

In cooperation with the National Park Service

Field Evaluations of Sampling Methods for Long-Term Monitoring of Upland Ecosystems on the Colorado Plateau

2007

Open-File Report 2007-1243

U.S. Department of the Interior

DIRK KEMPTHORNE, Secretary

U.S. Geological Survey

Mark D. Myers, Director

U.S. Geological Survey, Reston, Virginia 2007

For product and ordering information:

World Wide Web: http://www.usgs.gov/pubprod

Telephone: 1-888-ASK-USGS

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment:

World Wide Web: http://www.usgs.gov

Telephone: 1-888-ASK-USGS

Suggested citation:

Miller, Mark E., Witwicki, Dana L., Mann, Rebecca K., and Tancreto, Nicole J., 2007, Field evaluations of sampling methods for long-term monitoring of upland ecosystems on the Colorado Plateau: U.S. Geological Survey Open-File Report 2007-1243, 188 p. [http://pubs.usgs.gov/of/2007/1243/].

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.

Contents

Abstract	1
Acknowledgments	2
ntroduction and Background	2
Methods	3
Study Areas	3
Field Sampling	4
Sampling Phases	4
Macroplot Characterization and Evaluation	4
Macroplot Layout	5
Line-Point Intercept Sampling	7
Gap-Intercept Sampling	
Quadrat Sampling	
Documentation of Unknown Species	
Assessment of Sampling Impacts	13
Date Entry and Management	
Database Design	
Field Procedures	14
Office Procedures	18
Data Analyses	18
Sampling Efficiency	
Among-Method Trends in Cover Estimates	
Repeatability	
Sampling Impacts	
Results	20
Macroplot Characterization and Evaluation	20
Sampling Efficiency	
Sampling Times	
Within-Macroplot Variability	
Among-Macroplot Variability	
Species-Area Relationships and Community Composition	
Among-Method Trends in Cover Estimates	
Repeatability	
Sampling Impacts	
Discussion	
Evaluation of Sampling Methods	
Efficiency	
Repeatability	56
Sampling Impacts	
Issues Associated with Electronic Data Entry and Management	
References Cited	
Appendix A—Species List and Species Occurrence by Ecological Site	
Appendix B—Within-Macroplot Variability of Cover Estimates by Sampling Technique and	
Ecological Site	66
Appendix C—Summaries of Frequency and Cover Estimates by Macroplot and Sampling Technique	

Appendix D—Among-Macroplot Variation in Selected Cover Measures by Ecological Site	
Appendix E—Mean Species-Area and Compositional Curves by Ecological Site	
Appendix F—Between-Observer Differences in Estimates of Cover and Density	
Appendix G—Nested Frequency Data by Ecological Site	161
Figures	
Figure 1. Standard macroplot and transect layout used during the 2005 field season	6
Figure 2. Transect layouts used for comparing repeatability and efficiency of square and rectangular quadrats during Phase 1 sampling	6
Figure 3. Transect lengths and types of sampling conducted during Phases 2 (a) and 3 (b)	
Figure 4. Dimensions of square and rectangular nested quadrats that were evaluated during F 1, and of square quadrats that were used during Phases 2 and 3	
Figure 5. Photographic key to soil-surface categories used for describing degrees of biologica crust development on the basis of relative soil darkness (J. Belnap, unpublished)	al soil
Figure 6. Main effects of (a) ecological site, (b) cover category (total live understory canopy,	
individual species, and soil-surface features), and (c) sampling method on log-transformed CV	
values describing within-plot variability in cover measures. Bars indicate 95 percent confiden	
intervals. Within each panel, values with the same letter are not significantly different by Tuke	•
HSD test. See table 1 for ecological site codes.	
Figure 7. Interactive effects of ecological site and cover category (total live understory canop	
individual plant species, and soil-surface features) on log-transformed CV values describing w	
plot variability in cover measures. Bars indicate 95 percent confidence intervals for means. S table 1 for ecological site codes	
Figure 8. Median numbers (± 25 percentiles) of subsamples required for 20 percent precision	
macroplot-level estimates of (a) total live understory canopy cover, (b) live cover of individual	
species, and (c) cover of surface features across 11 ecological sites sampled on the Colorado Plateau in Utah and Arizona. In (a), there is no difference among median values obtained via	
different sampling methods (Kruskal-Wallis H = 5.89, df = 2, n = 33, p = 0.0525). In (b), median values $\frac{1}{2}$	alues
from 10-m² quadrats and line-point intercepts are significantly different from one another (Krus	kal-
Wallis H = 15.41, df = 2, n = 94, p = 0.0004). In (c), there is no significant difference among medi	
from different methods (Kruskal-Wallis H = 3.08, df = 2, n = 98, p = 0.2139).	
Figure 9. Time required to estimate total live understory cover using (a) the line-point intercep	
technique, (b) 1-m² quadrats, and (c) 10-m² quadrats in relation to cover estimates derived from	ı the
same sampling techniques. Points are labeled by ecological site codes (see table 1 for key to	
codes) and symbolized to indicate the general physiognomic structure of the sampled plant	
community. Ecological sites underlined in (a) are those where line-point intercepts were used	
estimate cover of overstory vegetation above 2-m in height, in addition to understory vegetatio	
soil-surface features $(\pm 25 \mathrm{percentiles})$ required for subsampling to achieve 20	
percent precision in macroplot-level estimates of (a) total live understory canopy cover, (b) live	
cover of individual plant species, and (c) cover of surface features across 11 ecological sites	,
sampled on the Colorado Plateau in Utah and Arizona. For each cover category, there is no	
significant difference among median sampling times for different sampling methods (a. Kruska	 -

	lis H = 0.95, df = 2, n = 33, p = 0.6216; b. Kruskal-Wallis H = 4.51, df = 2, n = 94, p = 0.1045; c. skal-Wallis H = 1.68, df = 2, n = 98, p = 0.4327)31
	re 11. Main effects of cover category (total live understory canopy, individual species, and
•	ace features) on log-transformed CV values describing among-macroplot variability in cover
	mates across 11 ecological sites sampled on the Colorado Plateau in Utah and Arizona. Values
	different letters are significantly different from one another (Tukey's HSD test, between MS =
	31, df = 216, p < 0.01 for all pair-wise comparisons)
	Ire 12. Median numbers (\pm 25 percentiles) of macroplots required for 20 percent precision in
_	logical-site-level estimates of (a) total live understory canopy cover, (b) cover of individual plant
	cies, and (c) cover of surface features across 11 ecological sites sampled on the Colorado
•	eau in Utah and Arizona. For each cover category, there is no significant difference among
	lian macroplot numbers for different sampling methods (a. Kruskal-Wallis H = 0.95, df = 2, n = 33,
	0.6218; b. Kruskal-Wallis H = 1.38, df = 2, n = 96, p = 0.5005; c. Kruskal-Wallis H = 3.05, df = 2, n =
-	o = 0.2174)34
Figu	re 13. Median ratios of within-to-among macroplot variability (based on log-transformed CV
•	es) for estimates of (a) total live understory canopy cover, (b) live cover of individual plant
	cies, and (c) cover of surface features across 11 ecological sites sampled on the Colorado
Plate	eau in Utah and Arizona. For each cover category, there is no significant difference among
med	lian ratios for different sampling methods (a. Kruskal-Wallis $H = 2.39$, $df = 2$, $n = 33$, $p = 0.3033$; b.
Krus	skal-Wallis H = 4.33, df = 2, n = 96, p = 0.1147; c. Kruskal-Wallis H = 3.05, df = 2, n = 96, p = 0.3941).
	35
•	re 14. Log-transformed species richness data (mean numbers of unique species detected in 15
•	drats) in relation to ecological site and quadrat size (a) for all species detected, and (b)
	luding infrequent species that occurred in only one 10-m² quadrat from the 10-m² data. (See
	e 1 for key to ecological site codes.)
•	ire 15. Estimated total live understory canopy cover (standardized means) by method averaged
	oss 11 ecological sites on the Colorado Plateau. Bars indicate 95 percent confidence intervals.
	ues with different letters are significantly different by Tukey's HSD test
_	re 16. Estimated total live understory canopy cover (standardized means) by method and 11 brado Plateau ecological sites. Bars indicate 95 percent confidence intervals for means. See
	e 1 for ecological site codes40
	er for ecological site codes40 I re 17 . Effect of sampling method on cover estimates (standardized means) for selected surface
_	ures (litter, biological soil crust, and bare soil) across 11 ecological sites on the Colorado
	eau. Means with different letters are significantly different by Tukey's HSD test41
	ead. Means with different letters are significantly different by Tukey's H5D test41 Ire 18. Effects of sampling method on cover estimates (standardized means) for (a) surface
•	r, (b) unstable bare soil, and (c) biological soil crusts (moss, lichen, and cyanobacteria
	ıbined) at eight Colorado Plateau ecological sites42
	re 19. Scatterplot of average wind speed (m s ⁻¹) vs. absolute difference between two observers'
_	mates of grass cover based on use of the line-point intercept sampling technique at eight
	orado Plateau ecological sites (r = 0.07, p = 0.55, n = 70)
	re 20. Photograph (left) of destabilized soil and trampled biological soil crusts on unsampled
-	of transect in Arches National Park (Semidesert Shallow Sandy Loam ecological site), and
	nt) trampled plants on unsampled side of transect in Wupatki National Monument (Limy Upland
_	logical site)53

Tables

1. Ecological sites, associated NRCS soil surveys and soil map units, and macroplots sample	
during Phases 2 and 3 of the 2005 field season	
2. Phases of sampling conducted during the 2005 field season	
3. Measures recorded during line-point intercept sampling.	
4. Definitions of plant material and plant status	
5. Categories of soil-surface disturbances described during line-point sampling and quadrat	
sampling	
7. Definitions used for gap-intercept sampling	10
8. Cover-class scale used to estimate cover in 10-m² quadrats	۱۱
9. Size classes used for recording shrub and tree density	
10. Soil-surface categories used for estimating cover and development of biological soil cru	
25 cm x 25 cm quadrats on the basis of relative soil darkness.	
11. Evaluation matrix for rating sampling impacts, considering the entire macroplot visit and	
sampling procedures combined	
12. Explanations of sampling procedures for purposes of impact assessment	
13. Impact-assessment ratings for individual sampling procedures.	17
14. Summary of macroplots that were relocated following site characterization and prior to	0.1
sampling.	
15. Mean times for setting up and reading frequency (freq), cover (cov), and density (dens) in	
and 10-m² quadrats.	
16. Mean times for sampling line-point intercept transects, basal- and canopy-gaps transect	
biological soil crust (BSC) frames	
17. Analysis of variance for effects of ecological site, cover category (total live understory c	
individual species, and soil-surface features), and sampling method on log-transformed CV v	
describing within-macroplot variability in cover measures.	
18. Results of multiple-regression models evaluating significance of subsample size, frequer and mean cover as predictors of log-transformed CV values describing within-macroplot var	-
in cover measures.	
19. Summary of mean estimates for total live understory canopy cover for each of 11 Colorad	
Plateau ecological sites, within-macroplot variation in cover estimates summarized across n	
macroplots within each ecological site, subsample sizes required to achieve 10 and 20 perce	
precision in estimates of macroplot-level means, and estimated amounts of sampling time re	
to achieve those degrees of precision.	-
20. Analysis of variance for effects of cover category (total live understory canopy, individual	
species, and surface features) and sampling method on log-transformed CV values describing	
among-macroplot variability in cover estimates	
21. Among-macroplot variation in estimates of total live understory canopy cover for 11 ecol	
sites (n macroplots per ecological site), macroplot sample sizes required to achieve 10 and 2	-
percent precision in estimates of site-level means, and ratios of within-to-among CV values	
22. Species richness data for several ecological sites on the Colorado Plateau, based on 10-	
1-m² quadrats	
1	

for the number of unique species detected in 15 10-m ² and 1-m ² quadrats during Phase 3 sampling.
24. Analysis of variance for effects of ecological site and quadrat size on log-transformed values
for the number of unique species detected in 15 10-m ² and 1-m ² quadrats during Phase 3 sampling,
excluding infrequent species that occurred in only one 10-m² quadrat from the 10-m² data38
25. Analysis of variance for effects of ecological site and sampling method on total live understory
cover (standardized means) at 11 Colorado Plateau ecological sites
26. Analysis of variance for effect of sampling method on standardized mean cover of surface features at 11 Colorado Plateau ecological sites
27. Analysis of variance for effects of sampling method (1-m² quadrats, 10-m² quadrats, and line-
point intercept), observer, and cover category (species POFE, QUGA, SYOR2, and total live
understory canopy cover) on mean arcsin-transformed plant canopy cover values for the Brushy
Loam ecological site at Mesa Verde National Park42
28. Analysis of variance for effects of sampling method (1-m² quadrats, 10-m² quadrats, and line-
point intercept), observer, and cover category (species CHLE4, HENE5, PLJA, and total live
understory canopy cover) on mean arcsin-transformed plant canopy cover values for the Limy
Upland, 25-33" ecological site at Grand Canyon National Park43
29. Analysis of variance for effects of sampling method (1-m² quadrats, 10-m² quadrats, and line-
point intercept), observer, and cover category (species POFE, POTR5, UNGRCA1, and total live
understory canopy cover) on mean arcsin-transformed plant canopy cover values for the Loamy
Hills, 25-33"pz ecological site at Grand Canyon National Park43
30. Analysis of variance for effects of sampling method (1-m² quadrats, 10-m² quadrats, and line-
point intercept), observer, and cover category (species JUOS, PIED, POFE, and total live understory
canopy cover) on mean arcsin-transformed plant canopy cover values for the Loamy Mesa Top PJ
ecological site at Mesa Verde National Park
31. Analysis of variance for effects of sampling method (1-m² quadrats, 10-m² quadrats, and line-
point intercept), observer, and cover category (species ATCO, GIIN2, ORHY, and total live understory canopy cover) on mean arcsin-transformed plant canopy cover values for the
Semidesert Alkali Sandy Loam (Alkali Sacaton) ecological site at Capitol Reef National Park44
32. Analysis of variance for effects of sampling method (1-m² quadrats, 10-m² quadrats, and line-
point intercept), observer, and cover category (species ARTR2, BRTE, STC04, and total live
understory canopy cover) on mean arcsin-transformed plant canopy cover values for the
Semidesert Loam (Wyoming Big Sagebrush) ecological site in Dinosaur National Monument44
33. Analysis of variance for effects of sampling method (1-m² quadrats, 10-m² quadrats, and line-
point intercept), observer, and cover category (species CORA, FEOC3, STLO4, and total live
understory canopy cover) on arcsin-transformed means of plant canopy cover for the Semidesert
Shallow Sandy Loam PJ ecological site at Arches and Canyonlands National Parks44
34. Analysis of variance for effects of sampling method (1-m² quadrats, 10-m² quadrats, and line-
point intercept), observer, and cover category (species CEMO2, COWR2, JUOS, and total live
understory canopy cover) on arcsin-transformed means of plant canopy cover for the Upland
Shallow Loam (Pinyon-Utah Juniper) ecological site at Capitol Reef National Park45
35. Analysis of variance for effects of sampling method (1-m² quadrats, 10-m² quadrats, and line-
point intercept), ecological site (BL, LU, LH, LMT, SASL, SL, SShSL, and UShL), and observer on
arcsin-transformed means of litter cover data45

36. Results of Wilcoxon tests evaluating effects of observer on estimates of cover for four types o	of.
soil crust (undifferentiated, dark cyanobacteria, lichen, and moss) sampled with 10-m² quadrats, 1	-
m² quadrats, and line-point intercept techniques at Colorado Plateau ecological sites where	
biological soil crusts were common	.47
37. Results of Wilcoxon tests evaluating effects of observer on estimates of biological soil crust	
cover based on the characterization of soil darkness (see table 10 and fig. 5) in 25 cm x 25 cm BSC	3
frames at Colorado Plateau ecological sites where biological soil crusts were common	.50
38. Results of Wilcoxon tests evaluating effects of observer on estimates of shrub density by	
species and height class at Colorado Plateau ecological sites	.51
39. Results of Wilcoxon tests evaluating effects of observer on estimates of tree density by speci	es
and size class at Colorado Plateau ecological sites	.52
40. Median impact-assessment ratings for procedures at 11 Colorado Plateau ecological sites	.55
41. Median impact-assessment ratings for types of impacts (broken branches, trampled plants,	
destabilized soils, trampled biological soil crusts, and quadrat-frame imprint) in quadrats, on the	
sampled side of the transect tape, and on the unsampled side of the transect tape at 11 Colorado	
Plateau ecological sites	.55
42. Summary of comparisons among cover-sampling techniques in relation to repeatability	
between observers, efficiency, and sampling impacts on soils and vegetation	.56
· · · · · · · · · · · · · · · · · · ·	

Field Evaluations of Sampling Methods for Long-Term Monitoring of Upland Ecosystems on the Colorado Plateau

By Mark E. Miller, Dana L. Witwicki, Rebecca K. Mann, and Nicole J. Tancreto¹

Abstract

To inform planning for long-term ecological monitoring, we sampled vegetation and soilsurface attributes across a range of terrestrial ecosystems (physiognomic types) in seven National Park Service units on the Colorado Plateau. Primary objectives were (1) to evaluate a suite of sampling methods according to measures of repeatability, efficiency, and impacts on plot conditions; and (2) to characterize within- and among-plot variability in monitoring measures. This work was designed to support NPS staff in selecting the combination of methods that best meets their monitoring objectives and resource constraints. We found no differences among cover-estimation techniques in terms of repeatability between observers (measurement precision). Estimates for total live understory canopy cover, cover of individual species, and cover of soil-surface features were highly repeatable between observers for 10-m² quadrats, 1-m² quadrats, and line-point intercept sampling methods. Estimates of shrub and tree density in 10m² quadrats also were repeatable between observers, although sample sizes for were small for many species. At 10 of 11 ecological sites, we found that sampling with 10-m² quadrats was the most efficient cover-estimation technique with respect to within-plot variability in cover estimates and numbers of subsamples required to estimate plot-level cover with 20 percent precision. According to these same measures, sampling with 1-m² quadrats was the least efficient cover-estimation technique at eight of 11 ecological sites. The line-point technique was most efficient at eight of 11 ecological sites in terms of the amount of time required to estimate total plot-level cover with 20 percent precision – largely because 10-m² quadrats were more time consuming and 1-m² quadrats had greater within-plot variability relative to line-point sampling. However, there was no statistical difference among methods with respect to median subsampling times for 20 percent precision. There also were no differences among methods with respect to mean and median measures of among-plot variability in total live understory canopy cover. But among-plot variability was least for the line-point technique at seven of 11 ecological sites. Sampling activities had greatest impacts on plot conditions at macroplots where there was a high degree of cover by biological and physical soil crusts. Of all sampling procedures, 10-m² quadrat sampling, line-point sampling, and gap-intercept sampling had the most impacts on soil conditions due to trampling of soil crusts by the field team.

¹ Authors are Research Ecologist, Plant Ecologist, and Biologist, U.S. Geological Survey, Southwest Biological Science Center; and Data Manager, National Park Service, Southern Colorado Plateau Inventory and Monitoring Network.

Acknowledgments

Funding for this work was provided by the National Park Service (Northern Colorado Plateau and Southern Colorado Plateau Inventory and Monitoring Networks) and the U.S. Geological Survey (Southwest Biological Science Center and the Status and Trends Program). Recommendations from Steve Garman, Lisa Thomas, Chris Lauver, and Thom O'Dell improved the study design. Tonya Troxler assisted with the preparation of tables and figures. Charles Drost and Kathryn Thomas provided review comments that improved the quality of this report.

Introduction and Background

This project involved field evaluations of a limited suite of measures and measurement techniques for long-term monitoring of terrestrial ecosystems characteristic of the Colorado Plateau region. The project was designed to support the Northern and Southern Colorado Plateau Networks (NCPN and SCPN, respectively) of the National Park Service's Inventory and Monitoring Program (NPS I&M Program). In conjunction with the I&M Program, ecoregional networks of NPS units have been charged with the task of identifying "vital signs" to be monitored for the purpose of tracking long-term trends in the "health" or condition of park ecosystems. Collectively, the NCPN and SCPN have identified an integrated suite of vital signs for tracking resource conditions in 35 NPS units located in the Colorado Plateau region of Utah, Arizona, Colorado, and New Mexico. To inform the selection of monitoring methods most suited to NPS monitoring objectives for these parks, the NCPN and SCPN required field evaluations of measures and measurement techniques across the range of ecosystems likely to be monitored.

Following were general objectives of this project.

- 1. Collect and analyze field data to evaluate a limited suite of measures and measurement techniques for their relative suitability in effectively and efficiently meeting NPS monitoring needs across the range of ecosystems likely to be monitored.
- 2. Characterize within- and among-macroplot variability in monitoring measures to inform NPS planning for operational monitoring.
- 3. On the basis of site soil, landscape, and vegetation characteristics, evaluate the accuracy of stratification data used to select field sites for sampling.

This report summarizes data collected during the 2005 field season, emphasizing comparisons among sampling methods in terms of (1) sampling efficiency (defined with respect to time and within- and among-macroplot variability in cover measures), (2) relative trends or differences in cover estimates derived from different sampling methods, (3) between-observer repeatability in measures of cover and density, and (4) sampling impacts on soil and vegetation attributes. In addition, we briefly address issues associated with the accuracy of spatial data used for selecting macroplot locations and challenges associated with data-collection and data-management systems used during the 2005 field season.

Methods

Study Areas

Study areas were selected to sample particular ecological sites² delineated by soil map units in soil surveys produced by the U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS). Target ecological sites were identified jointly by USGS and NPS to represent the range of physiognomic types likely to be included in NCPN and SCPN monitoring plans (table 1). NPS staff subsequently determined coordinates for centroids of macroplots to be sampled during the 2005 season.

Table 1. Ecological sites, associated NRCS soil surveys and soil map units, and macroplots sampled during Phases 2 and 3 of the 2005 field season. (See table 2 for descriptions of sampling phases.)

NRCS ed	cological site)					Location of	macroplot
	Code for	Physiog-	NRCS soil	NRCS			center (NAD83)
	this	nomic	survey area	soil map		Sampling		
Name	project	structure	(citation)	unit	Macroplot	phase	UTM mE	UTM mN
					MEVE1	2	730064	4131866
			CO671	131	MEVE6	3	725179	4127097
Brushy Loam	BL	Shrubland	(NRCS 2001a)		MEVE7	3	723803	4127722
			(**************************************	13	MEVE2	2	729978	4129690
				79	MEVE5	3	724964	4127964
Desert Sand (Sand	DS	Grassland	UT633	80	CANY1	2	611824	4225106
Sagebrush)		Orassiana	(SCS 1991)	00	CANY2b	2	610505	4223529
					WUPA1	2	452750	3936806
Limy Upland, 6-10"			AZ631		WUPA2	2	458382	3937598
pz	LU	Grassland	(SCS 1983)	56	WUPA5	3	457109	3935314
P ²			(666 1666)		WUPA6	3	451957	3934304
					WUPA7	3	452545	3935929
		Forest		53	GRCA3	2	400825	4019411
Loamy Hills, 25-	LH		AZ701	51	GRCA4	2	405721	4009147
33" pz			(NRCS 2003)	31	GRCA6	3	404566	4009215
,			(INKCS 2003)	52	GRCA5	3	403933	4010688
					GRCA7	3	404913	4007824
Loamy Hills, Cold,	LHC	Forest	AZ701	49	GRCA1	2	400496	4021102
25-33" pz	Lio	1 Olest	(NRCS 2003)	53	GRCA2	2	404425	4011908
			CO671 (NRCS 2001a)	111	MEVE3	2	719717	4116890
Loamy Mesa Top	LMT	Woodland		77 76	MEVE4	2	719690	4117457
PJ					MEVE8	3	724589	4117373
1 3					MEVE10	3	723590	4115712
					MEVE9	3	722950	4116950
				200	CARE1	2	475775	4257151
Semidesert Alkali			UT685		CARE2b	2	475612	4257531
Sandy Loam	SASL	Grassland	(NRCS 2004)		CARE5	3	483223	4253447
(Alkali Sacaton)			(NKC3 2004)		CARE6	3	482135	4253991
					CARE7	3	481694	4254064
	SL				DINO1	2	654965	4487760
Semidesert Loam		Shrubland	CO692	1	DINO2b	2	647936	4476988
(Wyoming Big			(NRCS 2001b)		DINO3	3	644018	4483816
Sagebrush)					DINO4b	3	653726	4476991
					DINO5	3	675330	4482005

-

² An *ecological site* is defined as a kind of land with specific physical characteristics which differs from other kinds of land in its ability to produce distinctive kinds and amounts of vegetation and in its response to management (SRM Task Group 1995, Creque et al. 1999). Soil surveys produced by NRCS correlate ecological sites with particular soil series.

Table 1.—Continued

NRCS ecological site						Location of	macroplot				
	Code for	Physiog-	NRCS soil	NRCS			center (NAD83)			
	this	nomic	survey area	soil map		Sampling					
Name	project	structure	(citation)	unit	Macroplot	phase	UTM mE	UTM mN			
					ARCH1b	2	620922	4292242			
			UT624		ARCH2	2	622000	4291604			
Semidesert			(SCS 1989)	51	ARCH3	3	618798	4289007			
Shallow Sandy	SShSL	Shrubland			ARCH4b	3	623265	4285247			
Loam PJ					ARCH5	3	624686	4283478			
			UT633	71	CANY3	2	604432	4259261			
			((SCS 1991)	(SCS 1991)	(SCS 1991)	71	CANY4	2	602370	4255471
Shallow Loamy,	ShL	Grassland	AZ631	61	WUPA3	2	455525	3937298			
10-14" pz	10-14" pz	(SCS 1983)	60	WUPA4	2	463894	3934278				
	UShL	Woodland	UT685 (NRCS 2004)	310	CARE3	2	483656	4224951			
Upland Shallow Loam (Pinyon-					CARE4b	2	483364	4223871			
					CARE10	3	483584	4223149			
Utah Juniper)					CARE8	3	484724	4220446			
					CARE9	3	484314	4220771			

Field Sampling

Sampling Phases

Sampling during the 2005 field season was conducted in three phases (table 2). Following the conclusion of Phase 1, NPS made the decision to use square quadrats during Phase 2 and Phase 3 sampling. Data from Phase 1 are not presented in this report.

Macroplot Characterization and Evaluation

Soil and geomorphic characteristics of all preselected and sampled macroplots were described during Phases 2 and 3 using standard protocols developed by NRCS (Schoeneberger et al. 2002). The purpose of this process was to guide the observers in determining whether soil and landscape characteristics at a given location matched those associated with the target soil and ecological site. Thorough site characterization requires description of soil characteristics through the uppermost 1 m of the soil profile. However, for purposes of this project, site characterization was based only on surface properties. No soil pits were dug or samples collected, though a small amount of topsoil was separated using a #10 sieve in the field to characterize the surface soil texture, effervescence, and size and abundance of rock fragments greater than 2 mm in diameter.

In general, the site characterization process involved describing the soil and site properties of the area associated with the macroplot centroid and spanned by the three 50-m or 70-m transects. The macroplot centroid was located by navigating with a GPS unit to a set of pre-determined, randomly-selected UTM coordinates within the target soil map unit. The aspect and azimuth were also given for the NCPN locations or determined by the field crew for the SCPN locations. If a significant soil or geomorphic boundary crossed the macroplot area, the description was focused on the area in which the centroid itself was located. Characterization was conducted approximately 1-2 m down-slope from the centroid to avoid trampling the area sampled by the middle transect.

There were three possible outcomes of the characterization process. If characterization indicated that the location matched the target ecological site and that all transects occurred on the same soil and geomorphic surface, the area was sampled. If the location did not match the target ecological site or if significant portions of the transects did not all fall on the targeted ecological site, the sampling location was relocated to a nearby area (within 250 m) in the target soil map

unit. After relocation, the same characterization procedure was repeated at the new centroid. If the characterized location did not match the target ecological site and no acceptable location could be found nearby, the sampling crew navigated to a new set of pre-selected coordinates within the ecological site.

Table 2. Phases of sampling conducted during the 2005 field season.

Phase	Objectives	Locations / ecosystems	Timing
Phase 1 – Training and preliminary testing	1. Train team members: safety and first aid, plant and biological-soil-crust identification, soil and site characterization, plot layout, sampling and data-entry procedures. 2. Determine whether square or rectangular quadrats are most repeatable with respect to frequency and density measures and least variable with respect to cover, frequency and density measures. Only one quadrat shape will be carried forth into subsequent phases. 3. Practice line-intercept and line-point sampling. 4. Determine optimal / efficient sequencing of sampling procedures to be used during Phases 2 and 3.	- Bureau of Land Management and Forest Service land vicinity of Moab - Grassland, shrubland, woodland, and forest ecosystems	June
Phase 2 – Over sampling	1. Conduct high-intensity sampling to evaluate variability of measures in relation to sample size: - Line-point sampling for cover and understory canopy height - Quadrat sampling for cover (1-m² and 10-m² quadrats) - Nested-quadrat sampling for frequency - Quadrat sampling for density - NPS units in NCPN and SCPN		July – mid- September
Phase 3 – Repeated sampling	1. Conduct repeat sampling to evaluate repeatability of cover measures obtained through line-point sampling and two methods of quadrat sampling. 2. Sample to evaluate within- and among-site variability in canopy- and basalgap measures, frequency measures, and shrub density measures. 3. Evaluate accuracy of spatial data used for selecting study sites. 4. Time all procedures. 5. Qualitatively evaluate plot impacts associated with different sampling techniques.	- NPS units in NCPN and SCPN - 3 replicate sets of full range of ecosystems	Late- September – mid- November

Macroplot Layout

Prior to the field season, NPS determined that the standard plot layout would consist of a 1-ha macroplot and three 50-m transects separated by 25 m (fig. 1). Transects used during Phases 1 and 2 were 70-m long to accommodate a larger number of subsamples per macroplot (figs. 2 and 3). During Phase 3, 50-m transects were used (fig. 3). Transects were marked temporarily with a 50-m tape and pin flags, but were not permanently marked. Transects were used for gap intercept and line-point intercept sampling, and for guiding the placement of quadrats used for sampling cover, frequency, and density. Transects were oriented parallel to the

hillslope contour to minimize potential effects of linear soil disturbances on hillslope hydrologic processes. Field observers traversed the down-slope side of the transect when sampling.

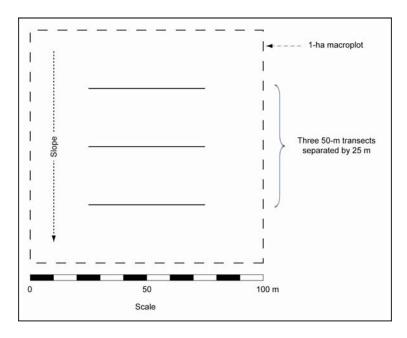
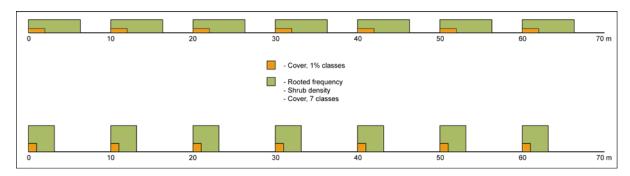



Figure 1. Standard macroplot and transect layout used during the 2005 field season.

Figure 2. Transect layouts used for comparing repeatability and efficiency of square and rectangular quadrats during Phase 1 sampling.

The method of laying out the transect lines was standardized for all three Phases. The tape was generally stretched taut and anchored at both ends with a steel pin. The tape was also anchored in the middle if necessitated by windy conditions or uneven terrain. Where significant topography (e.g., hills, ditches) crossed the transect line, the tape was pinned down to maintain a relatively even tape height as the terrain rose and fell beneath it and to ensure that it could be replaced in nearly the same position. During Phases 1 and 3, pin flags also were placed precisely at the start, middle, and end points of the transect line to ensure repeatability when the tape was pulled and replaced (under the assumption that transects will be permanently marked during operational monitoring). After tape placement and photographic documentation, the general sequence of sampling events was line-point intercept sampling, gap-intercept sampling, then quadrat-based sampling. Gap sampling was not conducted during Phase 3.

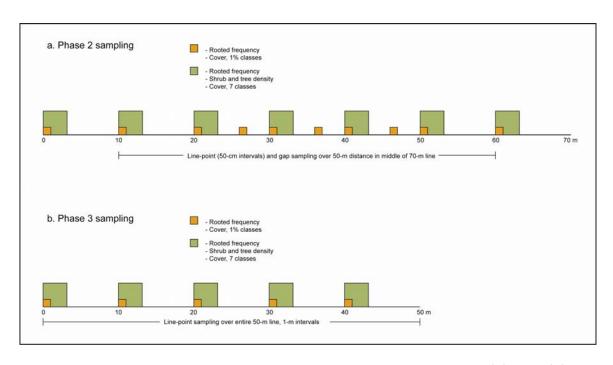


Figure 3. Transect lengths and types of sampling conducted during Phases 2 (a) and 3 (b).

During Phase 3, the transect tape was removed and then replaced between repeat sampling events by different observers. An exception to this practice was made at the Mesa Verde Brushy Loam and Loamy Mesa Top PJ ecological sites (macroplots MEVE5 – MEVE10). The transect tape was not removed and replaced between repeat sampling events at these sites because dense shrubs made the process exceptionally time-consuming.

For visual documentation of site characteristics and vegetation, a set of digital photographs was taken of each transect sampled during the course of the 2005 field season. After a transect line was placed and prior to sampling, a photoboard was placed at the 0-m mark, facing away from the transect line. One or two photographs were taken looking along the transect (towards the endpoint), from eye-level (1.5 - 2 m from the ground) at a vantage point located 5 m from the photoboard. If vegetation or topography prevented a 5-m distance, the photograph was taken as close as possible to 5-m mark and the actual distance was recorded. All photographs were taken with a Nikon Coolpix 4500 camera (4.0 megapixels). The first photograph was taken with no zoom. If a second was taken, the view was zoomed in to include just enough vertical scope to see the start and endpoints of the transect with no extra landscape. Photographs from the following transects were lost or not taken: BLM3-3, ARCH1-3, MEVE1-2, MEVE2-1, CANY3-2, CARE4-1, WUPA4-2, GRCA2-2, GRCA2-3, GRCA3-3. Additional photographs were taken at selected macroplots to document sampling impacts.

Line-Point Intercept Sampling

Line-point intercept sampling was used to estimate the cover of understory vegetation and soil-surface features. Methods generally followed those described by Herrick et al. (2005; hereafter referred to as the "Jornada manual"). Points were sampled over a 50-m span of each transect at 50-cm intervals during Phase 2 and 1-m intervals during Phase 3. At each sampling point, a 1-mm diameter, 90-cm long metal pin was placed by dropping it from breast height. Measures identified in table 3 were recorded on the basis of pin contacts at each placement. Data

were read from the top of the pin down and each species or other measure was only recorded once no matter how many times it intercepted the pin. Each plant hit was recorded by species as live photosynthetic, live non-photosynthetic, or standing dead (see definitions in table 4). Where cover occurred above the height of the pin (but less than 2 m) the point was projected upward to describe those hits. Likewise, if the pin struck a woody stem above ground level, the pin was held in position, the woody stem hit was recorded, and the point was then projected downward to describe the other hits below, including the soil-surface hit. The height of the uppermost canopy hit was measured from ground level using a vertical measuring tape placed next to the pin.

Table 3. Measures recorded during line-point intercept sampling.

Line-point intercept measures			
Canopy cover %, live photosynthetic vascular plant tissue by species (understory shrubs and herbaceous)			
Canopy cover %, live <i>non</i> -photosynthetic vascular plant tissue by species (understory shrubs and herbaceous)			
Basal cover % by vascular plant species (all taxa)			
Cover %, standing dead vascular plants by species (all taxa)			
Overstory canopy cover %			
Cover %, biological soil crust by functional / morphological group (dark cyanobacteria, moss and lichen)			
Litter % (< 2.5 cm			
Woody debris % (> 2.5 cm)			
Animal scat %			
Rock % by size class (< 20 mm in diameter, or > 20 mm in diameter)			
Bare soil %, undifferentiated crust			
Bare soil %, loose sediment			
Soil-surface disturbance %, coded by type (e.g., ant mound, wildlife excavation, ungulate hoof print, human footprint)			
Canopy height cm, uppermost understory intercept			

Occurrences of soil-surface disturbances and soil crusts also were recorded during line-point intercept sampling. Soil-surface disturbances were described on the basis of nine categories (table 5). Soil crusts were described on the basis of four categories (table 6).

Table 4. Definitions of plant material and plant status.

Term	Definition		
Duff	Partially decomposed plant litter. It consists of decomposing leaves and other organic material (from Herrick et al. 2005).		
Litter	The top layer of the forest, shrubland, or grassland floor, directly above the duff layer, including freshly fallen leaves, needles, bark flakes, cone scales, fruits (including acorns and cones), dead matted grass and other vegetative parts that are little altered in structure by decomposition. Does not include larger twigs and stems > 2.5 cm in diameter.		
Woody debris	Any woody material larger than 2.5 cm in diameter.		
Live, photosynthetic plants	Plant material still attached to a rooted plant that is live and actively photosynthetic. This includes all green plant parts.		
Live, non-photosynthetic plants Plant material still attached to a rooted plant that is not live and actively photosynthetic. includes non-photosynthetic tissues such as woody stems and flowers, as well as plant that were live and photosynthetic in current growing season, but senesced after spring and now appear brown.			
Standing dead plants	Dead plant material still attached to a rooted plant. All standing dead vegetation produced in previous (not the current) growing season(s) not in contact with the soil surface.		

Table 5. Categories of soil-surface disturbances described during line-point sampling and quadrat sampling.

Soil disturbance	Description
Undifferentiated disturbance	A disturbance with indeterminate origin
Ant mound	Holes and mounds caused by ants
Wildlife excavation	Holes and mounds caused by animals
Wildlife track	Any noticeable tracks, marks, or trails left by animals passing through the area
Livestock track/trail	Any noticeable tracks, marks, or trails left by livestock passing through the area
Human track/trail	Any noticeable tracks, marks, or trails left by humans passing through the area
Bicycle	Disturbances caused by bicycles
Motor vehicle	Disturbances caused by any motor vehicle
Other anthropogenic	Human-caused surface disturbance not defined by other categories

Table 6. Soil crust categories used during line-point sampling and quadrat sampling.

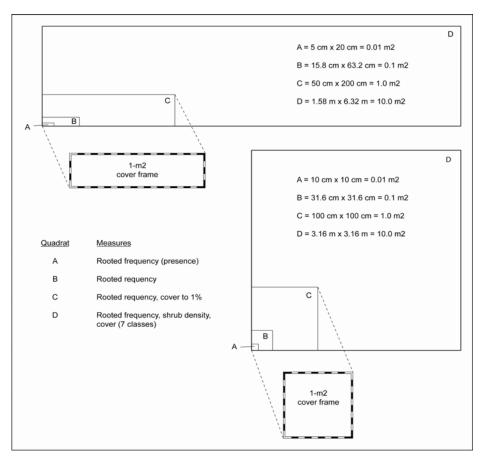
Category	Definition
Undifferentiated	Physical crust and/or weak cyanobacterial crust; may be characterized by slight
crust	microtopographic development
Cyanobacteria	Soil obviously darkened by cyanobacteria; usually with significant microtopographic development
Lichen	Any species, morphological type, or color
Moss	Any species, morphological type, or color

Where cover occurred greater than 2 m above the ground (e.g., Brushy Loam and Loamy Mesa Top PJ ecological sites in Mesa Verde, Loamy Hills and Loamy Hills, Cold, ecological sites in Grand Canyon, and the Upland Shallow Loam ecological site in Capitol Reef), a canopy densitometer (Geographic Resource Solutions, http://www.grsgis.com/densitometer/) was used to estimate overstory canopy cover. The densitometer was placed directly over the dropped pin and held level with the use of leveling bubbles embedded in the sampling device. The device uses mirrors and aligning rings to direct the user's line of sight directly upward from where it was held. Species observed through the densitometer were recorded as overstory hits. All overstory layers detected through the viewer were reported. The plant status of all overstory layers was recorded as seen through the densitometer, rather than attempting to estimate plant status as it would be at the topmost portion of the hit. Height of the top-most species was not measured when an overstory layer was present at the point.

During Phase 3, wind speed was measured with a hand-held anemometer at the beginning and end of each line-point sampling event by different observers. These data were collected to evaluate whether between-observer repeatability of cover estimates from line-point sampling was affected by wind speed.

Gap-Intercept Sampling

During Phase 2, a line-intercept sampling method was used to collect data describing the size-class distribution of gaps between plant bases (basal gap sampling) and between plant canopies (canopy gap sampling). Methods and definitions followed those outlined in the Jornada manual (table 7), with one modification. For canopy gaps, the Jornada method was modified to record three distinct classes along the line: shrub (woody canopies < 2 m tall), other vegetation, and canopy gap. Other vegetation included all suffrutescent and herbaceous species except for annual forbs. All attached plant material was counted as canopy regardless of live or dead status.


Table 7. Definitions used for gap-intercept sampling (from Herrick et al. 2005).

Term	Definition
Plant canopy	Canopy is recorded any time 50% or more of any 3-cm segment of tape intercepts live or dead plant canopy (above-ground plant parts) based on a vertical projection from canopy to ground.
Plant base	Any plant stem emerging from the soil surface along the graduated edge of the tape that would force an ant walking along the line on the soil to step off the line to get around it (minimum diameter of base = 1 mm).
Canopy gap	Gap occurs any time there is at least 20 cm without plant canopy.
Basal gap	Gap occurs any time there is at least 20 cm without a plant base.

