
United States Court of Appeals for the Federal Circuit

2007-1249, -1286

MICROPROCESSOR ENHANCEMENT CORPORATION
and MICHAEL H. BRANIGIN,

Plaintiffs-Appellants,

v.

TEXAS INSTRUMENTS INCORPORATED,

Defendant-Appellee,

and

INTEL CORPORATION,

 Defendant-Appellee.

 Lawrence M. Hadley, Hennigan, Bennett & Dorman, LLP, of Los Angeles,
California, argued for plaintiffs-appellants. With him on the brief was Roderick G.
Dorman. Of counsel were Mieke Katherine Malmberg and Omer Salik.

Gary N. Frischling, Irell & Manella LLP, of Los Angeles, California, argued for
defendant-appellee Texas Instruments Incorporated. With him on the brief were Joseph
M. Lipner, Brian D. Ledahl, Keith A. Orso, and Alexander L. Karpman.

Chad S. Campbell, Perkins Coie Brown & Bain P.A, of Phoenix, Arizona, argued
for defendant-appellee Intel Corporation. With him on the brief were Mark E. Strickland
and Aaron Matz. Of counsel on the brief was Tina M. Chappell, Intel Corporation, of
Chandler, Arizona.

Appealed from: United States District Court for the Central District of California

Chief Judge Alicemarie H. Stotler

United States Court of Appeals for the Federal Circuit

2007-1249, -1286

MICROPROCESSOR ENHANCEMENT CORPORATION

and MICHAEL H. BRANIGIN,

Plaintiffs-Appellants,
v.

TEXAS INSTRUMENTS INCORPORATED,

Defendant-Appellee,

and

INTEL CORPORATION,

Defendant-Appellee.

Consolidated appeal from the United States District Court for the Central District of
California in case nos. 05-CV-00323 and 05-CV-05667, Chief Judge Alicemarie H.
Stotler.

DECIDED: April 1, 2008

Before NEWMAN, GAJARSA, and DYK, Circuit Judges.

GAJARSA, Circuit Judge.

This is a patent infringement case. Microprocessor Enhancement Corporation

and Michael H. Branigin (collectively “MEC”) appeal the judgments of the United States

District Court for the Central District of California, Docket Nos. 05-CV-00323 and 05-CV-

05667, wherein the district court found on summary judgment that Texas Instruments

Incorporated (“TI”) and Intel Corporation (“Intel”) did not infringe any claim of U.S.

Patent No. 5,471,593 (“the ’593 patent”) owned by MEC and that all claims of the patent

are invalid for indefiniteness. Because the district court erroneously concluded that the

claims are indefinite, we reverse the court’s finding of invalidity. Because the district

court correctly construed the term “pipeline stage,” we affirm the court’s judgment of

noninfringement.

BACKGROUND

The ’593 patent is directed to computer processor architecture and methods for

increasing microprocessor efficiency.1 A computer program is composed of thousands

to millions of instructions, which are stored in a computer’s random access memory

(“RAM”). Microprocessors implement programs by performing the operations specified

by the instructions. To execute an instruction, a microprocessor must perform a series

of tasks, and each task is completed on a fixed time interval defined by the system

clock—a clock cycle. The tasks necessary to execute an instruction may be described

generally as follows: (1) fetch—the processor gets the instruction from RAM; (2)

decode—the processor reads and interprets the instruction; (3) issue—the processor

sends the instruction to the appropriate functional unit; (4) execute—the functional unit

executes the operation specified by the instruction; and (5) write—the result of the

instruction is written to memory. In a most basic architecture, the entire microprocessor

can be devoted to the sequential performance of these steps, such that the results of a

complete instruction can be written to memory at a rate of one instruction per five clock

cycles.

1 We note that this is a general discussion of the relevant technology and

the patent sufficient to introduce the concepts necessary for our analysis. Our legal
conclusions herein are not premised on an assumption that this general discussion is a
complete description of relevant technology.

2007-1249, -1286 2

Pipelined processors, however, operate like assembly lines, where the processor

is subdivided into segments, each of which simultaneously completes its respective task

on a different instruction. Encyclopedia of Computer Science and Engineering 1143

(Anthony Ralston ed., 2d ed. 1983); David A. Patterson & John L. Hennessy, Computer

Architecture a Quantitative Approach 251 (1990). A pipelined processor is thus

analogous to an assembly line designed to fetch a new instruction from memory before

the previous instruction is completed and written to memory. For a linear set of

instructions (i.e., a set of instructions that are neither branched nor conditional,

discussed infra), a pipelined processor operates at maximum efficiency where one

instruction is completed and one instruction is fetched on every clock cycle once the

pipeline is full.

In order to operate in a useful fashion, programs often require the use of

nonlinear instructions, i.e., instructions containing a branch or discontinuity in the

instructional sequence, that result in “dependencies” among the individual instructions

of an instruction set. Control dependencies occur, for example, when an instruction

cannot be executed until the result of a prior conditional branch instruction is known.

That is, a conditional instruction may specify that subsequent instructions are to be

fetched and executed out of sequence, depending on whether a particular condition is

satisfied. ’593 patent col.2 ll.30–35.

