommendation INC-1 (1980) 
of this Working Group.  

BRIEF HISTORY
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• In 1985 CIPM requested the ISO to develop a broadly applicable
guidance document based on Recommendation INC-1 (1980).

• This led to the development of the Guide (the GUM or Guide to the 
expression of uncertainty in measurement). 

• It is at present the most complete reference on the general application 
of the CIPM approach to expressing measurement uncertainty.

• Its development is giving further impetus to the worldwide adoption 
of that approach.

GUIDE 
to the expression of 

UNCERTAINTY in MEASUREMENT
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• In July 1992 Director Lyons appointed a NIST Ad Hoc Committee 
on Uncertainty Statements and charged it with recommending a 
NIST policy on this important topic. This action was motivated in 
part by 

the emerging international consensus on the approach to 
expressing uncertainty in measurement recommended by the 
CIPM,

and in part due to 
the realization that there has never been a uniform approach at 

NIST to the expression of uncertainty. 

• The movement toward the international adoption of the CIPM
approach for expressing uncertainty is driven to a large extent by the 
global economy and marketplace; allowing measurements performed 
in different countries and sectors to be more easily understood,
interpreted, and compared.  

NIST Ad Hoc Committee on Uncertainty
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• The Ad Hoc Committee carefully reviewed the needs of NIST customers 
regarding statements of uncertainty and the compatibility of those needs 
with the CIPM approach and concluded that the CIPM approach could be 
used to provide quantitative expressions of measurement uncertainty that 
would satisfy the requirements of NIST customers.

• The Ad Hoc Committee then recommended a specific policy for 
the implementation of that approach at NIST. 

• In October 1992, this policy on expressing measurement uncertainty was 
instituted at NIST. It is set forth in “Statements of Uncertainty Associated 
With Measurement Results,” Appendix E, NIST Technical 
Communications Program, Subchapter 4.09 of the Administrative Manual 
(reproduced as Appendix C of Technical Note 1297)

AD HOC COMMITTEE RECOMMENDATIONS
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• It provides a helpful discussion of the CIPM approach and, with its 
aid, it is expected that the NIST policy can be implemented without 
excessive difficulty. 

• Because NIST statements of uncertainty resulting from the policy 
will be uniform among themselves and consistent with current 
international practice, the policy will help our customers increase their 
competitiveness in the national and international marketplaces.

TECHNICAL NOTE 1297

Technical Note 1297 was prepared by Dr. Taylor and Dr. Kuyatt, 
both of whom served on the NIST Ad Hoc committee. 
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The guidance given in TN1297 is intended to be applicable to most, if not 
all, NIST measurement results, including results associated with 

– international comparisons of measurement standards,
– basic research,
– applied research and engineering,
– calibrating client measurement standards,
– certifying standard reference materials, and
– generating standard reference data.

• Since the Guide itself is intended to be applicable to similar kinds of 
measurement results, it may be consulted for additional details. 

APPLICATIONS OF TN 1297
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SECTION – 2
TERMINOLOGY



NIST 2006 Laser Measurements Short Course 12

In general, the result of a measurement is only an approximation or 
estimate of the value of the specific quantity subject to 
measurement, that is, the measurand, and thus the result is 
complete only when accompanied by a quantitative statement of its 
uncertainty.

THE MEASURAND

MEASURAND
Value of the specific quantity subject to measurement
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Influence Quantity

Any quantity that is not the measurand but that affects the result of the 
measurement

Examples
a) temperature of a micrometer used to measure length;
b) frequency in the measurement of the amplitude of an alternating 

electric potential difference;
c) bilirubin concentration in the measurement of haemoglobin

concentration in a sample of human blood plasma.



NIST 2006 Laser Measurements Short Course 14

MEASURAND -- Examples

• Vapor pressure of a given sample of water at 20 deg C

• The length of a steel bar at 25 deg C and 101.325 Pa

The measurand should be defined with sufficient 
completeness with respect to the required accuracy.

Incomplete definition of a measurand can give rise to a 
component of uncertainty large enough that it must be included 
in the evaluation of the uncertainty of the measurement result.
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Measurement Process and Measurement Result

Measurement Process
A set of operations having the object of determining a value of 

a quantity.

Measurement Result
Value attributed to a measurand, obtained by measurement.