Quadrat Sampling

Quadrat sampling was conducted during all three phases of the project to estimate frequency and cover of understory vegetation and soil-surface features, and to estimate density of selected woody species. Quadrats consisted of nested frames measuring 0.01 m², 0.1 m², 1 m², and 10 m² in area (fig. 4). The 1-m² quadrat frame was constructed of half-inch PVC pipe and marked on all sides with tape to demarcate 10-cm increments. Colored-tape bands on the 1-m² frame marked the corners of the 0.01-m² and 0.1-m² quadrats. Rope and steel pins were used to lay out the 10-m² frame. During all sampling phases, rooted frequency of vascular plants and

occurrence frequency of biological soil crusts (table 6), soil-disturbance features (table 5), and scat (wildlife vs. livestock) were recorded at every level of nested quadrats. Frequency sampling was followed by cover sampling in the 1-m² quadrat (to nearest 1 percent) and then by cover sampling in the 10-m² quadrat (by seven cover classes; table 8). For quadrat sampling, estimates of vegetation cover were restricted to live foliar cover of understory vegetation less than 2 m tall.

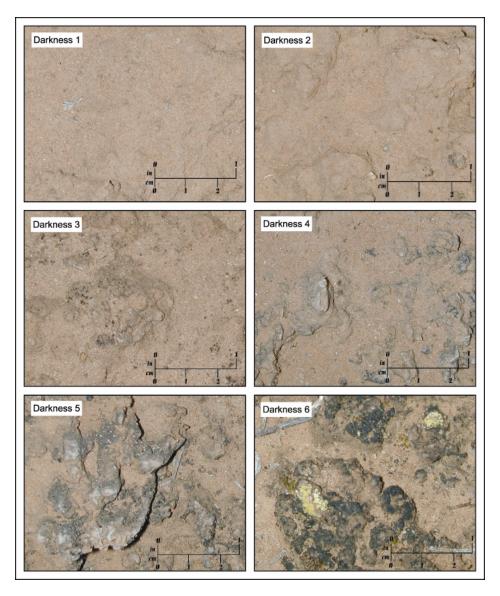
Figure 4. Dimensions of square and rectangular nested quadrats that were evaluated during Phase 1, and of square quadrats that were used during Phases 2 and 3.

Table 8. Cover-class scale used to estimate cover in 10-m² quadrats.

Cover class	Range of cover (%)	Class midpoints (%)
1	<1	0.5
2	1-5	3.0
3	5-10	7.5
4	10-25	17.5
5	25-50	37.5
6	50-75	62.5
7	75-100	87.5

After cover sampling, densities of selected woody species were estimated in the 10-m² quadrats. During site characterization and prior to sampling the macroplot, the dominant shrubs and trees to be counted for density were determined. *Quercus gambelii* and *Juniperus osteosperma* existed in both shrub and tree growth forms across ecological sites but were consistently counted as trees. During sampling, individual plants were counted only if stems

were at least halfway rooted in the quadrat (as for rooted frequency). For plants with multiple stems, individuals were counted only if at least one stem and half of the canopy were located within the quadrat. Individuals were categorized by size class (table 9). Some species, especially the shrubs *Artemisia tridentata* and *Coleogyne ramosissima*, showed evidence of multiple stems (sometimes due to burial of plant bases by eolian sand), making it difficult to discern true individuals. In such cases, we applied the rule that if two stems were less than 25 cm apart, they would be identified as a single counting unit, unless it was readily apparent that the stems originated from separate individuals, such as small seedlings sprouting near a larger shrub.


Table 9. Size classes used for recording shrub and tree density (dbh = diameter at breast height; drc = diameter at root crown). Tree size classes follow those used by the National Park Service fire program (NPS 2003).

Shrub	Tree					
height classes	Class	Criteria				
< 10 cm	Soodling	< 1.37 m tall OR < 2.5				
10 - 25 cm	Seedling	cm dbh / drc				
25 - 50 cm	Pole	>= 1.37 m tall AND				
50 cm – 1 m	Fole	2.5 - 15 cm dbh / drc				
1 - 2 m	Overstory	dbh / drc > 15 cm				
> 2 m	Overstory	abii / aic > 15 ciii				

After a transect was completed for 1-m² and 10-m² quadrat sampling, an additional technique was used to estimate the cover and development of biological soil crusts (BSCs) on the basis of relative soil darkness. A 25 cm x 25 cm frame (hereafter referred to as a BSC frame) was placed adjacent to the transect tape at 2-m intervals and the predominant soil-surface cover (excluding litter and plant bases) was assigned one of seven soil-surface categories (table 10) and an ordinal cover class (table 8). A photographic key (fig. 5) was used as an aid in characterizing the relative darkness of crusted soils. This technique was used at all ecological sites where biological soil crusts were common (all macroplots excluding those associated with Brushy Loam, Limy Upland, Shallow Loamy, Loamy Hills, and Loamy Hills, Cold, ecological sites).

Table 10. Soil-surface categories used for estimating cover and development of biological soil crusts in 25 cm x 25 cm quadrats on the basis of relative soil darkness. Darkness categories for crusted soils are illustrated in figure 5.

Uncrusted or crusted soil	Soil-surface category
Uncrusted	Bare soil (loose sediment)
	Darkness 1
	Darkness 2
Crusted	Darkness 3
Crusted	Darkness 4
	Darkness 5
	Darkness 6

Figure 5. Photographic key to soil-surface categories used for describing degrees of biological soil crust development on the basis of relative soil darkness (J. Belnap, unpublished).

Documentation of Unknown Species

Field observers were challenged by the need to become familiar with the flora of a broad range of ecological sites. For purposes of consistency in describing the identity of unknown taxa over the course of the season, small specimens of unknown taxa were collected at each park and labeled with standardized codes (see Appendix A). These specimens were used throughout Phases 2 and 3 to ensure that the same taxa were not described by different identification codes.

Assessment of Sampling Impacts

After all sampling procedures were completed at a macroplot location, the field team used a standard protocol to assess types and degrees of sampling impacts on soil and vegetation.

The intent of the assessment was to provide information to allow an evaluation of the relative significance of adverse sampling impacts among ecological sites and sampling procedures.

To document impacts caused directly by the overall sampling process, a set of specific observer-caused impacts was assessed. The impacts were assigned a rating according to the degree to which they occurred on the unsampled side of the transect tape, on the sampled side of the transect (but outside of the quadrats), and within the quadrats specifically. Possible ratings ranged from none (no impact caused from specified factor) to high (specified factor having an extreme impact on the site). An evaluation matrix was constructed to aid in this process (table 11). Observer-caused impacts included trampled biological soil crusts (referring only to crusts exhibiting dark cyanobacteria, soil lichens, and mosses), trampled plants, broken branches, destabilized soils (referring to undifferentiated soil crust and bare, loose soil), and quadrat imprints.

Each particular sampling procedure (table 12) also was evaluated to determine the direct causes of the sampling impacts. In this evaluation, a relative degree of responsibility for the adverse impacts that occurred on a site (all impacts combined) was assigned for each sampling procedure. The degree of responsibility again ranged from none to high (table 13). For example, if trampling impacts were rated as extreme, the relative significance of the different sampling procedures as contributors to the extreme degree of trampling on the site was determined.

The final step of the impact-assessment process was to document species affected by the sampling process. If individuals of certain plant species appeared to have been particularly impacted by trampling or breaking of branches, they were identified in the data-entry table.

Date Entry and Management

Database Design

To house and manage data collected throughout the course of the project, the NPS SCPN data-management team developed a database using Microsoft Access software and partnered with USGS to develop data-management protocols and provide ongoing technical support. To facilitate timely incorporation of field data into the database, data were recorded electronically in the field with a Panasonic Toughbook 01 Pocket PC and collected into a Microsoft PocketAccess database, operated in conjunction with Sprint DB Pro interface software.

Field Procedures

Field data collection involved entering data into each of several component database tables, including electronic forms for location definition, site characterization, point-intercept data, frequency data, quadrat-based cover data, and density data. Reference tables were generated for each park in the form of pick lists, based on NPS Inventory and Monitoring species lists. Species encountered during field work were drawn from these pick lists; those species not appearing on the lists and unidentifiable species were given a code name based on the park in which they occurred, a series number, and brief descriptors. Each primary event table contained a start and stop time function allowing for the timing of all data-collection processes. The tables also displayed the collected data immediately, making it available for editing if necessary. The database was backed up several times throughout a day onto an external storage card using SunnySoft Backup Manager software. On the occasion that the database was unavailable or when programming errors prevented the use of the database, the field crew recorded data onto equivalent paper forms and later transferred the data to a corrected database.

Table 11. Evaluation matrix for rating sampling impacts, considering the entire macroplot visit and all sampling procedures combined (BSCs = biological soil crusts).

				Degre	ee of impact			
Sampling				Slight to		Moderate		
impact	Comments	None	Slight	moderate	Moderate	to extreme	Extreme	
Trampled BSCs	Refers to trampling impacts on dark cyanobacteria, soil lichens, and/or soil mosses. Impacts to undifferentiated crusts are evaluated under "destabilized soils." If BSCs are trampled, soils also are destabilized. The opposite is not necessarily true.	No BSCs were trampled (or no BSCs on site)	Some trampling impacts occurred, but impacts were very slight because BSCs were relatively uncommon on site or it was otherwise possible to avoid trampling them. OR there appeared to be no long-lasting damage.	Intermediate	Trampling of well-developed BSCs was unavoidable in some portions of the site, resulting in significant and persistent damage – but extent of this damage was limited to about half of initial footprints. Subsequent steps in same location may have had less impact because the damage already was done.	Intermediate	Well-developed BSCs were abundant on the site and it was impossible to avoid trampling them. Trampling resulted in significant, persistent damage to BSCs along all three transects. (Envision persistent damage with nearly every initial step taken on the site. Subsequent steps in same location may have had less impact because the damage already was done.)	
Trampled plants	Refers to plant impacts attributable to feet, whether they are stepped upon (truly trampled) or kicked. Plant impacts attributable to frame placement are also included, if these are somehow analogous to trampling. Emphasis is on lasting impacts to plant performance (e.g., stem die-back, lost photosynthetic area, damaged reproductive structures.)	No plants were trampled	Plants were trampled, but probably had no lasting impacts on plant performance OR, a very small number of plants were trampled to the degree that there might have been lasting impacts on plant performance.	Intermediate	Many plants were trampled (impossible to avoid), and about half of trampling events probably resulted in lasting impacts on plant performance. OR trampling of plants was somewhat common (not ubiquitous) and probably resulted in lasting impacts on plant performance in most cases.	Intermediate	Many plants were trampled throughout the site (nearly impossible to avoid continuous trampling), AND trampling likely had lasting impacts on plant performance in most cases.	

Table 11.—Continued

				Degre	ee of impact		
Sampling impact	Comments	None	Slight	Slight to moderate	Moderate	Moderate to extreme	Extreme
Broken branches	Plant impacts attributable to body movement beneath or between branches of woody plants – e.g., fighting your way through dense shrubs, sapling trees, or low-hanging branches. Emphasis is on lasting impacts to plant performance (e.g., stem die-back, lost photosynthetic area, damaged reproductive structures.)	No branches were broken	Branches were broken, but probably had no lasting impacts on plant performance. OR, a very small number of branches were broken to the degree that there might have been lasting impacts on plant performance.	Intermediate	Many branches were broken (impossible to avoid), and about half of events probably resulted in lasting impacts on plant performance. OR broken branches were somewhat common (not ubiquitous) and probably resulted in lasting impacts on plant performance in most cases.	Intermediate	Many branches were broken throughout the site (nearly impossible to avoid continuous breaking), AND likely had lasting impacts on plant performance in most cases.

Table 12. Explanations of sampling procedures for purposes of impact assessment.

Sampling procedure	Comments
Travel to macroplot	Refers to the overland trek to the macroplot
Site characterization	Refers to all activities associated with site characterization, including texturing soil etc.
Plot establishment	Refers to activities associated with laying out transects – e.g., locating endpoints and centers of transects, laying out the transect tape.
1-m ² quadrat sampling	Refers to placement and sampling of 1-m ² quadrats for frequency and cover, as well as to moving the quadrat frame from one location to the next down the transect.
10-m ² quadrat sampling	Refers to placement and sampling of 10-m ² quadrats for frequency, cover and density, as well as to moving the quadrat frame from one location to the next down the transect.
Line-point intercept sampling	Refers to point sampling along the transect – e.g., placing the pin, measuring intercept heights, and walking the transect.
Gap-intercept sampling	Refers to sampling canopy and basal gaps along line-intercept transect.
Pin placement	Refers to staking of tape and 10-m² quadrat frames with <u>chaining</u> pins
Cumulative travel on line	Refers to impacts associated with repeated, cumulative travel up and down the transect line for all sampling procedures combined.

 Table 13.
 Impact-assessment ratings for individual sampling procedures.

Degree of responsibility foroverall impacts on a site								
	Slight to Modera							
None	Slight	moderate	Moderate	high	High			
No observable impact attributable to this procedure	Some impacts were attributable to this procedure, but it had a slight impact overall.	Intermediate	This procedure was responsible for a significant degree of impact on this site. It was not the primary contributor to extreme impacts, but it may have been the primary contributor to moderate impacts.	Intermediate	This procedure was the primary contributor to extreme impacts.			

Office Procedures

Upon return to the office following each data-collection trip, the PocketAccess database was synchronized or transferred from the Pocket PC to a desktop computer and converted to an Access database using Microsoft ActiveSync software. A cradle or a direct line connected the Pocket PC to the computer. During Phase 3, a separate database was created for each park visit to minimize file sizes and data-transfer times. These visit-specific databases were then integrated into the single master Access database after every trip. After each data collection Phase, the data were reviewed using standardized quality control and quality assurance methods. A thorough quality check was conducted at the end of the field season and queries were developed to generate data tables for use in statistical analyses and summarization.

Data Analyses

Data were summarized and analyzed to evaluate how sampling efficiency (sampling times, within- and among-plot variability in cover estimates, and measures of community composition), selected cover estimates, and repeatability (measurement precision) differed among sampling techniques and ecological sites. Unless specified otherwise, all statistical analyses were performed with Statistica v.6.1 (Statsoft, Inc. 2004) for Windows, and p-values \leq 0.05 were considered statistically significant.

Sampling Efficiency

As a standardized measure of variability, the coefficient of variation (CV) was used as a primary metric for describing and comparing within- and among-plot variability in cover estimates provided by different sampling techniques:

CV = 100 * (sample standard deviation / sample mean)

Analysis of variance (ANOVA; Zar 1999) was used to evaluate effects of ecological site, cover category (total live understory canopy, individual species, and soil-surface features), and sampling method on log-transformed CV values (using the natural log, ln) describing within-macroplot variability and among-plot variability. Tukey's honestly significant difference (HSD) post-hoc test was used to evaluate differences among treatments with significant main effects (Zar 1999). In addition, multiple regression techniques (Zar 1999) were used to evaluate the significance of subsample size, frequency, and mean within-plot cover values as predictors of log-transformed CV values provided by different sampling techniques.

The relative efficiency of different sampling techniques also was evaluated by comparing numbers of subsamples and samples required for estimating within- and among-plot mean cover values with 10 and 20 percent precision. For these analyses, we define *estimation precision* as one-half the width of the 95 percent confidence interval for the mean, expressed as a percentage of the mean. Sample-size estimates were calculated using the software package PASS (Power and Sample Size; NCSS, Kaysville, Utah, http://www.ncss.com/). Data for mean sampling times (minutes per quadrat for 1-m² and 10-m² quadrats; minutes per 10-pt group for line-point intercept sampling) by ecological site were used to estimate amounts of time required for different sampling techniques to achieve 10 and 20 percent precision in within-plot cover estimates. Non-parametric Kruskal-Wallis analyses (Zar 1999) were used to test null hypotheses of no differences among median numbers of subsamples and among median numbers of hours

required for different sampling methods to estimate mean within-plot cover values and amongplot cover values with 20 percent precision. Kruskal-Wallis analyses also were used to test null hypotheses of no difference among median ratios of within-to-among macroplot variability (based on log-transformed CV values) for cover estimates provided by different sampling techniques.

Finally, 10-m² and 1-m² quadrat sampling techniques were compared on the basis of species-area curves, compositional curves, and numbers of vascular plant species (richness) detected per macroplot. Mean species-area and compositional curves were developed on an ecological-site basis using the software package PCORD v.4.34 (McCune and Mefford 1999). Species-area curves describe how mean numbers of unique species detected increase with increasing numbers of subsample quadrats. Compositional curves describe how increasing numbers of subsamples cause mean estimates of community composition to change in relation to community composition quantified on the basis of the full set of subsamples. For this particular analysis, community dissimilarity was described on the basis of Sørensen's distance index (McCune and Grace 2002). ANOVA was used to evaluate effects of ecological site and quadrat size on log-transformed species-richness values (natural log transformation) for macroplots sampled during Phase 3. This analysis was repeated after excluding from the 10-m² data those species that occurred in only one 10-m² quadrat at a given macroplot. The intent of this approach was to determine whether effects of quadrat size on species-richness estimates could be accounted for solely by low-frequency species detected in 10-m² quadrats.

Among-Method Trends in Cover Estimates

Data collected during this study could not be used to evaluate the accuracy of cover estimates provided by different sampling methods because true cover values were not determined. Nevertheless, we analyzed cover data to evaluate whether there were any relative trends in cover estimates provided by the different methods. ANOVA techniques were used to evaluate effects of ecological site and sampling method on estimates of total live understory canopy cover and cover of selected soil-surface features. For these analyses, means were standardized by calculating the ratio of the observed mean value for a particular sampling method and cover measure to the among-method mean value for the same measure.

Repeatability

The main focus of the repeatability analysis was to evaluate between-observer repeatability (measurement precision) of different sampling methods, and to assess whether repeatability of methods varied among ecological sites or types of measures (e.g., total plant cover, individual species cover, surface-feature cover, and density). Data were separated into four types: canopy cover, soil crust cover, other surface cover, and shrub and tree density. Cover and density were summarized for each transect sampled during Phase 3 (n = 9 transects for each ecological site). All data were analyzed separately for each ecological site unless otherwise noted.

For each ecological site, a factorial ANOVA was used to evaluate effects of observer and sampling method on litter cover, total live understory canopy cover, and cover of three dominant plant species. Data were arcsine-square-root (arcsin) transformed to improve normality and variance, assumptions of parametric statistics. The lack of normality in the distribution of soil crust data could not be corrected with the arcsin transformation. Therefore, non-parametric Wilcoxon paired-sample tests (Zar 1999) were performed for each soil crust type (undifferentiated crust, cyanobacteria, lichen, and moss) to evaluate effects of observer on cover

estimates derived from 1-m² quadrats, 10-m² quadrats, and line-point intercept transects. Wilcoxon tests also were used to evaluate effects of observer on estimates of biological soil crust cover using the BSC frame (table 10 and fig. 5). For shrub and tree density, Wilcoxon tests evaluated effects of observer on mean counts per quadrat for each size class of each species across all ecological sites combined.

To evaluate effects of wind on repeatability of line-point intercept canopy cover, absolute differences between observers' cover estimates were regressed on average wind speeds for both observers combined. Separate regression analyses were performed for woody plants and for herbaceous plants.

Sampling Impacts

Sampling impacts on plot conditions were evaluated on the basis of numeric scores assigned to qualitative impact ratings (0 = none, 1 = slight, 2 = slight to moderate, 3 = moderate, 4 = moderate to extreme, 5 = extreme). Kruskal-Wallis tests were used to determine differences in impact ratings (1) among sampling procedures, (2) among ecological sites, and (3) among unsampled and sampled sides of the transect and within quadrats.

Results

Macroplot Characterization and Evaluation

Based on the macroplot characterization process, 15 of the total 48 sampled macroplots were relocated away from the predetermined centroids provided by NPS (table 14). Ten macroplots were relocated due to being located on or near the wrong soil and ecological site. Of the ten, only one macroplot (DINO2b) had to be moved to an entirely new set of coordinates because the target soil and ecological site were nowhere in the area. All other macroplots were close enough to the target soil and ecological site that they were shifted to a nearby location. Seven macroplots were shifted due to a physical barrier (two predetermined centroids were both on the wrong soil and too close to a physical barrier). Physical barriers primarily included roads and steep cliff bands. In one case, the centroid was located within a paved campground.

The field team found that it was relatively straightforward to evaluate soil and ecological site characteristics on the basis of observable field attributes in most cases. The most difficult locations to assess were at Wupatki National Monument, where soil depth was a key attribute for distinguishing ecological sites. This attribute could not be evaluated on the basis of surface features alone. Although the field team was able to successfully evaluate site characteristics in most cases, they would have benefited from additional training and experience in soil-geomorphic concepts underlying the notion of ecological sites. In some cases, decisions to relocate macroplots may have been based on excessive reliance on vegetation characteristics rather than on soil-geomorphic characteristics.

Table 14. Summary of macroplots that were relocated following site characterization and prior to sampling.

Ecological site	Macroplot	Reason for relocation	Details
Desert Sand (Sand Sagebrush)	CANY2b	Close to wrong soil type, which was influenced by alluvial groundwater	Plot moved farther away from Salt Creek to avoid influence of ground water on vegetation composition.
Limy Upland, 6-10"	WUPA1	Wrong soil type	Plot shifted about 100 m further down the valley because the original point crossed a cliff band.
pz	WUPA2	Wrong soil type	Plot moved to a location about 100 m into the valley to avoid including shallow soils in the macroplot.
Loamy Hills, 25-33" pz	GRCA7	Physical barrier: on the road	The predetermined centroid was located at a campsite so the plot was shifted about 100 m away to be just outside the campground.
Semidesert Alkali	CARE1	Close to wrong soil type	Plot moved to avoid proximity to rocky hillslope.
Sandy Loam (Alkali Sacaton)	CARE2b	Close to wrong soil type (drainage)	Plot moved about 100 m south to avoid crossing a large wash.
	DINO1	Physical barrier: on the road	This plot was shifted about 50 m to avoid sampling on top of the road.
Semidesert Loam	DINO2b	Wrong soil type and on the road	Original plot location appeared to be in the wrong soil type. A new location was selected to avoid sampling on a road.
(Wyoming Big Sagebrush)	DINO4b	Wrong soil type	Plot location moved downslope away from edge of soil map unit. Outside of the map unit, the soil appeared to be too gravelly and the vegetation exhibited no remnant sagebrush (the target vegetation).
	DINO5	Wrong soil type	Centroid was located in a gully, right at the edge of a different soil map unit, so the macroplot was relocated on a sagebrush- dominated bench, about 50 m to the east.
	ARCH1b	Wrong soil type	Soil at predetermined location was much too deep.
Semidesert Shallow Sandy Loam PJ	ARCH4b	Wrong soil type and on the road	Original location was on road and in wrong soil type. Centroid shifted nearby to correct soil type off of road.
	CANY4	Physical barrier: too close to cliff	Plot was moved further from the cliff edge.
Upland Shallow Loam (Pinyon-Utah	CARE4b	Physical barrier: too close to cliff	Plot location was moved up and out of the canyon to avoid 2 cliffbands.
Juniper)	CARE9	Physical barrier: too close to cliff	Shifted the plot location about 15 m upslope to avoid sampling on the cliff.

Prior to the field season, NCPN staff provided predetermined transect orientations based on analyses of digital elevation models (DEMs). As intended, these generally aligned with hillslope contours observed in the field. However, some differences occurred between the predetermined orientations and those based on field observations of aspect and contour – probably because the scale of topographic variation in the field was finer than that depicted in DEMs. An extreme example of this difference could be seen at macroplot CARE7, where the predetermined aspect was oriented down a large valley slope whereas the ground-level aspect appeared to follow the slope along the side of the valley wall.

Sampling Efficiency

Sampling Times

Across all ecological sites, the mean amount of time required for setting up and reading frequency and cover in 10-m^2 quadrats (8.2 min per quadrat) was approximately twice that

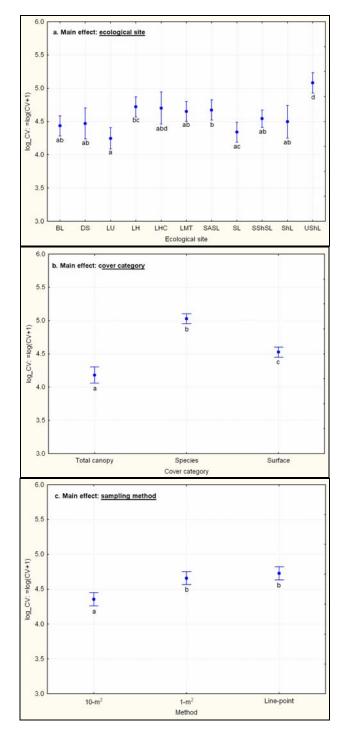
Table 15. Mean times for setting up and reading frequency (freq), cover (cov), and density (dens) in 1-m² and 10-m² quadrats. Set-up times for 1-m² quadrats were not measured but are estimated here for comparative purposes. Data do not include time required for transect layout.

	Mean times by ecological site (min per quadrat)										
	No. of	1-m ² quadrats			10-m ² quadrats						
	macro-	Set-up	Freq	Cov	Total	Set-up	Freq	Cov	Total	Dens	Total
Ecological site	plots	(s)	(f)*	(c)	(s+f+c)	(s)	(f)*	(c)	(s+f+c)	(d)	(s+f+c+d)
Brushy Loam	5	1.0	2.2	2.3	5.5	3.9	5.6	2.8	12.3	2.7	15.0
Desert Sand (Sand Sagebrush)	2	0.5	1.9	2.2	4.6	2.3	3.9	2.6	8.8	0.3	9.1
Limy Upland, 6-10" pz	5	0.5	1.2	2.0	3.7	2.0	3.0	2.3	7.3	0.3	7.6
Loamy Hills, 25-33" pz	5	0.5	0.8	1.5	4.1	2.4	2.5	2.0	8.9	0.7	10.8
Loamy Hills, Cold, 25-33" pz	2	0.5	1.4	2.2	2.8	2.8	3.9	2.6	7.3	1.9	8.0
Loamy Mesa Top PJ	5	0.5	1.1	1.9	3.5	3.3	3.1	2.2	8.6	0.9	9.5
Semidesert Alkali Sandy Loam (Alkali Sacaton)	5	0.5	1.9	2.0	4.4	1.8	4.6	2.4	8.8	0.9	9.7
Semidesert Loam (Wyoming Big Sagebrush)	5	0.5	1.9	2.4	4.8	2.1	3.9	2.5	8.4	2.4	10.9
Semidesert Shallow Sandy Loam (PJ)	7	0.5	1.4	1.9	3.8	2.5	3.3	2.0	7.9	1.2	9.1
Shallow Loamy, 10-14" pz	2	0.5	1.1	1.7	3.4	2.2	2.4	2.0	6.5	0.2	6.7
Upland Shallow Loam (Pinyon-Utah Juniper)	5	0.5	0.5	1.7	2.8	2.3	1.5	1.5	5.3	0.3	5.6
Mean		0.55	1.40	1.98	3.93	2.51	3.43	2.26	8.20	1.08	9.28
sd		0.15	0.53	0.26	0.84	0.62	1.14	0.36	1.77	0.89	2.49
CV		27.64	38.09	13.06	21.31	24.87	33.17	16.10	21.62	82.11	26.88

^{*} includes time to read frequency in nested smaller quadrats

Table 16. Mean times for sampling line-point intercept transects, basal- and canopy-gaps transects, and biological soil crust (BSC) frames. Data do not include time required for transect layout. Sites identified in bold italics are those where line-point intercepts were used to estimate cover of overstory vegetation above 2-m in height, in addition to understory vegetation and soil-surface features.

	Line-point	intercept	Basal and	canopy gaps	BSC fi	rames
		Min per 10-pt	No. of	Min per 50-m	No. of	Sec per
Ecological site	No. of transects	group	transects	transect	transects	frame
Brushy Loam	13	5.0	3	31.8	-	-
Desert Sand (Sand Sagebrush)	6	3.6	6	23.6	-	=
Limy Upland, 6-10" pz	12	3.3	5	34.6	-	=
Loamy Hills, 25-33" pz	14	4.0	-	-	-	-
Loamy Hills, Cold, 25-33" pz	6	5.7	-	-	-	-
Loamy Mesa Top PJ	14	4.2	6	27.4	14	20.8
Semidesert Alkali Sandy Loam (Alkali Sacaton)	14	2.4	4	24.4	15	20.5
Semidesert Loam (Wyoming Big Sagebrush)	13	3.9	6	41.2	11	24.9
Semidesert Shallow Sandy Loam (PJ)	20	2.5	12	19.9	17	29.2
Shallow Loamy, 10-14" pz	5	3.0	5	31.5	-	=
Upland Shallow Loam (Pinyon-Utah Juniper)	14	2.3	6	5.2	-	-
				22.22		
Mean		3.62		26.63		23.38
sd		1.09		10.27		3.44
CV		30.13		38.57		14.71


required for 1-m² quadrats (3.9 min per quadrat; table 15). For both quadrat sizes, mean sampling times were greatest at the Brushy Loam ecological site in Mesa Verde National Park due to dense shrubland vegetation. Mean amounts of time required to sample densities of shrubs and trees in 10-m² quadrats varied in relation to the abundance of woody plants and ranged from 2.7 min per quadrat in Brushy Loam shrublands of Mesa Verde to 0.2 min per quadrat in Shallow Loamy desert grasslands of Wupatki National Monument. Across all sites, mean sampling times for line-point intercept transects (3.6 min per 10-pt group) were similar to those for 1-m² quadrats (table 16). Combined sampling of basal and canopy gaps along 50-m transects required an average of 26.6 min per transect across all ecological sites. Sampling biological soil crust cover with the BSC frame (table 10, fig. 5) required approximately 23.4 sec per frame, on average.

Within-Macroplot Variability

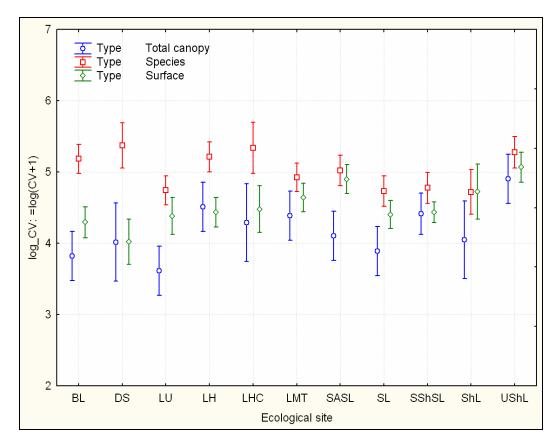

Ecological site, cover category (total live understory canopy, individual species, and soil-surface features), and sampling method all had significant effects on log-transformed CV values describing within-macroplot variability in cover measures (table 17). In addition, there was a statistically significant interaction between ecological site and cover category (table 17). The Upland Shallow Loam ecological site at Capitol Reef National Park was characterized by the greatest degree of within-macroplot variability in cover measures (fig. 6a), but otherwise there were no clear among-site trends in within-plot variability. Total live understory canopy cover was least variable within macroplots and individual species' cover was most variable, when averaged across all ecological sites (fig. 6b). This general pattern was strongly reflected at some ecological sites (e.g., Brushy Loam at Mesa Verde and Limy Upland at Wupatki), but was weakly represented or not apparent at other ecological sites (e.g., Semidesert Shallow Sandy Loam at Arches and Canyonlands, and the Upland Shallow Loam at Capitol Reef) (fig. 7). Of the sampling methods, 10-m² quadrats exhibited the least within-macroplot variability in cover measures, and there was no statistical difference between 1-m² quadrats and line-point intercepts with respect to this measure (fig. 6c).

Table 17. Analysis of variance for effects of ecological site, cover category (total live understory canopy, individual species, and soil-surface features), and sampling method on log-transformed CV values describing within-macroplot variability in cover measures.

Effect	SS	df	MS	F	р
Ecological site	36.722	10	3.672	7.919	<0.0001
Cover category	75.154	2	37.577	81.034	< 0.0001
Method	15.795	2	7.898	17.031	< 0.0001
Ecological site*Category	30.102	20	1.505	3.246	< 0.0001
Ecological site*Method	10.828	20	0.541	1.168	0.275
Category*Method	1.919	4	0.480	1.035	0.388
Ecological site*Category*Method	4.103	40	0.103	0.221	1.000
Error	385.814	832	0.464		

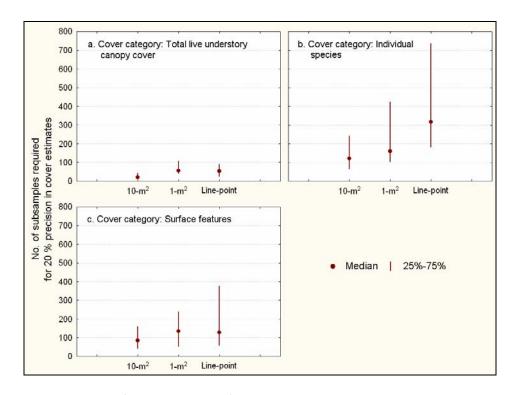
Figure 6. Main effects of (a) ecological site, (b) cover category (total live understory canopy, individual species, and soil-surface features), and (c) sampling method on log-transformed CV values describing within-plot variability in cover measures. Bars indicate 95 percent confidence intervals. Within each panel, values with the same letter are not significantly different by Tukey's HSD test. See table 1 for ecological site codes.

Figure 7. Interactive effects of ecological site and cover category (total live understory canopy, individual plant species, and soil-surface features) on log-transformed CV values describing within-plot variability in cover measures. Bars indicate 95 percent confidence intervals for means. See table 1 for ecological site codes.

In multiple regression models for all sampling methods combined and for each method separately, frequency, mean cover, and subsample size all were significant predictors of log-transformed CV values for within-macroplot cover measures (table 18). Of these, frequency tended to have the greatest effect (with the exception of 10-m^2 quadrats), whereas subsample size consistently had the least (albeit significant) effect as indicated by standardized regression coefficients (Beta values). In models for individual sampling methods, the importance of frequency as a predictor of within-plot CV values increased with decreasing quadrat area. The fit of the overall regression model also increased with decreasing quadrat area, as reflected by adjusted R^2 values.

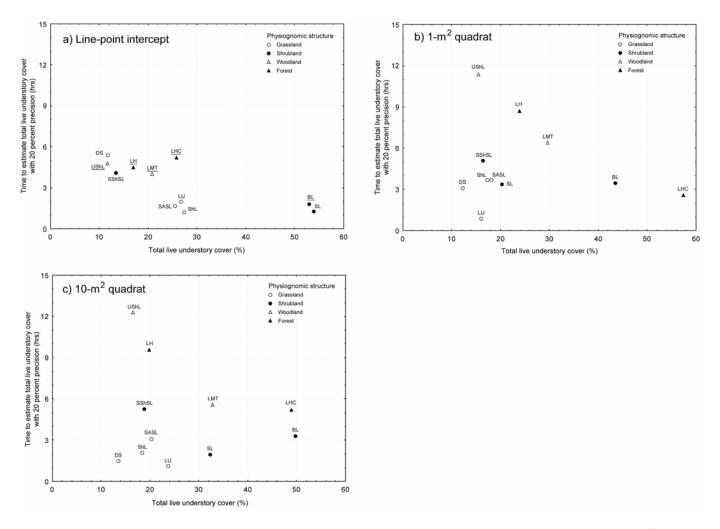
Table 19 summarizes means and measures of within-macroplot variability for total live understory canopy cover estimated by three different sampling methods at each of 11 ecological sites. (Appendix B presents 11 ecological-site-level tables with measures of average within-macroplot variability and associated sample size estimates for a broader range of cover measures.) Except for the Loamy Mesa Top PJ ecological site at Mesa Verde, mean within-plot CV values for total live understory canopy cover were lowest for 10-m² quadrats at all ecological sites. Mean CV values were highest for 1-m² quadrats at eight of the 11 ecological sites and highest for line-point intercepts at three of the 11 ecological sites. Among-method patterns in numbers of subsamples required to estimate mean cover values with 10 and 20 percent precision were similar to those for mean CV values. Subsample numbers were lowest for 10-m² quadrats

at all ecological sites except the Upland Shallow Loam site at Capitol Reef. Subsample numbers for 1-m² quadrats were highest for eight of the 11 ecological sites. Across all ecological sites combined, there was no difference among methods in median numbers of subsamples required to estimate mean plot-level cover of total understory vegetation (fig. 8a) or surface features (fig. 8c) with 20 percent precision. The median number of subsamples required to estimate individual species' cover with 20 percent precision was lower for 10-m² quadrats than for line-point intercept transects (fig. 8b).

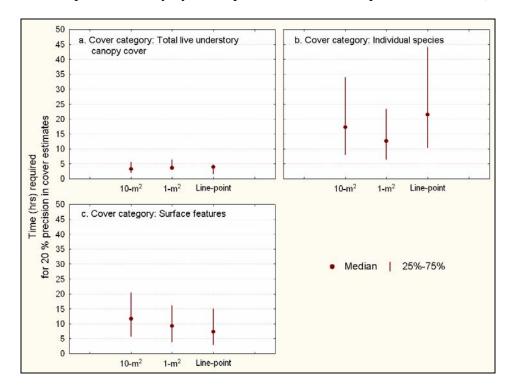

Table 18. Results of multiple-regression models evaluating significance of subsample size, frequency, and mean cover as predictors of log-transformed CV values describing within-macroplot variability in cover measures.

Model 1:	Model results		Standardized regression coefficients							
All methods combined		Value	Indep. var. Beta SE t(927) p-le							
n=931	Multiple R	0.85	Subsample n		0.017		<0.0001			
	Multiple R ²	0.73	Freq				< 0.0001			
	Adjusted R ²	0.73	Mean				<0.0001			
	F(3,927)	827.74		0	0.020		10.000.			
	p	<0.0001								
Model 2:	Model results		Standardized regression coefficients							
10-m ² quadrats		Value	Indep. var.	Beta	SE	t(317)	p-level			
n=321	Multiple R	0.77	Subsample n	0.098	0.036	2.73	0.0068			
	Multiple R ²	0.60	Freq	-0.447	0.038	-11.64	< 0.0001			
	Adjusted R ²	0.59	Mean	-0.488	0.038	-12.67	<0.0001			
	F(3,317)	156.77								
	р	<0.0001								
Model 3:	Model results		Standardized regression coefficients							
1-m ² quadrats	_	Value	Indep. var.	Beta	SE	t(314)	p-level			
n=318	Multiple R	0.83	Subsample n	0.094	0.032	2.96	0.0033			
	Multiple R ²	0.69	Freq	-0.538	0.036	-15.12	< 0.0001			
	Adjusted R ²	0.68	Mean	-0.430	0.036	-12.03	<0.0001			
	F(3,314)	230.00								
	р	< 0.0001								
Model 4:	Model results		Standardized regression coefficients							
Line-point intercept		Value	Indep. var.	Beta	SE	t(288)	p-level			
n=292	Multiple R	0.97	Subsample n	0.032	0.016	2.07	0.0396			
	Multiple R ²	0.93	Freq	-0.685	0.026	-26.74	< 0.0001			
	Adjusted R ²	0.93	Mean	-0.326	0.026	-12.74	<0.0001			
	F(3,288)	1342.26								
	p	<0.0001								

Table 19. Summary of mean estimates for total live understory canopy cover for each of 11 Colorado Plateau ecological sites, within-macroplot variation in cover estimates summarized across n macroplots within each ecological site, subsample sizes required to achieve 10 and 20 percent precision in estimates of macroplot-level means, and estimated amounts of sampling time required to achieve those degrees of precision. Subsample sizes for line-point sampling refer to numbers of 10-point groups. Sites identified in **bold italics** are those where line-point intercepts were used to estimate cover of overstory vegetation above 2 m tall, in addition to understory vegetation and soil-surface features.