The ’593 patent labels one prior art method of processing this type of

dependency as “conditional issuance.” Id. at col.21 ll.42–66. Conditional issuance

modifies the architecture of a pipelined processor by including a new segment called the

conditional execution decision logic (“CEDL”). When a conditional instruction is

2007-1249, -1286 3

detected by the CEDL, the CEDL “locks” the issue segment to prevent the issuance of

further instructions into the functional unit, until it can determine if the condition is

satisfied. For every clock cycle during which the conditional instruction is held in the

issue unit while the condition is determined, a “hole” is inserted into the pipeline at the

unit immediately following the issue unit—i.e., one or more subsequent units of the

pipeline will be nonoperational while waiting for the next issued instruction. If the

condition is satisfied, the CEDL allows the conditional instruction depending on that

condition to issue into the functional unit. If the condition is not satisfied, all conditional

instructions depending on that condition and currently waiting in the pipeline are

discarded, and subsequent instructions are fetched from memory. In the latter scenario,

an additional number of holes equal to the number of discarded instructions are inserted

into the pipeline.

The ’593 patent describes and claims “conditional execution” as an improvement

to conditional issuance. Id. at col.20 ll.13–18. Rather than controlling the issuance of

the conditional instruction to the functional unit, the ’593 patent teaches that the CEDL

should be moved into the functional unit to control whether the results of a conditional

instruction that has been executed will be written to memory. Id. Accordingly, when the

CEDL detects a conditional instruction, it locks the execute segment to prevent the

results of an executed conditional instruction from being forwarded to the write unit until

the CEDL determines whether the condition is satisfied. Id. at cols.21–22. In this

fashion, conditional execution may insert fewer holes into the pipeline than conditional

issuance while a condition code is being determined. Id. at col.13 ll.46–48.

2007-1249, -1286 4

Independent claim 1 is a method claim and states as follows:

1. A method of executing instructions in a pipelined
processor comprising:
a conditional execution decision logic pipeline stage and at
least one instruction execution pipeline stage prior to said
conditional execution decision logic pipeline stage;
at least one condition code;
said instructions including branch instructions and non-
branch instructions and each instruction including opcodes[2]
specifying operations, operand specifiers specifying
operands,[3] and conditional execution specifiers;
said pipelined processor further including at least one write
pipeline stage for writing the result(s) of each instruction to
specified destination(s);
at least one of the instructions including a means for
specifying writing said condition code with a condition code
result;
the conditional execution decision logic pipeline stage
performing a boolean algebraic evaluation of the condition
code and said conditional execution specifier and producing
an enable-write with at least two states, true and false; and
said enable-write when true enabling and when those [sic]
disabling the writing of instruction results at said write
pipeline stage;
said method further comprising the steps of:
fetching source operands specified by said operand
specifiers;
performing the operation specified by said opcode;
fetching the condition code, when specified by the
conditional execution specifier, at the pipeline stage
immediately preceding the conditional execution decision
logic pipeline stage;
operating the conditional execution decision logic pipeline

2 Opcodes are fields in the instruction that specify the operation to be

performed in the processor, commonly “Add,” “Subtract,” “Multiply”, “Divide,” “Compare,”
“Load,” “Store,” etc.

3 Operands are the data to be operated on. Operand specifiers are fields in
the instruction that specify the location of the operands.

2007-1249, -1286 5

stage, when specified by the conditional execution specifier,
to determine the enable-write using the boolean algebraic
evaluation;
writing said non-branch instruction results to a destination
specified by the operand specifiers of the executing
instruction and writing condition code results to the condition
code when specified by the operand specifiers of the
executing instruction, if the enable write is true; and
discarding or not writing the non-branch instruction results
and discarding or not writing the condition code, if the
enable-write is false.

’593 patent col.129 l.26 to col.130 l.33.

Independent claim 7 is an apparatus claim and states as follows:

7. A pipelined processor for executing instructions
comprising:
a conditional execution decision logic pipeline stage, a[t]
least one instruction execution pipeline stage prior to said
conditional execution decision logic pipeline stage;
at least one condition code;
said instructions including branch instructions and non-
branch instructions and including opcodes specifying
operations, operand specifiers specifying operands, and
conditional execution specifiers;
the pipelined processor further including at least one write
pipeline stage for writing the result(s) of each instruction to
specified destination(s);
at least one of the instructions including a means for
specifying writing said condition code with a condition code
result;
the conditional execution decision logic pipeline stage
performing a boolean algebraic evaluation of the condition
code and said conditional execution specifier and producing
an enable-write with at least two states, true and false;
said enable-write when true enabling and when false
disabling the writing of instruction results at said write
pipeline stage;
fetching means for fetching source operands specified by
said operand specifiers;

2007-1249, -1286 6

operating means for performing the operation specified by
said opcode;
condition code fetching means for fetching the condition
code, when specified by the conditional execution specifier,
at the pipeline stage immediately preceding the conditional
execution decision logic;
the conditional execution decision logic pipeline stage, when
specified by the conditional execution specifier, determining
the enable-write using the boolean algebraic evaluation;
writing means for writing said non-branch instruction results
to a destination specified by the operand specifiers and
writing to the condition code when specified, if enable-write
is true; and
said writing means further for discarding or not writing the
non-branch instruction results and discarding or not writing
the condition code, if enable-write is false.