A complete statement of the result of a measurement includes 
information about the uncertainty of measurement
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UNCERTAINTY of MEASUREMENT

Parameter associated with the result of a measurement, that 
characterizes the dispersion of the values that could reasonably be 
attributed to the measurand

The parameter may be, for example, a standard deviation (or a given
multiple of it), or the half-width of an interval having a stated level of
confidence.

It is understood that the result of the measurement (after corrections) 
is the best estimate of the value of the measurand.
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Error and Relative Error of Measurement

Error of Measurement
Result of a measurement minus the value of the measurand

Relative Error of Measurement
Error of measurement divided by the (absolute) value of the 

measurand



NIST 2006 Laser Measurements Short Course 18

Random and Systematic Error

Random Error
Result of measurement minus the mean that would result 

from an infinite number of measurements of the same measurand 
carried out under repeatability conditions

Systematic Error
Mean that would result from an infinite number of 

measurements of the same measurand carried out under 
repeatability conditions minus the value of the measurand

Result of Measurement
= Value of Measurand + Systematic Error + Random Error

Y = M + (Y – m) + (m – M)
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Measurand, Result, Random Error, Systematic Error
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Accuracy:
Closeness of the agreement between the result of a 

measurement and the value of the measurand.

Precision:
Closeness of agreement between independent test results 

obtained under stipulated conditions.

• The term precision should not be used for “accuracy.”

Accuracy & Precision



NIST 2006 Laser Measurements Short Course 21

The terms accuracy and precision are terms that represent qualitative 
concepts and thus should be used with care. 

• Because “accuracy” is a qualitative concept, one should not use it 
quantitatively, that is, associate numbers with it;  numbers should be 
associated with measures of uncertainty instead. Thus one may write 
“the standard uncertainty is 2 µΩ” but not “the accuracy is 2 µΩ

• Similarly, the statement “the precision of the measurement results, 
expressed as the standard deviation obtained under repeatability
conditions, is 2 µΩ” is acceptable, but the statement “the precision 
of the measurement results is 2 µΩ” is not. 

Accuracy & Precision
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Correction & Correction Factor

Correction
value added algebraically to the uncorrected result of a 

measurement to compensate for systematic error

The correction is equal to the negative of the estimated 
systematic error

Generally, a correction is applied to the raw result based on a best
estimate of total systematic error.  The correction is not perfect and 
there will be a residual systematic error present.  Even though the best
estimate of this residual systematic error is ZERO, there is uncertainty
associated with it.  
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Correction & Correction Factor

Correction factor
numerical factor by which the uncorrected result of a 

measurement is multiplied to compensate for systematic error

Since the systematic error cannot be known perfectly, the 
compensation cannot be complete.
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Repeatability
closeness of the agreement between the results of successive 

measurements of the same measurand carried out under the same 
conditions of measurement

1. These conditions are called Repeatability Conditions
2.   Repeatability conditions include:

the same measurement procedure
the same observer
the same measuring instrument, used under the same 
conditions
the same location
repetition over a short period of time

3.   Repeatability may be expressed quantitatively in terms of the 
dispersion characteristics of the results

Repeatability & Reproducibility
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Repeatability & Reproducibility

Reproducibility
closeness of the agreement between the results of  

measurements of the same measurand carried out under changed 
conditions of measurement

1. A valid statement of reproducibility requires specification of 
the conditions changes.

2. The changed conditions may include:

3.   Reproducibility may be expressed quantitatively in terms of the 
dispersion characteristics of the (corrected) results.

principle of measurement
method of measurement
observer
measuring instrument

reference standard
location
conditions of use
time



NIST 2006 Laser Measurements Short Course 26

SECTION – 3
PROBABILITY DISTRIBUTIONS
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Probability Distributions for Modeling Error

Uncertainty in Measurement arises due to the presence of error in
the result whose magnitude is unknown (and not knowable exactly)

** Uncertainty and Error are not synonyms

Expression of this uncertainty requires some knowledge concerning 
the collection of plausible values of the error along with their 
corresponding probabilities. 

Usually, errors that are large in magnitude are less likely to
occur than errors of small magnitude.