	Physiog-				Within-macroplot variation in cover estimates (summarized across macroplots)				Subsample size (by precision)		Unit	Subsample time (hrs by precision)		
	namic			Mean				Mean			,	time	` ,	
Ecological site	structure	n	Method	cover	Mean sd	Min sd	Max sd	freq*	Mean CV	10%	20%	(min)	10%	20%
Brushy Loam Shi			10-m ²	49.7	18.1	7.4	24.0	100.0	36.5	54	16	12.3	11.1	3.3
	Shrubland	5	1-m ²	43.4	26.2	10.8	37.3	100.0	60.1	143	38	5.5	13.1	3.5
			Line-point	52.8	23.7	16.4	33.2	98.7	45.5	80	22	5.0	6.7	1.8
Desert Sand (Sand Sagebrush)			10-m ²	13.4	3.7	3.4	4.0	100.0	27.7	32	10	8.8	4.7	1.5
	Grassland	2	1-m ²	12.3	7.7	6.5	8.8	100.0	61.9	151	40	4.6	11.6	3.1
			Line-point	11.7	11.1	10.2	12.1	68.3	95.4	350	90	3.6	21.0	5.4
Limy Upland, 6-10" pz			10-m ²	23.6	6.0	3.9	8.0	100.0	26.5	28	9	7.3	3.4	1.1
	Grassland	5	1-m ²	16.0	5.3	3.1	8.8	100.0	33.1	45	15	3.7	2.8	0.9
			Line-point	26.7	15.8	13.0	18.7	93.3	59.9	138	37	3.3	7.6	2.0
Learny Hille 25 22"		5	10-m ²	19.7	15.8	3.0	32.2	100.0	74.8	248	65	8.9	36.8	9.6
Loamy Hills, 25-33"	Forest		1-m ²	23.8	27.1	5.2	52.8	94.7	120.4	502	128	4.1	34.3	8.7
pz			Line-point	16.9	13.8	9.6	23.3	72.0	90.6	257	67	4	17.1	4.5
Loamy Hills, Cold,		2	10-m ²	48.8	31.6	29.3	33.9	100.0	64.9	164	43	7.3	20.0	5.2
	Forest		1-m ²	57.3	42.5	33.7	51.2	100.0	78.3	211	56	2.8	9.8	2.6
25-33" pz			Line-point	25.7	18.9	17.9	19.9	85.0	74.5	209	55	5.7	19.9	5.2
	Woodland	5	10-m ²	32.7	20.2	11.7	31.3	91.2	157.9	149	39	8.6	21.4	5.6
Loamy Mesa Top PJ			1-m ²	29.6	31.1	15.2	49.8	58.7	198.8	425	109	3.5	24.8	6.4
			Line-point	20.7	15.5	11.6	18.3	46.7	133.4	215	57	4.2	15.1	4.0
Semidesert Alkali			10-m ²	20.3	8.8	4.5	16.9	100.0	45.5	75	21	8.8	11.0	3.1
Sandy Loam (Alkali	` `	5	1-m ²	18.1	12.7	6.1	20.1	98.7	72.8	193	50	4.4	14.2	3.7
Sacaton)			Line-point	25.4	16.4	11.9	19.4	85.3	71.7	163	43	2.4	6.5	1.7
Semidesert Loam (Wyoming Big Sagebrush)	Shrubland		10-m ²	32.2	11.1	7.9	16.9	100.0	36.6	49	14	8.4	6.9	2.0
		5	1-m ²	20.2	13.0	9.1	19.4	100.0	67.9	163	43	4.8	13.0	3.4
			Line-point	53.8	22.8	20.3	25.5	98.7	48.4	72	20	3.9	4.7	1.3
Semidesert Shallow Sandy Loam PJ	Shrubland		10-m ²	18.8	11.7	6.0	18.4	98.6	65.1	152	40	7.9	20.0	5.3
		7	1-m ²	16.4	14.7	10.2	25.1	96.7	96.0	311	81	3.8	19.7	5.1
			Line-point	13.3	13.2	7.0	23.6	66.7	102.3	380	98	2.5	15.8	4.1
Ob all and Language 40		d 2	10-m ²	18.3	7.4	5.8	9.0	100.0	43.0	66	19	6.5	7.2	2.1
Shallow Loamy, 10- 14" pz	Grassland		1-m ²	17.2	13.8	10.7	17.0	100.0	87.4	250	65	3.4	14.2	3.7
			Line-point	27.3	12.8	9.6	16.0	90.0	54.9	88	24	3	4.4	1.2
Upland Shallow		5	10-m ²	16.5	19.7	11.3	29.3	96.0	117.4	546	139	5.3	48.2	12.3
Loam (Pinyon-Utah	Woodland		1-m ²	15.4	24.5	18.9	30.8	88.7	176.4	976	244	2.8	45.5	11.4
Juniper)			Line-point	11.7	13.3	9.2	15.4	56.0	126.3	491	126	2.3	18.8	4.8

^{*} frequency for line-point sampling was calculated on the basis of 10-point groups

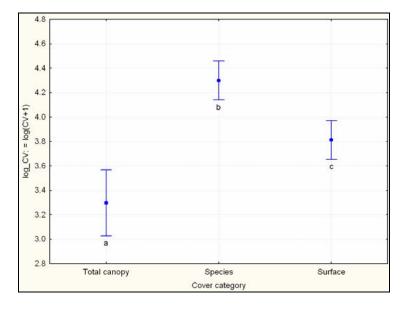

Figure 8. Median numbers (\pm 25 percentiles) of subsamples required for 20 percent precision in macroplot-level estimates of (a) total live understory canopy cover, (b) live cover of individual plant species, and (c) cover of surface features across 11 ecological sites sampled on the Colorado Plateau in Utah and Arizona. In (a), there is no difference among median values obtained via different sampling methods (Kruskal-Wallis H = 5.89, df = 2, n = 33, p = 0.0525). In (b), median values from 10-m^2 quadrats and line-point intercepts are significantly different from one another (Kruskal-Wallis H = 15.41, df = 2, n = 94, p = 0.0004). In (c), there is no significant difference among medians from different methods (Kruskal-Wallis H = 3.08, df = 2, n = 98, p = 0.2139).

Per-unit sampling times from tables 15 and 16 and subsample sizes from table 19 were used to estimate total amounts of subsampling time required for the three methods to estimate mean total live understory canopy cover with 10 and 20 percent precision (table 19, fig. 9). (Amounts of time required for transect layout and density sampling were not included in this analysis.) Total subsample times were lowest for line-point intercept transects at eight of the 11 ecological sites – including all sites with shrubland and woodland physiognomic structure, two of four sites with grassland structure, and one of two sites with forest structure. Subsample times also were lowest for line-point intercepts at four of five sites where points were used to estimate cover of overstory vegetation taller than 2 m in addition to cover of understory vegetation and surface features. Total subsample times were highest for 10-m² quadrats at four ecological sites, for 1-m² quadrats at five ecological sites, and for line-point intercept transects at three ecological sites. Across all ecological sites, the mean subsample time for 20 percent precision was lowest and individual times were least variable for line-point intercept transects (mean = 3.3 hrs, CV = 50.9) relative to 10-m^2 quadrats (mean = 4.6 hrs, CV = 76.1) and 1-m^2 quadrats (mean = 4.8 hrs, CV = 63.0). This result was strongly influenced by high subsample times for 10-m^2 and 1-m^2 quadrats at the Loamy Hills and Upland Shallow Loam ecological sites at Grand Canyon and

Figure 9. Time required to estimate total live understory cover using (a) the line-point intercept technique, (b) 1-m² quadrats, and (c) 10-m² quadrats in relation to cover estimates derived from the same sampling techniques. Points are labeled by ecological site codes (see table 1 for key to codes) and symbolized to indicate the general physiognomic structure of the sampled plant community. Ecological sites underlined in (a) are those where line-point intercepts were used to estimate cover of overstory vegetation above 2-m in height, in addition to understory vegetation and soil-surface features.

Capitol Reef, respectively. Statistical analyses on the basis of median values indicate no significant differences among methods for median amounts of time required to estimate total live understory canopy cover (fig. 10a), cover of individual species (fig. 10b), or cover of surface features (fig. 10c) with 20 percent precision. For total live understory canopy cover, median sampling times for 20 percent precision were 3.3, 3.7, and 4.0 hours for 10-m² quadrats, 1-m² quadrats, and line-intercept transects, respectively. (Appendix C presents 48 tables summarizing actual within-macroplot variability by macroplot, but without sample size estimates.)

Figure 10. Median numbers of hours (\pm 25 percentiles) required for subsampling to achieve 20 percent precision in macroplot-level estimates of (a) total live understory canopy cover, (b) live cover of individual plant species, and (c) cover of surface features across 11 ecological sites sampled on the Colorado Plateau in Utah and Arizona. For each cover category, there is no significant difference among median sampling times for different sampling methods (a. Kruskal-Wallis H = 0.95, df = 2, n = 33, p = 0.6216; b. Kruskal-Wallis H = 4.51, df = 2, n = 94, p = 0.1045; c. Kruskal-Wallis H = 1.68, df = 2, n = 98, p = 0.4327).


Among-Macroplot Variability

Numbers of macroplots sampled per ecological site during the 2005 field season were small, ranging from two to five. Despite these small sample sizes, here we present preliminary summaries and analyses of among-macroplot variability in cover measures. Across all ecological sites, mean among-plot variation (measured on basis of log-transformed CV values) was least for total live understory canopy cover and greatest for cover of individual species (table 20, fig. 11). Although sampling method did not have a statistically significant effect on among-plot variability in cover measures (table 20), among-plot CV values for total live understory canopy cover were lowest for line-point intercept transects at seven of 11 ecological sites and highest for 10-m² quadrats at six of 11 sites (table 21). This same pattern was evident for

numbers of macroplot samples required for different sampling methods to estimate site-level total live understory canopy cover with 10 and 20 percent precision (table 21). Across all ecological sites, the mean number of macroplots for 20 percent precision was lowest for line-point intercept transects (mean = 15.6, CV = 91.4) relative to 10-m² quadrats (mean = 17.5, CV = 63.5) and 1-m² quadrats (mean = 20.9, CV = 95.1). This result was highly influenced by high numbers of macroplots for 10-m² and 1-m² quadrats at the Loamy Hills ecological site at Grand Canyon. Statistical analyses on the basis of median values indicate no significant differences among methods for the median number of macroplot samples required to estimate total live understory canopy cover with 20 percent precision (fig. 12). Median numbers of macroplots for 20 percent precision in ecological-site-level estimates of total live understory canopy cover were 13, 16, and 17 for 10-m² quadrats, 1-m² quadrats, and line-intercept transects, respectively. (See Appendix D for tables summarizing among-plot variability for a broader range of cover measures on an ecological site basis, but without sample-size estimates.)

Table 20. Analysis of variance for effects of cover category (total live understory canopy, individual species, and surface features) and sampling method on log-transformed CV values describing among-macroplot variability in cover estimates.

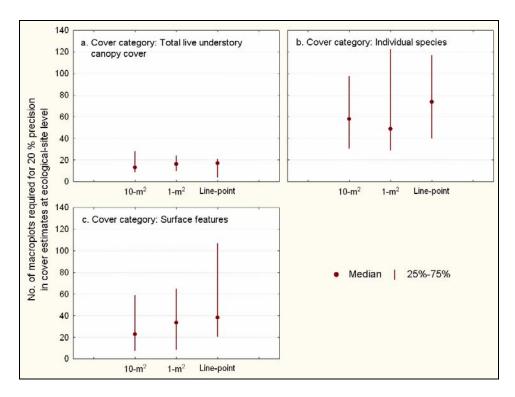

Effect	SS	df	MS	F	р
Cover category	27.618	2	13.809	22.163	<0.0001
Method	0.009	2	0.005	0.007	0.993
Category*Method	2.743	4	0.686	1.101	0.357
Error	134.581	216	0.623		

Figure 11. Main effects of cover category (total live understory canopy, individual species, and surface features) on log-transformed CV values describing among-macroplot variability in cover estimates across 11 ecological sites sampled on the Colorado Plateau in Utah and Arizona. Values with different letters are significantly different from one another (Tukey's HSD test, between MS = 0.6231, df = 216, p < 0.01 for all pair-wise comparisons).

Table 21. Among-macroplot variation in estimates of total live understory canopy cover for 11 ecological sites (n macroplots per ecological site), macroplot sample sizes required to achieve 10 and 20 percent precision in estimates of site-level means, and ratios of within-to-among CV values.

	Physiog- namic			Mean	Ar	nong-macrop	lot variation i	n cover estima	tes		le size ecision)	CV ratio
Ecological site	structure	n	Method	cover	sd	Min	Max	Range	CV	10%	20%	(within:among)
			10-m ²	49.7	16.0	28.4	71.2	42.8	32.2	42	13	1.1
Brushy Loam	Shrubland	5	1-m ²	43.4	13.7	25.8	62.6	36.8	31.6	42	13	1.9
-			Line-point	52.8	3.3	48.7	56.0	7.3	6.2	4	3	7.3
Desert Sand (Sand			10-m ²	13.4	0.4	13.1	13.7	0.6	3.3	3	3	8.5
Sagebrush)	Grassland	2	1-m ²	12.3	0.3	12.1	12.5	0.4	2.3	3	3	27.0
Sageblusii)			Line-point	11.7	0.0	11.7	11.7	0.0	0.0	2	2	-
			10-m ²	23.6	6.7	18.0	34.4	16.4	28.3	34	11	0.9
Limy Upland, 6-10" pz	Grassland	5	1-m ²	16.0	3.5	11.7	20.1	8.4	21.6	21	7	1.5
			Line-point	26.7	4.4	21.3	31.3	10.0	16.5	13	6	3.6
			10-m ²	19.7	11.6	5.6	35.2	29.5	58.9	136	36	1.3
Loamy Hills, 25-33" pz	Forest	5	1-m ²	23.8	20.9	5.1	57.5	52.4	87.8	297	77	1.4
			Line-point	16.9	7.1	8.0	24.3	16.3	42.2	71	20	2.1
Loamy Hills, Cold, 25-33"			10-m ²	48.8	7.4	43.6	54.0	10.5	15.2	12	5	4.3
1	Forest	2	1-m ²	57.3	28.2	37.4	77.3	39.9	49.2	96	26	1.6
oz			Line-point	25.7	2.8	23.7	27.7	4.0	11.0	8	4	6.8
			10-m ²	32.7	15.2	20.9	55.7	34.8	46.5	86	24	3.4
Loamy Mesa Top PJ	Woodland	5	1-m ²	29.6	12.7	13.2	43.7	30.5	42.7	73	21	4.7
			Line-point	20.7	3.5	17.3	26.7	9.3	17.0	14	6	7.8
Semidesert Alkali Sandy			10-m ²	20.3	10.3	7.3	35.5	28.2	50.9	102	28	0.9
Loam (Alkali Sacaton)	Grassland	5	1-m ²	18.1	6.6	7.1	24.6	17.5	36.5	54	16	2.0
Loaiii (Alkali Sacatori)			Line-point	25.4	10.1	11.3	37.3	26.0	40.0	64	18	1.8
Semidesert Loam			10-m ²	32.2	15.5	20.7	59.4	38.7	48.0	92	25	0.8
(Wyoming Big	Shrubland	5	1-m ²	20.2	9.4	14.0	36.6	22.6	46.6	86	24	1.5
Sagebrush)			Line-point	53.8	24.9	34.0	96.3	62.3	46.3	85	24	1.0
Semidesert Shallow			10-m ²	18.8	4.8	13.7	28.2	14.5	25.5	28	9	2.6
Sandy Loam PJ	Shrubland	7	1-m ²	16.4	5.4	10.5	24.0	13.5	33.1	45	14	2.9
Sandy Loani F3			Line-point	13.3	5.7	6.7	21.7	15.0	42.7	73	21	2.4
Challand agent 40 44!			10-m ²	18.3	9.5	11.5	25.0	13.5	52.1	107	29	0.8
Shallow Loamy, 10-14"	Grassland	2	1-m ²	17.2	4.7	13.9	20.5	6.6	27.3	32	10	3.2
pz			Line-point	27.3	19.3	13.7	41.0	27.3	70.7	195	51	0.8
Unland Challey Lag			10-m ²	16.5	4.4	10.2	21.2	11.0	26.4	30	10	4.4
Upland Shallow Loam	Woodland	5	1-m ²	15.4	6.3	7.2	21.1	13.9	40.9	67	19	4.3
(Pinyon-Utah Juniper)			Line-point	11.7	4.5	4.7	16.0	11.3	38.7	60	17	3.3

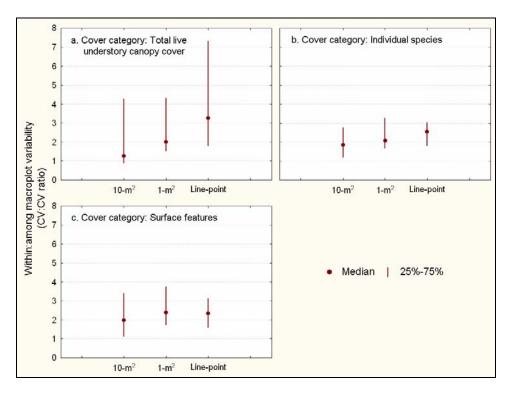

Figure 12. Median numbers (\pm 25 percentiles) of macroplots required for 20 percent precision in ecological-site-level estimates of (a) total live understory canopy cover, (b) cover of individual plant species, and (c) cover of surface features across 11 ecological sites sampled on the Colorado Plateau in Utah and Arizona. For each cover category, there is no significant difference among median macroplot numbers for different sampling methods (a. Kruskal-Wallis H = 0.95, df = 2, n = 33, p = 0.6218; b. Kruskal-Wallis H = 1.38, df = 2, n = 96, p = 0.5005; c. Kruskal-Wallis H = 3.05, df = 2, n = 96, p = 0.2174).

Table 21 also summarizes ratios of within-plot CV values to among-plot CV values for total live understory canopy cover by sampling method and ecological site. Across all sites and methods, the average within:among ratio was 3.7:1, indicating greater within-plot variability than among plot variability. The within:among ratio was lowest for 10-m² quadrats at seven of 11 ecological sites and highest for line-point intercept transects at six of 11 ecological sites. Mean within:among CV ratios were 2.6, 4.7, and 3.7 for 10-m² quadrats, 1-m² quadrats, and line-intercept transects, respectively. There were no significant differences among methods in median within:among CV ratios for total live understory canopy cover (fig. 13a),cover of individual species (fig. 13b), and cover of surface features (fig. 13c). Median within:among CV ratios for total live understory cover were 1.2, 2.0, and 3.3 for 10-m² quadrats, 1-m² quadrats, and line-point intercept transects, respectively.

Species-Area Relationships and Community Composition

This section summarizes differences between 10-m² and 1-m² quadrats in terms of species-area relationships and community composition. Point-based data are not included in these comparisons because of the superiority of quadrat-based sampling for objectives related to detection of infrequent species. As expected on the basis of sampling area, more unique species were detected in 10-m² quadrats than in 1-m² quadrats at all macroplots (table 22). Ecological

site and quadrat size both had significant effects on log-transformed species richness in macroplots where subsample sizes were 15 for both sizes of quadrat (table 23, fig. 14a). At these macroplots, ratios of numbers of species detected in 10-m² quadrats to numbers detected in 1-m² quadrats ranged from a low of 1.3 at Brushy Loam, Semidesert Alkali Sandy Loam, and Semidesert Loam ecological sites, to a high of 1.8 at Loamy Hills and Semidesert Shallow Sandy Loam ecological sites (table 22). When infrequent species occurring in only one 10-m² quadrat were excluded from the 10-m² quadrat data, quadrat size no longer had a statistically significant effect on log-transformed species richness (table 24, fig. 14b). This indicates that the advantage of 10-m² quadrats relative to 1-m² quadrats was largely attributable to the ability of the larger quadrats to detect species with a 10-m² frequency of 6.7 percent. However, excluding infrequent species occurring in only one 10-m² quadrat, ratios of species detected in 10-m² quadrats to those detected in 1-m² quadrats were still greater than one at most ecological sites. See Appendix E for a set of figures showing mean species-area and compositional curves (mean Sørensen distances) by ecological site, including separate figures for curves including all species and for curves excluding infrequent species with only one quadrat occurrence.

Figure 13. Median ratios of within-to-among macroplot variability (based on log-transformed CV values) for estimates of (a) total live understory canopy cover, (b) live cover of individual plant species, and (c) cover of surface features across 11 ecological sites sampled on the Colorado Plateau in Utah and Arizona. For each cover category, there is no significant difference among median ratios for different sampling methods (a. Kruskal-Wallis H = 2.39, H = 2, H = 3.05, H = 2, H = 3.05, H =

Table 22. Species richness data for several ecological sites on the Colorado Plateau, based on 10-m² and 1-m² quadrats. For each size quadrat, columns show observed numbers of unique vascular plant species, jacknife estimates of total species per macroplot, numbers of infrequent species found in only one quadrat, and remaining numbers of species after excluding those infrequent species with only 1 quadrat occurrence. Last three columns show ratios of 10-m² values to 1-m² values, using all observed species (Obs.), and excluding infrequent species (Excl.). Means, coefficients of variation (CV), and ratios are based on macroplots with 15 10-m² and 1-m² quadrats.

				10-m ² quadr	ats				1-m ² quadr	ats		10)-m² : 1-m² rat	io
Ecological		No.	Obs. no. spp.	Jacknife estimate of total	Infreq. spp. in only 1	No. spp. excluding infrequent	No.	Obs. no. spp.	Jacknife estimate of total	Infreq. spp. in only 1	No. spp. excluding infrequent	Obs.:Obs.	Excl.:Obs.	Excl.:Excl.
site	Macroplot	quads	(a)	spp.	quad	(b)	quads	(c)	spp.	quad	(d)	(a:c)	(b:c)	(b:d)
	MEVE 1	21	28	33.7	6	22	30	21	28.7	8	13	` -	`- ´	-
	MEVE2	21	41	49.6	9	32	30	29	32.9	4	25	-	-	-
Brushy	MEVE5	15	42	51.3	10	32	15	29	37.4	9	20	1.4	1.1	1.6
Loam	MEVE6	15	38	42.7	5	33	15	32	41.3	10	22	1.2	1.0	1.5
Loain	MEVE7b	15	31	35.7	5	26	15	24	28.7	5	19	1.3	1.1	1.4
	Mean	15	37.0	43.2	6.7	30.3	15	28.3	35.8	8.0	20.3	1.3	1.1	1.5
	CV	-	15.0	18.1	43.3	12.5	-	14.3	18.0	33.1	7.5	10.0	3.5	7.8
Desert	CANY1	21	23	24.9	2	21	30	22	26.8	5	17	-	-	-
Sand	CANY2b	21	25	30.7	4	21	30	22	23.9	2	20	-	-	-
	WUPA1	21	22	25.8	4	18	30	19	22.9	4	15	-	-	-
	WUPA2	21	23	30.6	8	15	30	15	18.9	4	11	-	-	-
Limy	WUPA5	15	16	19.7	4	12	15	9	10.9	2	7	1.8	1.3	1.7
Upland	WUPA6	15	21	26.6	6	15	15	17	20.7	4	13	1.2	0.9	1.2
Opiana	WUPA7	15	18	24.5	7	11	15	11	15.7	5	6	1.6	1.0	1.8
	Mean	15	18.3	23.6	5.7	12.7	15	12.3	15.8	3.7	8.7	1.5	1.1	1.6
	CV	-	13.7	15.0	27.0	16.4	-	33.8	31.1	41.7	43.7	18.2	21.8	23.2
	GRCA3	21	14	15.9	2	12	30	12	14.9	3	9	-	-	-
	GRCA4	21	37	49.4	13	24	30	27	36.7	10	17	-	-	-
Loamy	GRCA5	15	26	37.2	12	14	15	14	18.7	5	9	1.9	1.0	1.6
Hills	GRCA6	15	28	35.5	8	20	15	15	19.7	5	10	1.9	1.3	2.0
111110	GRCA7	15	16	17.9	2	14	15	10	13.7	4	6	1.6	1.4	2.3
	Mean	15	23.3	30.2	7.3	16.0	15	13.0	17.4	4.7	8.3	1.8	1.2	2.0
	CV	-	27.6	35.4	68.6	21.7	-	20.4	18.5	12.4	25.0	8.5	17.2	19.9
Loamy	GRCA1	21	21	24.8	4	17	30	18	19.9	2	16	-	-	-
Hills Cold	GRCA2	21	30	36.7	7	23	30	22	28.8	7	15	-	-	-
	MEVE3	21	21	27.7	7	14	30	18	26.7	9	9	-	-	-
	MEVE4	21	29	34.7	6	23	30	21	28.7	8	13	-	-	-
Loamy	MEVE8	15	16	17.9	2	14	15	11	16.6	6	5	1.5	1.3	2.8
Mesa Top	MEVE9	15	26	33.5	8	18	15	14	18.7	5	9	1.9	1.3	2.0
PJ	MEVE10	15	33	41.4	9	24	15	25	34.3	10	15	1.3	1.0	1.6
	Mean	15	25.0	30.9	6.3	18.7	15	16.7	23.2	7.0	9.7	1.5	1.2	2.1
	CV	-	34.2	38.7	59.8	27.0	-	44.2	41.7	37.8	52.1	18.1	15.7	28.6

Table 22.—Continued

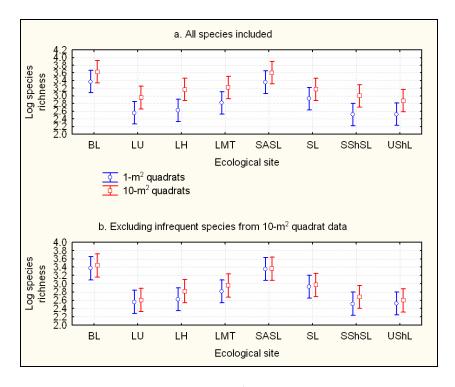

				10-m ² quadr	ats				1-m ² quadra	ats		10)-m² : 1-m² rat	io
Ecological		No.	Obs. no. spp.	Jacknife estimate of total	Infreq. spp. in only 1	No. spp. excluding infrequent	No.	Obs. no. spp.	Jacknife estimate of total	Infreq. spp. in only 1	No. spp. excluding infrequent	Obs.:Obs.	Excl.:Obs.	Excl.:Excl.
site	Macroplot	quads	(a)	spp.	quad	(b)	quads	(c)	spp.	quad	(d)	(a:c)	(b:c)	(b:d)
	CARE1	21	42	46.8	5	37	30	36	37.9	2	34	-	-	-
0 1	CARE2	21	38	43.7	6	32	30	27	29.9	3	24	-	-	-
Semidesert Alkali	CARE5	15	43	49.5	7	36	15	33	41.4	9	24	1.3	1.1	1.5
Sandy	CARE6	15	28	35.5	8	20	15	23	35.1	13	10	1.2	0.9	2.0
Loam	CARE7	15	38	45.5	8	30	15	28	34.5	7	21	1.4	1.1	1.4
Loam	Mean	15	36.3	43.5	7.7	28.7	15	28.0	37.0	9.7	18.3	1.3	1.0	1.6
	CV	-	21.0	16.6	7.5	28.2	•	17.9	10.3	31.6	40.2	5.5	12.1	19.0
	DINO1	21	29	37.6	9	20	30	25	32.7	8	17	-	-	-
	DINO2b	21	14	15	1	13	30	15	19.8	5	10	-	-	-
Semidesert	DINO3	15	28	33.6	6	22	15	22	29.5	8	14	1.3	1.0	1.6
Loam	DINO4b	15	21	23.8	3	18	15	18	24.5	7	11	1.2	1.0	1.6
Loam	DINO5	15	20	23.7	4	16	15	14	14.9	1	13	1.4	1.1	1.2
	Mean	15	23.0	27.0	4.3	18.7	15	18.0	23.0	5.3	12.7	1.3	1.0	1.5
	CV	-	19.0	21.0	35.3	16.4	-	22.2	32.3	71.0	12.1	10.2	7.9	14.7
	ARCH1b	21	24	28.8	5	19	30	19	25.8	7	12	-	-	-
	ARCH2	21	17	24.6	8	9	30	12	15.9	4	8	-	-	-
Semidesert	CANY3	21	36	46.5	11	25	30	28	35.7	8	20	-	-	-
Shallow	CANY4	21	29	31.9	3	26	30	27	35.7	9	18	-	-	-
Sandy	ARCH3	15	22	31.3	10	12	15	8	9.9	2	6	2.8	1.5	2.0
Loam	ARCH4b	15	21	25.7	5	16	15	14	19.6	6	8	1.5	1.1	2.0
	ARCH5	15	15	16.9	2	13	15	13	14.9	2	11	1.2	1.0	1.2
	Mean	15	19.3	24.6	5.7	13.7	15	11.7	14.8	3.3	8.3	1.8	1.2	1.7
- · · ·	CV	-	19.6	29.5	71.3	15.2	-	27.6	32.8	69.3	30.2	46.6	21.2	27.3
Shallow	WUPA3	21	24	31.6	8	16	30	15	16.9	2	13	-	-	-
Loamy	WUPA4	21	21	25.8	5	16	30	16	21.8	6	10	-	-	-
,	CARE3	21	34	49.2	16	18	30	23	32.7	10	13	-	-	-
	CARE4b	21	15	17.9	3	12	30	14	21.7	8	6	-	-	-
Upland	CARE8	15	20	23.7	4	16	15	17	23.5	7	10	1.2	0.9	1.6
Shallow	CARE9	15	18	23.6	6	12	15	8	10.8	3	5	2.3	1.5	2.4
Loam	CARE10	15	13	15.8	3	10	15	11	15.7	5	6	1.2	0.9	1.7
,	Mean	15	17.0	21.0	4.3	12.7	15	12.0	16.7	5.0	7.0	1.5	1.1	1.9
	CV	-	21.2	21.5	35.3	24.1	-	38.2	38.4	40.0	37.8	40.2	29.8	23.5

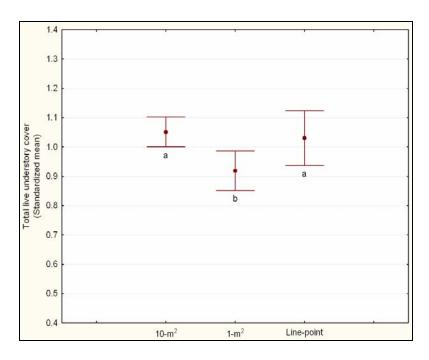
Table 23. Analysis of variance for effects of ecological site and quadrat size on log-transformed values for the number of unique species detected in 15 10-m² and 1-m² quadrats during Phase 3 sampling.

Effect	SS	df	MS	F	р
Ecological site	4.203	7	0.600	9.690	<0.0001
Quad size	1.597	1	1.597	25.770	< 0.0002
Ecological site*Quad size	0.133	7	0.019	0.306	0.9459
Error	1.983	32	0.062		

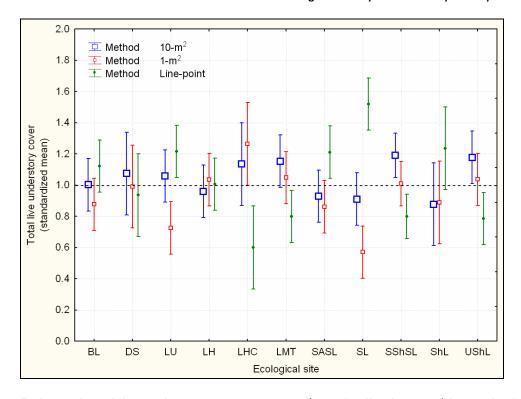
Table 24. Analysis of variance for effects of ecological site and quadrat size on log-transformed values for the number of unique species detected in 15 10-m² and 1-m² quadrats during Phase 3 sampling, excluding infrequent species that occurred in only one 10-m² quadrat from the 10-m² data.

Effect	SS	df	MS	F	р
Ecological site	4.837	7	0.691	12.300	<0.0001
Quad size	0.102	1	0.102	1.809	0.1881
Ecological site*Quad size	0.046	7	0.007	0.117	0.9966
Error	1.798	32	0.056		

Figure 14. Log-transformed species richness data (mean numbers of unique species detected in 15 quadrats) in relation to ecological site and quadrat size (a) for all species detected, and (b) excluding infrequent species that occurred in only one 10-m² quadrat from the 10-m² data. (See table 1 for key to ecological site codes.)


Among-Method Trends in Cover Estimates

This section summarizes relative trends in cover estimates provided by different sampling methods. To facilitate comparisons of trends across ecological sites with different amounts of vegetative cover, means were standardized by calculating the ratio of the observed mean value for a particular method and measure to the among-method mean cover value for the same measure (see tables in Appendix C for these data). Across all ecological sites, sampling method had a significant effect on standardized mean values for total live understory canopy cover (table 25). Post-hoc analyses indicated that mean cover values from 1-m² quadrats were lower than those provided by 10-m² quadrats and line-intercept transects, and that there was no difference between mean cover values provided by the latter two methods (fig. 15). Although ecological site did not have a significant effect on standardized mean cover values (an expected artifact of the standardization process), ecological site and sampling method did have a significant interaction effect (table 25, fig. 15). Line-point intercept transects tended to yield higher cover estimates than quadrats at ecological sites with significant amounts of grass cover (Limy Upland, Semidesert Alkali Sandy Loam, Semidesert Loam, and Shallow Loamy). Particularly noteworthy are high point-based cover estimates for cheatgrass (Bromus tectorum, or BRTE) at the Semidesert Loam ecological site in Dinosaur National Monument (SL in Figure 15; also see table B8 in Appendix B). At this site, cover estimates for cheatgrass were 30.1 percent for points, 11.9 percent for 10-m² quadrats, and 7.3 percent for 1-m² quadrats (table B8). After excluding Semidesert Loam data from the ANOVA, 10-m² quadrats were found to provide higher mean values for total live understory canopy cover than 1-m² quadrats and points across remaining ecological sites, and there was no statistical difference between mean cover values for the latter two methods.


Table 25. Analysis of variance for effects of ecological site and sampling method on total live understory cover (standardized means) at 11 Colorado Plateau ecological sites.

Effect	SS	df	MS	F	р
Ecological site	0.000	10	0.000	0.000	1.000
Method	0.248	2	0.124	3.475	0.034
Ecological site*Method	4.906	20	0.245	6.865	< 0.0001
Error	3.966	111	0.036		

Across all ecological sites, sampling method also had a significant effect on standardized mean cover of surface features (table 26) – with line-point intercepts yielding higher mean values than quadrats (fig. 17). This finding was driven by higher point-based values for bare soil (fig. 18b) that resulted from different methodological approaches between point- and quadrat-based sampling. If a pin were to hit an unembedded piece of litter sitting on the surface of bare (uncrusted) soil, bare soil would show up in the data as the surface feature and litter would appear as a canopy layer above the bare soil. In contrast, quadrat-based sampling would simply report a value for litter cover. Thus the main point to draw from figures 17 and 18 is that 10-m² and 1-m² quadrats do not differ significantly with respect to cover estimates for surface features.

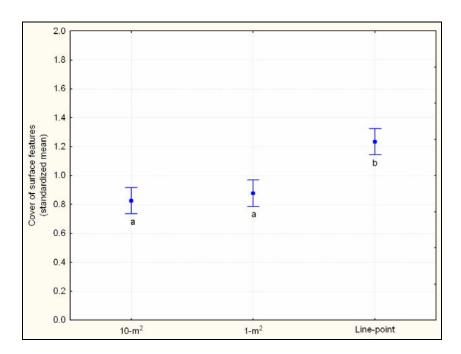

Figure 15. Estimated total live understory canopy cover (standardized means) by method averaged across 11 ecological sites on the Colorado Plateau. Bars indicate 95 percent confidence intervals. Values with different letters are significantly different by Tukey's HSD test.

Figure 16. Estimated total live understory canopy cover (standardized means) by method and 11 Colorado Plateau ecological sites. Bars indicate 95 percent confidence intervals for means. See table 1 for ecological site codes.

Table 26. Analysis of variance for effect of sampling method on standardized mean cover of surface features at 11 Colorado Plateau ecological sites.

Effect	SS	df	MS	F	р
Method	14.230	2	7.115	23.004	<0.0001
Error	132.682	429	0.309		

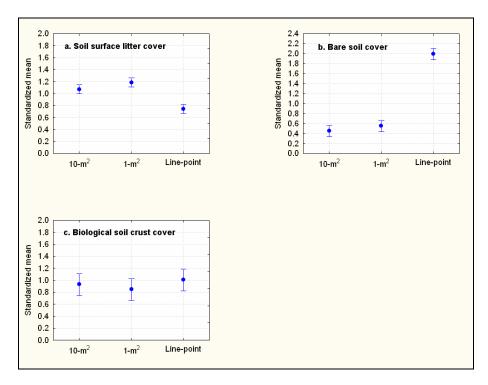


Figure 17. Effect of sampling method on cover estimates (standardized means) for selected surface features (litter, biological soil crust, and bare soil) across 11 ecological sites on the Colorado Plateau. Means with different letters are significantly different by Tukey's HSD test.

Repeatability

This section describes effects of sampling methods and ecological site on differences between two observers' estimates of cover and density. Tables 27-34 summarize analyses of variance (ANOVA) evaluating effects of sampling method, observer, and cover category (individual species and total live understory canopy) on arcsin-transformed means of plant canopy cover for eight ecological sites sampled during Phase 3. In these analyses, the observer-by-method interaction indicates whether there was a significant difference among methods in terms of repeatability between observers. (Tables summarizing actual differences between observers' cover estimates can be found in Appendix F.) Effects of observer and observer-by-method interactions were statistically significant for the Semidesert Shallow Sandy Loam ecological site at Arches National Park (tables 33 and F1) where line-point estimates for blackbrush (*Coleogyne ramosissima*, CORA) cover differed between observers. Inspection of the data suggests that this difference was attributable to a difference between observers in their interpretation of "standing dead" blackbrush versus "live non-photosynthetic" blackbrush, rather than an actual difference in cover estimates. Effects of observer and observer-by-method interaction on mean arcsin-transformed litter cover were not statistically significant (table 35).

We found no statistical relationships between wind-speed measures and differences between two observers' cover estimates for woody plants, herbaceous plants, or grasses using the line-point intercept technique (fig. 19).

Figure 18. Effects of sampling method on cover estimates (standardized means) for (a) surface litter, (b) unstable bare soil, and (c) biological soil crusts (moss, lichen, and cyanobacteria combined) at eight Colorado Plateau ecological sites.

Table 27. Analysis of variance for effects of sampling method (1-m² quadrats, 10-m² quadrats, and line-point intercept), observer, and cover category (species POFE, QUGA, SYOR2, and total live understory canopy cover) on mean arcsin-transformed plant canopy cover values for the Brushy Loam ecological site at Mesa Verde National Park. See Appendix A for key to species codes.

Effect	SS	df	MS	F	р
Sampling Method	1.034	2	0.517	16.008	<0.0001
Observer	< 0.0001	1	< 0.0001	0.001	0.982
Cover category	14.395	3	4.798	148.537	< 0.0001
Sampling Method*Observer	0.033	2	0.016	0.504	0.605
Sampling Method*Cover category	0.773	6	0.129	3.989	0.001
Observer*Cover category	0.020	3	0.007	0.210	0.889
Sampling Method*Observer*Cover cat.	0.067	6	0.011	0.347	0.911
Error	6.202	192	0.032		

Table 28. Analysis of variance for effects of sampling method (1-m² quadrats, 10-m² quadrats, and line-point intercept), observer, and cover category (species CHLE4, HENE5, PLJA, and total live understory canopy cover) on mean arcsin-transformed plant canopy cover values for the Limy Upland, 25-33" ecological site at Grand Canyon National Park. See Appendix A for key to species codes.

Effect	SS	df	MS	F	р
Sampling Method	0.333	2	0.167	14.845	<0.0001
Observer	0.001	1	0.001	0.061	0.805
Cover category	3.071	3	1.024	91.204	< 0.0001
Sampling Method*Observer	0.022	2	0.011	0.982	0.376
Sampling Method*Cover category	0.230	6	0.038	3.416	0.003
Observer*Cover category	0.010	3	0.003	0.308	0.820
Sampling Method*Observer*Cover cat.	0.009	6	0.002	0.140	0.991
Error	2.155	192	0.011		

Table 29. Analysis of variance for effects of sampling method (1-m² quadrats, 10-m² quadrats, and line-point intercept), observer, and cover category (species POFE, POTR5, UNGRCA1, and total live understory canopy cover) on mean arcsin-transformed plant canopy cover values for the Loamy Hills, 25-33"pz ecological site at Grand Canyon National Park. See Appendix A for key to species codes.

Effect	SS	df	MS	F	р
Sampling Method	0.355	2	0.177	20.300	<0.0001
Observer	0.001	1	0.001	0.125	0.724
Cover category	2.808	3	0.936	107.130	< 0.0001
Sampling Method*Observer	0.001	2	0.0004	0.041	0.960
Sampling Method*Cover category	0.242	6	0.040	4.608	< 0.0001
Observer*Cover category	0.010	3	0.003	0.376	0.770
Sampling Method*Observer*Cover cat.	0.024	6	0.004	0.464	0.834
Error	1.677	192	0.009		

Table 30. Analysis of variance for effects of sampling method (1-m² quadrats, 10-m² quadrats, and line-point intercept), observer, and cover category (species JUOS, PIED, POFE, and total live understory canopy cover) on mean arcsin-transformed plant canopy cover values for the Loamy Mesa Top PJ ecological site at Mesa Verde National Park. See Appendix A for key to species codes.

Effect	SS	df	MS	F	р
Sampling Method	0.195	2	0.097	6.149	0.003
Observer	0.015	1	0.015	0.925	0.337
Cover category	3.280	3	1.093	69.098	< 0.0001
Sampling Method*Observer	0.012	2	0.006	0.394	0.675
Sampling Method*Cover category	0.140	6	0.023	1.472	0.190
Observer*Cover category	0.000	3	< 0.0001	0.001	1.000
Sampling Method*Observer*Cover cat.	0.018	6	0.003	0.188	0.980
Error	3.038	192	0.016		

Table 31. Analysis of variance for effects of sampling method (1-m² quadrats, 10-m² quadrats, and line-point intercept), observer, and cover category (species ATCO, GIIN2, ORHY, and total live understory canopy cover) on mean arcsin-transformed plant canopy cover values for the Semidesert Alkali Sandy Loam (Alkali Sacaton) ecological site at Capitol Reef National Park. See Appendix A for key to species codes.

Effect	SS	df	MS	F	р
Sampling Method	0.002	2	0.001	0.157	0.855
Observer	0.0005	1	0.0005	0.082	0.775
Cover category	4.838	3	1.613	279.354	< 0.0001
Sampling Method*Observer	0.004	2	0.002	0.369	0.692
Sampling Method*Cover category	0.133	6	0.022	3.839	0.001
Observer*Cover category	0.001	3	0.0004	0.065	0.978
Sampling Method*Observer*Cover cat.	0.007	6	0.001	0.188	0.980
Error	1.108	192	0.006		

Table 32. Analysis of variance for effects of sampling method (1-m² quadrats, 10-m² quadrats, and line-point intercept), observer, and cover category (species ARTR2, BRTE, STCO4, and total live understory canopy cover) on mean arcsin-transformed plant canopy cover values for the Semidesert Loam (Wyoming Big Sagebrush) ecological site in Dinosaur National Monument. See Appendix A for key to species codes.

Effect	SS	df	MS	F	p
Sampling Method	1.254	2	0.627	50.279	<0.0001
Observer	< 0.0001	1	< 0.0001	0.004	0.951
Cover category	5.887	3	1.962	157.322	< 0.0001
Sampling Method*Observer	0.024	2	0.012	0.967	0.382
Sampling Method*Cover category	1.107	6	0.185	14.793	< 0.0001
Observer*Cover category	0.004	3	0.001	0.113	0.952
Sampling Method*Observer*Cover cat.	0.013	6	0.002	0.178	0.982
Error	2.395	192	0.012		

Table 33. Analysis of variance for effects of sampling method (1-m² quadrats, 10-m² quadrats, and line-point intercept), observer, and cover category (species CORA, FEOC3, STLO4, and total live understory canopy cover) on arcsin-transformed means of plant canopy cover for the Semidesert Shallow Sandy Loam PJ ecological site at Arches and Canyonlands National Parks. See Appendix A for key to species codes.