’593 patent col.131 l.13 to col.132 l.3.

Initially, MEC filed a single suit against both TI and Intel, alleging that TI’s C6000

digital signal processor and Intel’s Itanium 2 microprocessors infringed claims 1, 5, 7,

and 11 of the ’593 patent. The parties, however, concluded that Intel had been

misjoined and stipulated to the dismissal of MEC’s claims against Intel without

prejudice. MEC subsequently refiled its claims against Intel in a separate suit, but

moved to consolidate discovery in the two cases. The court denied the motion.

In the TI case, the court issued two separate opinions concluding that TI’s

motions for summary judgment of invalidity and noninfringement would be granted.

Microprocessor Enhancement Corp. v. Tex. Instruments Inc., No. SA CV 05-323, 2007

WL 840362 (C.D. Cal. Feb. 8, 2007) (“Invalidity”); Microprocessor Enhancement Corp.

v. Tex. Instruments Inc., No. SA CV 05-323, 2007 WL 840364 (C.D. Cal. Feb. 8, 2007)

(“Noninfringement”). Pursuant to Central District of California Local Rule 56-1, the

court’s opinions contained a “statement of the facts which are uncontroverted or as to

2007-1249, -1286 7

which there is no substantial controversy as well as the conclusions of law that follow

therefrom.”4 As provided in Central District of California Local Rule 56-3, the court

based this statement on the proposed “Statement of Uncontroverted Facts and

Conclusions of Law” submitted by TI. On February 8, 2007, the court entered a take

nothing judgment in TI’s favor. Microprocessor Enhancement Corp. v. Tex. Instruments

Inc., No. SA CV 05-323, 2007 WL 840367 (C.D. Cal. Feb. 8, 2007).

At the time the trial court entered judgment in the TI case, cross motions for

summary judgment were pending in the Intel case. In particular, Intel had moved for

summary judgment of noninfringement. Rather than wait for the court to rule on the

motions, however, MEC and Intel filed a stipulated final adjudication of their case. The

stipulated adjudication explicitly recognized that MEC would be collaterally estopped

from challenging the invalidity ruling of the TI case and that the court would apply the

claim construction of the TI case, under which Intel’s accused products would not

infringe any claims of the ’593 patent. As part of the stipulated dismissal, MEC and Intel

also agreed to file a “Joint Submission of Additional Evidence,” which included evidence

of the type that would have been submitted in opposition to the summary judgment

briefs already filed. The stipulated adjudication contained a proposed order adopting

the parties’ stipulations and incorporating the Joint Submission of Additional Evidence

4 Central District of California Local Rule 56-1 provides that a movant for

summary judgment shall include “a proposed ‘Statement of Uncontroverted Facts and
Conclusions of Law’ and the proposed judgment. Such proposed statement shall set
forth the material facts as to which the moving party contends there is no genuine
issue.” When deciding the motion for summary judgment, the court assumes that the
facts contained in the proposed statement are “admitted without controversy” unless
they are included in the “Statement of Genuine Issues” (required of the nonmoving party
pursuant to C.D. Cal. Local Rule 56-2) and controverted by declaration or written
evidence. C.D. Cal. Local Rule 56-3.

2007-1249, -1286 8

into the record of the Intel case, which the court signed and entered on March 8, 2007.

Accordingly, the court entered a take nothing judgment in Intel’s favor.

MEC filed its notice of appeal in the TI case on March 7, 2007 and its notice of

appeal in the Intel case on March 26, 2007. On May 23, 2007, MEC filed a motion to

consolidate the appeals, and TI’s response was therefore due on June 4, 2007. Fed. R.

App. P. 26(a), 27(a)(3)(A). Nevertheless, the clerk granted the motion to consolidate on

May 30, 2007, before TI filed a response. We have jurisdiction over the appeal

pursuant to 28 U.S.C. § 1295(a).

DISCUSSION

At the outset, the parties dispute the scope of the record on appeal. MEC argues

that the case was properly consolidated and that the record therefore includes evidence

submitted in the Intel case, including the Joint Submission of Additional Evidence. TI

counters that because MEC admitted to being collaterally estopped in the Intel case

from challenging the invalidity ruling of the TI case, and because MEC stipulated to the

claim constructions rendered in the TI case, this court should only consider the

evidence presented in the TI case below. In support of its position, TI argues that

“[e]vidence that was not before the district court at the time of the summary judgment

proceeding . . . cannot be invoked to challenge the summary judgment order.” L&W,

Inc. v. Shertech, Inc., 471 F.3d 1311, 1315 n.2 (Fed. Cir. 2006).