Such information can be modeled using probability distributions.
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Statistical Description of Error Distributions
Normal Distribution
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Expressing Uncertainty due to a Component of Error

0

σ = standard deviation
associated with the
probability distribution 
of error
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Mean, Variance, & Standard Deviation
of a Probability Distribution
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SECTION – 4
CLASSIFICATION & EVALUATION

of
UNCERTAINTY COMPONENTS
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STANDARD UNCERTAINTY

Basic to the CIPM approach is representing each component of 
uncertainty that contributes to the uncertainty of a measurement result 
by an estimated standard deviation, termed standard uncertainty.

Thus, the standard uncertainty associated with the ith component of 
error is the estimated standard deviation of the distribution of the 
collection of plausible values of that component or error.  It is denoted 
by the (CIPM suggested) symbol ui and is equal to the positive 
square root of the estimated variance ui

2
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Classification of Components of Uncertainty

The components of uncertainty, in the CIPM approach, may be 
grouped into two categories according to the method used to estimate 
their numerical values:

Type A: those which are evaluated by statistical methods,

Type B: those which are evaluated by other means.

There is not always a simple correspondence between the 
classification of uncertainty components into categories A and B and 
the commonly used classification of error components as “random”
and “systematic.”
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• Error and Uncertainty are not synonyms.

• Error refers to the actual difference between the reported result and 
the actual value of the measurand

• Uncertainty refers to the estimate of the standard deviation of the 
probability distribution describing the collection of plausible errors.

• The result of a particular measurement can unknowably be very 
close to the unknown value of the measurand, and thus have negligible 
error, even though it may have a large uncertainty.

ERROR versus UNCERTAINTY
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An uncertainty component in category A is represented by a statistically 
estimated standard deviation si, equal to the positive square root of the 
statistically estimated variance si

2, and the associated number of degrees 
of freedom νi. 

For such a component the standard uncertainty is ui = si . 

The evaluation of uncertainty by the statistical analysis of series of 
observations is termed a Type A evaluation (of uncertainty).

TYPE-A EVALUATION 
of an UNCERTAINTY COMPONENT
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• A Type A evaluation of standard uncertainty may be based on any 
valid statistical method for treating data.

• Examples are 
-- Calculating the standard deviation of the mean of a series of      

independent observations; 
-- Using the method of least squares to fit a curve to data in order 

to estimate the parameters of the curve and their standard 
deviations;  

-- Carrying out an analysis of variance (ANOVA) in order to 
identify and quantify random effects in certain kinds of 
measurements. 

Type A Evaluation of Standard Uncertainty
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An uncertainty component in category B is represented by a quantity uj , 
which may be considered an approximation to the standard deviation of 
the probability distribution model for the corresponding component of 
error; this probability distribution model is arrived at based on all the 
available information.  

For such a component the standard uncertainty is simply uj.

The evaluation of uncertainty by means other than the statistical analysis 
of series of observations is termed a Type B evaluation (of uncertainty).

TYPE-B EVALUATION 
of an UNCERTAINTY COMPONENT
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A Type B evaluation of standard uncertainty is usually based on scientific 
judgment using all the relevant information available, which may include

– previous measurement data,
– experience with, or general knowledge of, the behavior and property 

of relevant materials and instruments,
– manufacturer’s specifications,
– data provided in calibration and other reports, and
– uncertainties assigned to reference data taken from handbooks.

Type B Evaluation of Standard Uncertainty
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Type A evaluations of uncertainty based on limited data are not 
necessarily more reliable than soundly based Type B evaluations.

Evaluation of Uncertainty
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5.1  The combined standard uncertainty of a measurement result, 
suggested symbol uc, is taken to represent the estimated standard deviation 
of the error in the result. 

It is obtained by combining the individual standard uncertainties ui (and
covariances as appropriate), whether arising from a Type A evaluation or a 
Type B evaluation, using the usual method for combining standard 
deviations.  

This method is summarized in Appendix A [Eq. (A-3)], and is often called 
the law of propagation of uncertainty or the “root-sum-of-squares” (square 
root of the sum-of-the squares) or “RSS” method of combining uncertainty 
components estimated as standard deviations.
NOTE – The NIST policy also allows the use of established and  
documented methods equivalent to the “RSS” method, such as the
numerically based “bootstrap” (see Appendix C).

Combined Standard Uncertainty



NIST 2006 Laser Measurements Short Course 44

Identification of uncertainty components
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5.4   In many practical measurement situations, the probability 
distribution characterized by the measurement result y and its combined 
standard uncertainty uc(y) is approximately normal (Gaussian). 