Effect	SS	df	MS	F	p
Sampling Method	0.102	2	0.051	12.163	<0.0001
Observer	0.017	1	0.017	4.094	0.044
Cover category	4.829	3	1.610	382.362	< 0.0001
Sampling Method*Observer	0.027	2	0.013	3.151	0.045
Sampling Method*Cover category	0.063	6	0.010	2.483	0.025
Observer*Cover category	0.011	3	0.004	0.893	0.446
Sampling Method*Observer*Cover cat.	0.017	6	0.003	0.687	0.661
Error	0.808	192	0.004		

Table 34. Analysis of variance for effects of sampling method (1-m² quadrats, 10-m² quadrats, and line-point intercept), observer, and cover category (species CEMO2, COWR2, JUOS, and total live understory canopy cover) on arcsin-transformed means of plant canopy cover for the Upland Shallow Loam (Pinyon-Utah Juniper) ecological site at Capitol Reef National Park. See Appendix A for key to species codes.

Effect	SS	df	MS	F	p
Sampling Method	0.285	2	0.142	9.516	<0.0001
Observer	0.034	1	0.034	2.245	0.136
Cover category	2.819	3	0.940	62.848	< 0.0001
Sampling Method*Observer	0.007	2	0.004	0.240	0.787
Sampling Method*Cover category	0.166	6	0.028	1.846	0.092
Observer*Cover category	0.018	3	0.006	0.394	0.757
Sampling Method*Observer*Cover cat.	0.006	6	0.001	0.067	0.999
Error	2.871	192	0.015		

Table 35. Analysis of variance for effects of sampling method (1-m² quadrats, 10-m² quadrats, and line-point intercept), ecological site (BL, LU, LH, LMT, SASL, SL, SShSL, and UShL), and observer on arcsin-transformed means of litter cover data. See table 1 for key to ecological site codes.

Effect	SS	df	MS	F	р
Sampling Method	2.251	2	1.126	66.758	<0.0001
Ecological Site	47.334	7	6.762	401.071	<0.0001
Observer	0.001	1	0.001	0.086	0.770
Sampling Method* Ecological Site	1.482	14	0.106	6.277	<0.0001
Sampling Method* Observer	0.056	2	0.028	1.661	0.191
Ecological Site *Observer	0.031	7	0.004	0.260	0.969
Sampling Method* Ecological Site *Observer	0.049	14	0.003	0.207	0.999
Error	6.474	384	0.017		

Figure 19. Scatterplot of average wind speed (m s $^{-1}$) vs. absolute difference between two observers' estimates of grass cover based on use of the line-point intercept sampling technique at eight Colorado Plateau ecological sites (r = 0.07, p = 0.55, n = 70).

Table 36 summarizes results of Wilcoxon tests evaluating effects of observer on cover estimates for four types of soil crust (undifferentiated crust, dark cyanobacteria, lichen, and moss) for 10-m², 1-m², and line-point intercept sampling methods at ecological sites where biological soil crusts were common. At the Upland Shallow Loam (Pinyon-Utah Juniper) ecological site at Capitol Reef National Park (tables 36 and F2), estimates of undifferentiated crust cover based on 1-m² quadrats and line-point intercepts both differed between observers. Observer 1 estimated lower undifferentiated crust cover than observer 2 for both 1-m² quadrats and line-point intercepts. At this same site, estimates of moss cover in 10-m² quadrats also were significantly different between observers (tables 36 and F2). The soil at this ecological site was extremely rocky with very low levels of biological soil crust cover.

Table 37 summarizes results of Wilcoxon tests evaluating effects of observer on estimates of biological soil crust cover based on use of the 25 cm x 25 cm BSC frame at ecological sites where biological soil crusts were common. No significant differences were found between observers' cover estimates for five soil-surface categories related to soil darkness and biological soil crust development. Appendix table F3 summarizes additional data collected with the BSC frame.

Tables 38 and 39 summarize results of Wilcoxon tests evaluating effects of observer on estimates of shrub and tree density by species and size class. No significant differences were found between observers' estimates of shrub and tree density. Appendix table F7 reports shrub and tree density for transects sampled during Phase 3.

Table 36. Results of Wilcoxon tests evaluating effects of observer on estimates of cover for four types of soil crust (undifferentiated, dark cyanobacteria, lichen, and moss) sampled with 10-m² quadrats, 1-m² quadrats, and line-point intercept techniques at Colorado Plateau ecological sites where biological soil crusts were common. **Bold values** indicate statistically significant differences between observers' cover estimates.

Type of soil crust		Rank	sum					2*1sided
Ecological site	Sampling method	Observer 1	Observer 2	U	Z	p-level	n	exact p
Undifferentiated crust								
	10-m ²	89	82	37	0.31	0.76	9	0.80
Loamy Mesa Top PJ	1-m ²	83	88	38	-0.22	0.83	9	0.86
	Line-point	97	75	30	0.97	0.33	9	0.34
	10-m ²	83	88	38	-0.22	0.83	9	0.86
Semidesert Alkali Sandy Loam (Alkali Sacaton)	1-m ²	75	96	30	-0.93	0.35	9	0.39
	Line-point	105	66	21	1.72	0.09	9	0.09
	10-m ²	79	92	34	-0.57	0.57	9	0.60
Semidesert Loam (Wyoming Big Sagebrush)	1-m ²	82	89	37	-0.31	0.76	9	0.80
	Line-point	93	78	33	0.66	0.51	9	0.55
	10-m ²	96	76	31	0.88	0.38	9	0.39
Semidesert Shallow Sandy Loam (PJ)	1-m ²	98	74	29	1.06	0.29	9	0.30
	Line-point	97	75	30	0.97	0.33	9	0.34
	10-m ²	93	79	34	0.62	0.54	9	0.55
Upland Shallow Loam (Pinyon-Utah Juniper)	1-m ²	60	112	15	-2.30	0.02	9	0.02
	Line-point	61	110	16	-2.16	0.03	9	0.03
Dark cyanobacteria								
	10-m ²	77	94	32	-0.75	0.45	9	0.49
Loamy Mesa Top PJ	1-m ²	71	101	26	-1.32	0.19	9	0.19
	Line-point	78	93	33	-0.66	0.51	9	0.55

Table 36.—Continued

e of soil crust		Rank	sum					2*1sided
Ecological site	Sampling method	Observer 1	Observer 2	U	Z	p-level	n	exact p
	10-m ²	84	87	39	-0.13	0.89	9	0.93
Semidesert Alkali Sandy Loam (Alkali Sacaton)	1-m ²	80	92	35	-0.53	0.60	9	0.60
	Line-point	40	39	18	0.08	0.94	6	0.94
	10-m ²	73	98	28	-1.10	0.27	9	0.30
Semidesert Loam (Wyoming Big Sagebrush)	1-m ²	74	97	29	-1.02	0.31	9	0.34
	Line-point	34	44	13	-0.80	0.42	6	0.48
	10-m ²	65	107	20	-1.85	0.06	9	0.06
Semidesert Shallow Sandy Loam (PJ)	1-m ²	74	97	29	-1.02	0.31	9	0.34
	Line-point	58	79	22	-1.10	0.27	8	0.28
nen								
	10-m ²	85	87	39.5	-0.09	0.93	9	0.93
Loamy Mesa Top PJ	1-m ²	79	92	34	-0.57	0.57	9	0.60
	Line-point	17	20	7	-0.43	0.67	4	0.69
	10-m ²	82	89	37	-0.31	0.76	9	0.80
Semidesert Alkali Sandy Loam (Alkali Sacaton)	1-m ²	76	96	31	-0.88	0.38	9	0.39
	Line-point	3	7	0	-1.55	0.12	2	0.33
	10-m ²	3	7	0	-1.55	0.12	2	0.33
Semidesert Loam (Wyoming Big Sagebrush)	1-m ²	82	89	37	-0.31	0.76	9	0.80
	Line-point	33	46	12	-1.04	0.30	6	0.31
	10-m ²	90	81	36	0.40	0.69	9	0.73
Semidesert Shallow Sandy Loam (PJ)	1-m ²	82	89	37	-0.31	0.76	9	0.80
	Line-point	3	7	0	-1.55	0.12	2	0.33

Table 36.—Continued

Type of soil crust		Rank	sum					2*1sided
Ecological site	Sampling method	Observer 1	Observer 2	U	Z	p-level	n	exact p
Moss								
	10-m ²	81	91	36	-0.44	0.66	9	0.67
Loamy Mesa Top PJ	1-m ²	87	85	40	0.09	0.93	9	0.93
	Line-point	69	68	32	0.05	0.96	8	0.96
	10-m ²	71	100	26	-1.28	0.20	9	0.22
Semidesert Alkali Sandy Loam (Alkali Sacaton)	1-m ²	7	14	1	-1.53	0.13	3	0.20
	Line-point						1	
	10-m ²	83	89	38	-0.26	0.79	9	0.80
Semidesert Loam (Wyoming Big Sagebrush)	1-m ²	75	96	30	-0.93	0.35	9	0.39
	Line-point	82	89	37	-0.31	0.76	9	0.80
	10-m ²	74	98	29	-1.06	0.29	9	0.30
Semidesert Shallow Sandy Loam (PJ)	1-m ²	67	104	22	-1.63	0.10	9	0.11
	Line-point	83	89	38	-0.26	0.79	9	0.80
	10-m ²	60	112	15	-2.30	0.02	9	0.02
Upland Shallow Loam (Pinyon-Utah Juniper)	1-m ²	66	106	21	-1.77	0.08	9	0.08
	Line-point	3	7	0	-1.55	0.12	2	0.33

Table 37. Results of Wilcoxon tests evaluating effects of observer on estimates of biological soil crust cover based on the characterization of soil darkness (see table 10 and fig. 5) in 25 cm x 25 cm BSC frames at Colorado Plateau ecological sites where biological soil crusts were common.

Soil-surface		Rank	sum					2*1sided
category	Ecological site	Observer 1	Observer 2	U	Z	p-level	n	exact p
	Loamy Mesa Top PJ	5	5	2	0	1.00	2	1.00
Darkness 1	Semidesert Alkali Sandy Loam (Alkali Sacaton)	75	61	25	0.74	0.46	8	0.51
Darkiness i	Semidesert Shallow Sandy Loam (PJ)	73	64	28	0.47	0.64	8	0.65
	Upland Shallow Loam (Pinyon-Utah Juniper)	89	83	38	0.26	0.79	9	0.80
	Loamy Mesa Top PJ	85	87	40	-0.09	0.93	9	0.93
	Semidesert Alkali Sandy Loam (Alkali Sacaton)	80	91	35	-0.49	0.63	9	0.67
Darkness 2	Semidesert Loam (Wyoming Big Sagebrush)	102	70	25	1.41	0.16	9	0.16
	Semidesert Shallow Sandy Loam (PJ)	85	86	40	-0.04	0.96	9	1.00
	Upland Shallow Loam (Pinyon-Utah Juniper)	3	7	0	-1.55	0.12	2	0.33
	Loamy Mesa Top PJ	83	88	38	-0.22	0.83	9	0.86
Darkness 3	Semidesert Alkali Sandy Loam (Alkali Sacaton)	58	78	22	-1.05	0.29	8	0.33
Darkiic33 3	Semidesert Loam (Wyoming Big Sagebrush)	72	99	27	-1.19	0.23	9	0.26
	Semidesert Shallow Sandy Loam (PJ)	61	76	25	-0.79	0.43	8	0.44
Darkness 4	Loamy Mesa Top PJ	50	56	22	-0.38	0.70	7	0.71
Darkness 5	Loamy Mesa Top PJ	5	5	2	0	1.00	2	1.00

Table 38. Results of Wilcoxon tests evaluating effects of observer on estimates of shrub density by species and height class at Colorado Plateau ecological sites. See Appendix A for key to species codes.

		Rank	Sum					
Species	Height class (cm)	Observer 1	Observer 2	U	Z	p-level	n	2*1sided exact p
	0-10	21	15	5	0.87	0.39	4	0.49
	10-25	48	30	9	1.44	0.15	6	0.18
	25-50	116	94	39	0.83	0.41	10	0.44
AMUT	50-100	150	151	72	-0.03	0.98	12	0.98
	100-200	156	144	66	0.35	0.73	12	0.76
	>200	5	5	2	0.00	1.00	2	1.00
	All combined	2281	1998	917	1.10	0.27	46	0.27
	0-10	5	5	2	0.00	1.00	2	1.00
	10-25						1	
ARBI3	25-50	7	4	1	1.16	0.25	2	0.33
	50-100						1	
	All combined	45	34	13	0.88	0.38	6	0.39
	0-10	57	48	20	0.57	0.57	7	0.62
	10-25	109	101	46	0.30	0.76	10	0.80
ARTR2	25-50	158	143	65	0.43	0.67	12	0.67
	50-100	157	143	65	0.40	0.69	12	0.71
	All combined	2499	2352	1127	0.52	0.60	49	0.61
	25-50	5	5	2	0.00	1.00	2	1.00
ATCA2	50-100	10	11	4	-0.22	0.83	3	1.00
	All combined	27	29	12	-0.21	0.83	5	0.84
	0-10	142	111	45	1.02	0.31	11	0.33
	10-25	68	68	32	0.00	1.00	8	1.00
ATCO	25-50	96	76	31	0.88	0.38	9	0.39
	50-100						1	
	All combined	921	790	355	1.02	0.31	29	0.31
	10-25						1	
BEFR	50-100	12	9	3	0.65	0.51	3	0.70
	All combined	18	18	8	0.00	1.00	4	1.00
	10-25	11	11	5	0.00	1.00	3	1.00
	25-50	73	64	28	0.47	0.64	8	0.65
CHNA2	50-100	17	19	7	-0.29	0.77	4	0.89
	100-200						1	
	All combined	262	267	126	-0.09	0.92	16	0.93
	0-10	20	17	7	0.43	0.67	4	0.69
	10-25	60	45	17	0.96	0.34	7	0.38
CORA	25-50	91	81	36	0.44	0.66	9	0.67
	50-100	90	81	36	0.40	0.69	9	0.73
-	All combined	893	818	383	0.58	0.56	29	0.57
	25-50			_			1	
PUME	50-100	12	9	3	0.65	0.51	3	0.70
1 OIVIL	100-200	5	5	2	0.00	1.00	2	1.00
	All combined	42	37	16	0.40	0.69	6	0.70

Table 38.—Continued

		Rank	Sum					
Species	Height class (cm)	Observer 1	Observer 2	U	Z	p-level	n	2*1sided exact p
	0-10	18	18	8	0.00	1.00	4	1.00
PUTR2	25-50	25	12	2	1.88	0.06	4	0.06
101112	50-100	13	23	3	-1.44	0.15	4	0.20
	All combined	156	144	66	0.35	0.73	12	0.76
	0-10	18	18	8	0.00	1.00	4	1.00
	10-25	17	20	7	-0.43	0.67	4	0.69
	25-50	74	63	27	0.58	0.56	8	0.57
SAVE4	50-100	107	104	49	0.11	0.91	10	0.91
	100-200	16	20	6	-0.58	0.56	4	0.69
	>200						1	
	All combined	983	970	474	0.09	0.93	31	0.93
	25-50						1	
SHRO	50-100						1	
0	100-200	5	5	2	0.00	1.00	2	1.00
	All combined	18	18	8	0.00	1.00	4	1.00
	0-10							
	10-25	11	11	5	0.00	1.00	3	1.00
SYOR2	25-50	8	13	2	-1.09	0.28	3	0.40
0.0L	50-100	11	10	4	0.22	0.83	3	1.00
	100-200	10	12	4	-0.44	0.66	3	0.70
	All combined	145	155	67	-0.29	0.77	12	0.80

Table 39. Results of Wilcoxon tests evaluating effects of observer on estimates of tree density by species and size class at Colorado Plateau ecological sites. See Appendix A for key to species codes.

		Rank	Sum					
Species	Size class	Observer 1	Observer 2	U	Z	p-level	n	2*1sided exact p
ABCO	Seedling	5	5	2	0.00	1.00	2	
	Seedling	275	253	117	0.41	0.68	16	0.70
JUOS	Pole	152	149	71	0.09	0.93	12	0.93
0000	Overstory	120	90	35	1.13	0.26	10	0.28
	All combined	1555	1372	631	0.95	0.34	38	0.34
	Seedling	170	182	79	-0.31	0.76	13	0.76
PIED	Pole	89	82	37	0.31	0.76	9	0.80
1125	Overstory	5	5	2	0.00	1.00	2	
	Total	582	595	282	-0.13	0.89	24	0.89
	Seedling						1	
PIEN	Pole	5	5	2	0.00	1.00	2	1.00
	All combined	11	11	5	0.00	1.00	3	1.00
	Pole						1	
PIPO	Overstory	25	30	10	-0.52	0.60	5	0.69
	All combined	36	42	15	-0.48	0.63	6	0.70

Table 39.—Continued

		Rank	Sum					
Species	Size class	Observer 1	Observer 2	U	Z	p-level	n	2*1sided exact p
	Seedling	52	53	24	-0.06	0.95	7	1.00
POTR5	Pole	19	18	8	0.14	0.89	4	0.89
10110	Overstory						1	
	All combined	150	150	72	0.00	1.00	12	1.00
	Seedling	20	16	6	0.58	0.56	4	0.69
QUGA	Pole						1	
	All combined	29	26	11	0.31	0.75	5	0.84

Sampling Impacts

Sampling impacts on soil and vegetation conditions depended on the structure of plant communities at ecological sites and the types and amounts of soil crusts that were present. Ecological sites most impacted by our sampling procedures (Desert Sand at Canyonlands, Loamy Mesa Top PJ at Mesa Verde, Semidesert Alkali Sandy Loam at Capitol Reef, Semidesert Loam at Dinosaur, and Semidesert Shallow Sandy Loam at Arches and Canyonlands) were those with biological soil crusts and undifferentiated soil crusts (table 40). At these ecological sites, destabilized soils and trampled biological soil crusts were the most common types of impact. Figure 20 illustrates trampling impacts on soils at Arches National Park and on vegetation at Wupatki National Monument.

Sampling resulted in few broken branches, except at sites where dense shrubs or trees had to be penetrated in order to sample. A slight degree of plant trampling occurred at most ecological sites. Some sites had little sampling impact (Limy Upland at Wupatki, Loamy Hills at Grand Canyon, Shallow Loamy at Wupatki, and Upland Shallow Loam at Capitol Reef) due to low cover of plants and biological soil crusts, and/or due to armoring of soils by cinders or rock.

Figure 20. Photograph (left) of destabilized soil and trampled biological soil crusts on unsampled side of transect in Arches National Park (Semidesert Shallow Sandy Loam ecological site), and (right) trampled plants on unsampled side of transect in Wupatki National Monument (Limy Upland ecological site).

Sampling methods and procedures varied in terms of their impacts on site conditions (table 40). Line-point intercept sampling, 10-m² quadrat sampling, and gap-intercept sampling nearly always created the most impact, although travel to macroplots caused a large degree of impact where undifferentiated soil crusts and biological soil crusts were trampled while enroute to macroplots located relatively far from roads. Impacts also varied by location (table 41), with greatest impacts along the unsampled side of the transect and least impacts within quadrats. This was most noticeable at sites with extensive undifferentiated soil crusts and biological soil crusts, where trampled foot paths formed along the unsampled side of the transect and around the perimeter of 10-m² quadrats (fig. 20).

Discussion

Evaluation of Sampling Methods

A primary objective of this project was to evaluate a suite of sampling methods according to measures of repeatability, efficiency, and impacts on plot conditions across a range of upland ecosystems likely to be monitored in Colorado Plateau NPS units. In this section and in table 42 we summarize results of these evaluations.

Efficiency

We evaluated the efficiency of cover-estimation techniques on the basis of several measures including per-unit subsampling times, within-plot CV values for total live understory canopy cover, numbers of subsamples and amounts of time required to estimate plot-level cover with 20 percent precision, among-plot CV values for total live understory cover, numbers of macroplot samples required to estimate site-level cover with 20 percent precision, and numbers of species detected per macroplot and ecological site.

Across all ecological sites combined, we found few unambiguous trends in the efficiency of cover-estimation techniques. The amount of time required to sample cover in one 10-m² quadrat was about twice that required for one 1-m² quadrat and one 10-pt group of line-point intercepts. On the basis of within-plot CV values and numbers of subsamples required to estimate total plot-level cover with 20 percent precision, 10-m² quadrats were most efficient and 1-m² quadrats least efficient at 10 and eight of 11 ecological sites, respectively. The line-point technique was most efficient at eight of 11 ecological sites in terms of the amount of time required to estimate total plot-level cover with 20 percent precision – largely because 10-m² quadrats were more time consuming and 1-m² quadrats had greater within-plot variability relative to line-point sampling. Mean quadrat subsampling times were highly influenced by results at two ecological sites, and across all sites there was no statistical difference among methods with respect to median subsampling times for 20 percent precision. We also found no difference among methods with respect to mean and median CV values describing among-plot variability in total live understory cover. Nevertheless, the line-point technique had the lowest among-plot CV values for 7 of 11 ecological sites.

For monitoring objectives requiring the detection of infrequent species, quadrat-based techniques are superior to point-based techniques because of greater areal coverage. For species detection, we found that the relative advantage of 10-m² quadrats over 1-m² quadrats varied among ecological sites. Across all ecological sites, we also found that this detection advantage

Table 40. Median impact-assessment ratings for procedures at 11 Colorado Plateau ecological sites (0 = none, 1 = slight, 2 = slight to moderate, 3 = moderate, 4 = moderate to extreme, 5 = extreme). See table 1 for key to ecological site codes.

					Е	cological si	te				
Procedure	BL	DS	LU	LH	LHC	LMT	SASL	SL	SShSL	ShL	UShL
Travel to macroplot	0	2.5	1	0	1	2	2	1	1.5	0.5	1
Site characterization	0	1	0	0	1	1	1	0	1	0	0
Plot establishment	0	1.5	0	0	1	2	1	1	2	0	0
1-m ² quadrat sampling	0	1	0	0	0	0	1	0	1	0.5	0
10-m ² quadrat sampling	1	2.5	1	0	1	2	3	2	3	0.5	1
Line-point intercept sampling	0	2.5	1	0	1	1	3	1	3	0.5	1
Gap-intercept sampling	0	2	0	0	0	0	3	0	2.5	0.5	0
Pin placement	0	0.5	0	0	0	1	1	0	1	0	0
Cumulative travel on line	1	3	1	1	2	4	3	2	3.5	0.5	1

Table 41. Median impact-assessment ratings for types of impacts (broken branches, trampled plants, destabilized soils, trampled biological soil crusts, and quadrat-frame imprint) in quadrats, on the sampled side of the transect tape, and on the unsampled side of the transect tape at 11 Colorado Plateau ecological sites (0 = none, 1 = slight, 2 = slight to moderate, 3 = moderate, 4 = moderate to extreme, 5 = extreme). See table 1 for key to ecological site codes.

						Ed	cological si	ite				
Type of impact	Impact location	BL	DS	LU	LH	LHC	LMT	SASL	SL	SShSL	ShL	UShL
	In quadrats	0	0	0	0	0	0	0	0	0	0	0
Broken branches	Sampled side of transect	0	0	0	0	0	0	0	0	0	0	0
	Unsampled side of transect	0	0	0	0	0	1	0	1	0	0	0
	In quadrats	0	0	0	0	1	1	1	0	0	0	0
Trampled plants	Sampled side of transect	1	0	1	1	1.5	1	1	0	0	0	0
	Unsampled side of transect	1	1	1	1	2	1	1	1	0	0.5	0
	In quadrats	0	1	0	0	0	2	2	1	1	0	0
Destabilized soils	Sampled side of transect	1	2	0	0	0	3	2	2	3	0	1
	Unsampled side of transect	1	3	0	0	0.5	3	3	2	4	0	1
	In quadrats	0	1	0	0	0	1	0	1	0	0	0
Trampled BSCs	Sampled side of transect	0	3	0	0	0	2	1	1	2	0	0
	Unsampled side of transect	0	3	0	0	0	3	1	2	2	0	0
Quadrat imprint	In quadrats	0	1	0	0	0	1	1	0	1	0	0

could largely be accounted for by species with 6.7 percent frequency (or less) in 10-m² quadrats. That is, after excluding these very infrequent species from 10-m² quadrat data, we found no difference between 10- and 1-m² quadrats in terms of mean estimates of site-level species richness.

Table 42. Summary of comparisons among cover-sampling techniques in relation to repeatability between observers, efficiency, and sampling impacts on soils and vegetation (0 indicates no clear difference among techniques; -- indicates worst technique[s]; + indicates best technique[s]).

	Cover	-sampling tech	nique
Evaluation criteria	Line-point intercept	1-m ² quadrats	10-m ² quadrats
Efficiency			
Per-unit subsampling time	+	+	
Within-plot CV values for total live understory canopy cover			+
Time to estimate within-plot total live understory canopy cover with 20 percent precision	+	0	0
Among-plot CV values for total live understory canopy cover	+	0	0
Species detection (all species)			+
Species detection (frequent species)		+	+
Repeatability between observers (measurement precision)	0	0	0
Sampling impacts on soil and vegetation		+	

Repeatability

We found no differences among cover-estimation techniques in terms of observer repeatability (measurement precision). Cover estimates were highly repeatable between observers for 10-m² quadrats, 1-m² quadrats, and line-point intercept sampling methods. Statistically significant differences between observers' cover estimates were found only in three cases: (1) line-point estimates of blackbrush cover at the Semidesert Shallow Sandy Loam PJ ecological site at Arches National Park, (2) line-point and 1-m² quadrat estimates of undifferentiated soil crust at the Upland Shallow Loam ecological site at Capitol Reef National Park, and (3) 10-m² quadrat estimates of moss cover at the same Upland Shallow Loam ecological site. Differences in blackbrush cover estimates were due to the observers' differing interpretations of line-point intercepts as "standing dead" vs. "live non-photosynthetic." Repeatability in such cases can be improved by ensuring that observers use a standardized decision-making process for determining the status ("standing dead" vs. "live non-photosynthetic") of plant intercepts. For undifferentiated soil crust and moss cover at the Upland Shallow Loam ecological site, absolute differences in mean cover estimates between observers were low for 1-m² and 10-m² quadrats, respectively (table F2).

Because one member of the two-person field team recorded the other member's cover estimates, repeat sampling events were not fully independent of one another. This was

particularly true for quadrat-based sampling because repeat events sampled the same quadrat space. However, it is unlikely that this sampling approach significantly affected the results. Although it was easy for the second observer to remember unique or infrequent species detected by the first observer, actual cover estimates could not be easily recalled. Independence of repeat observations was not an issue with line-point sampling, since it is highly improbable that the exact same points were resampled during repeat events. This factor explains why differences between observers' cover estimates tended to be slightly greater for line-point sampling than for quadrat-based sampling (Appendix F).

We found that density measures also were repeatable between observers. Our analyses did not detect significant differences in density estimates between observers for any tree or shrub species. The power of our analyses may have been affected by small sample sizes because counts for many species such as Gambel oak (Quercus gambelii, QUGA) were low (n < 10). Additional data may be necessary for a more robust evaluation of the repeatability of density measures. Some shrubs were extremely difficult to sample for density because of their multistemmed growth habit. Gambel oak in the Brushy Loam ecological site at Mesa Verde was particularly challenging with respect to density sampling. First, it was difficult to classify as either a shrub or a tree. (We consistently called it a tree in this analysis.) Older specimens may have one or a few main stems and can appear "tree like," but younger plants exist as dense, multistemmed shrubs. Second, in the dense shrub form it is extremely difficult to distinguish individual plants or stems as unique counting units. Counting Gambel oak stems in dense stands was tedious and time consuming, sometimes taking longer than 10 minutes per quadrat. It also was time consuming to count high numbers of big sagebrush (Artemisia tridentata, ARTR2) seedlings (up to 474 seedlings in one 10-m² quadrat) encountered at one Semidesert Loam macroplot in Dinosaur National Monument. To facilitate future density sampling in such cases, we recommend the use of 25- or 50-unit counting categories when individual stem counts exceed a threshold value such as 100 per 10-m² quadrat.

Sampling Impacts

As expected, sampling activities had greatest impacts on soil and vegetation conditions at macroplots where there was a high degree of cover by biological or undifferentiated soil crusts. Impacts occurred primarily on paths on the unsampled sides of transects and around the perimeters of 10-m² quadrats. Of all sampling procedures, 10-m² quadrat sampling, line-point sampling, and gap-intercept sampling had the most impacts. Sampling 10-m² quadrats resulted in foot paths surrounding all sides of the quadrat, although observers could choose and walk paths of least impact when moving from one quadrat location to the next. In contrast, line-point sampling at 50-cm and 1-m intervals and continuous gap-intercept sampling forced observers to trample crusts and plants in a continuous path very close to the tape, allowing little flexibility to minimize trampling impacts. Repeated travel back and forth along transects had the greatest cumulative impacts, but these impacts could be minimized by carefully stepping in previous footprints where possible. Although 1-m² quadrats had the least impacts in this study, impacts would be expected to increase proportionally if sampling objectives required a larger number of subsamples (perhaps placed at smaller intervals along the transect) in order to compensate for the fact that 1-m² quadrats typically had the highest within-plot CV values for total live understory canopy cover.

Issues Associated with Electronic Data Entry and Management

As described above, a Pocket PC was used to collect and store data in a database during the field season with the goal of facilitating real-time data analyses and reducing the amount of time required for post-season data entry. When transferred to a desktop computer, the database format provided immediate access and easy manipulation of data for purposes of review during the field season. Ideally, savings realized by eliminating post-season data entry are not offset by time delays attributable to recording data on the hand-held device or by complications associated with computer hardware or software. In reality, there were time costs associated with use of the Pocket PC for data entry, and cumulative technical complications slowed the pace of data collection to such a degree that the number of macroplots sampled over the course of the season was reduced relative to what might have been accomplished in the absence of such complications. Following are several issues encountered over the course of the field season.

- 1. The database program that we used requires an expert in data management to design the database and to resolve problems which inevitably arise when adopting new techniques. These problems likely will become less significant as sampling and datamanagement protocols are refined, but technical complications always will occur to some degree requiring contingencies to resolve issues without compromising the quality or quantity of data collected by field teams.
- 2. Data can be lost from the computer. This can occur from an error in the back-up method, a power outage and subsequent operating system reset, and accidental deletions when the wrong key is pushed. Data loss also can occur while collecting data on paper, but it may be prevented in both cases with adequate safeguards. On the Pocket PC, it must be ensured that the field crew is properly trained in back-up procedures and is diligent and careful while recording data. During the 2005 field season, a back-up error caused data for an entire macroplot (Capitol Reef, Phase 2) to be lost requiring that the plot be resampled in its entirety during a subsequent visit to the park. Because of the potential for power loss, system resets, and data loss, we recommend that future field crews be equipped with a laptop computer with a back-up copy of the most recent database, connection cables, and CDs for software that may need to be reloaded on the hand-held. The likelihood of data loss also may be minimized in the future by ensuring that the field crew has multiple batteries and reliable procedures for charging batteries in remote settings.
- 3. Computer-based methods require training time for field crews. This may require only a couple of days to initially learn the programs and procedures, but there also is a certain amount of comfort and speed only obtained after weeks or months of sampling. During the 2005 season, the field crew was still becoming familiar with operation of the Pocket PC two-thirds of the way through the field season.
- 4. The actual time required to enter data with the Pocket PC while in the field is dependent upon several factors the memory capacity and processor speed of the hand-held computer, the size (thus speed) of the program in relation to memory capacity, the size of the dataset, and the design of data-entry forms (e.g., the length of drop-down menus and pick-lists). When data were recorded by hand in field books during the 2005 season, sampling proceeded at a pace 10-20 percent faster than when using the Pocket PC. Excessive file size (i.e., running the PocketAccess database with all data accumulated during the entire field season) and long pick-lists were

- major factors slowing data entry with the Pocket PC. When procedures were modified to address these factors, the pace of sampling increased considerably.
- 5. When data are collected on paper due to technical issues with the Pocket PC, entry of data into the database in the office can be very time consuming. Data entry in the office was very slow because data entry forms were designed specifically for the small, Pocket PC format using Sprint DB Pro interface software. In the future we recommend that alternative data entry forms (e.g., in Microsoft Access) be developed to facilitate direct entry of data into the project database when necessary.
- 6. Data transfers between the Pocket PC and a desktop computer can be time consuming, particularly if the system is designed so that all accumulated data must be transferred during each synchronization event. We recommend that systems be designed so that a minimum amount of data must be transferred between the Pocket PC and the desktop during synchronization.

Overall, the Pocket PC did provide data accessibility more quickly than had the crew recorded and entered data by hand, in spite of the various technical challenges that were encountered. However, the pace of field work delayed quality-assurance work until after the end of the field season. As a result, "real-time" data analyses were hampered by various issues (e.g., mislabeled data, missing data, consistency in species identification and naming across plots) that could not be fully resolved until data collection was completed. The handheld computer seemed to withstand the rigors of fieldwork, and it promises to be a useful tool for facilitating the collection and management of large data sets.

References Cited

- Creque, J. A., S. D. Bassett, and N. E. West. 1999. Viewpoint: Delineating ecological sites. Journal of Range Management 52: 546-549.
- Herrick, J. E., J. W. Van Zee, K. M. Havstad, L. M. Burkett, and W. G. Whitford. 2005. Monitoring manual for grassland, shrubland and savanna ecosystems. Volume I: Quick start. Las Cruces, NM: USDA-ARS Jornada Experimental Range. 36 p.
- McCune, B. and M. J. Mefford. 1999. PC-ORD. Multivariate Analysis of Ecological Data. Version 4.34. Gleneden Beach, OR: MjM Software.
- McCune, B. P., and J. B. Grace. 2002. Analysis of ecological communities. Gleneden Beach, OR: MjM Software Design. 300 p.
- NPS (U.S.D.I. National Park Service). 2003. Fire monitoring handbook. Boise, ID: Fire Management Program Center, National Interagency Fire Center. 274 p.
- NRCS (U.S.D.A. Natural Resources Conservation Service). 2001a. Soil survey of Cortez Area, Colorado, parts of Dolores and Montezuma counties. Denver: U.S. Department of Agriculture, Natural Resources Conservation Service. 627 p.
- NRCS (U.S.D.A. Natural Resources Conservation Service). 2001b. Soil survey of Dinosaur National Monument, Colorado and Utah. Denver: U.S. Department of Agriculture, Natural Resources Conservation Service. 381 p.
- NRCS (U.S.D.A. Natural Resources Conservation Service). 2003. Soil survey of Grand Canyon area, Arizona, parts of Coconino and Mohave counties. Phoenix: U.S. Department of Agriculture, Natural Resources Conservation Service. 602 p.
- NRCS (U.S.D.A. Natural Resources Conservation Service). 2004. Draft soil survey report for Capitol Reef National Park (soil survey area UT685). Salt Lake City: U.S. Department of Agriculture, Natural Resources Conservation Service. 389 p.

- Schoeneberger, P. J., D. A. Wysocki, E. C. Benham, and W. D. Broderson, eds. 2002. Field book for describing and sampling soils, version 2.0. U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.
- SCS (U.S.D.A. Soil Conservation Service). 1983. Soil survey of Coconino County, Azizona, central part. Phoenix: U.S. Department of Agriculture, Natural Resources Conservation Service. 212 p.
- SCS (U.S.D.A. Soil Conservation Service). 1989. Soil survey of Grand County, Utah, central part. Salt Lake City: U.S. Department of Agriculture, Natural Resources Conservation Service. 200 p.
- SCS (U.S.D.A. Soil Conservation Service). 1991. Soil survey of Canyonlands area, Utah, parts of Grand and San Juan counties. Salt Lake City: U.S. Department of Agriculture, Natural Resources Conservation Service. 293 p.
- SRM Task Group (Society for Range Management Task Group on Unity in Concepts and Terminology Committee). 1995. New concepts for assessment of rangeland condition. Journal of Range Management 48: 271-282.
- StatSoft, Inc. 2004. STATISTICA (data analysis software system), version 6. www.statsoft.com. Zar, J. H. 1999. Biostatistical analysis. Fourth edition. Upple Saddle River, NJ: Prentice Hall. 663 p.

Appendix A—Species List and Species Occurrence by Ecological Site

[Species codes are from the U.S. Department of Agriculture, Natural Resources Conservation Service, PLANTS database (http://plants.usda.gov, June 2005),

National Plant Data Center, Baton Rouge, LA 70874-4490 USA.]