Although L&W’s statement as to the scope of the record on appeal is well-

supported as a general matter of law, cf. Monarch Knitting Mach. Corp. v. Sulzer Morat

GmbH, 139 F.3d 877, 880 (Fed. Cir. 1998) (evidence submitted to a district court after

entry of final judgment under Federal Rule of Civil Procedure 54(b) not part of record on

2007-1249, -1286 9

appeal from that judgment); Laitram Corp. v. Cambridge Wire Cloth Co., 919 F.2d 1579,

1581 & n.4 (Fed. Cir. 1990) (district court properly excluded from record on appeal,

those exhibits not before it when summary judgment was entered); cf. also Kirshner v.

Uniden Corp., 842 F.2d 1074, 1077 (9th Cir. 1988) (evidence not admitted by the district

court cannot be part of the record on appeal); Fassett v. Delta Kappa Epsilon, 807 F.2d

1150, 1165 (3d Cir. 1986) (district court not authorized to augment record on appeal

with evidence not on record at the time it rendered final decision), we are unable to

locate any authority addressing the scope of the appellate record when the trial record

differs for the cases in a consolidated appeal. We need not, however, decide whether

the statement of law in L&W governs the scope of the record in this consolidated

appeal. Because extrinsic evidence is “‘less significant than the intrinsic record in

determining the legally operative meaning of claim language,’” Phillips v. AWH Corp.,

415 F.3d 1303, 1317 (Fed. Cir. 2005) (en banc) (additional internal quotations omitted)

(quoting C.R. Bard, Inc. v. U.S. Surgical Corp., 388 F.3d 858, 862 (Fed. Cir. 2004)), our

decision herein rests primarily on the intrinsic record of the ’593 patent. In addition, any

differences between the extrinsic record developed in the two cases below does not

contradict our reading of this intrinsic record. We therefore do not decide the precise

demarcation between that evidence which is properly before us and that which is not.

I. INVALIDITY

The district court concluded that independent claims 1 and 7 of the ’593 patent

are invalid for indefiniteness on the grounds that both claims impermissibly mix two

distinct classes of patentable subject matter and that the claims are insolubly

ambiguous for requiring that a single word be interpreted differently in different portions

2007-1249, -1286 10

of a single claim. Invalidity, 2007 WL 840362, at *2–*4. Under 35 U.S.C. § 112, ¶ 2,

the claims of a patent must “particularly point[] out and distinctly claim[] the subject

matter which the applicant regards as his invention.” “A claim is considered indefinite if

it does not reasonably apprise those skilled in the art of its scope.” IPXL Holdings,

L.L.C. v. Amazon.com, Inc., 430 F.3d 1377, 1383–84 (Fed. Cir. 2005). “Because a

claim is presumed valid, a claim is indefinite only if the ‘claim is insolubly ambiguous,

and no narrowing construction can properly be adopted.’” Honeywell Int’l, Inc. v. Int’l

Trade Comm’n, 341 F.3d 1332, 1338–39 (Fed. Cir. 2003) (quoting Exxon Research &

Eng’g Co. v. United States, 265 F.3d 1371, 1375 (Fed. Cir. 2001)). Whether a claim

reasonably apprises those skilled in the art of its scope is a question of law that we

review de novo. Exxon Research, 265 F.3d at 1376 (“[D]etermination of claim

indefiniteness is a legal conclusion that is drawn from the court’s performance of its duty

as the construer of patent claims.”). We turn to each of the district court’s indefiniteness

rulings in turn.

First, we conclude that neither claim 1 nor claim 7 impermissibly claim mixed

classes of subject matter. A single patent may include claims directed to one or more of

the classes of patentable subject matter, but no single claim may cover more than one

subject matter class. IPXL Holdings, 430 F.3d at 1384 (holding indefinite a claim

covering both an apparatus and a method of using that apparatus). Applying this rule,

the district court concluded that although claim 1 purported to claim a method of

executing instructions in a pipelined processor, the structural limitations of the pipelined

processor evidence an intent to claim the apparatus as well. Invalidity, 2007 WL

840362, at *3. The court similarly concluded that although claim 7 purported to be an

2007-1249, -1286 11

apparatus claim, the functional limitations are directed to the use of the apparatus rather

than functional descriptions of certain claimed features of the apparatus. We disagree.

The drafting structure of claim 1 may be generally described as follows:

1. A method of executing instructions in a pipelined
processor comprising:
[structural limitations of the pipelined processor];
the method further comprising:
[method steps implemented in the pipelined processor].

See ’593 patent col.129 l.27 to col.130 l.32. Although this seeming preamble within a

preamble structure is unconventional, its effect on the definiteness of claim 1 lacks the

conclusiveness with which King Claudius’s guilt is established by his reaction to

Hamlet’s play within a play. See William Shakespeare, Hamlet act 3, sc. 2. Method

claim preambles often recite the physical structures of a system in which the claimed

method is practiced, and claim 1 is no different. The conclusion of IPXL Holdings was

based on the lack of clarity as to when the mixed subject matter claim would be

infringed. 430 F.3d at 1384 (“[I]t is unclear whether infringement of claim 25 occurs

when one creates a system that allows the user to [practice the claimed method step],

or whether infringement occurs when the user actually [practices the method step].”).