When this is the case and uc(y) itself has negligible uncertainty (see 
Appendix B for further discussion), uc(y) defines an interval

y − uc(y) to y + uc(y)
about the measurement result y within which the value of the measurand
Y estimated by y is believed to lie with a level of confidence of 
approximately 68 percent. This is commonly written as Y = y ± uc(y)

CONFIDENCE INTERVALS

NOTE – If uc( y) has non-negligible uncertainty, the level of confidence
will differ from 68 percent. A procedure is given in Appendix B of 
TN1297 as a simple expedient approach for approximating the level of
confidence in these cases.  More on this later.
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6.1   Although the combined standard uncertainty uc is used to express 
the uncertainty of many NIST measurement results, for some 
commercial, industrial, and regulatory applications of NIST results (e.g., 
when health and safety are concerned), what is often required is a 
measure of uncertainty that defines an interval about the measurement
result y within which the value of the measurand Y is confidently 
believed to lie. 

The measure of uncertainty intended to meet this requirement is termed 
expanded uncertainty, suggested symbol U, and is obtained by 
multiplying uc(y) by a coverage factor, suggested symbol k. 

Thus U = k uc(y) and it is confidently believed that y − U ≤ Y ≤ y + U, 
which is commonly written as Y = y ± U.  

EXPANDED UNCERTAINTY
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6.2   In general, the value of the coverage factor k is chosen on the basis of 
the desired level of confidence to be associated with the interval defined by 
U = k uc. 

Typically, k is in the range 2 to 3. 

COVERAGE FACTORS

When the normal distribution applies and uc has negligible uncertainty, 
U = 2uc   (i.e., k = 2) defines an interval having a level of confidence of 
approximately 95 percent, and U = 3uc (i.e., k = 3) defines 
an interval having a level of  confidence greater than 99 percent.

NOTE – For a quantity z described by a normal distribution with mean
µz and standard deviation σ, the interval µz ± k σ encompasses 68.27, 
90, 95.45, 99, and 99.73 percent of the distribution for k = 1, k = 1.645, 
k = 2, k = 2.576, and k = 3, respectively (see the last line of Table B.1 of 
Appendix B).
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If u(xi) is a standard uncertainty, then u(xi)/|xi|,  xi≠0, is the 
corresponding relative standard uncertainty; 

if uc( y) is a combined standard uncertainty, then uc( y)/|y|,
y≠0, is the corresponding relative combined standard
uncertainty; and 

if U = k uc( y) is an expanded uncertainty, then U/|y| , y≠0, is the 
corresponding relative expanded uncertainty. 

RELATIVE UNCERTAINTIES
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SECTION – 5
TAYLOR SERIES

and
PROPAGATION OF UNCERTAINTY
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A.1   In many cases a measurand Y is not measured directly, but is 
determined from N other quantities X1, X2, . . . , XN through a functional 
relation f:  

Law of Propagation of Uncertainty

Y =  f (X1 , X2 , . . . , XN)

Included among the quantities Xi are corrections (or correction factors) 
as described in subsection 5.2, as well as quantities that take into 
account other sources of variability, such as different observers, 
instruments, samples, laboratories, and times at which observations are 
made (e.g., different days). 

Thus the function f  should express not simply a physical law but a 
measurement process, and in particular, it should contain all quantities 
that can contribute a significant uncertainty to the measurement result.

(A-1)
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A.2   An estimate of the measurand or output quantity Y,
denoted by y, is obtained from Eq. (A-1) using input estimates x1, x2, . 
. . , xN for the values of the N input quantities X1, X2, . . . , XN. 

Thus the output estimate y, which is the result of the measurement, is 
given by

Law of Propagation of Uncertainty

y =  f (x1 , x2 , . . . , xN) . (A-2)
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A.3 The combined standard uncertainty of the measurement result y, 
designated by uc( y) and taken to represent the estimated standard 
deviation of the result, is the positive square root of the estimated variance 
uc

2(y) obtained from (A-3)

(A-3)

• Equation (A-3) is based on a first-order Taylor series approximation of 
Y = f(X1, X2, . . . , XN) and is conveniently referred to as the law of 
propagation of uncertainty. 