Species code	Species name	Family name	Brushy Loam	Desert Sand (Sand Sagebrush)	Limy Upland, 6-10" pz	Loamy Hills, 25-33" pz	Loamy Hills, Cold, 25-33" pz	Loamy Mesa Top PJ	Semidesert Alkali Sandy Loam (Alkali Sacaton)	Semidesert Loam (Wyoming Big Sagebrush)	Semidesert Shallow Sandy Loam (PJ)	Shallow Loamy, 10-14" pz	Upland Shallow Loam (Pinyon- Utah Juniper)
ABCO	Abies concolor	Pinaceae				Х	Х						
ABFR2	Abronia fragrans	Nyctaginaceae		Х									
ABLA	Abies lasiocarpa	Pinaceae				Х	Х						
ACHY	Achnatherum hymenoides	Poaceae			Х							Х	
ACMI2	Achillea millefolium	Asteraceae	Х			Х	Х						
AGCR	Agropyron cristatum	Poaceae	Х										
AGSM	Agropyron smithii	Poaceae								Х			
ALAC4	Allium acuminatum	Liliaceae	Х										
AMAC2	Ambrosia acanthicarpa	Asteraceae							Х				
AMUT	Amelanchier utahensis	Rosaceae	Х										Х
ANPA5	Antennaria parvifolia	Asteraceae				Х	Х						
ARBI3	Artemisia bigelovii	Asteraceae	Х						Х		Х		
ARDR4	Artemisia dracunculus	Asteraceae	Х						Х				
ARFI2	Artemisia filifolia	Asteraceae							Х		Х		
ARNO4	Artemisia nova	Asteraceae									Х		
ARPU9	Aristida purpurea	Poaceae		Х	Х								
ARTR2	Artemisia tridentata	Asteraceae						Х	Х	Х			
ASMA10	Asclepias macrosperma	Asclepiadaceae									Х		
ASMO7	Astragalus mollissimus	Fabaceae								Х	Х		
ATCA2	Atriplex canescens	Chenopodiaceae		Х					Х	Х	Х	Х	
ATCO	Atriplex confertifolia	Chenopodiaceae							Х	Х			
BASA3	Balsamorhiza sagittata	Asteraceae	Х										
BEFR	Berberis fremontii	Berberidaceae											Х
BOCU	Bouteloua curtipendula	Poaceae			Х								
BOER4	Bouteloua eriopoda	Poaceae			Х				Х			Х	
BOGR2	Bouteloua gracilis	Poaceae			Х				Х				
BRIN2	Bromus inermis	Poaceae				Х	Х		Х				

Species code	Species name	Family name	Brushy Loam	Desert Sand (Sand Sagebrush)	Limy Upland, 6-10" pz	Loamy Hills, 25-33" pz	Loamy Hills, Cold, 25-33" pz	Loamy Mesa Top PJ	Semidesert Alkali Sandy Loam (Alkali Sacaton)	Semidesert Loam (Wyoming Big Sagebrush)	Semidesert Shallow Sandy Loam (PJ)	Shallow Loamy, 10-14" pz	Upland Shallow Loam (Pinyon- Utah Juniper)
BRTE	Bromus tectorum	Poaceae	Х	Х	Х	Х		Х	X	Х	X		X
CANU3	Calochortus nuttallii	Liliaceae	Х					Х		Х	Х		
CANU4	Carduus nutans	Asteraceae	Х					Х					
CEMO2	Cercocarpus montanus	Rosaceae	Х										Х
CELA4	Ceratoides lanata	Chenopodiaceae		Х					Х	Х			
CHAL7	Chenopodium album	Chenopodiaceae	Х	Х		Х		Х	Х		Х		Х
CHLE4	Chenopodium leptophyllum	Chenopodiaceae	Х		Х			Х	Х	Х		Х	
CHNA2	Chrysothamnus nauseosus	Asteraceae			Х				Х	Х		Х	
CHST	Chaenactis stevioides	Asteraceae		Х					Х		Х		
CHVI8	Chrysothamnus viscidiflorus	Asteraceae	Х								Х		Х
COME5	Cowania mexicana	Rosaceae											Х
CORA	Coleogyne ramosissima	Rosaceae		Х							Х		
COUM	Comandra umbellata	Santalaceae	Х										
COWR2	Cordylanthus wrightii	Scrophulariaceae						Х	Х		Х		Х
CRCI3	Cryptantha cinerea	Boraginaceae			Х							Х	
CRFL5	Cryptantha flava	Boraginaceae											Х
DAFL	Dalea flavescens	Fabaceae									Х		
DEPI	Descurainia pinnata	Brassicaceae	Х		Х			Х	Х	Х	Х	Х	Х
ELEL5	Elymus elymoides	Poaceae	Х		Х	Х	Х	Х			Х	Х	
EPAN	Epilobium angustifolium	Onagraceae				Х							
EPVI	Ephedra viridis	Ephedraceae		Х							Х	Х	Х
ERCE2	Eriogonum cernuum	Polygonaceae		Х					Х	Х	Х		Х
ERCO14	Eriogonum corymbosum	Polygonaceae									Х		
ERFO3	Erigeron formosissimus	Asteraceae					Х						
ERIN4	Eriogonum inflatum	Polygonaceae							Х		Х		
ERMI4	Eriogonum microthecum	Polygonaceae									Х		Х
ERUM	Eriogonum umbellatum	Polygonaceae	Х					Х					
ESVI2	Escobaria vivipara	Cactaceae						Х					
EUFE2	Euphorbia fendleri	Euphorbiaceae									Х		
FEOC3	Festuca octoflora	Poaceae		Х							Х		
FERU	Fendlera rupicola	Hydrangeaceae	Х										
FRAN2	Fraxinus anomala	Oleaceae									Х		Х

Species code	Species name	Family name	Brushy Loam	Desert Sand (Sand Sagebrush)	Limy Upland, 6-10" pz	Loamy Hills, 25-33" pz	Loamy Hills, Cold, 25-33" pz	Loamy Mesa Top PJ	Semidesert Alkali Sandy Loam (Alkali Sacaton)	Semidesert Loam (Wyoming Big Sagebrush)	Semidesert Shallow Sandy Loam (PJ)	Shallow Loamy, 10-14" pz	Upland Shallow Loam (Pinyon- Utah Juniper)
FRVI	Fragaria virginiana	Rosaceae				Х	X						
GACO5	Gaura coccinea	Onagraceae										Х	
GAPI	Gaillardia pinnatifida	Asteraceae		X									
GECA3	Geranium caespitosum	Geraniaceae				Х	X						
GIIN2	Gilia inconspicua	Polemoniaceae			Х				X	X	X	Х	Х
GOOB2	Goodyera oblongifolia	Orchidaceae				Х	X						
GUSA2	Gutierrezia sarothrae	Asteraceae						Х	Х	X	Х	Х	Х
HAGL	Halogeton glomeratus	Chenopodiaceae							Х				
HECO26	Hesperostipa comata	Poaceae	Х					Х					
HENE5	Hesperostipa neomexicana	Poaceae			Х							Х	
HIJA	Hilaria jamesii	Poaceae		Х					Х	Х	Х		Х
HYAC4	Hymenoxys acaulis	Asteraceae									Х		
IPAG	Ipomopsis aggregata	Polemoniaceae	Х										
JUCO6	Juniperus communis	Cupressaceae				Х	Х						
JUMO	Juniperus monosperma	Cupressaceae			Х							Х	
JUOS	Juniperus osteosperma	Cupressaceae	Х					Х		X	Х		Х
KOMA	Koeleria macrantha	Poaceae	Х					Х					
LAOC3	Lappula occidentalis	Boraginaceae		Х	Х			Х	Х	Х	Х		
LARE	Lappula redowskii	Boraginaceae								Х			
LASE	Lactuca serriola	Asteraceae								Х			
LATA	Lactuca tatarica	Asteraceae	X					Х					
LEMO2	Lepidium montanum	Brassicaceae									Х		
LEPE2	Lepidium perfoliatum	Brassicaceae						Х			Х		
LEPU	Leptodactylon pungens	Polemoniaceae						Х		Х			
LIAR3	Linum aristatum	Linaceae		Х					Х				
LUAR3	Lupinus argenteus	Fabaceae				Х							
LUCA	Lupinus caudatus	Fabaceae	Х					Х					
MACA2	Machaeranthera canescens	Asteraceae		Х					Х				
MAFR3	Mahonia fremontii	Berberidaceae									Х		
MARE11	Mahonia repens	Berberidaceae	Х			Х	Х						
MATA2	Machaeranthera tanacetifolia	Asteraceae							Х				
MEAL6	Mentzelia albicaulis	Loasaceae		Х	Х				Х		Х	Х	

Species code	Species name	Family name	Brushy Loam	Desert Sand (Sand Sagebrush)	Limy Upland, 6-10" pz	Loamy Hills, 25-33" pz	Loamy Hills, Cold, 25-33" pz	Loamy Mesa Top PJ	Semidesert Alkali Sandy Loam (Alkali Sacaton)	Semidesert Loam (Wyoming Big Sagebrush)	Semidesert Shallow Sandy Loam (PJ)	Shallow Loamy, 10-14" pz	Upland Shallow Loam (Pinyon- Utah Juniper)
MUSQ	Munroa squarrosa	Poaceae							Х				
OECE2	Oenothera cespitosa	Onagraceae							Х		Х		
OEPA	Oenothera pallida	Onagraceae		Х					Х				
OPER	Opuntia erinacea	Cactaceae			Х			Х	X	Х	Х	Х	
OPPO	Opuntia polyacantha	Cactaceae		X							Х		
ORHY	Oryzopsis hymenoides	Poaceae							X	Х			Х
PAMY	Paxistima myrsinites	Celastraceae	Х										
PASM	Pascopyrum smithii	Poaceae	Х										
PEPU7	Petradoria pumila	Asteraceae	Х					Х			Х		Х
PHCR	Phacelia crenulata	Hydrophyllaceae			Х				Х		Х		
PHHE2	Phacelia heterophylla	Hydrophyllaceae	Х										
PIED	Pinus edulis	Pinaceae	Х				Х	Х			Х		Х
PIEN	Picea engelmannii	Pinaceae				Х	Х						
PIPO	Pinus ponderosa	Pinaceae				Х	Х						
PLJA	Pleuraphis jamesii	Poaceae			Х							Х	
PLPA2	Plantago patagonica	Plantaginaceae		Х					Х	Х	Х		
POFE	Poa fendleriana	Poaceae	Х			Х	Х	Х			Х		Х
POSA12	Poa sandbergii	Poaceae											Х
POSE	Poa secunda	Poaceae								Х			
POTR5	Populus tremuloides	Salicaceae				Х	Х						
PSME	Pseudotsuga menziesii	Pinaceae				Х	Х						
PSSP	Psilostrophe sparsiflora	Asteraceae			Х								
PTAQ	Pteridium aquilinum	Dennstaedtiaceae				Х	Х						
PUME	Purshia mexicana	Rosaceae									Х		Х
PUTR2	Purshia tridentata	Rosaceae	Х					Х					Х
PYCH	Pyrola chlorantha	Pyrolaceae				Х	Х						
QUGA	Quercus gambelii	Fagaceae	Х										
RATE	Ranunculus testiculatus	Ranunculaceae						Х		Х	Х		
SAIB	Salsola iberica	Chenopodiaceae				İ			X	Х			
SAKA	Salsola kali	Chenopodiaceae			Х							Х	
SAPA8	Salsola paulsenii	Chenopodiaceae		Х		İ			X				
SAPE10	Salsola pestifer	Chenopodiaceae		Х							Х		

Species code	Species name	Family name	Brushy Loam	Desert Sand (Sand Sagebrush)	Limy Upland, 6-10" pz	Loamy Hills, 25-33" pz	Loamy Hills, Cold, 25-33" pz	Loamy Mesa Top PJ	Semidesert Alkali Sandy Loam (Alkali Sacaton)	Semidesert Loam (Wyoming Big Sagebrush)	Semidesert Shallow Sandy Loam (PJ)	Shallow Loamy, 10-14" pz	Upland Shallow Loam (Pinyon- Utah Juniper)
SAVE4	Sarcobatus vermiculatus	Chenopodiaceae							Х	Х			
SCWH	Sclerocactus whipplei	Cactaceae									X		
SEMU3	Senecio multilobatus	Asteraceae				Х	Х	Х			X		
SHRO	Shepherdia rotundifolia	Elaeagnaceae											Х
SIAL2	Sisymbrium altissimum	Brassicaceae	Х							X			
SIHY	Sitanion hystrix	Poaceae							Х	Х			Х
SISC7	Silene scouleri	Caryophyllaceae					Х						
SPAI	Sporobolus airoides	Poaceae			Х				Х			Х	
SPCO	Sphaeralcea coccinea	Malvaceae	Х	Х				Х	Х	Х	Х		
SPCO4	Sporobolus contractus	Poaceae							Х				
SPCR	Sporobolus cryptandrus	Poaceae							Х				
SPGR2	Sphaeralcea grossulariifolia	Malvaceae		Х									
SPHA	Sphaeralcea hastulata	Malvaceae			Х								
SPPA2	Sphaeralcea parvifolia	Malvaceae			Х				Х			Х	
STCO4	Stipa comata	Poaceae								Х			
STEX	Stephanomeria exigua	Asteraceae		Х							Х		
STHY6	Stipa hymenoides	Poaceae		Х				Х			Х		
STLO4	Streptanthella longirostris	Brassicaceae	Х	Х				Х	Х	Х	Х		
STPI	Stanleya pinnata	Brassicaceae										Х	Х
SYOR2	Symphoricarpos oreophilus	Caprifoliaceae	Х			Х							
TESP2	Tetradymia spinosa	Asteraceae							Х				
THFE	Thalictrum fendleri	Ranunculaceae				Х							
THSU	Thelesperma subnudum	Asteraceae							Х				
TOAN	Townsendia annua	Asteraceae		Х									
UNGRCA1	unkGRCA1 (Carex sp.)	Cyperaceae				Х	Χ						
VUOC	Vulpia octoflora	Poaceae							Х	Х			
WYAR	Wyethia arizonica	Asteraceae	Х										
YUBA	Yucca baccata	Agavaceae	Х					Х			Х		
YUHA	Yucca harrimaniae	Agavaceae									Х		
ZIGR	Zinnia grandiflora	Asteraceae			Х								
ZIPA2	Zigadenus paniculatus	Liliaceae								Х	Х		

Appendix B—Within-Macroplot Variability of Cover Estimates by Sampling Technique and Ecological Site

Ecological site	Table	Page
Brushy Loam	B1	67
Desert Sand (Sand Sagebrush)	B2	68
Limy Upland, 6-10" pz	B3	69
Loamy Hills, 25-33" pz	B4	70
Loamy Hills, Cold, 25-33" pz	B5	71
Loamy Mesa Top PJ	B6	72
Semidesert Alkali Sandy Loam (Alkali Sacaton)	B7	73
Semidesert Loam (Wyoming Big Sagebrush)	B8	74
Semidesert Shallow Sandy Loam PJ	B9	75
Shallow Loamy, 10-14" pz	B10	76
Upland Shallow Loam (Pinyon-Utah Juniper)	B11	77

Table B1. Summary of mean cover estimates for selected cover measures across five Brushy Loam macroplots at Mesa Verde National Park, within-macroplot variation in cover estimates summarized across macroplots, subsample sizes required to achieve 10 and 20 percent precision in estimates of macroplot-level means, and estimated amounts of sampling time required to achieve those degrees of precision. See Appendix C for macroplot-level tables summarizing within-plot variability. See Appendix A for key to species codes (BSC = biological soil crust).

			With	-	t variation in ed across m		nates		ple size cision)		Subsam (hrs by p	ple time recision)
Measure	Method	Mean cover	Mean sd	Min sd	Max sd	Mean freq*	Mean CV	10%	20%	Unit time (min)	10%	20%
Total live	10-m ²	49.7	18.1	7.4	24.0	100.0	36.5	54	16	12.3	11.1	3.3
understory canopy	1-m ²	43.4	26.2	10.8	37.3	100.0	60.1	143	38	5.5	13.1	3.5
cover	Line-point	52.8	23.7	16.4	33.2	98.7	45.5	81	22	5.0	6.8	1.8
	10-m ²	6.5	10.9	4.5	18.7	56.8	205.5	1077	270	12.3	220.8	55.4
	1-m ²	3.2	9.2	0.4	22.3	25.3	259.7	3216	804	5.5	294.8	73.7
AMUT	Line-point	5.2	9.2	2.6	15.4	26.7	227.7	1198	300	5.0	99.8	25.0
	10-m ²	9.6	8.8	0.2	22.6	62.7	145.0	324	84	12.3	66.4	17.2
	1-m ²	7.6	10.2	0.2	32.2	52.7	219.3	684	174	5.5	62.7	16.0
POFE	Line-point	8.8	11.3	2.5	18.1	42.7	173.8	635	162	5.0	52.9	13.5
	10-m ²	14.5	13.3	4.5	24.2	46.9	213.3	320	83	12.3	65.6	17.0
	1-m ²	16.2	20.7	2.6	35.7	39.3	237.6	633	161	5.5	58.0	14.8
QUGA	Line-point	14.5	14.4	2.6	27.4	44.7	188.4	384	99	5.0	32.0	8.3
	10-m ²	14.3	9.9	5.2	13.9	95.8	88.4	190	50	12.3	39.0	10.3
	1-m ²	16.8	17.1	9.3	28.4	79.3	158.8	398	102	5.5	36.5	9.4
Bare soil	Line-point	41.3	18.9	15.2	21.8	83.3	79.8	83	23	5.0	6.9	1.9
	10-m ²	70.4	15.8	8.8	22.1	100.0	25.3	22	8	12.3	4.5	1.6
	1-m ²	75.4	19.8	10.5	31.4	100.0	29.6	30	10	5.5	2.8	0.9
Litter	Line-point	52.3	18.7	9.8	23.9	95.3	49.1	52	15	5.0	4.3	1.3
	10-m ²	0.2	0.6	0.2	0.9	21.0	214.7	3998	1005	12.3	819.6	206.0
	1-m ²	0.1	0.4	0.2	0.8	7.3	380.7	6777	1695	5.5	621.2	155.4
BSC	Line-point	0.2	2.2	1.8	2.6	2.0	467.5	46482	11621	5.0	3873.5	968.4

^{*} frequency for line-point sampling was calculated on the basis of 10-point groups

Table B2. Summary of mean cover estimates for selected cover measures across two Desert Sand macroplots at Canyonlands National Park, within-macroplot variation in cover estimates summarized across macroplots, subsample sizes required to achieve 10 and 20 percent precision in estimates of macroplot-level means, and estimated amounts of sampling time required to achieve those degrees of precision. See Appendix C for macroplot-level tables summarizing within-plot variability. See Appendix A for key to species codes (BSC = biological soil crust).

Desert Sa	and (Sand	Sagebrus										
			With	nin-macropic	t variation in	cover estim	ates	Subsan	ıple size		Subsam	ple time
				(summariz	zed across m	acroplots)		(by pre	cision)		(hrs by p	recision)
Measure	Method	Mean cover	Mean sd	Min sd	Max sd	Mean freq*	Mean CV	10%	20%	Unit time (min)	10%	20%
Total live	10-m ²	13.4	3.7	3.4	4.0	100.0	27.7	32	10	8.8	4.7	1.5
understory canopy	1-m ²	12.3	7.7	6.5	8.8	100.0	61.9	151	40	4.6	11.6	3.1
cover	Line-point	11.7	11.1	10.2	12.1	68.3	95.4	350	90	3.6	21.0	5.4
	10-m ²	1.5	2.3	2.3	2.3	50.0	170.8	973	243	8.8	142.7	35.6
	1-m ²	1.7	7.1	5.1	9.1	11.7	426.8	7174	1794	4.6	550.0	137.5
ATCA2	Line-point	1.3	3.7	2.5	4.8	11.7	311.3	2944	736	3.6	176.6	44.2
	10-m ²	1.7	2.3	2.2	2.4	57.1	148.5	659	168	8.8	96.7	24.6
	1-m ²	1.1	2.1	1.6	2.5	35.0	194.2	1309	348	4.6	100.4	26.7
HIJA	Line-point	1.2	4.4	3.1	5.7	8.3	366.8	5412	1354	3.6	324.7	81.2
	10-m ²	0.6	0.7	0.2	1.1	69.0	115.1	418	107	8.8	61.3	15.7
	1-m ²	0.5	0.5	0.3	0.7	40.0	192.2	389	100	4.6	29.8	7.7
STHY6	Line-point	1.8	3.3	1.8	4.8	18.3	345.8	1253	313	3.6	75.2	18.8
	10-m ²	6.9	4.4	3.4	5.3	100.0	63.0	158	42	8.8	23.2	6.2
	1-m ²	6.6	5.1	4.7	5.5	100.0	78.2	231	61	4.6	17.7	4.7
Litter	Line-point	8.3	8.9	7.2	10.7	56.7	108.3	441	113	3.6	26.5	6.8
Undifferen	10-m ²	67.6	14.7	12.4	17.0	97.6	22.1	21	8	8.8	3.1	1.2
tiated	1-m ²	79.1	10.6	10.2	11.0	100.0	13.4	10	5	4.6	0.8	0.4
crust	Line-point	81.5	14.6	14.1	15.1	100.0	18.0	15	6	3.6	0.9	0.4
	10-m ²	4.3	3.9	0.9	7.0	92.9	91.4	325	84	8.8	47.7	12.3
	1-m ²	4.8	4.4	1.6	7.1	70.0	113.8	326	84	4.6	25.0	6.4
BSC	Line-point	6.7	7.6	3.8	11.5	40.0	162.9	504	129	3.6	30.2	7.7

^{*} frequency for line-point sampling was calculated on the basis of 10-point groups

Table B3. Summary of mean cover estimates for selected cover measures across five Limy Upland macroplots at Wupatki National Monument, within-macroplot variation in cover estimates summarized across macroplots, subsample sizes required to achieve 10 and 20 percent precision in estimates of macroplot-level means, and estimated amounts of sampling time required to achieve those degrees of precision. See Appendix C for macroplot-level tables summarizing within-plot variability. See Appendix A for key to species codes.

Limy Upl	and, 6-10"	pz ecolog	jical site, n	= 5 macro	plots							
			With		t variation in zed across m		ates		nple size ecision)		Subsam (hrs by p	ple time recision)
Measure	Method	Mean cover	Mean sd	Min sd	Max sd	Mean freq*	Mean CV	10%	20%	Unit time (min)	10%	20%
Total live	10-m ²	23.6	6.0	3.9	8.0	100.0	26.5	28	9	7.3	3.4	1.1
understory	1-m ²	16.0	5.3	3.1	8.8	100.0	33.1	45	15	3.7	2.8	0.9
canopy cover	Line-point	26.7	15.8	13.0	18.7	93.3	59.9	138	37	3.3	7.6	2.0
	10-m ²	5.1	3.6	1.8	6.3	92.0	92.0	187	49	7.3	22.8	6.0
	1-m ²	3.5	2.1	1.4	2.9	80.0	95.8	142	38	3.7	8.8	2.3
CHLE4	Line-point	3.6	6.6	3.1	10.1	27.3	184.5	1280	320	3.3	70.4	17.6
	10-m ²	3.7	3.0	1.8	6.5	84.8	125.1	248	65	7.3	30.2	7.9
	1-m ²	2.8	2.3	1.0	3.6	65.3	150.9	258	75	3.7	15.9	4.6
HENE5	Line-point	6.5	8.9	6.8	12.5	40.0	130.7	720	183	3.3	39.6	10.1
	10-m ²	4.4	3.4	1.7	6.1	74.5	149.0	233	61	7.3	28.3	7.4
	1-m ²	2.3	1.8	0.8	3.2	70.0	132.0	237	62	3.7	14.6	3.8
PLJA	Line-point	6.7	7.4	1.8	11.0	44.7	226.8	462	118	3.3	25.4	6.5
	10-m ²	7.3	5.0	0.9	12.8	100.0	67.4	181	48	7.3	22.0	5.8
	1-m ²	7.3	6.2	1.3	14.0	97.3	87.4	282	73	3.7	17.4	4.5
Bare soil	Line-point	16.3	12.5	5.1	26.4	59.3	112.0	227	59	3.3	12.5	3.2
	10-m ²	6.6	4.4	2.4	6.0	100.0	64.9	167	44	7.3	20.3	5.4
	1-m ²	7.1	4.9	2.6	9.7	100.0	66.3	181	47	3.7	11.2	2.9
Litter	Line-point	3.6	10.2	9.2	11.2	21.3	116.5	3084	771	3.3	169.6	42.4

^{*} frequency for line-point sampling was calculated on the basis of 10-point groups

Table B4. Summary of mean cover estimates for selected cover measures across five Loamy Hills macroplots at Grand Canyon National Park, within-macroplot variation in cover estimates summarized across macroplots, subsample sizes required to achieve 10 and 20 percent precision in estimates of macroplot-level means, and estimated amounts of sampling time required to achieve those degrees of precision. See Appendix C for macroplot-level tables summarizing within-plot variability. See Appendix A for key to species codes (BSC = biological soil crust).

Loamy Hi	lls, 25-33"	pz ecolog	gical site, r	n = 5 macro	oplots							
			With	•	t variation in ed across m		ates		nple size ecision)			ple time recision)
Measure	Method	Mean cover	Mean sd	Min sd	Max sd	Mean freq*	Mean CV	10%	20%	Unit time (min)	10%	20%
Total live	10-m ²	19.7	15.8	3.0	32.2	100.0	74.8	248	65	8.9	36.8	9.6
understory	1-m ²	23.8	27.1	5.2	52.8	94.7	120.4	502	128	4.1	34.3	8.7
canopy cover	Line-point	16.9	13.8	9.6	23.3	72.0	90.6	257	67	4.0	17.1	4.5
	10-m ²	0.5	1.0	0.1	2.1	39.6	230.9	1451	363	8.9	215.2	53.8
	1-m ²	0.4	0.7	0.3	1.2	25.3	220.8	1280	320	4.1	87.5	21.9
POFE	Line-point	1.5	3.7	1.8	4.9	15.3	282.4	2238	560	4.0	149.2	37.3
	10-m ²	2.6	3.7	0.2	6.7	55.2	176.0	775	197	8.9	115.0	29.2
	1-m ²	4.1	10.5	0.4	19.5	36.7	261.7	2551	638	4.1	174.3	43.6
POTR5	Line-point	1.8	4.4	2.6	6.4	16.0	251.1	2285	572	4.0	152.3	38.1
	10-m ²	1.4	1.7	0.2	2.5	74.7	142.7	529	135	8.9	78.5	20.0
UNGRCA1	1-m ²	1.2	1.5	0.4	2.1	54.7	177.2	586	150	4.1	40.0	10.3
(Carex sp.)	Line-point	6.5	10.0	5.2	12.6	40.0	123.4	925	232	4.0	61.7	15.5
	10-m ²	1.5	1.9	1.3	2.3	72.2	126.9	571	145	8.9	84.7	21.5
	1-m ²	1.9	3.2	1.4	6.6	53.3	157.5	1059	265	4.1	72.4	18.1
Bare soil	Line-point	14.9	17.1	9.0	28.0	49.3	138.0	502	128	4.0	33.5	8.5
	10-m ²	74.8	11.8	8.8	20.1	100.0	16.6	12	5	8.9	1.8	0.7
	1-m ²	80.1	15.6	5.2	22.6	99.3	20.2	18	7	4.1	1.2	0.5
Litter	Line-point	69.3	22.1	15.5	36.3	98.7	33.2	42	13	4.0	2.8	0.9
	10-m ²	0.7	1.3	0.1	4.1	36.8	275.1	1242	310	8.9	184.2	46.0
	1-m ²	0.6	1.5	0.3	3.5	23.3	291.1	2498	625	4.1	170.7	42.7
BSC	Line-point	0.3	2.9	1.8	4.0	2.0	475.2	46261	11609	4.0	3084.1	773.9

^{*} frequency for line-point sampling was calculated on the basis of 10-point groups

Table B5. Summary of mean cover estimates for selected cover measures across two Loamy Hills, Cold, macroplots at Grand Canyon National Park, within-macroplot variation in cover estimates summarized across macroplots, subsample sizes required to achieve 10 and 20 percent precision in estimates of macroplot-level means, and estimated amounts of sampling time required to achieve those degrees of precision. See Appendix C for macroplot-level tables summarizing within-plot variability. See Appendix A for key to species codes (BSC = biological soil crust).

Loamy H	ills, Cold, 2	25-33" pz	ecological	site, n = 2	macroplo	ts						
_		•	With	nin-macroplo (summariz	t variation in		ates		nple size ecision)			ple time recision)
Measure	Method	Mean cover	Mean sd	Min sd	Max sd	Mean freq*	Mean CV	10%	20%	Unit time (min)	10%	20%
Total live	10-m ²	48.8	31.6	29.3	33.9	100.0	64.9	164	43	7.3	20.0	5.2
understory	1-m ²	57.3	42.5	33.7	51.2	100.0	78.3	211	56	2.8	9.8	2.6
canopy cover	Line-point	25.7	18.9	17.9	19.9	85.0	74.5	209	55	5.7	19.9	5.2
	10-m ²	8.6	25.8	25.8	25.8	31.0	149.5	3432	858	7.3	417.6	104.4
	1-m ²	12.9	29.6	29.6	29.6	33.3	115.1	2036	509	2.8	95.0	23.8
ABCO	Line-point	4.5	11.8	11.8	11.8	23.3	131.6	2664	666	5.7	253.1	63.3
	10-m ²	6.9	15.7	13.6	17.8	28.6	311.7	2004	501	7.3	243.8	61.0
	1-m ²	8.3	26.1	26.1	26.1	21.7	157.9	3831	958	2.8	178.8	44.7
PIEN	Line-point	4.2	8.1	3.7	12.5	20.0	355.4	1445	362	5.7	137.3	34.4
	10-m ²	4.7	9.3	5.2	13.3	59.5	186.3	1478	370	7.3	179.8	45.0
	1-m ²	6.2	13.5	8.3	18.7	38.3	210.8	1805	452	2.8	84.2	21.1
POTR5	Line-point	1.0	3.0	2.5	3.5	10.0	319.9	3458	865	5.7	328.5	82.2
	10-m ²	2.5	4.0	4.0	4.0	83.3	160.4	984	246	7.3	119.7	29.9
	1-m ²	1.8	3.3	2.3	4.4	51.7	183.9	1323	331	2.8	61.7	15.4
Bare soil	Line-point	4.0	9.2	5.8	12.5	21.7	226.8	2024	506	5.7	192.3	48.1
	10-m ²	70.2	15.3	14.4	16.1	100.0	21.7	21	8	7.3	2.6	1.0
	1-m ²	80.4	13.4	12.6	14.2	100.0	16.7	14	6	2.8	0.7	0.3
Litter	Line-point	81.3	16.9	16.4	17.3	100.0	20.7	19	7	5.7	1.8	0.7
	10-m ²	1.1	1.3	0.7	1.9	78.6	132.3	593	151	7.3	72.1	18.4
	1-m ²	1.2	3.0	2.9	3.1	41.7	317.6	2454	613	2.8	114.5	28.6
BSC	Line-point	1.0	4.8	4.8	4.8	8.3	242.1	8999	2250	5.7	854.9	213.8

^{*} frequency for line-point sampling was calculated on the basis of 10-point groups

Table B6. Summary of mean cover estimates for selected cover measures across five Loamy Mesa Top PJ macroplots at Mesa Verde National Park, within-macroplot variation in cover estimates summarized across macroplots, subsample sizes required to achieve 10 and 20 percent precision in estimates of macroplot-level means, and estimated amounts of sampling time required to achieve those degrees of precision. See Appendix C for macroplot-level tables summarizing within-plot variability. See Appendix A for key to species codes (BSC = biological soil crust).

			With	•	t variation in		ates		ple size			ple time
		Mean		(summariz	ed across m	acroplots) Mean	1	(by pre	cision)	Unit time	(hrs by p	recision)
Measure	Method	cover	Mean sd	Min sd	Max sd	freq*	Mean CV	10%	20%	(min)	10%	20%
Total live	10-m ²	32.7	20.2	11.7	31.3	91.2	157.9	149	39	8.6	21.4	5.6
understory	1-m ²	29.6	31.1	15.2	49.8	58.7	198.8	425	109	3.5	24.8	6.4
canopy												
cover	Line-point	20.7	15.5	11.6	18.3	46.7	133.4	215	57	4.2	15.1	4.0
	10-m ²	7.7	11.9	6.0	17.4	67.2	162.4	903	226	8.6	129.4	32.4
	1-m ²	9.8	18.6	6.1	32.4	36.7	214.2	1396	349	3.5	81.4	20.4
JUOS	Line-point	3.4	5.8	4.1	7.8	28.0	179.8	1134	284	4.2	79.4	19.9
	10-m ²	12.4	13.8	7.7	23.8	73.7	128.6	473	121	8.6	67.8	17.3
	1-m ²	10.9	21.9	10.5	27.5	36.7	207.4	1566	392	3.5	91.4	22.9
PIED	Line-point	7.3	10.7	4.6	13.6	44.7	151.0	812	203	4.2	56.8	14.2
	10-m ²	7.0	4.7	0.1	8.5	98.7	60.9	176	46	8.6	25.2	6.6
	1-m ²	4.7	5.0	0.5	8.3	85.3	106.7	420	108	3.5	24.5	6.3
POFE	Line-point	7.7	8.6	4.1	14.2	55.3	128.7	485	124	4.2	34.0	8.7
	10-m ²	2.1	3.7	0.6	8.6	100.0	63.9	1191	298	8.6	170.7	42.7
	1-m ²	2.3	5.1	0.5	12.1	98.7	107.0	1908	477	3.5	111.3	27.8
Bare soil	Line-point	7.1	8.0	4.6	11.1	84.0	75.2	478	122	4.2	33.5	8.5
	10-m ²	47.2	29.1	23.2	34.7	100.0	63.0	149	39	8.6	21.4	5.6
	1-m ²	50.5	34.0	29.7	39.0	100.0	71.7	178	47	3.5	10.4	2.7
Litter	Line-point	47.5	22.7	16.6	25.6	94.7	52.6	90	25	4.2	6.3	1.8
	10-m ²	3.9	3.7	2.0	5.2	97.1	97.4	346	89	8.6	49.6	12.8
	1-m ²	5.4	7.8	1.9	14.9	77.3	132.5	796	202	3.5	46.4	11.8
BSC	Line-point	7.4	10.0	7.4	13.6	46.0	152.4	708	180	4.2	49.6	12.6

^{*} frequency for line-point sampling was calculated on the basis of 10-point groups

Table B7. Summary of mean cover estimates for selected cover measures across five Semidesert Alkali Sandy Loam macroplots at Capitol Reef National Park, within-macroplot variation in cover estimates summarized across macroplots, subsample sizes required to achieve 10 and 20 percent precision in estimates of macroplot-level means, and estimated amounts of sampling time required to achieve those degrees of precision. See Appendix C for macroplot-level tables summarizing within-plot variability. See Appendix A for key to species codes (BSC = biological soil crust).

			With	_	t variation in zed across m		ates		ple size cision)			ple time recision)
Measure	Method	Mean cover	Mean sd	Min sd	Max sd	Mean freq*	Mean CV	10%	20%	Unit time (min)	10%	20%
Total live	10-m ²	20.3	8.8	4.5	16.9	100.0	45.5	75	21	8.8	11.0	3.1
understory canopy	1-m ²	18.1	12.7	6.1	20.1	98.7	72.8	193	50	4.4	14.2	3.7
cover	Line-point	25.4	16.4	11.9	19.4	85.3	71.7	163	43	2.4	6.5	1.7
	10-m ²	2.6	3.1	1.0	5.2	71.6	138.2	554	141	8.8	81.3	20.7
	1-m ²	2.5	4.4	1.3	12.4	46.7	186.0	1178	295	4.4	86.4	21.6
ATCO	Line-point	3.1	7.6	5.9	9.7	20.7	205.3	2378	595	2.4	95.1	23.8
	10-m ²	0.3	0.2	0.2	0.3	56.8	95.0	252	66	8.8	37.0	9.7
	1-m ²	0.4	0.5	0.4	0.5	38.7	140.0	567	145	4.4	41.6	10.6
GIIN2	Line-point	0.3	2.7	1.8	3.5	3.3	405.8	24697	6156	2.4	987.9	246.2
	10-m ²	0.5	0.5	0.1	0.8	86.1	85.7	310	80	8.8	45.5	11.7
	1-m ²	0.6	0.6	0.5	0.7	55.3	100.7	355	92	4.4	26.0	6.7
ORHY	Line-point	1.2	3.8	2.5	6.6	10.0	307.5	3873	969	2.4	154.9	38.8
	10-m ²	0.8	1.6	0.3	4.1	75.4	162.2	1337	335	8.8	196.1	49.1
	1-m ²	1.2	1.5	0.5	2.7	63.3	178.7	654	166	4.4	48.0	12.2
Bare soil	Line-point	4.3	6.6	2.6	8.6	33.3	201.8	892	223	2.4	35.7	8.9
	10-m ²	9.7	7.0	1.2	9.3	98.7	78.1	203	54	8.8	29.8	7.9
	1-m ²	10.6	15.0	1.9	23.5	98.7	138.2	770	195	4.4	56.5	14.3
Litter	Line-point	5.5	7.5	2.6	11.3	37.3	182.6	723	184	2.4	28.9	7.4
	10-m ²	1.8	1.5	0.4	4.3	78.7	94.4	273	71	8.8	40.0	10.4
	1-m ²	1.5	1.5	0.6	2.9	58.0	126.7	411	106	4.4	30.1	7.8
BSC	Line-point	3.3	6.5	3.5	9.7	22.7	233.9	1502	376	2.4	60.1	15.0

^{*} frequency for line-point sampling was calculated on the basis of 10-point groups

Table B8. Summary of mean cover estimates for selected cover measures across five Semidesert Loam macroplots at Dinosaur National Monument, within-macroplot variation in cover estimates summarized across macroplots, subsample sizes required to achieve 10 and 20 percent precision in estimates of macroplot-level means, and estimated amounts of sampling time required to achieve those degrees of precision. See Appendix C for macroplot-level tables summarizing within-plot variability. See Appendix A for key to species codes (BSC = biological soil crust).

			With	•	t variation in ed across m		ates		nple size ecision)			ple time recision)
Measure	Method	Mean cover	Mean sd	Min sd	Max sd	Mean freq*	Mean CV	10%	20%	Unit time (min)	10%	20%
Total live	10-m ²	32.2	11.1	7.9	16.9	100.0	36.6	49	14	8.4	6.9	2.0
understory canopy	1-m ²	20.2	13.0	9.1	19.4	100.0	67.9	163	43	4.8	13.0	3.4
cover	Line-point	53.8	22.8	20.3	25.5	98.7	48.4	72	20	3.9	4.7	1.3
	10-m ²	9.6	7.0	1.2	10.7	83.6	93.9	205	54	8.4	28.7	7.6
	1-m ²	5.3	7.0	0.7	10.2	58.0	223.0	674	171	4.8	53.9	13.7
ARTR2	Line-point	4.8	7.9	6.3	9.2	36.0	137.4	1044	261	3.9	67.9	17.0
	10-m ²	11.9	9.1	2.7	24.7	93.7	114.4	227	60	8.4	31.8	8.4
	1-m ²	7.3	7.7	1.6	22.0	77.3	140.0	431	111	4.8	34.5	8.9
BRTE	Line-point	30.1	20.1	14.2	29.4	80.0	90.3	174	46	3.9	11.3	3.0
	10-m ²	2.5	3.0	0.3	9.4	62.7	97.8	544	139	8.4	76.2	19.5
	1-m ²	1.3	1.6	0.5	3.4	48.0	134.5	568	145	4.8	45.4	11.6
STCO4	Line-point	4.2	12.7	5.9	19.5	16.0	164.5	3518	880	3.9	228.7	57.2
	10-m ²	0.7	0.7	0.2	1.9	72.0	93.5	372	96	8.4	52.1	13.4
	1-m ²	1.1	1.6	0.4	3.7	51.3	159.7	843	211	4.8	67.4	16.9
Bare soil	Line-point	10.5	10.6	4.9	15.9	57.3	109.2	394	101	3.9	25.6	6.6
	10-m ²	34.2	14.3	9.3	22.0	98.7	46.7	70	20	8.4	9.8	2.8
	1-m ²	35.0	22.9	17.7	27.8	100.0	85.3	167	44	4.8	13.4	3.5
Litter	Line-point	29.8	16.5	13.0	20.3	83.3	69.5	121	32	3.9	7.9	2.1
	10-m ²	5.5	5.5	1.1	12.9	100.0	88.2	384	99	8.4	53.8	13.9
	1-m ²	5.5	4.8	1.1	15.1	98.7	68.6	285	74	4.8	22.8	5.9
BSC	Line-point	12.1	11.6	6.3	20.4	60.0	107.6	356	92	3.9	23.1	6.0

^{*} frequency for line-point sampling was calculated on the basis of 10-point groups

Table B9. Summary of mean cover estimates for selected cover measures across seven Semidesert Shallow Sandy Loam macroplots at Arches and Canyonlands National Parks, within-macroplot variation in cover estimates summarized across macroplots, subsample sizes required to achieve 10 and 20 percent precision in estimates of macroplot-level means, and estimated amounts of sampling time required to achieve those degrees of precision. See Appendix C for macroplot-level tables summarizing within-plot variability. See Appendix A for key to species codes (BSC = biological soil crust).

Semidese	ert Shallov	v Sandy L	oam (PJ) e	cological	site, n = 7	macroplot	s					
			With	•	t variation in zed across m		ates		ple size cision)			ple time recision)
Measure	Method	Mean cover	Mean sd	Min sd	Max sd	Mean freq*	Mean CV	10%	20%	Unit time (min)	10%	20%
Total live	10-m ²	18.8	11.7	6.0	18.4	98.6	65.1	152	40	7.9	20.0	5.3
understory	1-m ²	16.4	14.7	10.2	25.1	96.7	96.0	311	81	3.8	19.7	5.1
canopy cover	Line-point	13.3	13.2	7.0	23.6	66.7	102.3	380	98	2.5	15.8	4.1
	10-m ²	10.3	7.5	5.5	11.4	68.3	106.5	202	53	7.9	26.6	7.0
	1-m ²	9.2	9.8	4.8	12.9	72.4	130.7	438	112	3.8	27.7	7.1
CORA	Line-point	6.2	7.4	5.1	11.0	46.7	135.4	548	140	2.5	22.8	5.8
	10-m ²	0.5	0.8	0.1	4.4	68.8	108.9	961	241	7.9	126.5	31.7
	1-m ²	0.5	0.4	0.3	0.5	49.0	129.4	283	73	3.8	17.9	4.6
FEOC3	Line-point	0.9	4.1	2.5	8.3	7.1	320.0	7923	1981	2.5	330.1	82.5
	10-m ²	1.0	1.2	0.0	4.0	88.8	92.1	572	146	7.9	75.3	19.2
	1-m ²	1.5	2.2	0.5	5.7	58.6	141.2	833	209	3.8	52.8	13.2
Bare soil	Line-point	4.3	7.3	4.6	10.1	29.5	198.7	1103	276	2.5	46.0	11.5
	10-m ²	5.6	8.7	1.5	18.8	99.3	149.9	920	230	7.9	121.1	30.3
	1-m ²	6.0	12.0	1.4	23.7	99.0	181.5	1575	394	3.8	99.8	25.0
Litter	Line-point	3.6	7.3	2.6	18.1	19.5	303.4	1555	389	2.5	64.8	16.2
	10-m ²	69.8	16.7	0.0	28.7	99.3	30.9	25	8	7.9	3.3	1.1
	1-m ²	73.7	19.7	5.6	33.4	96.7	29.9	30	10	3.8	1.9	0.6
Crusundi	Line-point	70.4	18.7	13.7	28.0	98.6	30.3	30	10	2.5	1.3	0.4
	10-m ²	5.6	5.1	2.8	8.5	89.5	106.2	321	83	7.9	42.3	10.9
	1-m ²	6.3	6.5	2.3	11.6	81.0	113.9	400	103	3.8	25.3	6.5
BSC	Line-point	10.8	11.9	3.8	17.8	51.4	133.4	464	119	2.5	19.3	5.0

^{*} frequency for line-point sampling was calculated on the basis of 10-point groups

Table B10. Summary of mean cover estimates for selected cover measures across two Shallow Loamy macroplots at Wupatki National Monument, within-macroplot variation in cover estimates summarized across macroplots, subsample sizes required to achieve 10 and 20 percent precision in estimates of macroplot-level means, and estimated amounts of sampling time required to achieve those degrees of precision. See Appendix C for macroplot-level tables summarizing within-plot variability. See Appendix A for key to species codes.

Shallow I	Loamy, 10-	·14" pz ec	ological sit	te, n = 2 m	acroplots							
		•		nin-macroplo	t variation in zed across m		ates		nple size ecision)			ple time recision)
Measure	Method	Mean cover	Mean sd	Min sd	Max sd	Mean freq*	Mean CV	10%	20%	Unit time (min)	10%	20%
Total live	10-m ²	18.3	7.4	5.8	9.0	100.0	43.0	66	19	6.5	7.2	2.1
understory	1-m ²	17.2	13.8	10.7	17.0	100.0	87.4	250	65	3.4	14.2	3.7
canopy cover	Line-point	27.3	12.8	9.6	16.0	90.0	54.9	88	24	3.0	4.4	1.2
	10-m ²	2.0	1.6	0.6	2.6	95.2	89.3	252	66	6.5	27.3	7.2
	1-m ²	1.7	2.2	1.2	3.1	71.7	124.1	625	159	3.4	35.4	9.0
CHLE4	Line-point	3.0	4.4	2.5	6.3	26.7	249.2	831	208	3.0	41.6	10.4
	10-m ²	3.5	3.7	1.8	5.5	92.9	102.2	428	110	6.5	46.4	11.9
	1-m ²	2.3	2.1	1.3	2.9	81.7	92.2	335	87	3.4	19.0	4.9
HENE5	Line-point	6.2	7.6	4.3	10.8	43.3	146.3	578	147	3.0	28.9	7.4
	10-m ²	4.5	3.4	2.3	4.4	100.0	77.6	210	55	6.5	22.8	6.0
	1-m ²	4.3	3.5	2.1	5.0	93.3	85.6	262	68	3.4	14.8	3.9
PLJA	Line-point	7.2	8.7	6.8	10.7	48.3	128.2	572	146	3.0	28.6	7.3
	10-m ²	1.8	1.7	1.2	2.2	100.0	93.7	349	90	6.5	37.8	9.8
	1-m ²	3.5	5.1	1.7	8.6	98.3	127.0	807	202	3.4	45.7	11.4
Bare soil	Line-point	9.3	11.4	8.6	14.3	50.0	149.0	579	147	3.0	29.0	7.4
	10-m ²	6.4	5.1	4.7	5.6	92.9	81.5	251	65	6.5	27.2	7.0
	1-m ²	8.5	12.2	11.1	13.3	95.0	143.2	789	200	3.4	44.7	11.3
Litter	Line-point	8.8	9.5	8.9	10.1	56.7	114.7	444	114	3.0	22.2	5.7

^{*} frequency for line-point sampling was calculated on the basis of 10-point groups

Table B11. Summary of mean cover estimates for selected cover measures across five Upland Shallow Loam macroplots at Capitol Reef National Parks, within-macroplot variation in cover estimates summarized across macroplots, subsample sizes required to achieve 10 and 20 percent precision in estimates of macroplot-level means, and estimated amounts of sampling time required to achieve those degrees of precision. See Appendix C for macroplot-level tables summarizing within-plot variability. See Appendix A for key to species codes (BSC = biological soil crust).