There is no similar ambiguity in claim 1 of the ’593 patent. Direct infringement of claim

1 is clearly limited to practicing the claimed method in a pipelined processor possessing

the requisite structure.

In similar fashion, claim 7 does not cover both an apparatus and a method of use

of that apparatus. As this court recently stated, apparatus claims are not necessarily

indefinite for using functional language. See Halliburton Energy Servs. v. M-I LLC, 514

F.3d 1244, 1255 (Fed. Cir. 2008). Indeed, functional language in a means-plus-function

2007-1249, -1286 12

format is explicitly authorized by statute. 35 U.S.C. § 112, ¶ 6. Functional language

may also be employed to limit the claims without using the means-plus-function format.

E.g., K-2 Corp. v. Salomon S.A., 191 F.3d 1356, 1363 (Fed. Cir. 1999) (analyzing

functional language as an additional limitation to an apparatus claim for an in-line

skate). Moreover, where the claim uses functional language but recites insufficient

structure, § 112, ¶ 6 may apply despite the lack of “means for” language. See, e.g.,

Personalized Media Commc’ns, LLC v. Int’l Trade Comm’n, 161 F.3d 696, 703–04 (Fed.

Cir. 1998) (discussing cases). Notwithstanding these permissible instances, the use of

functional language in a claim may “fail ‘to provide a clear-cut indication of the scope of

subject matter embraced by the claim’ and thus can be indefinite.” Halliburton, 514 F.3d

at 1255 (quoting In re Swinehart, 439 F.2d 210, 212–13 (CCPA 1971)). Claim 7 of the

’593 patent, however, is clearly limited to a pipelined processor possessing the recited

structure and capable of performing the recited functions, and is thus not indefinite

under IPXL Holdings.

Second, we conclude that neither claim 1 nor claim 7 is insolubly ambiguous in

its use of the term “condition code.” Claim 1 and claim 7 both claim “at least one

condition code” as an element of the pipelined processor. Thereafter, claim 1 and claim

7 both contain five references to “the condition code” or “said condition code.” The

district court reasoned that where a subsequent use of a claim term makes reference to

the first use as an antecedent by using “said” or “the,” that term must be interpreted

consistently across all such uses in a single claim. Invalidity, 2007 WL 840362, at *4

(citing Process Control Corp. v. HydReclaim Corp., 190 F.3d 1350, 1356–57 (Fed. Cir.

1999)). As used in claims 1 and 7, the term “condition code” must mean either a

2007-1249, -1286 13

storage unit or a value derived from the output of the storage unit depending on the

context in which its used, yet both claims are facially nonsensical if either of these

definitions is used exclusively. The district court applied its reading of Process Control,

concluding that “condition code” must be construed consistently within a single claim

and that the claims were therefore indefinite. Id.

Although we agree with the district court’s initial assumption that a single “claim

term should be construed consistently with its appearance in other places in the same

claim or in other claims of the same patent,” Rexnord Corp. v. Laitram Corp., 274 F.3d

1336, 1342 (Fed. Cir. 2001), the patentee’s mere use of a term with an antecedent does

not require that both terms have the same meaning. Specifically, Process Control did

not announce a rule that the reference to an antecedent absolutely requires a term to be

consistently construed across uses. Cf. Epcon Gas Sys., Inc. v. Bauer Compressors,

Inc., 279 F.3d 1022, 1030–31 (Fed. Cir. 2002) (“‘A word or phrase used consistently

throughout a claim should be interpreted consistently.’” (quoting Phonometrics, Inc. v.

Northern Telecom Inc., 133 F.3d 1459, 1465 (Fed.Cir.1998))).

Claim 1 at issue in Process Control reads as follows:

A method of metering different material ingredients for
discharge to a material processing machine, comprising:
[a] delivering to a common hopper a plurality of individual
material ingredients at controllable individual material
discharge rates,
[b] discharging material from said common hopper to said
processing machine at a discharge rate,
[c] determining loss of weight of material in said hopper due
to discharge of material therefrom,
[d] determining the material processing rate of the
processing machine from the sum of the material discharge
rates of the ingredients to the common hopper and the

2007-1249, -1286 14

discharge rate of the material from the common hopper to
the processing machine, and
[e] controlling the material discharge rates of the ingredients
to the common hopper in response to said determined
material processing rate as needed to maintain a preset
recipe of said blended ingredients at said determined
material processing rate.

Process Control, 190 F.3d at 1354–55. The court did rule that “discharge rate” must be

construed identically in limitations [b] and [d], but the court did not rely principally on

antecedent basis to support its rationale.

It is clear from the language of the claim itself that the term
“a discharge rate” in clause [b] is referring to the same rate
as the term “the discharge rate” in clause [d]. This
conclusion necessarily results from the identical language
associated with the term “discharge rate” in both clauses [b]
and [d], namely “from the common hopper to the material
processing machine.”

Id. at 1356 (emphases added). The court then noted that “[i]n addition, [this] conclusion

avoids any lack of antecedent basis problem for the occurrence of ‘the discharge rate’ in

clause [d].” Id. at 1356–57. Given the well-settled rule that claims are not necessarily

invalid for a lack of antecedent basis,5 the court’s observations regarding antecedent

basis are merely supportive of, rather than necessary to, its conclusion that “discharge

rate” must have a single consistent meaning in claim 1.

