NIFS-HEAT production Present status

6/21/2002, NH production #1, T. Nagasaka and T. Muroga, Fusion Reactor Engineering Center, NIFS, Japan

- Plates, wires and tubes has been fabricated and distributed to researchers
- New topics
 - Tube fabrication
 - Band structure development through fabrication process
 - Development of laser welding technique

NIFS-HEAT production Fabrication process

- NIFS-HEAT-2(A): Plates and wires
- NIFS-HEAT-2(B): Tubes (including made-in-US tubes)

NIFS-HEAT production Plates and wires

6/21/2002, NH production #3, T. Nagasaka and T. Muroga, Fusion Reactor Engineering Center, NIFS, Japan

- Plates: Tensile, Impact, Toughness, Fatigue etc.
- 2d wires: Welding wire
- 8d rods: Ceramics bonding

NIFS-HEAT production Tubes

6/21/2002, NH production #4, T. Nagasaka and T. Muroga, Fusion Reactor Engineering Center, NIFS, Japan

- ϕ 10 tubes: Tritium permeation
- \$4.57 tubes: Creep tube

Tubing Scheme for tubing

Tubing

Failed case and successful case

6/21/2002, NH production #6, T. Nagasaka and T. Muroga, Fusion Reactor Engineering Center, NIFS, Japan

OD: Outer diameter, **ID:** Inner diameter, **RA:** Reduction of area for 1 pass **RAA:** RA accumulated from the last annealing

	Alloy	Initial pipe	Pre-heating	RA	Pass, RA,	Intermediate	Final tube
		/ mm	/ K	/ %0	RAA @ cracking	annealing	/ mm
Failed	0.87Cr-5.56Ti	25 / 19	1373	20.6-25.9	3rd pass RA = 20.6 RAA = 54.3	None	17 / 14
Failed	NH2 (A)	25 / 19	1273	20.6-41.1	8th pass RA = 41.1 RAA = 60.1	1123 K X 1 h 4 heats	10 / 9
Successful	NH2 (A)	25 / 19	1273	20.6-32.3	No crack for 9 pass (Max. RAA = 60.3)	1123 K X 1 h 4 or 5 heats	10 / 9
Successful	NH2 (A)	10 / 7	1273	21.7-36.1	No crack for 7 pass (Max. RAA = 57.2)	1123 K X 1 h 4 heats	4.57 / 4.07

• Condition to induce cracking

– Pre-heating at 1373 K and no intermediate annealing

-RA > 40 %

Tubing Microstructure after recrystallization

- Band structure similar to plate product was observed
- Grain size was 29 mm after annealing at 1273 K for 2 hr

Tubing Impurity pickup

6/21/2002, NH production #8, T. Nagasaka and T. Muroga, Fusion Reactor Engineering Center, NIFS, Japan

X 0.25 t		н	С	Ν	0
	Starting rod	146	80	108	124
	After working	10	130 150	100	270 340
	After final annealing	NA	NA	NA	NA

Wppm, NA: Not available, they will be analyzed soon

- C and O pickup occurred during working process
- Possible contamination source

\$4.57

- Atmosphere at initial and intermediate annealing
- Lubricant (mineral oil+animal oil+sulfide+phosphide)
- S and P should be analyzed

Tubing Defect on the wall surface

6/21/2002, NH production #9, T. Nagasaka and T. Muroga, Fusion Reactor Engineering Center, NIFS, Japan

- Scratch-like defects were observed on the both outer and inner surface
- The size of the defects was mostly 3-13 μm , and 20 μm at the maximum
- The defects seems to propagate along the band
- Top of the band wave can be initiation point of the defects

Tubing Future plan

6/21/2002, NH production #10, T. Nagasaka and T. Muroga, Fusion Reactor Engineering Center, NIFS, Japan

- Creep test
- Irradiation test
- Effect of final annealing condition on grain structure
- Impurity tracing

Tubing Recommendation

Fusion Reactor Engineer

- Pre-heating before working: 1273 K
- RA limit per pass: 30-40 %
- RAA limit before intermediate annealing: 60 %
- Intermediate annealing condition: 1123 K X 1 h, 1 X 10⁻⁶ Torr
- Smooth inner surface should be made by the initial machining
- Zr wrapping with Ta spacer would reduce further the contamination from atmosphere

Tubing Wavy bands produced by cross rolling

6/21/2002, NH production #12, T. Nagasaka and T. Muroga, Fusion Reactor Engineering Center, NIFS, Japan