•		, ,	7		ogical site			Subsan	ple size		Subsam	ple time
				(summariz	ed across m	acroplots)		(by pre	cision)		(hrs by p	recision)
Measure	Method	Mean cover	Mean sd	Min sd	Max sd	Mean freq*	Mean CV	10%	20%	Unit time (min)	10%	20%
Total live	10-m ²	16.5	19.7	11.3	29.3	96.0	117.4	546	139	5.3	48.2	12.3
understory canopy	1-m ²	15.4	24.5	18.9	30.8	88.7	176.4	976	244	2.8	45.5	11.4
cover	Line-point	11.7	13.3	9.2	15.4	56.0	126.3	491	126	2.3	18.8	4.8
	10-m ²	1.9	6.1	5.0	7.1	18.7	204.3	4159	1040	5.3	367.4	91.9
	1-m ²	1.3	5.5	1.4	12.3	12.0	252.6	6828	1709	2.8	318.6	79.8
CEMO2	Line-point	2.4	11.3	8.3	14.2	13.3	192.5	8456	2114	2.3	324.1	81.0
	10-m ²	1.2	1.3	1.0	1.8	80.4	116.9	484	124	5.3	42.8	11.0
	1-m ²	1.1	1.2	0.8	2.3	63.3	115.1	482	124	2.8	22.5	5.8
COWR2	Line-point	2.3	5.9	3.5	9.4	18.7	208.8	2424	606	2.3	92.9	23.2
	10-m ²	5.6	12.1	9.7	17.0	29.0	228.0	1792	448	5.3	158.3	39.6
	1-m ²	4.8	13.9	2.6	19.4	15.3	307.2	3168	792	2.8	147.8	37.0
JUOS	Line-point	2.5	5.8	2.6	8.0	17.3	255.7	2022	506	2.3	77.5	19.4
	10-m ²	1.1	1.4	0.1	2.5	95.8	108.1	588	150	5.3	51.9	13.3
	1-m ²	1.6	1.5	1.1	2.0	86.7	98.5	367	95	2.8	17.1	4.4
Bare soil	Line-point	15.3	13.5	10.1	19.4	72.7	96.8	300	78	2.3	11.5	3.0
	10-m ²	16.8	22.1	9.9	28.1	100.0	142.2	667	170	5.3	58.9	15.0
	1-m ²	22.0	31.4	23.3	39.5	99.3	169.9	783	198	2.8	36.5	9.2
Litter	Line-point	6.8	11.4	5.9	16.4	32.7	209.9	1071	268	2.3	41.1	10.3
	10-m ²	0.1	0.2	0.2	0.2	15.2	221.0	2661	666	5.3	235.1	58.8
	1-m ²	0.1	0.3	0.2	0.5	6.0	399.7	7197	1827	2.8	335.9	85.3
BSC	Line-point	0.2	2.2	1.8	2.5	2.0	464.1	45641	11411	2.3	1749.6	437.4

^{*} frequency for line-point sampling was calculated on the basis of 10-point groups

Appendix C—Summaries of Frequency and Cover Estimates by Macroplot and Sampling Technique

Ecological site	Macroplot	Phase	Table	Page
	MEVE1	2	C1	79
	MEVE2	2	C2	80
Brushy Loam	MEVE5	3	C3	81
•	MEVE6	3	C4	82
	MEVE7b	3	C5	83
December Cond (Cond Conderwork)	CANY1	2	C6	84
Desert Sand (Sand Sagebrush)	CANY2b	2	C7	85
	WUPA1	2	C8	86
	WUPA2	2	C9	87
Limy Upland, 6-10" pz	WUPA5	3	C10	88
	WUPA6	3	C11	89
	WUPA7	3	C12	90
	GRCA3	2	C13	91
	GRCA4	2	C14	92
Loamy Hills, 25-33" pz	GRCA5	3	C15	93
	GRCA6	3	C16	94
	GRCA7	3	C17	95
Loomy Hillo Cold 25 22" nz	GRCA1	2	C18	96
Loamy Hills, Cold, 25-33" pz	GRCA2	2	C19	97
	MEVE3	2	C20	98
	MEVE4	2	C21	99
Loamy Mesa Top PJ	MEVE8	3	C22	100
	MEVE9	3	C23	101
	MEVE10	3	C24	102
	CARE1	2	C25	103
Comidens at Alkeli Candy Learn	CARE2	2	C26	104
Semidesert Alkali Sandy Loam (Alkali Sacaton)	CARE5	3	C27	105
(Alkali Sacatori)	CARE6	3	C28	106
	CARE7	3	C29	107
	DINO1	2	C30	108
Semidesert Loam (Wyoming Big	DINO2b	2	C31	109
Sagebrush)	DINO3	3	C32	110
Sagebrush)	DINO4b	3	C33	111
	DINO5	3	C34	112
	ARCH1b	2	C35	113
	ARCH2	2	C36	114
Semidesert Shallow Sandy Loam	ARCH3	3	C37	115
PJ	ARCH4b	3	C38	116
13	ARCH5	3	C39	117
	CANY3	2	C40	118
	CANY4	2	C41	119
Shallow Loamy, 10-14" pz	WUPA3	2	C42	120
Onanow Loanny, 10-14- pz	WUPA4	2	C43	121
	CARE3	2	C44	122
Upland Shallow Loam (Pinyon-Utah	CARE4b	2	C45	123
Juniper)	CARE8	3	C46	124
	CARE9	3	C47	125
	CARE10	3	C48	126

Table C1. Summary of frequency (freq) and cover estimates in macroplot MEVE1 (Brushy Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	71.21	21.60	30.34	9.24	12.97		1.16
understory canopy	1-m ²	30	100.0	62.60	30.26	48.34	10.83	17.30	61.3	1.02
cover	Line-point	30	93.3	50.00	33.22	66.44	11.89	23.77		0.82
	10-m ²	21	71.4	15.45	18.67	120.84	7.99	51.68		1.27
	1-m ²	30	46.7	10.77	22.31	207.18	7.98	74.14	12.2	0.88
AMUT	Line-point	30	36.7	10.33	15.42	149.24	5.52	53.40		0.85
	10-m ²	21	57.1	0.29	0.25	88.74	0.11	37.95		0.67
	1-m ²	30	33.3	0.33	0.48	143.84	0.17	51.47	0.4	0.78
POFE	Line-point	30	6.7	0.67	2.54	380.56	0.91	136.18		1.56
	10-m ²	21	95.2	37.40	24.23	64.79	10.37	27.71		1.07
	1-m ²	30	80.0	37.13	31.43	84.64	11.25	30.29	34.8	1.07
QUGA	Line-point	30	80.0	30.00	27.42	91.39	9.81	32.70		0.86
	10-m ²	21	85.7	7.02	11.46	163.12	4.90	69.76		1.09
	1-m ²	30	43.3	4.23	15.47	365.46	5.54	130.78	6.4	0.66
Bare soil	Line-point	30	30.0	8.00	17.69	221.18	6.33	79.15		1.25
	10-m ²	21	100.0	76.79	14.94	19.46	6.39	8.32		0.92
	1-m ²	30	100.0	86.03	21.93	25.49	7.85	9.12	83.3	1.03
Litter	Line-point	30	100.0	87.00	18.96	21.80	6.79	7.80		1.04
	10-m ²	21	38.1	0.43	0.88	206.36	0.38	88.26		1.62
	1-m ²	30	3.3	0.03	0.18	547.72	0.07	196.00	0.3	0.13
BSC	Line-point	30	3.3	0.33	1.83	547.72	0.65	196.00		1.26

Table C2. Summary of frequency (freq) and cover estimates in macroplot MEVE2 (Brushy Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Brushy Loan	n ecological site	e – MEVE 2 macro	plot, Phase	2						
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	CV	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	46.21	23.96	51.85	10.25	22.18		0.93
understory	1-m ²	30	100.0	48.97	37.26	76.09	13.33	27.23	49.7	0.98
canopy cover	Line-point	30	100.0	54.00	27.24	50.45	9.75	18.05		1.09
	10-m ²	21	52.4	3.60	8.30	230.95	3.55	98.78		1.15
	1-m ²	30	26.7	2.80	7.80	278.45	2.79	99.64	3.1	0.89
AMUT	Line-point	30	16.7	3.00	7.94	264.79	2.84	94.75		0.96
	10-m ²	21	9.5	0.05	0.15	315.83	0.06	135.08		1.76
	1-m ²	30	3.3	0.03	0.18	547.72	0.07	196.00	0.0	1.24
POFE	Line-point	30	0.0	0.00	-	-	-	-		0.00
	10-m ²	21	85.7	27.43	22.21	80.99	9.50	34.64		0.91
	1-m ²	30	63.3	29.67	35.70	120.33	12.77	43.06	30.0	0.99
QUGA	Line-point	30	83.3	33.00	25.62	77.63	9.17	27.78		1.10
	10-m ²	21	100.0	32.26	13.92	43.14	5.95	18.45		0.80
	1-m ²	30	93.3	40.93	28.38	69.33	10.16	24.81	40.2	1.02
Bare soil	Line-point	30	100.0	47.33	21.80	46.06	7.80	16.48		1.18
	10-m ²	21	100.0	44.19	22.05	49.90	9.43	21.34		0.94
	1-m ²	30	100.0	48.97	31.39	64.10	11.23	22.94	46.8	1.05
Litter	Line-point	30	96.7	47.33	23.92	50.53	8.56	18.08		1.01
	10-m ²	21	0.0	0.00	-	-	-	-		-
	1-m ²	30	0.0	0.00	-	-	-	-	0.0	-
BSC	Line-point	30	0.0	0.00	-	-	-	-		-

Table C3. Summary of frequency (freq) and cover estimates in macroplot MEVE5 (Brushy Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Brushy Loan	n ecological site	e – MEVE 5 macro	plot, Phase	3						
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	44.73	19.60	43.81	9.92	22.17		0.98
understory	1-m ²	15	100.0	37.13	30.28	81.54	15.32	41.27	45.7	0.81
canopy cover	Line-point	15	100.0	55.33	17.67	31.94	8.94	16.16		1.21
	10-m ²	15	60.0	8.20	18.17	221.54	9.19	112.12		1.57
	1-m ²	15	13.3	0.13	0.35	263.90	0.18	133.55	5.2	0.03
AMUT	Line-point	15	40.0	7.33	11.63	158.58	5.89	80.25		1.40
	10-m ²	15	73.3	15.03	22.56	150.04	11.41	75.93		0.88
	1-m ²	15	73.3	20.87	32.24	154.50	16.32	78.19	17.1	1.22
POFE	Line-point	15	60.0	15.33	18.07	117.87	9.15	59.65		0.90
	10-m ²	15	13.3	1.37	4.53	331.43	2.29	167.72		0.68
	1-m ²	15	6.7	0.67	2.58	387.30	1.31	196.00	2.0	0.33
QUGA	Line-point	15	26.7	4.00	8.28	207.02	4.19	104.76		1.99
	10-m ²	15	93.3	6.67	5.18	77.72	2.62	39.33		0.21
	1-m ²	15	100.0	11.87	17.94	151.21	9.08	76.52	32.2	0.37
Bare soil	Line-point	15	100.0	78.00	21.11	27.07	10.68	13.70		2.42
	10-m ²	15	100.0	80.83	14.84	18.36	7.51	9.29		1.36
	1-m ²	15	100.0	80.53	19.34	24.01	9.79	12.15	59.6	1.35
Litter	Line-point	15	80.0	17.33	20.86	120.36	10.56	60.91		0.29
	10-m ²	15	13.3	0.07	0.18	263.90	0.09	133.55		1.50
	1-m ²	15	6.7	0.07	0.26	387.30	0.13	196.00	0.0	1.50
BSC	Line-point	15	0.0	0.00	-	-	-	-		0.00

Table C4. Summary of frequency (freq) and cover estimates in macroplot MEVE6 (Brushy Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Brushy Loan	n ecological site	e – MEVE 6 macro	plot, Phase	e 3			<u> </u>			
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	28.37	7.37	25.99	3.73	13.15		0.83
understory	1-m ²	15	100.0	25.80	10.75	41.67	5.44	21.09	34.3	0.75
canopy cover	Line-point	15	100.0	48.67	24.16	49.65	12.23	25.13		1.42
	10-m ²	15	13.3	1.37	4.53	331.43	2.29	167.72		2.02
	1-m ²	15	0.0	0.00	-	-	-	-	0.7	0.00
AMUT	Line-point	15	6.7	0.67	2.58	387.30	1.31	196.00		0.98
	10-m ²	15	73.3	2.30	2.51	108.94	1.27	55.13		0.58
	1-m ²	15	53.3	2.20	3.32	150.95	1.68	76.39	3.9	0.56
POFE	Line-point	15	53.3	7.33	8.84	120.51	4.47	60.98		1.86
	10-m ²	15	6.7	1.17	4.52	387.30	2.29	196.00		0.93
	1-m ²	15	20.0	1.93	6.94	359.14	3.51	181.74	1.3	1.54
QUGA	Line-point	15	6.7	0.67	2.58	387.30	1.31	196.00		0.53
	10-m ²	15	100.0	17.27	12.04	69.74	6.09	35.29		0.61
	1-m ²	15	86.7	20.27	14.53	71.71	7.35	36.29	28.5	0.71
Bare soil	Line-point	15	100.0	48.00	15.21	31.69	7.70	16.04		1.68
	10-m ²	15	100.0	65.83	18.58	28.22	9.40	14.28		1.10
	1-m ²	15	100.0	70.47	16.10	22.85	8.15	11.56	59.9	1.18
Litter	Line-point	15	100.0	43.33	9.76	22.52	4.94	11.40		0.72
	10-m ²	15	0.0	0.00	-	-	-	-		-
	1-m ²	15	0.0	0.00	-	-	-	-	0.0	-
BSC	Line-point	15	0.0	0.00	-	-	-	-		-

Table C5. Summary of frequency (freq) and cover estimates in macroplot MEVE7b (Brushy Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

•		- MEVE 7b macr	•				Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	58.10	17.82	30.66	9.02	15.52		1.11
understory	1-m ²	15	100.0	42.40	22.50	53.06	11.38	26.85	52.2	0.81
canopy cover	Line-point	15	100.0	56.00	16.39	29.26	8.29	14.81		1.07
	10-m ²	15	86.7	3.93	4.84	122.95	2.45	62.22		1.09
	1-m ²	15	40.0	2.20	6.36	289.12	3.22	146.31	3.6	0.61
AMUT	Line-point	15	33.3	4.67	8.34	178.67	4.22	90.42		1.30
	10-m ²	15	100.0	30.37	18.62	61.33	9.42	31.04		1.39
	1-m ²	15	100.0	14.60	14.53	99.55	7.36	50.38	21.9	0.67
POFE	Line-point	15	93.3	20.67	15.80	76.43	7.99	38.68		0.94
	10-m ²	15	33.3	5.37	10.83	201.87	5.48	102.16		0.75
	1-m ²	15	26.7	11.40	27.00	236.84	13.66	119.85	7.1	1.60
QUGA	Line-point	15	26.7	4.67	8.34	178.67	4.22	90.42		0.65
	10-m ²	15	100.0	8.10	7.14	88.17	3.61	44.62		0.60
	1-m ²	15	73.3	6.80	9.27	136.29	4.69	68.97	13.4	0.51
Bare soil	Line-point	15	86.7	25.33	18.46	72.89	9.34	36.89		1.89
	10-m ²	15	100.0	84.17	8.80	10.45	4.45	5.29		1.04
	1-m ²	15	100.0	91.07	10.47	11.50	5.30	5.82	80.6	1.13
Litter	Line-point	15	100.0	66.67	20.24	30.36	10.24	15.36		0.83
	10-m ²	15	53.3	0.43	0.75	173.72	0.38	87.91		0.87
	1-m ²	15	26.7	0.40	0.83	207.02	0.42	104.76	0.5	0.80
BSC	Line-point	15	6.7	0.67	2.58	387.30	1.31	196.00		1.33

Table C6. Summary of frequency (freq) and cover estimates in macroplot CANY1 (Desert Sand ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	13.07	3.45	26.37	1.47	11.28		1.06
understory	1-m ²	30	100.0	12.13	6.49	53.49	2.32	19.14	12.3	0.99
canopy cover	Line-point	30	63.3	11.67	12.06	103.36	4.31	36.99		0.95
	10-m ²	21	66.7	1.83	2.30	125.67	0.99	53.75		1.02
	1-m ²	30	13.3	1.57	5.13	327.48	1.84	117.19	1.8	0.87
ATCA2	Line-point	30	16.7	2.00	4.84	242.12	1.73	86.64		1.11
	10-m ²	21	28.6	1.17	2.36	202.08	1.01	86.43		1.00
	1-m ²	30	23.3	1.00	2.53	253.25	0.91	90.62	1.2	0.86
HIJA	Line-point	30	6.7	1.33	5.71	428.51	2.04	153.34		1.14
	10-m ²	21	38.1	0.19	0.25	130.62	0.11	55.87		0.92
	1-m ²	30	10.0	0.10	0.31	305.13	0.11	109.19	0.2	0.48
STHY6	Line-point	30	3.3	0.33	1.83	547.72	0.65	196.00		1.60
	10-m ²	21	100.0	7.69	5.30	68.88	2.27	29.46		0.90
	1-m ²	30	100.0	7.53	5.53	73.35	1.98	26.25	8.5	0.88
Litter	Line-point	30	63.3	10.33	10.66	103.18	3.82	36.92		1.21
	10-m ²	21	100.0	72.02	12.44	17.27	5.32	7.39		0.91
Undifferenti	1-m ²	30	100.0	80.90	10.18	12.58	3.64	4.50	79.2	1.02
ated crust	Line-point	30	100.0	84.67	14.08	16.63	5.04	5.95		1.07
	10-m ²	21	85.7	1.02	0.93	90.68	0.40	38.78		0.80
	1-m ²	30	50.0	1.13	1.61	142.34	0.58	50.93	1.3	0.89
BSC	Line-point	30	16.7	1.67	3.79	227.43	1.36	81.38		1.31

Table C7. Summary of frequency (freq) and cover estimates in macroplot CANY2b (Desert Sand ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Desert Sand	(Sand Sagebru	sh) ecological sit	e – CANY 2	b macroplot,	Phase 2		0			
Measure	Method	Subsample n	Freq	Mean	sd	CV	Cover Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	13.69	3.98	29.09	1.70	12.44		1.08
understory	1-m ²	30	100.0	12.53	8.82	70.40	3.16	25.19	12.6	0.99
canopy cover	Line-point	30	73.3	11.67	10.20	87.42	3.65	31.28		0.92
	10-m ²	21	33.3	1.07	2.31	216.02	0.99	92.39		0.93
	1-m ²	30	10.0	1.73	9.12	526.13	3.26	188.27	1.2	1.50
ATCA2	Line-point	30	6.7	0.67	2.54	380.56	0.91	136.18		0.58
	10-m ²	21	85.7	2.29	2.17	94.99	0.93	40.63		1.54
	1-m ²	30	46.7	1.17	1.58	135.21	0.56	48.38	1.5	0.79
HIJA	Line-point	30	10.0	1.00	3.05	305.13	1.09	109.19		0.67
	10-m ²	21	100.0	1.10	1.09	99.62	0.47	42.61		0.61
	1-m ²	30	70.0	0.93	0.74	79.25	0.26	28.36	1.8	0.52
STHY6	Line-point	30	33.3	3.33	4.79	143.84	1.72	51.47		1.87
	10-m ²	21	100.0	6.05	3.45	57.04	1.48	24.39		1.01
	1-m ²	30	100.0	5.63	4.68	83.06	1.67	29.72	6.0	0.94
Litter	Line-point	30	50.0	6.33	7.18	113.43	2.57	40.59		1.05
	10-m ²	21	95.2	63.10	16.99	26.93	7.27	11.52		0.87
Undifferenti	1-m ²	30	100.0	77.37	10.98	14.20	3.93	5.08	72.9	1.06
ated crust	Line-point	30	100.0	78.33	15.10	19.28	5.41	6.90		1.07
	10-m ²	21	100.0	7.55	6.95	92.13	2.97	39.40		0.82
	1-m ²	30	90.0	8.37	7.13	85.24	2.55	30.50	9.2	0.91
BSC	Line-point	30	63.3	11.67	11.47	98.33	4.11	35.19		1.27

Table C8. Summary of frequency (freq) and cover estimates in macroplot WUPA1 (Limy Upland ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes.

							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	34.40	5.98	17.39	2.56	7.44		1.20
understory	1-m ²	30	100.0	20.07	5.46	27.20	1.95	9.73	28.6	0.70
canopy cover	Line-point	30	90.0	31.33	16.34	52.16	5.85	18.67		1.10
	10-m ²	21	100.0	10.71	6.26	58.45	2.68	25.00		1.43
	1-m ²	30	100.0	5.40	2.82	52.29	1.01	18.71	7.5	0.72
CHLE4	Line-point	30	46.7	6.33	8.50	134.26	3.04	48.04		0.85
	10-m ²	21	100.0	1.79	1.79	100.40	0.77	42.94		0.73
	1-m ²	30	53.3	1.27	1.82	143.54	0.65	51.36	2.5	0.51
HENE5	Line-point	30	26.7	4.33	8.17	188.58	2.92	67.48		1.76
	10-m ²	21	19.0	0.55	1.72	314.84	0.74	134.66		1.35
	1-m ²	30	16.7	0.33	0.88	265.23	0.32	94.91	0.4	0.82
PLJA	Line-point	30	3.3	0.33	1.83	547.72	0.65	196.00		0.82
	10-m ²	21	100.0	16.12	8.89	55.15	3.80	23.59		0.66
	1-m ²	30	100.0	16.67	13.97	83.84	5.00	30.00	24.5	0.68
Bare soil	Line-point	30	93.3	40.67	26.38	64.88	9.44	23.22		1.66
	10-m ²	21	100.0	7.43	4.70	63.26	2.01	27.06		0.88
	1-m ²	30	100.0	6.83	3.93	57.53	1.41	20.59	8.4	0.81
Litter	Line-point	30	63.3	11.00	11.25	102.27	4.03	36.60		1.31

Table C9. Summary of frequency (freq) and cover estimates in macroplot WUPA2 (Limy Upland ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes.

							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	25.79	7.04	27.30	3.01	11.68		1.10
understory	1-m ²	30	100.0	18.17	8.75	48.19	3.13	17.24	23.5	0.77
canopy cover	Line-point	30	96.7	26.67	14.22	53.34	5.09	19.09		1.13
	10-m ²	21	66.7	1.14	1.83	160.24	0.78	68.53		1.19
	1-m ²	30	26.7	0.73	1.76	240.05	0.63	85.90	1.0	0.76
CHLE4	Line-point	30	10.0	1.00	3.05	305.13	1.09	109.19		1.04
	10-m ²	21	90.5	2.19	2.18	99.36	0.93	42.50		0.81
	1-m ²	30	73.3	1.63	1.50	91.64	0.54	32.79	2.7	0.60
HENE5	Line-point	30	33.3	4.33	6.79	156.67	2.43	56.06		1.59
	10-m ²	21	100.0	9.64	6.06	62.81	2.59	26.86		0.99
	1-m ²	30	100.0	5.53	3.23	58.46	1.16	20.92	9.7	0.57
PLJA	Line-point	30	86.7	14.00	10.03	71.67	3.59	25.65		1.44
	10-m ²	21	100.0	14.67	12.79	87.20	5.47	37.30		0.81
	1-m ²	30	100.0	12.67	11.16	88.14	4.00	31.54	18.1	0.70
Bare soil	Line-point	30	90.0	27.00	15.79	58.48	5.65	20.93		1.49
	10-m ²	21	100.0	7.21	4.80	66.50	2.05	28.44		1.01
	1-m ²	30	100.0	7.30	4.28	58.58	1.53	20.96	7.2	1.02
Litter	Line-point	30	43.3	7.00	9.15	130.77	3.28	46.79		0.98

Table C10. Summary of frequency (freq) and cover estimates in macroplot WUPA5 (Limy Upland ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes.

							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	18.00	5.24	29.11	2.65	14.73		0.87
understory	1-m ²	15	100.0	13.33	5.84	43.79	2.95	22.16	20.7	0.65
canopy cover	Line-point	15	100.0	30.67	18.70	60.96	9.46	30.85		1.48
	10-m ²	15	93.3	7.37	3.55	48.16	1.80	24.37		1.01
	1-m ²	15	100.0	6.60	2.87	43.54	1.45	22.03	7.3	0.90
CHLE4	Line-point	15	53.3	8.00	10.14	126.77	5.13	64.15		1.09
	10-m ²	15	33.3	0.63	1.91	302.05	0.97	152.86		2.11
	1-m ²	15	6.7	0.27	1.03	387.30	0.52	196.00	0.3	0.89
HENE5	Line-point	15	0.0	0.00	-	-	-	-		0.00
	10-m ²	15	100.0	6.30	2.06	32.70	1.04	16.55		1.03
	1-m ²	15	100.0	2.07	0.80	38.65	0.40	19.56	6.1	0.34
PLJA	Line-point	15	73.3	10.00	8.45	84.52	4.28	42.77		1.63
	10-m ²	15	100.0	2.00	1.27	63.39	0.64	32.08		0.58
	1-m ²	15	100.0	2.33	1.29	55.33	0.65	28.00	3.4	0.68
Bare soil	Line-point	15	40.0	6.00	9.10	151.71	4.61	76.77		1.74
	10-m ²	15	100.0	8.37	6.04	72.16	3.06	36.51		1.50
	1-m ²	15	100.0	8.33	9.69	116.23	4.90	58.82	5.6	1.50
Litter	Line-point	15	0.0	0.00	-	-	-	-		0.00

Table C11. Summary of frequency (freq) and cover estimates in macroplot WUPA6 (Limy Upland ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes.

Limy Upland	, 6-10" pz ecolo	gical site – WUP	A 6 macropl	ot, Phase 3						
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	CV	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	19.57	3.92	20.02	1.98	10.13	mean	1.01
understory	1-m ²	15	100.0	16.93	3.10	18.33	1.57	9.28	19.3	0.88
canopy	Line-point	15	93.3	21.33	13.02	61.03	6.59	30.89		1.11
	10-m ²	15	100.0	4.53	4.21	92.89	2.13	47.01		1.34
	1-m ²	15	100.0	2.93	1.44	49.01	0.73	24.80	3.4	0.87
CHLE4	Line-point	15	26.7	2.67	4.58	171.65	2.32	86.87		0.79
	10-m ²	15	100.0	4.93	2.56	51.94	1.30	26.29		0.79
	1-m ²	15	100.0	5.20	3.65	70.17	1.85	35.51	6.3	0.83
HENE5	Line-point	15	60.0	8.67	8.34	96.21	4.22	48.69		1.38
	10-m ²	15	53.3	0.90	1.97	219.43	1.00	111.04		0.70
	1-m ²	15	40.0	0.93	2.05	219.83	1.04	111.25	1.3	0.73
PLJA	Line-point	15	13.3	2.00	5.61	280.31	2.84	141.85		1.57
	10-m ²	15	100.0	2.67	0.88	32.99	0.45	16.69		0.84
	1-m ²	15	100.0	2.87	2.29	80.06	1.16	40.51	3.2	0.90
Bare soil	Line-point	15	40.0	4.00	5.07	126.77	2.57	64.15		1.26
	10-m ²	15	100.0	3.87	2.42	62.68	1.23	31.72		1.34
	1-m ²	15	100.0	4.80	2.62	54.67	1.33	27.67	2.9	1.66
Litter	Line-point	15	0.0	0.00	-	-	-	-		0.00

Table C12. Summary of frequency (freq) and cover estimates in macroplot WUPA7 (Limy Upland ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes.

Limy Upland	, 6-10" pz ecolo	gical site – WUP	7 macropl	ot, Phase 3						
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	CV	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	20.47	7.96	38.91	4.03	19.69		1.11
understory	1-m ²	15	100.0	11.67	3.24	27.81	1.64	14.07	18.5	0.63
canopy cover	Line-point	15	86.7	23.33	16.76	71.84	8.48	36.35		1.26
	10-m ²	15	100.0	1.97	1.97	100.08	1.00	50.65		1.65
	1-m ²	15	73.3	1.60	1.50	93.90	0.76	47.52	1.2	1.35
CHLE4	Line-point	15	0.0	0.00	1	-	-	-		0.00
	10-m ²	15	100.0	9.03	6.47	71.63	3.27	36.25		0.90
	1-m ²	15	93.3	5.67	3.52	62.09	1.78	31.42	10.0	0.57
HENE5	Line-point	15	80.0	15.33	12.46	81.26	6.31	41.12		1.53
	10-m ²	15	100.0	4.60	5.31	115.41	2.69	58.41		0.96
	1-m ²	15	93.3	2.47	1.92	77.93	0.97	39.44	4.8	0.51
PLJA	Line-point	15	46.7	7.33	11.00	149.97	5.57	75.89		1.53
	10-m ²	15	100.0	1.17	1.14	98.09	0.58	49.64		0.50
	1-m ²	15	86.7	1.87	2.42	129.44	1.22	65.50	2.3	0.80
Bare soil	Line-point	15	33.3	4.00	6.32	158.11	3.20	80.02		1.71
	10-m ²	15	100.0	6.37	3.80	59.70	1.92	30.21		1.29
	1-m ²	15	100.0	8.47	3.78	44.61	1.91	22.58	4.9	1.71
Litter	Line-point	15	0.0	0.00	-	-	-	-		0.00

Table C13. Summary of frequency (freq) and cover estimates in macroplot GRCA3 (Loamy Hills ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Loamy Hills,	25-33" pz ecolo	gical site – GRC	A 3 macrop	lot, Phase 2									
				Cover Among-									
Measure	Method	Subsample n	Freq	Mean	sd	CV	Precision	Precision % of mean	Among- method mean	Standardized mean			
Total live	10-m ²	21	100.0	25.76	17.08	66.30	7.31	28.36		1.23			
understory	1-m ²	30	93.3	28.90	39.58	136.94	14.16	49.00	20.9	1.38			
vegetation	Line-point	30	46.7	8.00	12.15	151.86	4.35	54.34		0.38			
	10-m ²	21	0.0	0.00	-	-	-	-		-			
	1-m ²	30	0.0	0.00	-	-	-	-	0.0	-			
POFE	Line-point	30	0.0	0.00	1	-	-	-		-			
	10-m ²	21	71.4	4.02	5.25	130.59	2.25	55.85		0.84			
	1-m ²	30	63.3	7.97	19.47	244.46	6.97	87.48	4.8	1.67			
POTR5	Line-point	30	20.0	2.33	5.04	216.00	1.80	77.29		0.49			
	10-m ²	21	14.3	0.07	0.18	251.00	0.08	107.35		1.25			
	1-m ²	30	6.7	0.10	0.40	402.58	0.14	144.06	0.1	1.75			
UNGRCA1	Line-point	30	0.0	0.00	-	-	-	-		0.00			
	10-m ²	21	71.4	1.50	2.27	151.66	0.97	64.86		0.47			
	1-m ²	30	43.3	2.73	6.56	240.18	2.35	85.95	3.2	0.86			
Bare soil	Line-point	30	33.3	5.33	9.73	182.48	3.48	65.30		1.67			
	10-m ²	21	100.0	63.69	9.61	15.08	4.11	6.45		0.89			
	1-m ²	30	100.0	73.93	17.47	23.62	6.25	8.45	71.9	1.03			
Litter	Line-point	30	100.0	78.00	18.27	23.42	6.54	8.38		1.09			
	10-m ²	21	85.7	1.50	1.85	123.38	0.79	52.77		1.14			
	1-m ²	30	53.3	1.43	2.08	145.06	0.74	51.91	1.3	1.09			
BSC	Line-point	30	6.7	1.00	4.03	402.58	1.44	144.06		0.76			

Table C14. Summary of frequency (freq) and cover estimates in macroplot GRCA4 (Loamy Hills ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Loamy Hills,	25-33" pz ecolo	gical site – GRC/	4 4 macrop	lot, Phase 2						
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	35.17	32.20	91.57	13.77	39.16		0.90
understory	1-m ²	30	100.0	57.47	52.82	91.91	18.90	32.89	39.0	1.47
canopy cover	Line-point	30	66.7	24.33	23.29	95.73	8.34	34.26		0.62
	10-m ²	21	4.8	0.02	0.11	458.26	0.05	196.00		0.17
	1-m ²	30	6.7	0.07	0.25	380.56	0.09	136.18	0.1	0.47
POFE	Line-point	30	3.3	0.33	1.83	547.72	0.65	196.00		2.36
	10-m ²	21	71.4	2.76	5.37	194.36	2.30	83.13		0.99
	1-m ²	30	26.7	5.60	18.13	323.83	6.49	115.88	2.8	2.01
POTR5	Line-point	30	0.0	0.00	-	-	-	-		0.00
	10-m ²	21	85.7	1.57	2.23	142.04	0.95	60.75		0.41
UNGRCA1	1-m ²	30	80.0	1.47	1.72	117.05	0.61	41.88	3.8	0.39
(Carex sp.)	Line-point	30	40.0	8.33	12.62	151.41	4.51	54.18		2.20
	10-m ²	21	76.2	1.64	2.27	138.18	0.97	59.10		0.63
	1-m ²	30	50.0	1.50	2.58	172.21	0.92	61.62	2.6	0.58
Bare soil	Line-point	30	26.7	4.67	9.00	192.76	3.22	68.98		1.79
	10-m ²	21	100.0	61.31	20.12	32.81	8.60	14.03		0.88
	1-m ²	30	96.7	74.90	21.40	28.57	7.66	10.22	69.5	1.08
Litter	Line-point	30	100.0	72.33	16.33	22.58	5.84	8.08		1.04
	10-m ²	21	71.4	1.93	4.12	213.84	1.76	91.46		1.57
	1-m ²	30	50.0	1.43	3.51	244.91	1.26	87.64	1.2	1.16
BSC	Line-point	30	3.3	0.33	1.83	547.72	0.65	196.00		0.27

Table C15. Summary of frequency (freq) and cover estimates in macroplot GRCA5 (Loamy Hills ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Loamy Hills,	25-33" pz ecolo	gical site – GRC	A 5 macrop	lot, Phase 3						
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	11.67	8.51	72.96	4.31	36.92		0.84
understory	1-m ²	15	100.0	10.13	12.06	119.06	6.11	60.25	13.9	0.73
canopy cover	Line-point	15	93.3	20.00	11.34	56.69	5.74	28.69		1.44
	10-m ²	15	33.3	0.97	2.08	215.46	1.05	109.04		0.69
	1-m ²	15	26.7	0.60	1.18	197.20	0.60	99.80	1.4	0.43
POFE	Line-point	15	26.7	2.67	4.58	171.65	2.32	86.87		1.89
	10-m ²	15	80.0	5.70	6.70	117.49	3.39	59.46		1.07
	1-m ²	15	66.7	5.60	11.62	207.57	5.88	105.04	5.3	1.05
POTR5	Line-point	15	40.0	4.67	6.40	137.13	3.24	69.40		0.88
	10-m ²	15	86.7	1.90	2.03	106.76	1.03	54.03		0.45
UNGRCA1	1-m ²	15	60.0	1.33	2.13	159.52	1.08	80.73	4.2	0.32
(Carex sp.)	Line-point	15	53.3	9.33	11.63	124.60	5.89	63.05		2.23
	10-m ²	15	100.0	2.00	1.27	63.39	0.64	32.08		0.19
	1-m ²	15	73.3	1.60	1.40	87.75	0.71	44.41	10.8	0.15
Bare soil	Line-point	15	73.3	28.67	26.15	91.22	13.23	46.16		2.67
	10-m ²	15	100.0	80.83	11.44	14.16	5.79	7.16		1.04
	1-m ²	15	100.0	89.53	5.24	5.85	2.65	2.96	77.5	1.16
Litter	Line-point	15	100.0	62.00	23.96	38.65	12.13	19.56		0.80
	10-m ²	15	6.7	0.03	0.13	387.30	0.07	196.00		3.00
	1-m ²	15	0.0	0.00	-	-	-	-	0.0	0.00
BSC	Line-point	15	0.0	0.00	-	-	-	-		0.00

Table C16. Summary of frequency (freq) and cover estimates in macroplot GRCA6 (Loamy Hills ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Loamy Hills,	25-33" pz ecolo	ogical site – GRC/	A 6 macrop	lot, Phase 3						
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	20.37	18.34	90.06	9.28	45.57		1.04
understory	1-m ²	15	100.0	17.20	26.09	151.71	13.21	76.77	19.6	0.88
canopy cover	Line-point	15	86.7	21.33	12.46	58.40	6.31	29.56		1.09
	10-m ²	15	66.7	0.50	0.73	146.39	0.37	74.08		0.71
	1-m ²	15	20.0	0.27	0.59	222.61	0.30	112.65	0.7	0.38
POFE	Line-point	15	13.3	1.33	3.52	263.90	1.78	133.55		1.90
	10-m ²	15	33.3	0.17	0.24	146.39	0.12	74.08		0.52
	1-m ²	15	13.3	0.13	0.35	263.90	0.18	133.55	0.3	0.41
POTR5	Line-point	15	6.7	0.67	2.58	387.30	1.31	196.00		2.07
	10-m ²	15	100.0	1.93	2.48	128.15	1.25	64.85		0.42
UNGRCA1	1-m ²	15	66.7	1.87	1.88	100.97	0.95	51.10	4.6	0.41
(Carex sp.)	Line-point	15	60.0	10.00	10.69	106.90	5.41	54.10		2.17
	10-m ²	15	53.3	1.23	2.09	169.85	1.06	85.95		0.26
	1-m ²	15	46.7	1.80	2.68	148.78	1.36	75.29	4.8	0.38
Bare soil	Line-point	15	53.3	11.33	12.46	109.94	6.31	55.63		2.37
	10-m ²	15	100.0	84.17	8.80	10.45	4.45	5.29		1.08
	1-m ²	15	100.0	75.80	22.61	29.83	11.44	15.10	78.0	0.97
Litter	Line-point	15	100.0	74.00	15.49	20.94	7.84	10.59		0.95
	10-m ²	15	6.7	0.03	0.13	387.30	0.07	196.00		1.00
	1-m ²	15	6.7	0.07	0.26	387.30	0.13	196.00	0.0	2.00
BSC	Line-point	15	0.0	0.00	-	-	-	-		0.00

Table C17. Summary of frequency (freq) and cover estimates in macroplot GRCA7 (Loamy Hills ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Loamy Hills,	25-33" pz ecolo	gical site – GRC	A 7 macrop	lot, Phase 3						
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	5.63	2.98	52.88	1.51	26.76		0.79
understory	1-m ²	15	80.0	5.07	5.19	102.41	2.63	51.83	7.1	0.71
canopy cover	Line-point	15	66.7	10.67	9.61	90.11	4.86	45.60		1.50
	10-m ²	15	93.3	1.13	1.17	103.42	0.59	52.34		0.61
	1-m ²	15	73.3	1.07	0.88	82.85	0.45	41.93	1.8	0.58
POFE	Line-point	15	33.3	3.33	4.88	146.39	2.47	74.08		1.81
	10-m ²	15	20.0	0.27	0.78	291.05	0.39	147.29		0.29
	1-m ²	15	13.3	1.13	3.04	268.60	1.54	135.93	0.9	1.24
POTR5	Line-point	15	13.3	1.33	3.52	263.90	1.78	133.55		1.46
	10-m ²	15	86.7	1.60	1.37	85.34	0.69	43.19		0.62
UNGRCA1	1-m ²	15	60.0	1.47	1.55	105.84	0.79	53.56	2.6	0.57
(Carex sp.)	Line-point	15	46.7	4.67	5.16	110.66	2.61	56.00		1.81
	10-m ²	15	60.0	1.30	1.45	111.47	0.73	56.41		0.14
	1-m ²	15	53.3	2.07	2.87	138.64	1.45	70.16	9.3	0.22
Bare soil	Line-point	15	60.0	24.67	28.00	113.50	14.17	57.44		2.64
	10-m ²	15	100.0	84.17	8.80	10.45	4.45	5.29		1.09
	1-m ²	15	100.0	86.53	11.51	13.30	5.83	6.73	76.9	1.13
Litter	Line-point	15	93.3	60.00	36.25	60.42	18.35	30.58	·	0.78
	10-m ²	15	13.3	0.07	0.18	263.90	0.09	133.55		1.50
	1-m ²	15	6.7	0.07	0.26	387.30	0.13	196.00	0.0	1.50
BSC	Line-point	15	0.0	0.00	-	-	-	-		0.00