Turning to claim 1 and claim 7 of the ’593 patent, we note that “[a] claim that is

amenable to construction is not invalid on the ground of indefiniteness” if the

construction renders the claim definite. Energizer Holdings, 435 F.3d at 1371. Unlike

5 See, e.g., Energizer Holdings, Inc. v. Int’l Trade Comm’n, 435 F.3d 1366,

1370–71 (Fed. Cir. 2006) (“[D]espite the absence of explicit antecedent basis, ‘[i]f the
scope of a claim would be reasonably ascertainable by those skilled in the art, then the
claim is not indefinite.’” (quoting Bose Corp. v. JBL, Inc., 274 F.3d 1354, 1359 (Fed.
Cir. 2001))).

2007-1249, -1286 15

the claim at issue in Process Control, “condition code” as used in claims 1 and 7 is not

surrounded by uniform language that requires a single interpretation of the term. Cf.

Epcon Gas Sys., 279 F.3d at 1031 (construing “substantially” as having two different

meanings based on its use in “two contexts with a subtle but significant difference”).

Rather, the appropriate meaning of “condition code” is readily apparent from each

occurrence in context, and TI’s expert, Dr. Patt, indicated that the ’593 patent used

condition code to refer to a value or a storage location based on its context within the

claims. Indeed, the claims’ apparent nonsensical reading under a uniform construction

of “condition code” is indicative of the ease of determining the appropriate meaning of

each use of the term from its context. For these reasons, the use of “condition code” in

claim 1 and claim 7 does not render these claims indefinite.

II. NONINFRINGEMENT

The district court granted TI summary judgment of noninfringement on two

separate bases. First, the district court construed the term “pipeline stage” to be “a

structure that works on an instruction for a regular interval of time defined by the system

clock (i.e., one or more clock cycles), with separate pipeline stages capable of

simultaneously working on different instructions.”6 Infringement, 2007 WL 840364, at

*3. Under this temporal construction, the claims require that the condition code be

fetched during one clock cycle and used during the next clock cycle. E.g., ’593 patent

claim 1 (“fetching the condition code, when specified by the conditional execution

specifier, at the pipeline stage immediately preceding the conditional execution decision

6 For ease of reference, we refer to the district court’s construction of

“pipeline stage” as a “temporal” construction, inasmuch as it defines the term according
to clock cycles.

2007-1249, -1286 16

logic pipeline stage”). Second, the district court construed the term “instruction

execution pipeline stage” to be a “pipeline stage directed to performing the operation

specified by the opcode of an instruction.” Id. Under this definition, the claims require

that the pipeline stage for performing opcode operations occur before the CEDL pipeline

stage. E.g., ’593 patent claim 1 (“at least one instruction execution pipeline stage prior

to said conditional execution decision logic pipeline stage”). MEC admits that the

accused products of both TI and Intel do not infringe if we affirm either of these two

constructions. Accordingly, because we affirm the district court’s construction of

“pipeline stage,” we need not address the construction of “instruction execution pipeline

stage.”

The term “pipeline stage” is used throughout claims 1 and 7. The term is usually

used with a modifier that describes the function of the named pipeline stage, e.g.,

“conditional execution decision logic pipeline stage” or “instruction execution pipeline

stage.” Claim 1 and claim 7 both use “pipeline stage” without a modifier one time. For

example, claim 1 reads, “fetching the condition code, when specified by the conditional

execution specifier, at the pipeline stage immediately preceding the conditional

execution decision logic pipeline stage.” The district court applied its temporal

construction of “pipeline stage” to both the modified and unmodified uses of the term in

claims 1 and 7. Noninfringement, 2007 WL 840364, at *3–*4.

On appeal, MEC posits that the court’s construction should not apply to

unmodified uses of “pipeline stage,” and argues that “the pipeline stage” indicates a

structure at a particular position in the pipeline, rather than a structure that works with

an instruction for one or more clock cycles. MEC does agree, however, that modified

2007-1249, -1286 17

uses of “pipeline stage,” e.g., “instruction execution pipeline stage” and “CEDL pipeline

stage,” are temporal terms describing structures operating on complete clock cycles.

Despite this admission, MEC nevertheless argues that the single unmodified use of

“pipeline stage” in both claim 1 and claim 7 should be construed as a positional term.

We review the district court's claim construction de novo. Cybor Corp. v. FAS

Techs., Inc., 138 F.3d 1448, 1456 (Fed. Cir. 1998) (en banc). Claim terms must be

given “the meaning that the term would have to a person of ordinary skill in the art in

question at the time of the invention.” Phillips, 415 F.3d at 1313. This court ascertains

the meaning of a disputed term by looking to “‘those sources available to the public that

show what a person of skill in the art would have understood disputed claim language to

mean.’” Id. at 1314 (quoting Innova/Pure Water, Inc. v. Safari Water Filtration Sys., Inc.,

381 F.3d 1111, 1116 (Fed. Cir. 2004)). “‘Those sources include the words of the claims

themselves, the remainder of the specification, the prosecution history, and extrinsic

evidence’” Id. Phillips teaches that these sources should be accorded relative

weights in the order listed, with the words of the claims themselves being the most

relevant. Id. at 1314–19. Accordingly, we discuss each source of meaning of the claim

term “the pipeline stage” in this order.