W. L.: Wave length

Wavy bands were observed after cross rolling

Band structure Ti-rich precipitates

6/21/2002, NH production #13, T. Nagasaka and T. Muroga, Fusion Reactor Engineering Center, NIFS, Japan

NIFS-HEAT-1, 6.6t, 1273 K, 1 hr

- Bands consist of precipitates containing Ti, C, N and O
- They are called "Ti-rich" precipitates in this presentation

Band structure After hot working

After hot rolling (NIFS-HEAT-1)

After cold rolling (NIFS-HEAT-2 (B), 4.0t)

- Bands were already observed after hot working
- Band spacing decreased with increasing working degree

Band structure As-melted structure

- Homogeneous precipitates observed in as-melted structure did not contain Ti
- Annealing at 1273 K and 1423 K produced Ti-rich precipitate cluster
- Ti-rich precipitates are considered to be formed and distributed as band during hot working process

Band structure Effect on grain structure

NIFS-HEAT-2 (B), 1273 K X 1 hr LS view, Center of plate thickness

• Fine grain bands were observed in the 1.9 mm-thick or thicker plate. Distribution of Ti-rich precipitates can be homogenized by large working degree.

Band structure Working degree

6/21/2002, NH production #17, T. Nagasaka and T. Muroga, Fusion Reactor Engineering Center, NIFS, Japan

	Reduction of area at hot	Dra	ft (reduc	ction of	thicknes	ss) at co	old rolling	g / %
	working / %	26t	6.6t	4.0t	1.9t	1.0t	0.5t	0.25t
NH1	88		55	73	87	93	97	98
NH2 (A)	52	68						
NH2 (B)	55	74	93	96	98	99	99.5	99.8

 Homogeneous recrystallization requires 99 % or more working degree

Band structure CVN specimen orientation

6/21/2002, NH production #18, T. Nagasaka and T. Muroga, Fusion Reactor Engineering Center, NIFS, Japan

Band structure Effect on fracture surface

Secondary cracking occurred parallel to the band plane
26t plate showed brittle fracture

- Stop of crack propagation at secondary crack was indicated at type C fracture
- Bands are considered to increase absorbed energy, because a new crack beyond the secondary crack have to be formed without a notch

Band structure Embrittlement of 26t plate

- 26t plate showed brittle fracture at all the orientation and size
- CVN Specimens were taken from the center of the thickness
- Cluster of Ti-rich precipitates, which were observed in the region 2 mm or farther from the surface, seems to be responsible for the brittleness
- Local working degree around the clusters is considered to be low

NIES Japan

Band structure Summary

- Ti-rich precipitates are considered to be formed and distributed as band during hot working process.
- Bands induced anisotoropic fracture mode.
- To avoid the anisotoropy of fracture mode, homogenization of the precipitate distribution may be effective. One of methods for this might be to increase the working degree.
- Future plan
 - Effect on tensile property and fracture toughness

Laser welding Welding box Nagasaka and T

Muroga

Fusion Reactor Fng

Optical fiber transferring laser

Inside view

NIFS, Japar

 Welding box has been installed into 2.0 kW YAG laser welding system in Hiroshima University

Laser welding Impurity pickup during welding

		-	-		
	Н	С	Ν	Ο	
Before welding (NH2 (B))	29	51	123	139	
After welding at weld metal	35	49	129	158	

wppm

NIFS Japar

• Only 20 wppm oxygen pickup was observed

Laser welding Effect of welding parameter

Grain size at weld metal increases with average power, and decreases with welding speed

Laser welding U bend test

6/21/2002, NH production #26, T. Nagasaka and T. Muroga, Fusion Reactor Engineering Center, NIFS, Japan

Specimen: 50 X 8 X 3 mm

No defect was observed after U bend test

Laser welding Tensile test

6/21/2002, NH production #27, T. Nagasaka and T. Muroga, Fusion Reactor Engineering Center, NIFS, Japan

Laser welding Charpy impact test

6/21/2002, NH production #28, T. Nagasaka and T. Muroga, Fusion Reactor Engineering Center, NIFS, Japan

 Impact property of weld metal at as-welded condition is comparable to that before welding

Laser welding Summary

- Welding box has been developed. No pickup of H, C, N was detected. Oxygen contamination was observed, and was only 20 wppm.
- U bend, tensile and Charpy impact test showed good results at as-welded condition.

- Future plan
 - Characterization of HAZ
 - Effect of aging
 - Effect of oxygen
 - Bonding to other low-activation material