Table C18. Summary of frequency (freq) and cover estimates in macroplot GRCA1 (Loamy Hills, Cold, ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Loamy Hills,	Cold, 25-33" pz	ecological site –	GRCA 1 m	acroplot, Pha	ase 2					
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	43.57	29.26	67.14	12.51	28.72		1.25
understory	1-m ²	30	100.0	37.37	33.72	90.23	12.06	32.29	34.9	1.07
canopy cover	Line-point	30	86.7	23.67	19.91	84.13	7.12	30.10		0.68
	10-m ²	21	0.0	0.00	-	-	-	-		-
	1-m ²	30	0.0	0.00	-	-	-	-	0.0	-
ABCO	Line-point	30	0.0	0.00	-	-	-	-		-
	10-m ²	21	52.4	10.81	17.84	165.06	7.63	70.60		0.93
	1-m ²	30	43.3	16.50	26.05	157.89	9.32	56.50	11.7	1.42
PIEN	Line-point	30	36.7	7.67	12.51	163.14	4.48	58.38		0.66
	10-m ²	21	81.0	3.74	5.21	139.43	2.23	59.63		1.19
	1-m ²	30	50.0	4.33	8.29	191.20	2.96	68.42	3.1	1.38
POTR5	Line-point	30	13.3	1.33	3.46	259.31	1.24	92.79		0.43
	10-m ²	21	95.2	2.67	4.04	151.44	1.73	64.77		1.05
	1-m ²	30	63.3	2.30	4.38	190.43	1.57	68.14	2.5	0.90
Bare soil	Line-point	30	20.0	2.67	5.83	218.73	2.09	78.27		1.05
	10-m ²	21	100.0	70.83	14.43	20.38	6.17	8.72		0.91
	1-m ²	30	100.0	81.80	12.64	15.45	4.52	5.53	77.9	1.05
Litter	Line-point	30	100.0	81.00	17.29	21.35	6.19	7.64		1.04
	10-m ²	21	90.5	1.64	1.91	116.35	0.82	49.76		0.92
	1-m ²	30	73.3	1.70	2.87	168.62	1.03	60.34	1.8	0.95
BSC	Line-point	30	16.7	2.00	4.84	242.12	1.73	86.64		1.12

Table C19. Summary of frequency (freq) and cover estimates in macroplot GRCA2 (Loamy Hills, Cold, ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Loamy Hills,	Cold, 25-33" pz	ecological site –	GRCA 2 m	acroplot, Pha	ase 2					
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	CV	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	54.05	33.87	62.67	14.49	26.80		1.02
understory	1-m ²	30	100.0	77.27	51.21	66.27	18.32	23.71	53.0	1.46
canopy cover	Line-point	30	83.3	27.67	17.94	64.85	6.42	23.21		0.52
	10-m ²	21	61.9	17.24	25.76	149.46	11.02	63.92		1.00
	1-m ²	30	66.7	25.73	29.62	115.10	10.60	41.19	17.3	1.49
ABCO	Line-point	30	46.7	9.00	11.85	131.63	4.24	47.10		0.52
	10-m ²	21	4.8	2.98	13.64	458.26	5.83	196.00		2.45
	1-m ²	30	0.0	0.00	-	-	-	-	1.2	0.00
PIEN	Line-point	30	3.3	0.67	3.65	547.72	1.31	196.00		0.55
	10-m ²	21	38.1	5.71	13.33	233.21	5.70	99.74		1.18
	1-m ²	30	26.7	8.13	18.74	230.38	6.70	82.44	4.8	1.68
POTR5	Line-point	30	6.7	0.67	2.54	380.56	0.91	136.18		0.14
	10-m ²	21	71.4	2.33	3.95	169.45	1.69	72.47		0.78
	1-m ²	30	40.0	1.30	2.31	177.44	0.83	63.49	3.0	0.43
Bare soil	Line-point	30	23.3	5.33	12.52	234.77	4.48	84.01		1.78
	10-m ²	21	100.0	69.64	16.09	23.11	6.88	9.88		0.91
	1-m ²	30	100.0	78.97	14.23	18.02	5.09	6.45	76.8	1.03
Litter	Line-point	30	100.0	81.67	16.42	20.10	5.87	7.19		1.06
	10-m ²	21	66.7	0.50	0.74	148.32	0.32	63.44		1.29
	1-m ²	30	10.0	0.67	3.11	466.65	1.11	166.98	0.4	1.71
BSC	Line-point	30	0.0	0.00	-	-	-	-		0.00

Table C20. Summary of frequency (freq) and cover estimates in macroplot MEVE3 (Loamy Mesa Top PJ ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Loamy Mesa	Top PJ ecologi	ical site – MEVE 3	macroplot	, Phase 2						
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	41.07	24.62	59.95	10.53	25.64		1.22
understory	1-m ²	30	100.0	40.10	38.61	96.29	13.82	34.46	33.6	1.19
canopy cover	Line-point	30	86.7	19.67	16.08	81.75	5.75	29.25		0.59
	10-m ²	21	66.7	11.74	13.29	113.26	5.69	48.44		1.20
	1-m ²	30	33.3	15.17	26.70	176.05	9.55	63.00	9.7	1.56
JUOS	Line-point	30	20.0	2.33	5.04	216.00	1.80	77.29		0.24
	10-m ²	21	81.0	16.02	16.30	101.72	6.97	43.51		1.21
	1-m ²	30	40.0	15.37	27.49	178.92	9.84	64.03	13.2	1.16
PIED	Line-point	30	40.0	8.33	13.41	160.95	4.80	57.59		0.63
	10-m ²	21	100.0	8.43	6.18	73.34	2.64	31.37		1.15
	1-m ²	30	96.7	6.50	8.31	127.87	2.97	45.76	7.3	0.89
POFE	Line-point	30	53.3	7.00	8.37	119.52	2.99	42.77		0.96
	10-m ²	21	90.5	3.62	8.62	238.13	3.69	101.85		0.68
	1-m ²	30	60.0	2.93	9.92	338.07	3.55	120.97	5.3	0.55
Bare soil	Line-point	30	53.3	9.33	11.12	119.15	3.98	42.64		1.76
	10-m ²	21	100.0	46.55	23.22	49.88	9.93	21.33		0.90
	1-m ²	30	100.0	51.40	39.04	75.95	13.97	27.18	51.6	1.00
Litter	Line-point	30	93.3	57.00	25.21	44.23	9.02	15.83		1.10
	10-m ²	21	100.0	5.17	5.18	100.31	2.22	42.90		0.77
	1-m ²	30	80.0	9.07	13.97	154.06	5.00	55.13	6.7	1.34
BSC	Line-point	30	36.7	6.00	11.92	198.65	4.27	71.09		0.89

Table C21. Summary of frequency (freq) and cover estimates in macroplot MEVE4 (Loamy Mesa Top PJ ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Loamy Mesa	Top PJ ecologi	cal site – MEVE 4	macroplot	, Phase 2						
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	55.71	31.30	56.19	13.39	24.03		1.33
understory	1-m ²	30	100.0	43.67	49.82	114.10	17.83	40.83	42.0	1.04
canopy cover	Line-point	30	93.3	26.67	17.09	64.07	6.11	22.93		0.63
	10-m ²	21	76.2	12.19	17.42	142.94	7.45	61.13		0.97
	1-m ²	30	50.0	20.10	32.36	160.98	11.58	57.60	12.5	1.60
JUOS	Line-point	30	40.0	5.33	7.76	145.51	2.78	52.07		0.43
	10-m ²	21	81.0	26.21	23.84	90.95	10.20	38.90		1.72
	1-m ²	30	36.7	13.27	25.39	191.41	9.09	68.49	15.3	0.87
PIED	Line-point	30	43.3	6.33	10.66	168.35	3.82	60.24		0.41
	10-m ²	21	100.0	13.10	8.50	64.88	3.63	27.75		1.16
	1-m ²	30	96.7	8.03	7.69	95.78	2.75	34.27	11.3	0.71
POFE	Line-point	30	76.7	12.67	11.12	87.80	3.98	31.42		1.12
	10-m ²	21	85.7	4.21	6.10	144.71	2.61	61.89		0.94
	1-m ²	30	73.3	6.27	12.14	193.67	4.34	69.30	4.5	1.39
Bare soil	Line-point	30	26.7	3.00	5.35	178.33	1.91	63.81		0.67
	10-m ²	21	100.0	58.45	28.05	47.98	12.00	20.52		0.89
	1-m ²	30	100.0	69.70	29.72	42.64	10.63	15.26	65.8	1.06
Litter	Line-point	30	100.0	69.33	16.60	23.94	5.94	8.57		1.05
	10-m ²	21	85.7	3.71	3.73	100.52	1.60	42.99		0.97
	1-m ²	30	53.3	2.80	4.13	147.52	1.48	52.79	3.8	0.73
BSC	Line-point	30	33.3	5.00	8.20	164.00	2.93	58.69		1.30

Table C22. Summary of frequency (freq) and cover estimates in macroplot MEVE8 (Loamy Mesa Top PJ ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Loamy Mesa	Top PJ ecologi	ical site – MEVE 8	macroplot	, Phase 3						
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	23.77	14.59	61.37	7.38	31.06		1.08
understory	1-m ²	15	100.0	21.60	26.38	122.14	13.35	61.81	22.0	0.98
canopy cover	Line-point	15	80.0	20.67	18.31	88.59	9.27	44.83		0.94
	10-m ²	15	73.3	3.27	6.09	186.46	3.08	94.36		0.79
	1-m ²	15	33.3	5.07	9.79	193.16	4.95	97.75	4.1	1.23
JUOS	Line-point	15	26.7	4.00	7.37	184.20	3.73	93.21		0.97
	10-m ²	15	60.0	6.63	11.09	167.21	5.61	84.62		1.01
	1-m ²	15	46.7	10.47	23.34	223.01	11.81	112.86	6.6	1.59
PIED	Line-point	15	26.7	2.67	4.58	171.65	2.32	86.87		0.40
	10-m ²	15	100.0	10.13	6.58	64.91	3.33	32.85		1.11
	1-m ²	15	100.0	5.33	4.08	76.55	2.07	38.74	9.2	0.58
POFE	Line-point	15	80.0	12.00	14.24	118.69	7.21	60.06		1.31
	10-m ²	15	100.0	0.97	1.81	186.97	0.91	94.62		0.18
	1-m ²	15	66.7	1.00	1.46	146.39	0.74	74.08	5.3	0.19
Bare soil	Line-point	15	80.0	14.00	10.56	75.40	5.34	38.16		2.63
	10-m ²	15	100.0	46.53	29.48	63.35	14.92	32.06		0.98
	1-m ²	15	100.0	54.00	30.99	57.38	15.68	29.04	47.5	1.14
Litter	Line-point	15	93.3	42.00	23.36	55.62	11.82	28.15		0.88
	10-m ²	15	100.0	1.77	2.00	113.14	1.01	57.26		0.64
	1-m ²	15	66.7	1.87	1.88	100.97	0.95	51.10	2.8	0.67
BSC	Line-point	15	33.3	4.67	7.43	159.26	3.76	80.60		1.69

Table C23. Summary of frequency (freq) and cover estimates in macroplot MEVE9 (Loamy Mesa Top PJ ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Loamy Mesa	Top PJ ecologi	ical site – MEVE 9	macroplot	, Phase 3						
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	20.90	18.67	89.32	9.45	45.20		1.17
understory	1-m ²	15	93.3	13.20	15.21	115.26	7.70	58.33	17.8	0.74
canopy cover	Line-point	15	80.0	19.33	14.38	74.36	7.28	37.63		1.09
	10-m ²	15	60.0	7.03	16.47	234.11	8.33	118.47		1.80
	1-m ²	15	33.3	2.67	6.14	230.15	3.11	116.47	3.9	0.68
JUOS	Line-point	15	20.0	2.00	4.14	207.02	2.10	104.76		0.51
	10-m ²	15	73.3	5.40	10.06	186.21	5.09	94.24		0.81
	1-m ²	15	26.7	4.60	10.47	227.68	5.30	115.22	6.7	0.69
PIED	Line-point	15	60.0	10.00	13.63	136.28	6.90	68.96		1.50
	10-m ²	15	100.0	2.93	2.16	73.70	1.09	37.30		0.80
	1-m ²	15	86.7	3.40	4.17	122.69	2.11	62.09	3.7	0.93
POFE	Line-point	15	46.7	4.67	5.16	110.66	2.61	56.00		1.27
	10-m ²	15	80.0	0.90	1.11	122.80	0.56	62.14		0.33
	1-m ²	15	33.3	0.67	1.54	231.46	0.78	117.13	2.7	0.24
Bare soil	Line-point	15	46.7	6.67	8.16	122.47	4.13	61.98		2.43
	10-m ²	15	100.0	46.37	34.68	74.80	17.55	37.85		1.14
	1-m ²	15	100.0	40.87	36.65	89.68	18.55	45.38	40.6	1.01
Litter	Line-point	15	93.3	34.67	22.64	65.30	11.46	33.04		0.85
	10-m ²	15	100.0	4.07	3.80	93.51	1.92	47.32		0.67
	1-m ²	15	93.3	8.13	14.89	183.13	7.54	92.67	6.1	1.34
BSC	Line-point	15	40.0	6.00	9.10	151.71	4.61	76.77		0.99

Table C24. Summary of frequency (freq) and cover estimates in macroplot MEVE10 (Loamy Mesa Top PJ ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Loamy Mesa	Top PJ ecologi	ical site – MEVE 1	0 macropic	t, Phase 3						
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	22.23	11.66	52.45	5.90	26.54		0.97
understory	1-m ²	15	100.0	29.53	25.70	87.03	13.01	44.04	23.0	1.28
canopy cover	Line-point	15	80.0	17.33	11.63	67.09	5.89	33.95		0.75
	10-m ²	15	60.0	4.47	6.03	135.02	3.05	68.33		0.99
	1-m ²	15	33.3	5.80	18.03	310.84	9.12	157.30	4.5	1.28
JUOS	Line-point	15	33.3	3.33	4.88	146.39	2.47	74.08		0.74
	10-m ²	15	73.3	7.90	7.66	96.91	3.87	49.04		0.85
	1-m ²	15	33.3	10.67	23.05	216.05	11.66	109.34	9.3	1.15
PIED	Line-point	15	53.3	9.33	11.00	117.83	5.57	59.63		1.00
	10-m ²	15	93.3	0.47	0.13	27.66	0.07	14.00		0.48
	1-m ²	15	46.7	0.47	0.52	110.66	0.26	56.00	1.0	0.48
POFE	Line-point	15	20.0	2.00	4.14	207.02	2.10	104.76		2.05
	10-m ²	15	100.0	0.67	0.65	96.82	0.33	49.00		0.51
	1-m ²	15	60.0	0.60	0.51	84.52	0.26	42.77	1.3	0.46
Bare soil	Line-point	15	26.7	2.67	4.58	171.65	2.32	86.87		2.03
	10-m ²	15	100.0	38.20	30.25	79.18	15.31	40.07		1.05
	1-m ²	15	100.0	36.40	33.79	92.83	17.10	46.98	36.4	1.00
Litter	Line-point	15	93.3	34.67	25.60	73.84	12.95	37.37		0.95
	10-m ²	15	100.0	4.83	3.84	79.52	1.95	40.24		0.57
	1-m ²	15	93.3	5.07	3.88	76.61	1.96	38.77	8.4	0.60
BSC	Line-point	15	86.7	15.33	13.56	88.42	6.86	44.75		1.82

Table C25. Summary of frequency (freq) and cover estimates in macroplot CARE1 (Semidesert Alkali Sandy Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Semidesert A	Alkali Sandy Loa	am (Alkali Sacato	n) ecologic	al site – CAR	E 1 macroplo	t, Phase 2				
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	23.33	7.02	30.09	3.00	12.87		0.87
understory	1-m ²	30	100.0	19.50	6.93	35.52	2.48	12.71	26.7	0.73
canopy cover	Line-point	30	93.3	37.33	18.18	48.70	6.51	17.43		1.40
	10-m ²	21	81.0	4.19	5.16	123.16	2.21	52.68		1.06
	1-m ²	30	46.7	1.97	3.63	184.78	1.30	66.12	3.9	0.50
ATCO	Line-point	30	36.7	5.67	9.71	171.43	3.48	61.34		1.44
	10-m ²	21	47.6	0.24	0.26	107.47	0.11	45.97		1.25
	1-m ²	30	33.3	0.33	0.48	143.84	0.17	51.47	0.2	1.75
GIIN2	Line-point	30	0.0	0.00	-	-	-	-		0.00
	10-m ²	21	95.2	0.71	0.77	107.47	0.33	45.97		0.45
	1-m ²	30	56.7	0.70	0.75	107.10	0.27	38.33	1.6	0.44
ORHY	Line-point	30	23.3	3.33	6.61	198.27	2.36	70.95		2.11
	10-m ²	21	100.0	0.74	0.75	101.88	0.32	43.57		0.32
	1-m ²	30	90.0	1.53	1.72	111.96	0.61	40.06	2.3	0.66
Bare soil	Line-point	30	36.7	4.67	7.30	156.49	2.61	56.00		2.02
	10-m ²	21	100.0	15.64	9.08	58.03	3.88	24.82		1.32
	1-m ²	30	96.7	11.83	14.97	126.54	5.36	45.28	11.8	1.00
Litter	Line-point	30	43.3	8.00	11.26	140.81	4.03	50.39		0.68
	10-m ²	21	85.7	1.10	0.85	77.23	0.36	33.03		1.06
	1-m ²	30	50.0	1.00	1.26	125.94	0.45	45.07	1.0	0.97
BSC	Line-point	30	6.7	1.00	4.03	402.58	1.44	144.06		0.97

Table C26. Summary of frequency (freq) and cover estimates in macroplot CARE2 (Semidesert Alkali Sandy Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Semidesert A	Alkali Sandy Lo	am (Alkali Sacato	n) ecologic	al site – CAR	E 2 macroplo	t, Phase 2				
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	35.48	16.87	47.55	7.21	20.34		1.18
understory	1-m ²	30	100.0	24.60	14.49	58.91	5.19	21.08	30.1	0.82
canopy cover	Line-point	30	93.3	30.33	19.38	63.90	6.94	22.87		1.01
	10-m ²	21	90.5	4.60	4.92	107.14	2.11	45.82		0.90
	1-m ²	30	53.3	7.13	12.38	173.49	4.43	62.08	5.1	1.39
ATCO	Line-point	30	26.7	3.67	6.69	182.37	2.39	65.26		0.71
	10-m ²	21	42.9	0.21	0.25	118.32	0.11	50.61		0.86
	1-m ²	30	20.0	0.20	0.41	203.42	0.15	72.79	0.2	0.80
GIIN2	Line-point	30	3.3	0.33	1.83	547.72	0.65	196.00		1.34
	10-m ²	21	95.2	0.60	0.56	94.36	0.24	40.36		0.96
	1-m ²	30	53.3	0.60	0.62	103.58	0.22	37.06	0.6	0.97
ORHY	Line-point	30	6.7	0.67	2.54	380.56	0.91	136.18		1.07
	10-m ²	21	23.8	1.26	4.06	321.80	1.74	137.63		0.68
	1-m ²	30	13.3	0.60	2.74	456.12	0.98	163.22	1.8	0.33
Bare soil	Line-point	30	23.3	3.67	8.09	220.56	2.89	78.92		1.99
	10-m ²	21	100.0	9.83	8.96	91.11	3.83	38.97		1.11
	1-m ²	30	96.7	9.50	12.59	132.48	4.50	47.41	8.9	1.07
Litter	Line-point	30	56.7	7.33	7.40	100.87	2.65	36.09	·	0.83
	10-m ²	21	81.0	1.12	1.14	101.79	0.49	43.54		0.39
	1-m ²	30	66.7	1.57	1.77	113.30	0.64	40.54	2.9	0.54
BSC	Line-point	30	33.3	6.00	9.68	161.41	3.47	57.76		2.07

Table C27. Summary of frequency (freq) and cover estimates in macroplot CARE5 (Semidesert Alkali Sandy Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Semidesert A	Alkali Sandy Loa	am (Alkali Sacato	n) ecologic	al site – CAR	E 5 macroplo	t, Phase 3				
					1	•	Cover	1	-	1
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	19.17	9.04	47.17	4.58	23.87		0.84
understory	1-m ²	15	100.0	20.93	20.14	96.20	10.19	48.68	22.9	0.91
canopy cover	Line-point	15	100.0	28.67	16.42	57.27	8.31	28.98		1.25
	10-m ²	15	53.3	0.60	1.00	167.26	0.51	84.64		1.35
	1-m ²	15	46.7	0.73	1.28	174.53	0.65	88.32	0.4	1.65
ATCO	Line-point	15	0.0	0.00	-	-	-	-		0.00
	10-m ²	15	73.3	0.37	0.23	62.42	0.12	31.59		0.48
	1-m ²	15	60.0	0.60	0.51	84.52	0.26	42.77	0.8	0.78
GIIN2	Line-point	15	13.3	1.33	3.52	263.90	1.78	133.55		1.74
	10-m ²	15	86.7	0.60	0.69	114.43	0.35	57.91		0.69
	1-m ²	15	66.7	0.67	0.49	73.19	0.25	37.04	0.9	0.77
ORHY	Line-point	15	13.3	1.33	3.52	263.90	1.78	133.55		1.54
	10-m ²	15	100.0	0.97	1.81	186.97	0.91	94.62		0.38
	1-m ²	15	86.7	2.07	1.83	88.59	0.93	44.83	2.6	0.81
Bare soil	Line-point	15	40.0	4.67	6.40	137.13	3.24	69.40		1.82
	10-m ²	15	100.0	10.00	9.29	92.87	4.70	47.00		1.08
	1-m ²	15	100.0	11.67	23.50	201.43	11.89	101.93	9.2	1.27
Litter	Line-point	15	33.3	6.00	9.86	164.27	4.99	83.13		0.65
	10-m ²	15	40.0	0.33	0.45	134.96	0.23	68.30		1.67
	1-m ²	15	20.0	0.27	0.59	222.61	0.30	112.65	0.2	1.33
BSC	Line-point	15	0.0	0.00	-	-	-	-		0.00

Table C28. Summary of frequency (freq) and cover estimates in macroplot CARE6 (Semidesert Alkali Sandy Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Semidesert A	Alkali Sandy Loa	am (Alkali Sacato	n) ecologic	al site – CAR	E 6 macroplo	t, Phase 3				
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	7.27	4.46	61.43	2.26	31.09		0.85
understory	1-m ²	15	93.3	7.07	6.13	86.82	3.10	43.93	8.6	0.83
canopy cover	Line-point	15	66.7	11.33	11.87	104.76	6.01	53.01		1.32
	10-m ²	15	46.7	1.03	2.06	199.06	1.04	100.74		0.67
	1-m ²	15	20.0	0.93	2.63	281.93	1.33	142.67	1.5	0.60
ATCO	Line-point	15	20.0	2.67	5.94	222.61	3.00	112.65		1.73
	10-m ²	15	33.3	0.17	0.24	146.39	0.12	74.08		1.15
	1-m ²	15	26.7	0.27	0.46	171.65	0.23	86.87	0.1	1.85
GIIN2	Line-point	15	0.0	0.00	-	-	-	-		0.00
	10-m ²	15	60.0	0.30	0.25	84.52	0.13	42.77		1.42
	1-m ²	15	33.3	0.33	0.49	146.39	0.25	74.08	0.2	1.58
ORHY	Line-point	15	0.0	0.00	-	-	-	-		0.00
	10-m ²	15	53.3	0.27	0.26	96.82	0.13	49.00		0.67
	1-m ²	15	26.7	0.27	0.46	171.65	0.23	86.87	0.4	0.67
Bare soil	Line-point	15	6.7	0.67	2.58	387.30	1.31	196.00		1.67
	10-m ²	15	100.0	1.33	1.22	91.49	0.62	46.30		1.07
	1-m ²	15	100.0	1.73	1.91	110.04	0.97	55.69	1.2	1.39
Litter	Line-point	15	6.7	0.67	2.58	387.30	1.31	196.00		0.54
	10-m ²	15	100.0	5.33	4.25	79.76	2.15	40.36		0.97
	1-m ²	15	80.0	3.20	2.88	90.11	1.46	45.60	5.5	0.58
BSC	Line-point	15	60.0	8.00	8.62	107.74	4.36	54.52		1.45

Table C29. Summary of frequency (freq) and cover estimates in macroplot CARE7 (Semidesert Alkali Sandy Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Semidesert A	Alkali Sandy Loa	am (Alkali Sacato	n) ecologic	al site – CAR	E 7 macroplo	t, Phase 3				
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	CV	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	16.27	6.70	41.20	3.39	20.85		0.91
understory	1-m ²	15	100.0	18.27	15.82	86.62	8.01	43.83	18.0	1.02
canopy cover	Line-point	15	73.3	19.33	16.24	84.01	8.22	42.51		1.08
	10-m ²	15	86.7	2.53	2.39	94.50	1.21	47.82		0.99
	1-m ²	15	66.7	1.80	2.08	115.39	1.05	58.40	2.6	0.70
ATCO	Line-point	15	20.0	3.33	8.16	244.95	4.13	123.96		1.30
	10-m ²	15	86.7	0.43	0.18	40.60	0.09	20.55		1.34
	1-m ²	15	53.3	0.53	0.52	96.82	0.26	49.00	0.3	1.66
GIIN2	Line-point	15	0.0	0.00	-	-	-	-		0.00
	10-m ²	15	93.3	0.47	0.13	27.66	0.07	14.00		0.78
	1-m ²	15	66.7	0.67	0.49	73.19	0.25	37.04	0.6	1.11
ORHY	Line-point	15	6.7	0.67	2.58	387.30	1.31	196.00		1.11
	10-m ²	15	100.0	1.00	1.04	103.51	0.52	52.38		0.29
	1-m ²	15	100.0	1.40	0.91	65.02	0.46	32.90	3.5	0.40
Bare soil	Line-point	15	60.0	8.00	8.62	107.74	4.36	54.52		2.31
	10-m ²	15	93.3	11.73	6.70	57.08	3.39	28.89		1.00
	1-m ²	15	100.0	18.20	21.92	120.42	11.09	60.94	11.8	1.55
Litter	Line-point	15	46.7	5.33	6.40	119.99	3.24	60.72	·	0.45
	10-m ²	15	86.7	1.20	0.94	78.43	0.48	39.69		0.95
	1-m ²	15	73.3	1.27	1.03	81.54	0.52	41.26	1.3	1.00
BSC	Line-point	15	13.3	1.33	3.52	263.90	1.78	133.55		1.05

Table C30. Summary of frequency (freq) and cover estimates in macroplot DINO1 (Semidesert Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Semidesert L	oam (Wyoming	Big Sagebrush)	ecological	site – DINO 1	macroplot, P	hase 2				
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	59.36	16.86	28.40	7.21	12.15		0.93
understory	1-m ²	30	100.0	36.63	19.37	52.88	6.93	18.92	64.1	0.57
canopy cover	Line-point	30	100.0	96.33	23.56	24.46	8.43	8.75		1.50
	10-m ²	21	47.6	0.71	1.16	162.02	0.49	69.30		2.53
	1-m ²	30	3.3	0.13	0.73	547.72	0.26	196.00	0.3	0.47
ARTR2	Line-point	30	0.0	0.00	-	-	-	-		0.00
	10-m ²	21	100.0	39.21	24.69	62.97	10.56	26.93		0.98
	1-m ²	30	100.0	23.73	22.00	92.68	7.87	33.16	40.0	0.59
BRTE	Line-point	30	100.0	57.00	29.38	51.54	10.51	18.44		1.43
	10-m ²	21	100.0	9.67	9.44	97.64	4.04	41.76		0.92
	1-m ²	30	73.3	3.43	3.43	99.93	1.23	35.76	10.5	0.33
STCO4	Line-point	30	60.0	18.33	19.49	106.31	6.97	38.04		1.75
	10-m ²	21	71.4	1.76	1.91	108.66	0.82	46.48		0.28
	1-m ²	30	70.0	2.27	2.75	121.48	0.99	43.47	6.3	0.36
Bare soil	Line-point	30	66.7	15.00	15.92	106.13	5.70	37.98		2.36
	10-m ²	21	100.0	60.12	15.62	25.99	6.68	11.11		0.97
	1-m ²	30	100.0	72.23	17.68	24.47	6.33	8.76	62.2	1.16
Litter	Line-point	30	96.7	54.33	20.29	37.34	7.26	13.36	·	0.87
	10-m ²	21	100.0	1.76	1.07	60.61	0.46	25.92		0.62
	1-m ²	30	93.3	2.37	1.13	47.71	0.40	17.07	2.8	0.84
BSC	Line-point	30	36.7	4.33	6.26	144.48	2.24	51.70		1.54

Table C31. Summary of frequency (freq) and cover estimates in macroplot DINO2b (Semidesert Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Semidesert L	oam (Wyoming	Big Sagebrush)	ecological	site – DINO 2	b macroplot,	Phase 2				
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	29.12	10.18	34.97	4.36	14.96		0.85
understory	1-m ²	30	100.0	19.03	13.37	70.27	4.79	25.14	34.3	0.56
canopy cover	Line-point	30	100.0	54.67	20.47	37.44	7.32	13.40		1.60
	10-m ²	30	90.5	13.24	8.49	64.13	3.63	27.43		1.37
	1-m ²	30	80.0	9.03	8.24	91.22	2.95	32.64	9.6	0.94
ARTR2	Line-point	21	46.7	6.67	9.22	138.34	3.30	49.50		0.69
	10-m ²	30	95.2	10.19	6.30	61.82	2.69	26.44		0.53
	1-m ²	21	93.3	6.67	7.66	114.94	2.74	41.13	19.3	0.35
BRTE	Line-point	30	100.0	41.00	19.71	48.08	7.05	17.21		2.13
	10-m ²	21	0.0	0.00	-	-	-	-		-
	1-m ²	30	0.0	0.00	-	-	-	-	0.0	-
STCO4	Line-point	30	0.0	0.00	-	-	-	-		-
	10-m ²	30	95.2	0.83	0.91	109.54	0.39	46.85		0.22
	1-m ²	30	66.7	1.80	3.70	205.50	1.32	73.54	3.8	0.48
Bare soil	Line-point	21	46.7	8.67	10.74	123.95	3.84	44.35		2.30
	10-m ²	30	100.0	36.79	14.08	38.27	6.02	16.37		0.96
[1-m ²	21	100.0	32.67	27.82	85.16	9.95	30.47	38.3	0.85
Litter	Line-point	30	100.0	45.33	17.56	38.74	6.29	13.86		1.18
	10-m ²	21	100.0	7.88	12.90	163.64	5.52	69.99		1.12
	1-m ²	30	100.0	4.50	2.16	48.04	0.77	17.19	7.0	0.64
BSC	Line-point	30	56.7	8.67	9.73	112.29	3.48	40.18		1.24

Table C32. Summary of frequency (freq) and cover estimates in macroplot DINO3 (Semidesert Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Semidesert L	oam (Wyoming	Big Sagebrush)	ecological	site – DINO 3	macroplot, P	nase 3				
					1	1	Cover	•		T
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	20.70	9.42	45.49	4.77	23.02		0.79
understory	1-m ²	15	100.0	15.47	11.33	73.23	5.73	37.06	26.3	0.59
canopy cover	Line-point	15	100.0	42.67	25.49	59.73	12.90	30.23		1.62
	10-m ²	15	93.3	9.73	10.72	110.16	5.43	55.75		1.45
	1-m ²	15	73.3	5.13	10.22	199.05	5.17	100.73	6.7	0.76
ARTR2	Line-point	15	40.0	5.33	8.34	156.34	4.22	79.12		0.79
	10-m ²	15	100.0	3.87	6.05	156.43	3.06	79.17		0.46
	1-m ²	15	60.0	2.53	4.14	163.35	2.09	82.66	8.4	0.30
BRTE	Line-point	15	66.7	18.67	20.66	110.66	10.45	56.00		2.23
	10-m ²	15	73.3	1.87	1.45	77.41	0.73	39.18		1.38
	1-m ²	15	86.7	2.20	1.86	84.52	0.94	42.77	1.4	1.62
STCO4	Line-point	15	0.0	0.00	-	-	-	-		0.00
	10-m ²	15	33.3	0.17	0.24	146.39	0.12	74.08		0.05
	1-m ²	15	13.3	0.13	0.35	263.90	0.18	133.55	3.4	0.04
Bare soil	Line-point	15	73.3	10.00	8.45	84.52	4.28	42.77		2.91
	10-m ²	15	93.3	14.90	9.27	62.24	4.69	31.50		0.89
	1-m ²	15	100.0	18.00	19.97	110.93	10.10	56.14	16.7	1.07
Litter	Line-point	15	60.0	17.33	18.31	105.63	9.27	53.46		1.04
	10-m ²	15	100.0	6.07	4.67	77.05	2.37	38.99		0.96
	1-m ²	15	100.0	4.87	1.77	36.32	0.89	18.38	6.3	0.77
BSC	Line-point	15	53.3	8.00	9.41	117.64	4.76	59.53		1.27

Table C33. Summary of frequency (freq) and cover estimates in macroplot DINO4b (Semidesert Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Semidesert L	₋oam (Wyoming	Big Sagebrush)	ecological	site – DINO 4	b macroplot, l	Phase 3				
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	25.67	11.30	44.03	5.72	22.28		0.95
understory	1-m ²	15	100.0	14.00	11.98	85.54	6.06	43.29	27.0	0.52
canopy cover	Line-point	15	100.0	41.33	20.31	49.13	10.28	24.86		1.53
	10-m ²	15	93.3	7.83	6.62	84.50	3.35	42.76		1.45
	1-m ²	15	60.0	4.40	7.41	168.51	3.75	85.27	5.4	0.81
ARTR2	Line-point	15	33.3	4.00	6.32	158.11	3.20	80.02		0.74
	10-m ²	15	100.0	3.53	2.70	76.29	1.36	38.61		0.33
	1-m ²	15	100.0	2.13	1.55	72.76	0.79	36.82	10.6	0.20
BRTE	Line-point	15	93.3	26.00	16.39	63.03	8.29	31.90		2.46
	10-m ²	15	46.7	0.23	0.26	110.66	0.13	56.00		1.62
	1-m ²	15	13.3	0.20	0.56	280.31	0.28	141.85	0.1	1.38
STCO4	Line-point	15	0.0	0.00	-	-	-	-		0.00
	10-m ²	15	73.3	0.37	0.23	62.42	0.12	31.59		0.07
	1-m ²	15	40.0	0.40	0.51	126.77	0.26	64.15	5.4	0.07
Bare soil	Line-point	15	66.7	15.33	13.02	84.91	6.59	42.97		2.86
	10-m ²	15	100.0	37.83	22.00	58.14	11.13	29.42		1.28
	1-m ²	15	100.0	33.80	24.97	73.89	12.64	37.39	29.7	1.14
Litter	Line-point	15	80.0	17.33	13.35	76.99	6.75	38.96		0.58
	10-m ²	15	100.0	4.27	2.15	50.28	1.09	25.45		0.48
	1-m ²	15	100.0	5.20	3.67	70.55	1.86	35.70	8.9	0.58
BSC	Line-point	15	86.7	17.33	12.23	70.55	6.19	35.70		1.94

Table C34. Summary of frequency (freq) and cover estimates in macroplot DINO5 (Semidesert Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Semidesert L	oam (Wyoming	Big Sagebrush)	ecological	site – DINO 5	macroplot, P	nase 3				
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	26.23	7.87	30.01	3.98	15.18		1.04
understory	1-m ²	15	100.0	15.67	9.05	57.78	4.58	29.24	25.3	0.62
canopy cover	Line-point	15	93.3	34.00	24.14	71.01	12.22	35.93		1.34
	10-m ²	15	93.3	16.33	7.95	48.70	4.03	24.65		1.53
	1-m ²	15	73.3	7.73	8.40	108.68	4.25	55.00	10.7	0.72
ARTR2	Line-point	15	60.0	8.00	7.75	96.82	3.92	49.00		0.75
	10-m ²	15	73.3	2.80	6.01	214.69	3.04	108.65		0.70
	1-m ²	15	33.3	1.20	3.08	256.27	1.56	129.69	4.0	0.30
BRTE	Line-point	15	40.0	8.00	14.24	178.03	7.21	90.10		2.00
	10-m ²	15	93.3	0.63	0.67	105.36	0.34	53.32		0.48
	1-m ²	15	66.7	0.67	0.49	73.19	0.25	37.04	1.3	0.50
STCO4	Line-point	15	20.0	2.67	5.94	222.61	3.00	112.65		2.02
	10-m ²	15	86.7	0.43	0.18	40.60	0.09	20.55		0.29
	1-m ²	15	66.7	0.73	0.59	80.95	0.30	40.96	1.5	0.49
Bare soil	Line-point	15	33.3	3.33	4.88	146.39	2.47	74.08		2.22
	10-m ²	15	100.0	21.50	10.56	49.10	5.34	24.85		1.19
	1-m ²	15	100.0	18.07	23.82	131.82	12.05	66.71	18.1	1.00
Litter	Line-point	15	80.0	14.67	13.02	88.77	6.59	44.92		0.81
	10-m ²	15	100.0	7.63	6.81	89.25	3.45	45.16		0.57
	1-m ²	15	100.0	10.73	15.07	140.39	7.63	71.05	13.5	0.80
BSC	Line-point	15	66.7	22.00	20.42	92.84	10.34	46.98		1.64

Table C35. Summary of frequency (freq) and cover estimates in macroplot ARCH1b (Semidesert Shallow Sandy Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

	-						Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	18.67	5.97	31.98	2.55	13.68		1.26
understory	1-m ²	30	96.7	12.30	10.77	87.59	3.86	31.34	14.8	0.83
canopy cover	Line-point	30	73.3	13.33	12.95	97.16	4.64	34.77		0.90
	10-m ²	21	95.2	14.07	5.79	41.12	2.47	17.59		1.29
	1-m ²	30	83.3	8.30	8.45	101.80	3.02	36.43	10.9	0.76
CORA	Line-point	30	63.3	10.33	10.98	106.26	3.93	38.03		0.95
	10-m ²	21	23.8	0.12	0.22	183.30	0.09	78.40		1.63
	1-m ²	30	10.0	0.10	0.31	305.13	0.11	109.19	0.1	1.37
FEOC3	Line-point	30	0.0	0.00	•	-	-	-		0.00
	10-m ²	21	76.2	1.45	1.39	95.47	0.59	40.83		0.77
	1-m ²	30	50.0	1.20	2.07	172.87	0.74	61.86	1.9	0.64
Bare soil	Line-point	30	16.7	3.00	7.94	264.79	2.84	94.75		1.59
	10-m ²	21	100.0	2.02	3.73	184.13	1.59	78.75		0.97
	1-m ²	30	96.7	3.23	7.16	221.49	2.56	79.26	2.1	1.55
Litter	Line-point	30	10.0	1.00	3.05	305.13	1.09	109.19		0.48
Undiffer-	10-m ²	21	100.0	72.98	21.03	28.82	8.99	12.33		0.96
entiated	1-m ²	30	96.7	71.90	27.11	37.70	9.70	13.49	76.3	0.94
crust	Line-point	30	100.0	84.00	14.29	17.01	5.11	6.09		1.10
	10-m ²	21	52.4	1.60	2.80	175.81	1.20	75.19		1.11
	1-m ²	30	33.3	1.03	2.25	217.86	0.81	77.96	1.4	0.72
BSC	Line-point	30	16.7	1.67	3.79	227.43	1.36	81.38		1.16

Table C35. Summary of frequency (freq) and cover estimates in macroplot ARCH2 (Semidesert Shallow Sandy Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Semidesert S	Shallow Sandy I	Loam (PJ) ecolog	ical site – A	RCH 2 macr	oplot, Phase 2		Cover			
Measure	Method	Subsample n	Freq	Mean	sd	CV	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	28.24	12.23	43.33	5.23	18.53		1.25
understory	1-m ²	30	100.0	24.00	14.44	60.15	5.17	21.52	22.5	1.07
canopy cover	Line-point	30	83.3	15.33	12.24	79.84	4.38	28.57		0.68
	10-m ²	21	100.0	22.88	11.36	49.65	4.86	21.23		1.30
	1-m ²	30	96.7	19.60	12.89	65.77	4.61	23.54	17.6	1.11
CORA	Line-point	30	70.0	10.33	9.99	96.72	3.58	34.61		0.59
	10-m ²	21	52.4	0.26	0.26	97.70	0.11	41.79		1.49
	1-m ²	30	26.7	0.27	0.45	168.67	0.16	60.36	0.2	1.51
FEOC3	Line-point	30	0.0	0.00	-	-	-			0.00
	10-m ²	21	95.2	1.86	3.95	212.70	1.69	90.97		0.45
	1-m ²	30	66.7	3.07	5.66	184.45	2.02	66.00	4.1	0.75
Bare soil	Line-point	30	53.3	7.33	8.28	112.87	2.96	40.39		1.79
	10-m ²	21	100.0	4.55	7.97	175.29	3.41	74.97		1.29
	1-m ²	30	100.0	4.67	5.38	115.24	1.92	41.24	3.5	1.33
Litter	Line-point	30	6.7	1.33	5.71	428.51	2.04	153.34		0.38
Undiffer-	10-m ²	21	100.0	70.83	14.43	20.38	6.17	8.72		0.94
entiated	1-m ²	30	100.0	71.67	17.60	24.56	6.30	8.79	75.2	0.95
crust	Line-point	30	100.0	83.00	13.68	16.49	4.90	5.90		1.10
	10-m ²	21	90.5	6.12	8.50	138.86	3.63	59.39		0.98
	1-m ²	30	83.3	8.27	11.61	140.39	4.15	50.24	6.2	1.32
BSC	Line-point	30	33.3	4.33	7.28	167.98	2.60	60.11		0.69