Beginning with the claims themselves, “the context in which a term is used in the

asserted claim can be highly instructive.” Id. at 1314. Because MEC agrees that

modified uses of “pipeline stage” are temporal rather than positional terms, MEC

necessarily agrees that the CEDL pipeline stage refers to a logic structure that utilizes

the condition code during “a regular interval of time defined by the system clock.” See

Noninfringement, 2007 WL 840364, at *3 (construing “pipeline stage”). The use of the

2007-1249, -1286 18

term “pipeline stage immediately preceding” before the term “[CEDL] pipeline stage”

therefore suggests that “pipeline stage immediately preceding” is itself a temporal rather

than positional term. For this reason, to the extent that the term “the pipeline stage,” is

ambiguous as to whether it denotes time or position, the surrounding temporal

language, including “CEDL pipeline stage” and “immediately preceding,” suggests that

“the pipeline stage” is also temporal. That is, construing “the pipeline stage” as a

positional term seems inconsistent with the temporal context in which it is used.

We next turn to the specification, “‘informed, as needed, by the prosecution

history.’” Phillips, 415 F.3d at 1315 (quoting Multiform Desiccants, Inc. v. Medzam, 133

F.3d 1473, 1478 (Fed. Cir. 1998)). We note, however, that this is not a case identified

by Phillips as one in which “the ordinary meaning of claim language as understood by a

person of skill in the art may be readily apparent even to lay judges.” Cf. id. at 1314.

With regard to the specification, we are simply unable to discern whether a person of

ordinary skill in the art would read “pipeline stage” as an exclusively temporal, rather

than positional, term. For example, certain portions of the specification suggest the

term has a temporal meaning: “Each stage in the pipeline, including the Reservation

Stations, must determine if the pipeline will move forward on the next clock.” ’593

patent col.68 ll.61–63. Conversely, MEC notes that Figure 15a and various other

figures lack sufficient structure to allow a condition code to be fetched during one clock

cycle and stored until it is used by the CEDL pipeline stage during the clock cycle

immediately following. MEC thus argues that the absence of storage structure indicates

that the condition code must be used by the CEDL pipeline stage during the same clock

cycle in which it is fetched, thereby requiring “the pipeline stage” to be a positional term

2007-1249, -1286 19

in the claims. Comparing these examples with the remainder of the specification, we

are unable to determine whether a person of ordinary skill in the art would understand

“the pipeline stage” to be used in a temporal or positional sense.

To resolve the ambiguity of the specification, we turn to the prosecution history.

The term “the pipeline stage” was added by amendment during prosecution, and the

amendment makes clear that the inventor intended that this sole unmodified use of

“pipeline stage” would have the same temporal sense as the modified uses appearing

throughout the claims. The examiner rejected the first independent claim then pending,

claim 61, as indefinite. Office Action, ’593 patent, at 2 (June 9, 1994). The relevant

portions of claim 61 read as follows:

A method of executing instructions in a pipelined processor:
said pipelined processor including conditional execution
decision logic and at least one condition code;
. . .
said method comprising the steps of:
 . . .
fetching the condition code, when specified by the
conditional execution specifier, at a pipeline position just
preceding the conditional execution decision logic;
operating the conditional execution decision logic, when
specified by the conditional execution specifier, to determine,
by said boolean algebraic evaluation, enabling and disabling
of writing non-branch instruction results; and
writing said non-branch instruction results to a destination
specified by the operand specifiers and writing to the
condition code when specified, if enabled by the conditional
execution decision logic.

Amendment D, ’593 patent, at Claims pp. 1–2 (Jan. 20, 1994). Rejected claim 61 did

not use the term “pipeline stage” at all. Rather, it used the terms “conditional execution

specifier” and “pipeline position,” the latter of which the Examiner concluded was

2007-1249, -1286 20

indefinite because “it is not clear what the function of the pipeline position at that stage

is.” Office Action, ’593 patent, at 2 (June 9, 1994) (emphasis added).

To address the rejection, the applicant made two amendments. First, the

applicant amended the structure of the pipelined processor as follows: “said pipelined

processor including a conditional execution decision logic pipeline stage, a[t] least one

instruction execution pipeline stage prior to said conditional execution decision logic

pipeline stage, and at least one condition code.” Amendment A, ’593 patent, at Claims

pp.1–3 (Sept. 8, 1994). Second, the applicant amended the fetching limitation at issue

on appeal as follows: “fetching the condition code . . . at a pipeline position just the

pipeline stage immediately preceding the conditional execution decision logic pipeline

stage.”7 Id. These amendments added a new pipeline stage with a specified function

to the pipelined processor—the “at least one instruction execution pipeline stage”—and

provided an antecedent basis for “the pipeline stage” (where the prior term “a pipeline

position” neither had nor required an antecedent basis) in a way that specified its

function. Accordingly, rather than intending that the unmodified use of “pipeline stage”

denote position rather than time, this amendment indicates the applicant’s intent that

“the pipeline stage” take its antecedent basis, and thereby the function and temporal

7 The applicant cancelled claim 61 and submitted new claim 73, but a

comparison of original claim 61 and newly submitted claim 73 makes clear that claim 73
should be read as an amendment to claim 61, especially considering that claim 73
replaced claim 61 as the first independent claim.