• The partial derivatives ∂f/∂xi (often referred to as sensitivity coefficients) 
are equal to ∂f/∂Xi evaluated at Xi = xi; 

• u(xi) is the standard uncertainty associated with the input estimate xi; 
and u(xi, xj) is the estimated covariance associated with xi and xj.
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Sometimes the propagation of uncertainty equation is written as follows:
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Here, the coefficient          is the sensitivity coefficient associated with xi
that accounts for the uncertainty in xi , and

the coefficient             is the sensitivity coefficient that accounts for the 
correlation between xi and xj

ixc

ji xxc ,

∑ ∑ ∑+=

+++=

=

−

= +=

N

i

N

i

N

ij
jijiii

NN

XXuccXucYu

XcXcXcY

1

1

1 1

222

2211

),(2)()(

 then  If L

The propagation of uncertainty formula is based on the following general 
result:



NIST 2006 Laser Measurements Short Course 54

A.4   As an example of a Type A evaluation, consider an input quantity
Xi whose value is estimated from n independent observations Xi,k of Xi
obtained under the same conditions of measurement. In this case the input 
estimate xi is usually the sample mean 

(A-4)

and the standard uncertainty u(xi) to be associated with xi is the estimated 
standard deviation of the mean 

(A-5)
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EXAMPLE EVALUATION – TYPE B UNCERTAINTY

A.5   As an example of a Type B evaluation, consider an input quantity Xi
whose value is estimated from an assumed rectangular probability
distribution of lower limit a− and upper limit a+.  In this case the input 
estimate is usually the expectation of the distribution

(A-6)

and the standard uncertainty u(xi) to be associated with xi is

(A-7)
the positive square root of the variance of the distribution where 
a = (a+− a−)/2. 

NOTE – When xi is obtained from an assumed distribution, the
associated variance is appropriately written as u2(Xi) and the associated
standard uncertainty as u(Xi ), but for simplicity, u2(xi ) and u(xi ) are
used. Similar considerations apply to the symbols uc

2 ( y) and uc( y).
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B.3 The four-step procedure for calculating kp is as follows:

1)  Obtain y and uc( y) as indicated in Appendix A. 

2)  Estimate the effective degrees of freedom νeff of uc( y) from the 
Welch-Satterthwaite formula (B-1).

3) Obtain the t-factor tp(νeff) for the required level of confidence p from a 
table of values of tp(ν) from the t-distribution, such as Table B.1 of 
Appendix-B. 

4)  Take kp = tp(νeff) and calculate Up = kpuc( y).

THE FOUR STEP PROCEDURE
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SECTION – 6
NIST POLICY

on 
REPORTING UNCERTAINTY
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The stated NIST policy regarding reporting uncertainty is 
(see Appendix C):

• Report U together with the coverage factor k used to obtain it, or 
report uc.
• When reporting a measurement result and its uncertainty, include the 
following information in the report itself or by referring to a published 
document:

– A list of all components of standard uncertainty, together with 
their degrees of freedom where appropriate, and the resulting value 
of uc.  The components should be identified according to the method 
used to estimate their numerical values: 

Type A: those which are evaluated by statistical methods,
Type B: those which are evaluated by other means.

– A detailed description of how each component of standard 
uncertainty was evaluated.

NIST POLICY ON REPORTING UNCERTAINTY
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• To be consistent with current international practice, the value of k to 
be used at NIST for calculating U is, by convention, k = 2.   Values of 
k other than 2 are only to be used for specific applications dictated by 
established and documented requirements.

• If a value other than 2 is chosen for k, a description of how k was 
chosen is to be given.

• It is often desirable to provide a probability interpretation, such as a 
level of confidence, for the interval defined by U or uc. 

• When this is done, the basis for such a statement must be given.

NIST POLICY ON REPORTING UNCERTAINTY
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• An example of the use of a value of k other than 2 is taking k 
equal to a t-factor obtained from the t-distribution when uc has low 
degrees of freedom in order to meet the dictated requirement of 
providing a value of U = k uc that defines an interval having a level 
of confidence close to 95 percent. 

(The 4-step procedure is expected to provide a value of k such that 
U = k uc defines an interval having a level of confidence close to 95 
percent)

NIST POLICY ON REPORTING UNCERTAINTY
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6.6  The NIST policy provides for exceptions as follows  (see Appendix C):

It is understood that any valid statistical method that is technically 
justified under the existing circumstances may be used to determine the
equivalent of ui , uc, or U. 