2007-1249, -1286 21

meaning, from “at least one instruction execution pipeline stage.”8 No other reading of

this amendment would address the examiner’s indefiniteness rejection based on the

indiscernible function of “a pipeline position.”9 We therefore conclude that the

prosecution history of the term “the pipeline stage” is supportive intrinsic evidence that

the inventor used the term “the pipeline stage” to refer to “a structure that works on an

instruction for a regular interval of time defined by the system clock (i.e., one or more

clock cycles), with separate pipeline stages capable of simultaneously working on

different instructions.”

In addition to the claim amendment inserting the term “the pipeline stage” into the

claims of the ’593 patent, the parent application, U.S. Application No. 07/448720 (filed

Dec. 11, 1989, now abandoned), contained language more clearly evidencing an intent

that the term “pipeline stage” be used in its temporal sense.

To improve the clock rate . . . , most high performance
architectures segment the functional units into several
pieces called “pipeline stages.” A single pipeline stage can
be traversed in one clock cycle. With pipelining, each
functional unit can be viewed as an assembly line capable of
working on several instructions at different stages of
completion

’720 application, at 4. This language was, however, removed by the applicant during

8 As did this court in Process Control, we note that this construction of “the

pipeline stage” avoids antecedent basis problems. The first (and only) unmodified use
of “pipeline stage” is preceded by the definite article “the.” Accordingly, the term “the
pipeline stage” would properly take its antecedent basis from one of the previous uses
of “pipeline stage,” all of which are modified and thus denote structures that operate on
one or more complete clock cycles. If, as suggested by MEC, the unmodified use of
“pipeline stage” means something different, the first occurrence of the unmodified term
should be “a pipeline stage.”

9 We note that this reading of the claim is not altered by further unrelated
amendments during prosecution that resulted in claim 1 as issued.

2007-1249, -1286 22

 prosecution of the ’720 application in response to the examiner’s statement that

“elements/devices or groups of elements/devices which are conventional and generally

widely known in the field of data processing (‘DP’) art should not be described in detail.”

Compare Office Action, ’720 application, at 5 (Oct. 28, 1992) with Amendment B, ’720

application, at Specification p. 4 (Jan. 23, 1993). Although this omitted language of the

’720 application is not dispositive of our construction of “the pipeline stage” as used in

the claims of the ’593 patent, its probative value is twofold. First, this language is some

evidence that the inventor used the term to denote structures delineated by clock cycles

rather than position. Second, the omission of this language in response to the

examiner’s statement suggests that the inventor considered this clock cycle usage of

“pipeline stage” to be “conventional and generally widely known in the field of data

processing.”

Lastly, having thoroughly examined “‘the indisputable public records consisting of

the claims, the specification and the prosecution history,’” Phillips, 415 F.3d at 1319

(quoting Southwall Techs., Inc. v. Cardinal IG Co., 54 F.3d 1570, 1578 (Fed. Cir.

1995)), we find that the extrinsic evidence supports the conclusion that the inventor

used “the pipeline stage” in its temporal sense, consistent with the term’s ordinary

meaning in the computer arts. For example, David A. Patterson & John L. Hennessy,

Computer Architecture a Quantitative Approach 251 (1990), relied on by all three parties

on appeal, discusses the concept of a pipe stage or pipe segment, and the discussion is

framed by references to time and clock cycles rather than positions.

In sum, the district court correctly construed “pipeline stage,” whether modified or

standing alone, as “a structure that works on an instruction for a regular interval of time

2007-1249, -1286 23

2007-1249, -1286 24

defined by the system clock (i.e., one or more clock cycles), with separate pipeline

stages capable of simultaneously working on different instructions.” This construction is

well supported by (1) MEC’s admissions that modified uses of pipeline stage, e.g.,

“instruction execution pipeline stage” uses “pipeline stage” in the clock cycle sense of

the word; (2) the structure and context of the term’s use in the claims; (3) the

prosecution history; and (4) the extrinsic evidence of how the term would be understood

by a person of ordinary skill in the art. Because the parties agree that the accused

products do not practice any of the asserted claims under this construction of “the

pipeline stage,” the district court correctly entered judgment of noninfringement in both

the TI case and the Intel case.

CONCLUSION

Because we conclude that the asserted claims are not indefinite, the district

court’s judgment that the asserted claims of the ’593 patent are invalid is reversed.

Because we conclude that the district court correctly construed “pipeline stage,” the

district court’s judgment of noninfringement is affirmed.

AFFIRMED-IN-PART, REVERSED-IN-PART

COSTS

 No costs.