Further, it is recognized that international, national, or contractual 
agreements to which NIST is a party may occasionally require deviation 
from NIST policy. 

In both cases, the report of uncertainty must document what was done and 
why.

EXCEPTIONS TO NIST POLICY
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7.3   NIST policy on reporting uncertainty refers to the desirability of 
providing a probability interpretation, such as a level of confidence, for 
the interval defined by U or uc. 

The following examples show how this might be done when the 
numerical result of a measurement and its assigned uncertainty are 
reported, assuming that the published detailed description of the 
measurement provides a sound basis for the statements made. 

(In each of the three cases, the quantity whose value is being reported is 
assumed to be a nominal 100 g standard of mass ms .)

EXAMPLES
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ms = (100.021 47 ± 0.000 70) g, 

where the number following the symbol ± is the numerical value of an 
expanded uncertainty U = kuc, with U determined from a combined 
standard uncertainty (i.e., estimated standard deviation) uc = 0.35 mg 
and a coverage factor k = 2.

If it can be assumed that the possible estimated values of the standard 
are approximately normally distributed with approximate standard
deviation uc, the unknown value of the standard can be believed to lie in 
the interval defined by U with a level of confidence of  approximately 
95 percent.

EXAMPLE - 1
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EXAMPLE - 2

ms = (100.021 47 ± 0.000 79) g, 

where the number following the symbol ± is the numerical value of an 
expanded uncertainty U = kuc, with U determined from a combined 
standard uncertainty (i.e., estimated standard deviation) uc = 0.35 mg 
and a coverage factor k = 2.26 based on the t-distribution for ν = 9 
degrees of freedom.  

It defines an interval within which the unknown value of the standard is 
believed to lie with a level of confidence of approximately 95 percent.
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SECTION – 7
AN EXAMPLE



NIST 2006 Laser Measurements Short Course 66

End-Gauge Calibration

The Measurement Problem

• The length of a nominally 50 mm end gauge is determined by 
comparing it with a known standard of the same nominal length.  

• The direct output of the comparison of the two end gauges is the 
difference d in their lengths:

d = l (1 + α θ) – lS (1 + αS θS )
l = the measurand, i.e., the length at 20 deg C of the end gauge 

being  calibrated
lS = the length of the standard at 20 deg C, as given in its calibration 

certificate
α = coefficient of thermal expansion of the gauge being calibrated
αS = coefficient of thermal expansion of the standard
θ = deviation in temperature for the test gauge from 20 deg C
θS = deviation in temperature for the standard from 20 deg C
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Measurement Equation
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δα = α – αS δθ = θ – θS

The measurement equation is

It may be re-expressed as 

where

• δα and δθ are estimated to be zero, but their uncertainties are not zero

• d is estimated using ⎯d = the arithmetic mean of n = 5 independent 
repeated observations.

• The best estimate of  l is     lS + ⎯d
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Assuming that the component input quantities are uncorrelated, we get
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Propagation of Uncertainty (continued)
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Hence we have

We now discuss the evaluation of each uncertainty component
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u(lS) = Uncertainty of the Calibration of the Standard

The calibration certificate gives as the expanded uncertainty of the 
standard, the value U = 0.075 µm, and states that it was obtained 
using a coverage factor of  k = 3.  Hence the standard uncertainty is 

nm25µm025.0
3

µm075.0)( ===Slu
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u(d) = Uncertainty of the Measured Difference in Lengths

ityrepeatabilcomparator eeddi ++=

A single measured value of  d, denoted by di, is related to d as follows:

ityrepeatabilcomparator eedd ++=So we have

Error associated with measurement of  d  is 

ityrepeatabilcomparator eedd +=−

Hence the uncertainty of the measured difference in lengths is

)()( ityrepeatabil
2

comparator
2 eueu +
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u2(            )  = Uncertainty of the Measured Difference 
in Lengths Due to Repeatability Error

ityrepeatabile

Repeatability error, using past data, is known to have a probability
distribution whose mean is zero and standard deviation is estimated to
be 13 nm based on 25 repeats in an auxiliary experiment.  So

srepeatability = 13 nm

Since       is calculated as the arithmetic mean of  n = 5 repeat observations,
the standard uncertainty due to repeatability error is
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u2(            )  = Uncertainty of the Measured Difference 
in Lengths Due to Calibration Error

comparatore

The uncertainty “due to random errors” is  quoted as + 0.1 µm at a 95 %
confidence level, and is based on 6 replicate measurements.  So the
standard uncertainty, using a t-factor t95(5) = 2.57 for ν = 6 – 1 = 5 df,
we have

According to the calibration certificate of the comparator used to compare
l with lS, the calibration uncertainty has a component due to random errors,
which we write as u(d1), and a component due to systematic errors, which
we write as u(d2).

nm3.9 2.57/ µm)01.0()( 1 ==du
The uncertainty “due to systematic errors” is quoted as + 0.02 µm at the
“three-sigma” level.  The standard uncertainty from this cause is therefore
taken to be 

nm6.7  3/ µm)02.0()( 2 ==du
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u(d) = Uncertainty of the Measured Difference in Lengths
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u2(    )  = Uncertainty of the Thermal Expansion CoefficientSα

The coefficient of thermal expansion of the standard end gauge is given
as  αS = 11.5 x 10-6 deg C-1  with an uncertainty represented by a 
rectangular distribution with bounds  + 2 x 10-6 deg C-1.  

The standard uncertainty is therefore 
1616 102.13/)102()( −−−− ×=×= CCu S

ooα

Because the sensitivity coefficient corresponding to αS is 0, this uncertainty
contributes nothing to the uncertainty u(d).
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u2(  )  = Uncertainty of the Deviation of the Temperature
of the End Gauge

θ

The temperature of the test bed is reported as Co)5.09.19( ±
The temperature at the time of the individual observations was not 
recorded.  The stated maximum offset,  ∆ = 0.5 deg C,  is said to represent 
the amplitude of an approximately cyclical variation of the temperature 
under a thermostatic system, not the uncertainty of the mean temperature.

The value of the mean temperature deviation
⎯θ = 19.9 deg C – 20.0 deg C = − 0.1  deg C,  

is reported as having a standard uncertainty itself due to the uncertainty in 
the mean temperature of the test bed of 

Cu o2.0)( =θ
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u2(  )  = Uncertainty of the Deviation of the Temperature
of the End Gauge

θ

The cyclic variation of temperature over time produces a U-shaped
Distribution shown below.

:= f →t
1

π −
1
4

t2

The standard deviation of the above distribution is sqrt(1/8) = 0.35
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u2(  )  = Uncertainty of the Deviation of the Temperature
of the End Gauge

θ

The measurement model for the temperature is θθθ e+= average

where θaverage is the mean temperature of the test bed and eθ is the
deviation from the mean due to the cyclic variation

Cu

CCeuuu
o

oo

41.0)(   giveswhich 

165.0)8/1()2.0()()()( 222222

=

=+=+=

θ

θθ θ

However, u(θ) is not involved in the calculation of  uc(l) because
the sensitivity coefficient associated with it is zero.  The calculations
are shown here for illustration only.
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u2(   )  = Uncertainty of the Difference 
in Expansion Coefficients

δα

The estimated bounds on the variability of δα are  + 1 x 10-6 deg C-1

with an equal probability of δα having any value within these bounds.
Hence, a rectangular distribution may be used to obtain the standard 
uncertainty.

1616 1058.03/)101()( −−−− ×=×= CCu ooδα
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u2(   )  = Uncertainty of the Difference 
in Temperatures of the Gauges

δθ

The standard gauge and the test gauge are expected to be at the same
temperature, but the temperature difference could lie with equal
probability anywhere in the estimated interval   (– 0.05 oC , +0.05 oC ).

Thus, using a rectangular distribution to model the difference in 
temperature, we get 

CCu oo 029.03/)05.0()( ==δθ
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= Combined Standard Uncertainty of  l)(2 luc
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Final Result

The calibration certificate for the standard gauge gives lS = 50.000 623 mm
as its length at 20 deg C.

The arithmetic mean ⎯d  of the n=5 repeat observations of the difference
in lengths between the standard gauge and the test gauge is  215 nm.

Hence the measurement result is 
mm838000.50mm215000.0mm623000.50 =+=+= dll S

The final statement is
“l = 50.000838 mm with a combined standard uncertainty uc = 32 nm”

The corresponding relative combined standard uncertainty is given by
uc/l = 6.4 x 10-7
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Calculation of Expanded Uncertainty

Use the 4-step procedure discussed earlier.  For this, we need the 
degrees of freedom values for each component of uncertainty.

For type-A evaluations, the particular statistical method used will also
provide a value for the degrees of freedom.

For type-B evaluations, the degrees of freedom is often taken to be
infinity (i.e., the uncertainty component is regarded as exactly known),
or, as discussed earlier, one may use
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xu

xu
i ∆=ν

where ∆u(xi)/u(xi) is the estimated relative error in the value u(xi).
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Calculation of Expanded Uncertainty

1) DF for the Uncertainty of the calibration of the standard:
The calibration certificate states that the effective degrees of

freedom of the combined standard uncertainty from which the 
quoted expanded uncertainty was obtained is νeff (lS) = 18.
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2)  DF for the Uncertainty of the measured difference in lengths:
Although         was calculated based on n = 5 repeat 
measurements, its standard uncertainty was calculated from a 
pooled experimental standard deviation based on 25 
observations. Hence              = 25 – 1 = 24.

The degrees of freedom for u(d1), the uncertainty due to 
random errors in the comparator, is ν(d1) = 6 – 1 = 5, because 
d1 was obtained from six repeated measurements.

The + 0.02 mm uncertainty for systematic errors of the 
comparator is thought to be reliable to 25 percent. Hence, the 
degrees of freedom associated with u(d2) is 
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Calculation of Expanded Uncertainty
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Calculation of Expanded Uncertainty

Hence, the effective degrees of freedom associated with u(d), denoted 
by, νeff(d) is calculated as follows using the Welch-Satterthwaite
formula:
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Calculation of Expanded Uncertainty

3) DF for u(δα), the uncertainty of the difference in  
expansion coefficients

The estimated bounds of  + 1 x 10-6 oC-1 are deemed to have a 
relative error of 10 percent.  Hence the degrees of freedom for u(δα) 
is taken to be

50)1.0/1()( 2
2
1 ==δαν

4)  DF for u(δθ), the uncertainty of the difference in  
temperatures of the gauges

The estimated interval + 0.05 oC for the temperature difference δθ is
believed to have a relative error of 50 percent, which gives ν(δθ) = 2.
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Calculation of Expanded Uncertainty

The calculation of the effective degrees of freedom for u(l) uses the
Welch-Satterthwaite formula.

part)integer   the to(truncated167.16
2

)6.16(
50
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The t-factor with 16 df, for a 99 percent confidence level, is 2.92.
Hence the expanded uncertainy (k = 2.92) is

nmnmU 93)32)(92.2(99 ==
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Statement of the Final Result

l = (50.000 838 + 0.000 093) mm, where the number following the
symbol + is the expanded uncertainty U = k uc, with U determined
from a combined standard uncertainty uc = 32 nm and a coverage 
factor k = 2.92 based on the t-distribution with ν = 16 df, and defines
an interval estimated to have a level of confidence of 99 percent.

The corresponding relative expanded uncertainty is U/l = 1.9 x 10-6
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Uncertainty Budget

Standard 
Uncertainty 
component 
u(xi)

Source of Uncertainty Type

Value of 
Standard 

Uncertainty 
u(xi)

ci = 
sensitivity 
coefficient

Contribution 
to u(l) from 

the 
component 

df

u(lS) Calibration of Standard End 
Gauge B(syst) 25 nm 1 25 18

u(d) Measured difference 
between end gauges 9.7 nm 1 9.7 25.6

u(dbar) repeated observations A(rand) 5.8 nm 24

u(d1) random errors in 
comparator A(syst) 3.9 nm 5

systematic errors in 
comparator B(syst) 6.7 nm 8

u(alpha_S)
Thermal expansion 
coefficient of standard 
gauge

B(syst) 1.2 x 10^(-6) 
/deg C 0 0

u(theta) Temperature of test bed 0.41 deg C 0 0

u(theta_bar) mean temperature of test 
bed A(rand) 0.2 deg C

cyclic variation of 
temperature of room B(syst) 0.35 deg C

u(delta_alpha) Difference in expansion 
coefficients of gauges B(syst) 0.58x10^(-6) 

/degC  -lS theta 2.9 50

u(delta_theta) Difference in temperatures 
of gauges B(rand) 0.029 deg C  -lS alpha_S 16.6 2