Table C35. Summary of frequency (freq) and cover estimates in macroplot ARCH3 (Semidesert Shallow Sandy Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Semidesert S	Shallow Sandy I	₋oam (PJ) ecolog	ical site – A	RCH 3 macr	oplot, Phase 3	ı				
						_	Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	13.73	8.68	63.24	4.39	32.00		1.33
understory	1-m ²	15	100.0	10.47	11.26	107.54	5.70	54.42	10.3	1.02
canopy cover	Line-point	15	46.7	6.67	8.16	122.47	4.13	61.98		0.65
	10-m ²	15	80.0	9.23	7.53	81.51	3.81	41.25		1.28
	1-m ²	15	86.7	8.40	10.06	119.79	5.09	60.62	7.2	1.16
CORA	Line-point	15	40.0	4.00	5.07	126.77	2.57	64.15		0.55
	10-m ²	15	80.0	0.40	0.21	51.75	0.10	26.19		0.86
	1-m ²	15	33.3	0.33	0.49	146.39	0.25	74.08	0.5	0.71
FEOC3	Line-point	15	6.7	0.67	2.58	387.30	1.31	196.00		1.43
	10-m ²	15	93.3	0.47	0.13	27.66	0.07	14.00		0.24
	1-m ²	15	66.7	0.67	0.49	73.19	0.25	37.04	1.9	0.34
Bare soil	Line-point	15	33.3	4.67	8.34	178.67	4.22	90.42		2.41
	10-m ²	15	100.0	2.73	4.77	174.48	2.41	88.30		1.40
	1-m ²	15	100.0	2.47	3.83	155.41	1.94	78.65	2.0	1.26
Litter	Line-point	15	6.7	0.67	2.58	387.30	1.31	196.00		0.34
Undiffer-	10-m ²	15	100.0	85.83	6.45	7.52	3.27	3.81		1.01
entiated	1-m ²	15	100.0	86.27	9.19	10.66	4.65	5.39	84.9	1.02
crust	Line-point	15	100.0	82.67	13.87	16.78	7.02	8.49	·	0.97
	10-m ²	15	93.3	3.33	2.96	88.68	1.50	44.88		0.59
	1-m ²	15	80.0	3.67	3.11	84.79	1.57	42.91	5.7	0.65
BSC	Line-point	15	46.7	10.00	15.12	151.19	7.65	76.51		1.76

Table C38. Summary of frequency (freq) and cover estimates in macroplot ARCH4b (Semidesert Shallow Sandy Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Semidesert S	Shallow Sandy L	₋oam (PJ) ecolog	ical site – A	RCH 4b mac	roplot, Phase	3				
						_	Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	15.87	12.88	81.15	6.52	41.07		1.38
understory	1-m ²	15	100.0	11.20	12.36	110.40	6.26	55.87	11.5	0.98
canopy cover	Line-point	15	60.0	7.33	7.04	95.96	3.56	48.56		0.64
	10-m ²	15	53.3	7.33	7.99	108.93	4.04	55.12		1.35
	1-m ²	15	80.0	4.93	4.82	97.65	2.44	49.42	5.4	0.91
CORA	Line-point	15	40.0	4.00	5.07	126.77	2.57	64.15		0.74
	10-m ²	15	80.0	1.53	4.42	288.38	2.24	145.94		2.30
	1-m ²	15	46.7	0.47	0.52	110.66	0.26	56.00	0.7	0.70
FEOC3	Line-point	15	0.0	0.00	-	-	-	-		0.00
	10-m ²	15	100.0	0.50	0.00	0.00	0.00	0.00		0.16
	1-m ²	15	60.0	1.13	1.41	124.19	0.71	62.85	3.2	0.35
Bare soil	Line-point	15	46.7	8.00	10.14	126.77	5.13	64.15		2.49
	10-m ²	15	100.0	4.40	5.62	127.79	2.85	64.67		1.01
	1-m ²	15	100.0	7.40	23.69	320.11	11.99	161.99	4.4	1.69
Litter	Line-point	15	13.3	1.33	3.52	263.90	1.78	133.55		0.30
Undiffer-	10-m ²	15	100.0	74.50	21.94	29.45	11.10	14.90		1.06
entiated	1-m ²	15	93.3	76.13	21.86	28.72	11.06	14.53	70.0	1.09
crust	Line-point	15	100.0	59.33	22.19	37.40	11.23	18.93		0.85
	10-m ²	15	100.0	4.60	5.98	129.99	3.03	65.78		0.70
	1-m ²	15	93.3	4.53	3.66	80.78	1.85	40.88	6.6	0.69
BSC	Line-point	15	53.3	10.67	12.23	114.64	6.19	58.01		1.62

Table C39. Summary of frequency (freq) and cover estimates in macroplot ARCH5 (Semidesert Shallow Sandy Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Semidesert S	Shallow Sandy L	₋oam (PJ) ecolog	ical site – A	RCH 5 macro	oplot, Phase 3					
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	100.0	18.40	8.44	45.85	4.27	23.20		0.96
understory	1-m ²	15	100.0	20.67	10.17	49.23	5.15	24.91	19.2	1.07
canopy cover	Line-point	15	86.7	18.67	15.52	83.16	7.86	42.08		0.97
	10-m ²	15	73.3	12.83	8.01	62.42	4.05	31.59		1.12
	1-m ²	15	93.3	13.67	12.03	88.01	6.09	44.54	11.5	1.19
CORA	Line-point	15	66.7	8.00	6.76	84.52	3.42	42.77		0.70
	10-m ²	15	93.3	0.47	0.13	27.66	0.07	14.00		0.26
	1-m ²	15	93.3	0.93	0.26	27.66	0.13	14.00	1.8	0.52
FEOC3	Line-point	15	26.7	4.00	8.28	207.02	4.19	104.76		2.22
	10-m ²	15	100.0	0.67	0.65	96.82	0.33	49.00		0.46
	1-m ²	15	73.3	1.00	1.00	100.00	0.51	50.61	1.4	0.69
Bare soil	Line-point	15	26.7	2.67	4.58	171.65	2.32	86.87		1.85
	10-m ²	15	100.0	2.97	1.53	51.54	0.77	26.08		1.43
	1-m ²	15	100.0	2.60	1.40	54.00	0.71	27.33	2.1	1.25
Litter	Line-point	15	6.7	0.67	2.58	387.30	1.31	196.00		0.32
Undiffer-	10-m ²	15	100.0	87.50	0.00	0.00	0.00	0.00		1.06
entiated	1-m ²	15	100.0	86.73	5.61	6.47	2.84	3.27	82.7	1.05
crust	Line-point	15	100.0	74.00	15.95	21.55	8.07	10.91		0.89
	10-m ²	15	100.0	10.93	5.81	53.10	2.94	26.87		0.93
	1-m ²	15	100.0	7.07	4.50	63.62	2.27	32.19	11.8	0.60
BSC	Line-point	15	73.3	17.33	15.34	88.49	7.76	44.78		1.47

Table C40. Summary of frequency (freq) and cover estimates in macroplot CANY3 (Semidesert Shallow Sandy Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	20.95	15.30	73.02	6.54	31.23		0.99
understory	1-m ²	30	96.7	20.83	19.00	91.19	6.80	32.63	21.2	0.98
canopy cover	Line-point	30	70.0	21.67	23.65	109.14	8.46	39.06		1.02
	10-m ²	21	52.4	3.60	6.24	173.57	2.67	74.24		0.89
	1-m ²	30	50.0	5.20	9.65	185.65	3.45	66.43	4.0	1.29
CORA	Line-point	30	23.3	3.33	6.61	198.27	2.36	70.95		0.82
	10-m ²	21	90.5	0.45	0.15	33.25	0.06	14.22		0.59
	1-m ²	30	83.3	0.83	0.38	45.49	0.14	16.28	0.8	1.09
FEOC3	Line-point	30	10.0	1.00	3.05	305.13	1.09	109.19		1.31
	10-m ²	21	57.1	0.29	0.25	88.74	0.11	37.95		0.23
	1-m ²	30	26.7	0.73	1.57	214.67	0.56	76.82	1.2	0.60
Bare soil	Line-point	30	16.7	2.67	6.91	259.31	2.47	92.79		2.17
	10-m ²	21	100.0	13.12	18.78	143.15	8.03	61.22		1.07
	1-m ²	30	96.7	11.30	21.47	189.96	7.68	67.98	12.3	0.92
Litter	Line-point	30	60.0	12.33	15.47	125.40	5.53	44.87		1.01
Undiffer-	10-m ²	21	100.0	66.55	24.32	36.55	10.40	15.63		0.94
entiated	1-m ²	30	100.0	76.80	23.12	30.11	8.27	10.77	71.0	1.08
crust	Line-point	30	100.0	69.67	22.66	32.53	8.11	11.64		0.98
	10-m ²	21	95.2	4.33	3.52	81.13	1.50	34.70		0.51
	1-m ²	30	86.7	7.60	9.07	119.38	3.25	42.72	8.4	0.90
BSC	Line-point	30	73.3	13.33	11.55	86.60	4.13	30.99		1.58

Table C41. Summary of frequency (freq) and cover estimates in macroplot CANY4 (Semidesert Shallow Sandy Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Semidesert S	Shallow Sandy I	Loam (PJ) ecolog	ical site – C	ANY 4 macro	oplot, Phase 2		Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	90.5	15.71	18.44	117.34	7.89	50.19		1.15
understory	1-m ²	30	83.3	15.13	25.08	165.70	8.97	59.29	13.6	1.11
canopy cover	Line-point	30	46.7	10.00	12.87	128.65	4.60	46.04		0.73
	10-m ²	21	23.8	2.40	5.49	228.49	2.35	97.72		0.70
	1-m ²	30	16.7	4.17	10.67	256.18	3.82	91.67	3.4	1.22
CORA	Line-point	30	23.3	3.67	7.65	208.61	2.74	74.65		1.07
	10-m ²	21	61.9	0.31	0.25	80.38	0.11	34.38		0.63
	1-m ²	30	50.0	0.50	0.51	101.71	0.18	36.40	0.5	1.02
FEOC3	Line-point	30	6.7	0.67	2.54	380.56	0.91	136.18		1.35
	10-m ²	21	100.0	1.43	1.76	123.39	0.75	52.77		0.76
	1-m ²	30	66.7	2.57	3.06	119.18	1.09	42.65	1.9	1.36
Bare soil	Line-point	30	13.3	1.67	4.61	276.68	1.65	99.01		0.88
	10-m ²	21	95.2	9.62	18.55	192.86	7.93	82.49		1.04
	1-m ²	30	100.0	10.00	21.41	214.06	7.66	76.60	9.2	1.09
Litter	Line-point	30	33.3	8.00	18.08	226.00	6.47	80.87		0.87
Undiffer-	10-m ²	21	95.2	30.60	28.69	93.78	12.27	40.11		0.78
entiated	1-m ²	30	86.7	46.70	33.36	71.42	11.94	25.56	39.1	1.19
crust	Line-point	30	90.0	40.00	28.04	70.10	10.03	25.08		1.02
	10-m ²	21	95.2	8.14	6.16	75.68	2.64	32.37		0.63
	1-m ²	30	90.0	12.23	11.08	90.59	3.97	32.42	12.9	0.95
BSC	Line-point	30	63.3	18.33	17.83	97.24	6.38	34.80		1.42

Table C42. Summary of frequency (freq) and cover estimates in macroplot WUPA3 (Shallow Loamy ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes.

							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	25.02	8.99	35.94	3.85	15.37		0.87
understory	1-m ²	30	100.0	20.50	10.66	51.98	3.81	18.60	28.8	0.71
canopy cover	Line-point	30	100.0	41.00	16.05	39.15	5.74	14.01		1.42
	10-m ²	21	100.0	3.36	2.61	77.70	1.12	33.23		0.91
	1-m ²	30	73.3	2.37	3.15	132.92	1.13	47.56	3.7	0.64
CHLE4	Line-point	30	46.7	5.33	6.29	117.90	2.25	42.19		1.45
	10-m ²	21	100.0	5.02	5.52	109.95	2.36	47.03		0.83
	1-m ²	30	86.7	3.03	2.89	95.42	1.04	34.15	6.0	0.50
HENE5	Line-point	30	63.3	10.00	10.83	108.28	3.87	38.75		1.66
	10-m ²	21	100.0	6.40	4.39	68.58	1.88	29.33		0.86
	1-m ²	30	100.0	6.30	4.98	79.00	1.78	28.27	7.5	0.84
PLJA	Line-point	30	60.0	9.67	10.66	110.30	3.82	39.47		1.30
	10-m ²	21	100.0	2.12	2.16	101.74	0.92	43.51		0.30
	1-m ²	30	100.0	4.60	8.56	186.10	3.06	66.59	7.0	0.66
Bare soil	Line-point	30	70.0	14.33	14.31	99.82	5.12	35.72		2.04
	10-m ²	21	90.5	5.38	4.70	87.26	2.01	37.32		0.66
	1-m ²	30	93.3	7.77	11.11	143.08	3.98	51.20	8.2	0.95
Litter	Line-point	30	70.0	11.33	10.08	88.94	3.61	31.83		1.39

Table C43. Summary of frequency (freq) and cover estimates in macroplot WUPA4 (Shallow Loamy ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes.

							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	11.55	5.79	50.14	2.48	21.44		0.89
understory	1-m ²	30	100.0	13.87	17.02	122.72	6.09	43.91	13.0	1.06
canopy cover	Line-point	30	80.0	13.67	9.64	70.56	3.45	25.25		1.05
	10-m ²	21	90.5	0.57	0.58	100.86	0.25	43.14		0.74
	1-m ²	30	70.0	1.07	1.23	115.30	0.44	41.26	0.8	1.39
CHLE4	Line-point	30	6.7	0.67	2.54	380.56	0.91	136.18		0.87
	10-m ²	21	85.7	1.95	1.84	94.41	0.79	40.38		1.02
	1-m ²	30	76.7	1.47	1.31	89.05	0.47	31.86	1.9	0.76
HENE5	Line-point	30	23.3	2.33	4.30	184.36	1.54	65.97		1.22
	10-m ²	21	100.0	2.69	2.33	86.67	1.00	37.07		0.84
	1-m ²	30	86.7	2.30	2.12	92.16	0.76	32.98	3.2	0.71
PLJA	Line-point	30	36.7	4.67	6.81	146.02	2.44	52.25		1.45
	10-m ²	21	100.0	1.45	1.24	85.65	0.53	36.63		0.53
	1-m ²	30	96.7	2.47	1.68	67.95	0.60	24.31	2.8	0.90
Bare soil	Line-point	30	30.0	4.33	8.58	198.08	3.07	70.88		1.58
	10-m ²	21	95.2	7.33	5.56	75.78	2.38	32.41		0.96
	1-m ²	30	96.7	9.27	13.28	143.33	4.75	51.29	7.6	1.21
Litter	Line-point	30	43.3	6.33	8.90	140.51	3.18	50.28		0.83

Table C44. Summary of frequency (freq) and cover estimates in macroplot CARE3 (Upland Shallow Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Upland Shall	ow Loam (Pinye	on-Utah Juniper)	ecological	site – CARE	3 macroplot, F	hase 2				
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	20.02	24.10	120.35	10.31	51.47		1.50
understory	1-m ²	30	93.3	10.13	19.95	196.92	7.14	70.47	13.4	0.76
canopy cover	Line-point	30	46.7	10.00	13.65	136.46	4.88	48.83		0.75
	10-m ²	21	0.0	0.00	-	-	-	-		-
	1-m ²	30	0.0	0.00	-	-	-	-	0.0	-
CEMO2	Line-point	30	0.0	0.00	-	-	-	-		-
	10-m ²	21	95.2	1.76	1.81	102.95	0.78	44.03		0.66
	1-m ²	30	90.0	1.63	1.47	90.22	0.53	32.28	2.7	0.61
COWR2	Line-point	30	30.0	4.67	9.37	200.81	3.35	71.86		1.74
	10-m ²	21	42.9	8.76	17.01	194.10	7.27	83.02		1.72
	1-m ²	30	10.0	3.83	14.42	376.30	5.16	134.65	5.1	0.75
JUOS	Line-point	30	16.7	2.67	6.91	259.31	2.47	92.79		0.52
	10-m ²	21	85.7	0.90	1.06	116.73	0.45	49.93		0.15
	1-m ²	30	80.0	1.23	1.10	89.54	0.40	32.04	5.9	0.21
Bare soil	Line-point	30	73.3	15.67	14.06	89.77	5.03	32.12		2.64
	10-m ²	21	100.0	16.24	25.15	154.87	10.76	66.24		1.45
	1-m ²	30	100.0	13.63	25.84	189.53	9.25	67.82	11.2	1.22
Litter	Line-point	30	13.3	3.67	11.59	316.14	4.15	113.13		0.33
	10-m ²	21	28.6	0.14	0.23	162.02	0.10	69.30		0.44
	1-m ²	30	13.3	0.17	0.46	276.68	0.17	99.01	0.3	0.51
BSC	Line-point	30	6.7	0.67	2.54	380.56	0.91	136.18		2.05

Table C45. Summary of frequency (freq) and cover estimates in macroplot CARE4b (Upland Shallow Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Upland Shall	ow Loam (Piny	on-Utah Juniper)	ecological	site – CARE	4b macroplot,	Phase 2				
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	21	100.0	15.14	20.83	137.57	8.91	58.84		0.93
understory	1-m ²	30	96.7	20.17	30.81	152.77	11.02	54.67	16.2	1.24
canopy cover	Line-point	30	60.0	13.33	15.39	115.41	5.51	41.30		0.82
	10-m ²	21	0.0	0.00	-	-	-	-		-
	1-m ²	30	0.0	0.00	-	-	-	-	0.0	-
CEMO2	Line-point	30	0.0	0.00	-	-	-	-		-
	10-m ²	21	100.0	1.33	1.21	90.57	0.52	38.74		0.66
	1-m ²	30	80.0	1.77	2.27	128.46	0.81	45.97	2.0	0.87
COWR2	Line-point	30	23.3	3.00	5.96	198.65	2.13	71.09		1.48
	10-m ²	21	28.6	5.74	11.83	206.16	5.06	88.17		1.11
	1-m ²	30	20.0	6.43	18.64	289.70	6.67	103.67	5.2	1.24
JUOS	Line-point	30	16.7	3.33	8.02	240.69	2.87	86.13		0.64
	10-m ²	21	100.0	1.52	2.18	142.83	0.93	61.09		0.21
	1-m ²	30	86.7	2.10	2.01	95.53	0.72	34.18	7.4	0.28
Bare soil	Line-point	30	76.7	18.67	19.43	104.08	6.95	37.24		2.51
	10-m ²	21	100.0	16.00	22.54	140.86	9.64	60.25		1.26
	1-m ²	30	96.7	19.13	30.28	158.23	10.83	56.62	12.7	1.51
Litter	Line-point	30	16.7	3.00	7.50	249.90	2.68	89.43		0.24
	10-m ²	21	14.3	0.07	0.18	251.00	0.08	107.35		0.49
	1-m ²	30	3.3	0.03	0.18	547.72	0.07	196.00	0.1	0.23
BSC	Line-point	30	3.3	0.33	1.83	547.72	0.65	196.00		2.28

Table C46. Summary of frequency (freq) and cover estimates in macroplot CARE8 (Upland Shallow Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Upland Shall	ow Loam (Piny	on-Utah Juniper)	ecological	site – CARE	8 macroplot, F	hase 3				
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	cv	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	93.3	15.97	13.00	81.40	6.58	41.19		0.98
understory	1-m ²	15	93.3	18.33	26.16	142.69	13.24	72.21	16.3	1.12
canopy cover	Line-point	15	66.7	14.67	13.56	92.44	6.86	46.78		0.90
	10-m ²	15	40.0	4.23	7.15	168.86	3.62	85.46		1.32
	1-m ²	15	33.3	1.40	2.85	203.47	1.44	102.97	3.2	0.44
CEMO2	Line-point	15	26.7	4.00	8.28	207.02	4.19	104.76		1.25
	10-m ²	15	73.3	0.70	0.96	137.13	0.49	69.40		0.50
	1-m ²	15	60.0	0.87	0.83	96.21	0.42	48.69	1.4	0.61
COWR2	Line-point	15	26.7	2.67	4.58	171.65	2.32	86.87		1.89
	10-m ²	15	26.7	5.33	10.85	203.45	5.49	102.96		1.57
	1-m ²	15	13.3	0.87	2.64	304.86	1.34	154.28	3.4	0.25
JUOS	Line-point	15	26.7	4.00	7.37	184.20	3.73	93.21		1.18
	10-m ²	15	100.0	1.17	1.14	98.09	0.58	49.64		0.17
	1-m ²	15	100.0	1.80	1.78	98.94	0.90	50.07	6.8	0.27
Bare soil	Line-point	15	86.7	17.33	13.35	76.99	6.75	38.96		2.56
	10-m ²	15	100.0	20.03	25.01	124.83	12.66	63.17		0.97
	1-m ²	15	100.0	31.00	39.47	127.32	19.97	64.43	20.6	1.51
Litter	Line-point	15	46.7	10.67	15.34	143.79	7.76	72.77		0.52
	10-m ²	15	13.3	0.07	0.18	263.90	0.09	133.55		1.50
	1-m ²	15	6.7	0.07	0.26	387.30	0.13	196.00	0.0	1.50
BSC	Line-point	15	0.0	0.00	-	-	-	-		0.00

Table C47. Summary of frequency (freq) and cover estimates in macroplot CARE9 (Upland Shallow Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Upland Shall	ow Loam (Pinyo	on-Utah Juniper)	ecological	site – CARE	9 macroplot, F	hase 3				
							Cover			
Measure	Method	Subsample n	Freq	Mean	sd	CV	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	93.3	10.23	11.25	109.94	5.69	55.63		1.39
understory	1-m ²	15	80.0	7.20	18.92	262.75	9.57	132.97	7.4	0.98
canopy cover	Line-point	15	26.7	4.67	9.15	196.17	4.63	99.28		0.63
	10-m ²	15	26.7	2.87	6.24	217.80	3.16	110.22		2.58
	1-m ²	15	13.3	0.47	1.36	290.52	0.69	147.02	1.1	0.42
CEMO2	Line-point	15	0.0	0.00	-	-	-	-		0.00
	10-m ²	15	60.0	0.97	1.29	133.26	0.65	67.44		1.85
	1-m ²	15	40.0	0.60	0.83	138.01	0.42	69.84	0.5	1.15
COWR2	Line-point	15	0.0	0.00	-	-	-			0.00
	10-m ²	15	20.0	3.03	9.73	320.69	4.92	162.29		1.05
	1-m ²	15	6.7	5.00	19.36	387.30	9.80	196.00	2.9	1.72
JUOS	Line-point	15	6.7	0.67	2.58	387.30	1.31	196.00		0.23
	10-m ²	15	93.3	0.47	0.13	27.66	0.07	14.00		0.17
	1-m ²	15	73.3	1.07	1.22	114.64	0.62	58.01	2.7	0.39
Bare soil	Line-point	15	33.3	6.67	10.47	156.98	5.30	79.44		2.44
	10-m ²	15	100.0	5.40	9.92	183.73	5.02	92.98		0.98
	1-m ²	15	100.0	8.53	23.33	273.39	11.81	138.35	5.5	1.54
Litter	Line-point	15	20.0	2.67	5.94	222.61	3.00	112.65		0.48
	10-m ²	15	20.0	0.10	0.21	207.02	0.10	104.76		1.80
	1-m ²	15	6.7	0.07	0.26	387.30	0.13	196.00	0.1	1.20
BSC	Line-point	15	0.0	0.00	-	-	-	-		0.00

Table C48. Summary of frequency (freq) and cover estimates in macroplot CARE10 (Upland Shallow Loam ecological site). For line-point sampling, 10-point groups were used as subsampling units for purposes of frequency calculations. Precision is defined as one-half the width of the 95 percent confidence interval. The standardized mean was calculated as the ratio of the mean for a particular method to the among-method mean. See Appendix A for keys to species codes (BSC = biological soil crust).

Upland Shall	ow Loam (Piny	on-Utah Juniper)	ecological	site – CARE	10 macroplot,	Phase 3				
						_	Cover			
Measure	Method	Subsample n	Freq	Mean	sd	CV	Precision	Precision % of mean	Among- method mean	Standardized mean
Total live	10-m ²	15	93.3	21.23	29.29	137.92	14.82	69.80		1.09
understory	1-m ²	15	80.0	21.07	26.72	126.85	13.52	64.19	19.4	1.08
canopy cover	Line-point	15	80.0	16.00	14.54	90.88	7.36	45.99		0.82
	10-m ²	15	26.7	2.20	4.97	226.10	2.52	114.42		0.44
•	1-m ²	15	13.3	4.67	12.32	263.90	6.23	133.55	5.0	0.94
CEMO2	Line-point	15	40.0	8.00	14.24	178.03	7.21	90.10		1.61
	10-m ²	15	73.3	1.03	1.25	120.58	0.63	61.02		1.02
	1-m ²	15	46.7	0.67	0.82	122.47	0.41	61.98	1.0	0.66
COWR2	Line-point	15	13.3	1.33	3.52	263.90	1.78	133.55		1.32
	10-m ²	15	26.7	5.03	10.85	215.54	5.49	109.08		1.00
	1-m ²	15	26.7	8.00	14.24	178.03	7.21	90.10	5.0	1.60
JUOS	Line-point	15	20.0	2.00	4.14	207.02	2.10	104.76		0.40
	10-m ²	15	100.0	1.60	2.48	154.99	1.25	78.44		0.23
	1-m ²	15	93.3	1.73	1.62	93.71	0.82	47.42	7.1	0.24
Bare soil	Line-point	15	93.3	18.00	10.14	56.34	5.13	28.51		2.53
	10-m ²	15	100.0	26.37	28.09	106.54	14.22	53.92		1.01
	1-m ²	15	100.0	37.67	38.01	100.90	19.23	51.06	26.0	1.45
Litter	Line-point	15	66.7	14.00	16.39	117.06	8.29	59.24		0.54
	10-m ²	15	0.0	0.00	-	-	-	-		-
	1-m ²	15	0.0	0.00	-	-	-	-	0.0	-
BSC	Line-point	15	0.0	0.00	-	-	-			-

Appendix D—Among-Macroplot Variation in Selected Cover Measures by Ecological Site

Ecological site	Table	Page
Brushy Loam	D1	128
Desert Sand (Sand Sagebrush)	D2	129
Limy Upland, 6-10" pz	D3	130
Loamy Hills, 25-33" pz	D4	131
Loamy Hills, Cold, 25-33" pz	D5	132
Loamy Mesa Top PJ	D6	133
Semidesert Alkali Sandy Loam (Alkali Sacaton)	D7	134
Semidesert Loam (Wyoming Big Sagebrush)	D8	135
Semidesert Shallow Sandy Loam PJ	D9	136
Shallow Loamy, 10-14" pz	D10	137
Upland Shallow Loam (Pinyon-Utah Juniper)	D11	138

Table D1. Among-macroplot variation in selected cover measures for five Brushy Loam macroplots in Mesa Verde National Park, macroplot sample sizes required to achive 10 and 20% precision in estimates of ecological-site-level means, and ratios of within-to-among CV values. See Appendix A for keys to species codes (BSC = biological soil crust).

Brushy Loam ecolog	ical site, n =	5 macro	olots							
		Mean	ļ	Among-macrop	olot variation in	es	Sampl (by pre	le size cision)	CV ratio	
Measure	Method	cover	sd	Min	Max	Range	CV	10%	20%	(within:among)
	10-m ²	49.7	16.0	28.4	71.2	42.8	32.2	42	13	1.1
Total live understory	1-m ²	43.4	13.7	25.8	62.6	36.8	31.6	42	13	1.9
canopy cover	Line-point	52.8	3.3	48.7	56.0	7.3	6.2	4	3	7.3
	10-m ²	6.5	5.6	1.4	15.5	14.1	85.7	286	74	2.4
	1-m ²	3.2	4.4	0.0	10.8	10.8	138.9	727	184	1.9
AMUT	Line-point	5.2	3.8	0.7	10.3	9.7	72.3	206	54	3.1
	10-m ²	9.6	13.2	0.0	30.4	30.3	136.9	720	183	1.1
	1-m ²	7.6	9.5	0.0	20.9	20.8	125.4	605	154	1.7
POFE	Line-point	8.8	9.1	0.0	20.7	20.7	103.1	409	105	1.7
	10-m ²	14.5	16.8	1.2	37.4	36.2	115.3	511	131	1.8
	1-m ²	16.2	16.5	0.7	37.1	36.5	102.0	400	103	2.3
QUGA	Line-point	14.5	15.7	0.7	33.0	32.3	108.2	451	115	1.7
	10-m ²	14.3	11.0	6.7	32.3	25.6	76.9	228	60	1.1
	1-m ²	16.8	14.8	4.2	40.9	36.7	88.0	298	77	1.8
Bare soil	Line-point	41.3	26.4	8.0	78.0	70.0	63.9	160	42	1.2
	10-m ²	70.4	16.2	44.2	84.2	40.0	23.0	23	8	1.1
	1-m ²	75.4	16.6	49.0	91.1	42.1	22.1	22	8	1.3
Litter	Line-point	52.3	26.2	17.3	87.0	69.7	50.0	99	27	1.0
	10-m ²	0.2	0.2	0.0	0.4	0.4	121.4	588	151	1.8
	1-m ²	0.1	0.2	0.0	0.4	0.4	170.0	1111	278	2.2
BSC	Line-point	0.2	0.3	0.0	0.7	0.7	149.1	865	217	3.1

Table D2. Among-macroplot variation in selected cover measures for two Desert Sand (Sand Sagebrush) macroplots in Canyonlands National Park, macroplot sample sizes required to achive 10 and 20% precision in estimates of ecological-site-level means, and ratios of within-to-among CV values. See Appendix A for keys to species codes (BSC = biological soil crust).

Desert Sand (Sand S	Sagebrush) e	cologica	al site, n = 2	macroplots	S					
,		Mean		-	olot variation in	es		le size ecision)	CV ratio	
Measure	Method	cover	sd	Min	Max	Range	CV	10%	20%	(within:among)
	10-m ²	13.4	0.4	13.1	13.7	0.6	3.3	3	3	8.5
Total live understory	1-m ²	12.3	0.3	12.1	12.5	0.4	2.3	3	3	27.0
canopy cover	Line-point	11.7	0.0	11.7	11.7	0.0	0.0	2	2	-
	10-m ²	1.5	0.5	1.1	1.8	0.8	37.1	56	16	4.6
	1-m ²	1.7	0.1	1.6	1.7	0.2	7.1	5	3	59.8
ATCA2	Line-point	1.3	0.9	0.7	2.0	1.3	70.7	194	51	4.4
	10-m ²	1.7	0.8	1.2	2.3	1.1	45.8	83	23	3.2
	1-m ²	1.1	0.1	1.0	1.2	0.2	10.9	8	4	17.9
HIJA	Line-point	1.2	0.2	1.0	1.3	0.3	20.2	19	7	18.2
	10-m ²	0.6	0.6	0.2	1.1	0.9	99.5	381	98	1.2
	1-m ²	0.5	0.6	0.1	0.9	0.8	114.0	501	128	1.7
STHY6	Line-point	1.8	2.1	0.3	3.3	3.0	115.7	514	131	3.0
	10-m ²	6.9	1.2	6.0	7.7	1.6	16.9	14	6	3.7
	1-m ²	6.6	1.3	5.6	7.5	1.9	20.4	19	7	3.8
Litter	Line-point	8.3	2.8	6.3	10.3	4.0	33.9	47	14	3.2
	10-m ²	67.6	6.3	63.1	72.0	8.9	9.3	6	4	2.4
	1-m ²	79.1	2.5	77.4	80.9	3.5	3.2	3	3	4.2
Undifferentiated crust	Line-point	81.5	4.5	78.3	84.7	6.3	5.5	4	3	3.3
	10-m ²	4.3	4.6	1.0	7.5	6.5	107.6	446	114	0.8
	1-m ²	4.8	5.1	1.1	8.4	7.2	107.7	445	114	1.1
BSC	Line-point	6.7	7.1	1.7	11.7	10.0	106.1	432	111	1.5

Table D3. Among-macroplot variation in selected cover measures for five Limy Upland macroplots in Wupatki National Monument, macroplot sample sizes required to achive 10 and 20% precision in estimates of ecological-site-level means, and ratios of within-to-among CV values. See Appendix A for keys to species codes.

Limy Upland, 6-10"	oz ecological	site, n =	5 macropl	ots						
		Mean	A	mong-macrop	olot variation in	es	Samp (by pre	CV ratio		
Measure	Method	cover	sd	Min	Max	Range	CV	10%	20%	(within:among)
	10-m ²	23.6	6.7	18.0	34.4	16.4	28.3	34	11	0.9
Total live understory	1-m ²	16.0	3.5	11.7	20.1	8.4	21.6	21	7	1.5
canopy cover	Line-point	26.7	4.4	21.3	31.3	10.0	16.5	13	6	3.6
	10-m ²	5.1	4.0	1.1	10.7	9.6	76.8	227	60	1.2
	1-m ²	3.5	2.5	0.7	6.6	5.9	72.1	202	53	1.3
CHLE4	Line-point	3.6	3.4	0.0	8.0	8.0	95.6	351	91	1.9
	10-m ²	3.7	3.4	0.6	9.0	8.4	90.6	317	82	1.4
	1-m ²	2.8	2.5	0.3	5.7	5.4	87.5	293	76	1.7
HENE5	Line-point	6.5	5.8	0.0	15.3	15.3	88.7	303	79	1.5
	10-m ²	4.4	3.8	0.5	9.6	9.1	86.8	290	75	1.7
	1-m ²	2.3	2.0	0.3	5.5	5.2	89.0	305	79	1.5
PLJA	Line-point	6.7	5.6	0.3	14.0	13.7	83.7	270	70	2.7
	10-m ²	7.3	7.4	1.2	16.1	15.0	101.1	393	101	0.7
	1-m ²	7.3	6.9	1.9	16.7	14.8	94.8	346	89	0.9
Bare soil	Line-point	16.3	16.7	4.0	40.7	36.7	102.3	403	103	1.1
	10-m ²	6.6	1.7	3.9	8.4	4.5	25.7	28	9	2.5
	1-m ²	7.1	1.5	4.8	8.5	3.7	20.7	19	7	3.2
Litter	Line-point	3.6	5.1	0.0	11.0	11.0	142.5	781	198	0.8

Table D4. Among-macroplot variation in selected cover measures for five Loamy Hills macroplots in Grand Canyon National Park, macroplot sample sizes required to achive 10 and 20% precision in estimates of ecological-site-level means, and ratios of within-to-among CV values. See Appendix A for keys to species codes (BSC = biological soil crust).

Loamy Hills, 25-33"	pz ecologica	site, n :	= 5 macrop	lots						
-		Mean	_		lot variation ir	n cover estimate	es		le size cision)	CV ratio
Measure	Method	cover	sd	Min	Max	Range	CV	10%	20%	(within:among)
	10-m ²	19.7	11.6	5.6	35.2	29.5	58.9	136	36	1.3
Total live understory	1-m ²	23.8	20.9	5.1	57.5	52.4	87.8	297	77	1.4
canopy cover	Line-point	16.9	7.1	8.0	24.3	16.3	42.2	71	20	2.1
	10-m ²	0.5	0.5	0.0	1.1	1.1	99.6	377	97	2.3
	1-m ²	0.4	0.4	0.0	1.1	1.1	109.9	465	119	2.0
POFE	Line-point	1.5	1.4	0.0	3.3	3.3	94.3	344	89	3.0
	10-m ²	2.6	2.4	0.2	5.7	5.5	92.9	332	86	1.9
	1-m ²	4.1	3.3	0.1	8.0	7.8	81.1	254	66	3.2
POTR5	Line-point	1.8	1.8	0.0	4.7	4.7	101.1	393	101	2.5
	10-m ²	1.4	0.8	0.1	1.9	1.9	54.4	117	31	2.6
UNGRCA1	1-m ²	1.2	0.7	0.1	1.9	1.8	53.9	114	31	3.3
(Carex sp.)	Line-point	6.5	4.2	0.0	10.0	10.0	64.3	162	43	1.9
	10-m ²	1.5	0.3	1.2	2.0	0.8	20.0	19	7	6.4
	1-m ²	1.9	0.5	1.5	2.7	1.2	25.4	27	9	6.2
Bare soil	Line-point	14.9	11.1	4.7	28.7	24.0	74.4	213	56	1.9
	10-m ²	74.8	11.4	61.3	84.2	22.9	15.2	12	5	1.1
	1-m ²	80.1	7.3	73.9	89.5	15.6	9.1	6	4	2.2
Litter	Line-point	69.3	7.9	60.0	78.0	18.0	11.3	8	4	2.9
	10-m ²	0.7	0.9	0.0	1.9	1.9	130.2	656	167	2.1
	1-m ²	0.6	0.8	0.0	1.4	1.4	126.9	617	157	2.3
BSC	Line-point	0.3	0.4	0.0	1.0	1.0	163.0	997	251	2.9

Table D5. Among-macroplot variation in selected cover measures for two Loamy Hills, Cold, macroplots in Grand Canyon National Park, macroplot sample sizes required to achive 10 and 20% precision in estimates of ecological-site-level means, and ratios of within-to-among CV values. See Appendix A for keys to species codes (BSC = biological soil crust).

		Mean	A	Among-macrop	lot variation ir	n cover estimate	es.	Sampl (by pre	CV ratio	
Measure	Method	cover	sd	Min	Max	Range	CV	10%	20%	(within:among)
	10-m ²	48.8	7.4	43.6	54.0	10.5	15.2	12	5	4.3
Total live understory	1-m ²	57.3	28.2	37.4	77.3	39.9	49.2	96	26	1.6
canopy cover	Line-point	25.7	2.8	23.7	27.7	4.0	11.0	8	4	6.8
	10-m ²	8.6	12.2	0.0	17.2	17.2	141.4	769	195	1.1
	1-m ²	12.9	18.2	0.0	25.7	25.7	141.4	769	195	0.8
ABCO	Line-point	4.5	6.4	0.0	9.0	9.0	141.4	768	195	0.9
	10-m ²	6.9	5.5	3.0	10.8	7.8	80.4	249	65	3.9
	1-m ²	8.3	11.7	0.0	16.5	16.5	141.4	769	195	1.1
PIEN	Line-point	4.2	4.9	0.7	7.7	7.0	118.8	543	138	3.0
	10-m ²	4.7	1.4	3.7	5.7	2.0	29.6	37	11	6.3
	1-m ²	6.2	2.7	4.3	8.1	3.8	43.1	74	21	4.9
POTR5	Line-point	1.0	0.5	0.7	1.3	0.7	47.1	88	24	6.8
	10-m ²	2.5	0.2	2.3	2.7	0.3	9.4	7	4	17.0
	1-m ²	1.8	0.7	1.3	2.3	1.0	39.3	63	18	4.7
Bare soil	Line-point	4.0	1.9	2.7	5.3	2.7	47.1	89	24	4.8
	10-m ²	70.2	0.8	69.6	70.8	1.2	1.2	3	2	18.1
	1-m ²	80.4	2.0	79.0	81.8	2.8	2.5	3	3	6.7
Litter	Line-point	81.3	0.5	81.0	81.7	0.7	0.6	3	2	35.8
	10-m ²	1.1	0.8	0.5	1.6	1.1	75.4	220	58	1.8
	1-m ²	1.2	0.7	0.7	1.7	1.0	61.7	149	39	5.1
BSC	Line-point	1.0	1.4	0.0	2.0	2.0	141.4	764	194	1.7

Table D6. Among-macroplot variation in selected cover measures for five Loamy Mesa Top PJ macroplots in Mesa Verde National Park, macroplot sample sizes required to achive 10 and 20% precision in estimates of ecological-site-level means, and ratios of within-to-among CV values. See Appendix A for keys to species codes (BSC = biological soil crust).

Loamy Mesa Top PJ	ecological s	ite, n = 5	macroplot	ts						
•		Mean		Among-macrop	olot variation in	n cover estimate	es	Sampl (by pre		CV ratio
Measure	Method	cover	sd	Min	Max	Range	CV	10%	20%	(within:among)
	10-m ²	32.7	15.2	20.9	55.7	34.8	46.5	86	24	3.4
Total live understory	1-m ²	29.6	12.7	13.2	43.7	30.5	42.7	73	21	4.7
canopy cover	Line-point	20.7	3.5	17.3	26.7	9.3	17.0	14	6	7.8
	10-m ²	7.7	4.1	3.3	12.2	8.9	52.9	110	30	3.1
	1-m ²	9.8	7.5	2.7	20.1	17.4	76.7	227	59	2.8
JUOS	Line-point	3.4	1.3	2.0	5.3	3.3	39.5	63	18	4.6
	10-m ²	12.4	8.8	5.4	26.2	20.8	70.4	193	50	1.8
	1-m ²	10.9	4.0	4.6	15.4	10.8	37.2	56	16	5.6
PIED	Line-point	7.3	3.0	2.7	10.0	7.3	40.3	65	19	3.7
	10-m ²	7.0	5.2	0.5	13.1	12.6	74.2	212	56	0.8
	1-m ²	4.7	2.9	0.5	8.0	7.6	61.7	149	40	1.7
POFE	Line-point	7.7	4.6	2.0	12.7	10.7	60.2	142	38	2.1
	10-m ²	2.1	1.7	0.7	4.2	3.5	82.0	259	67	0.8
	1-m ²	2.3	2.4	0.6	6.3	5.7	105.4	428	110	1.0
Bare soil	Line-point	7.1	4.7	2.7	14.0	11.3	66.2	171	45	1.1
	10-m ²	47.2	7.2	38.2	58.5	20.3	15.3	12	5	4.1
	1-m ²	50.5	13.0	36.4	69.7	33.3	25.7	28	9	2.8
Litter	Line-point	47.5	15.2	34.7	69.3	34.7	32.0	42	13	1.6
	10-m ²	3.9	1.3	1.8	5.2	3.4	34.1	47	14	2.9
	1-m ²	5.4	3.2	1.9	9.1	7.2	58.9	136	36	2.2
BSC	Line-point	7.4	4.5	4.7	15.3	10.7	60.5	143	38	2.5

Table D7. Among-macroplot variation in selected cover measures for five Semidesert Alkali Sandy Loam macroplots in Capitol Reef National Park, macroplot sample sizes required to achive 10 and 20% precision in estimates of ecological-site-level means, and ratios of within-to-among CV values. See Appendix A for keys to species codes (BSC = biological soil crust).

Semidesert Alkali Sa	andy Loam (<i>A</i>	Alkali Sa	caton) ecol	ogical site,	n = 5 macro	plots				
		Mean	A	lmong-macrop	lot variation ir	n cover estimate	es	Sampl (by pre	CV ratio	
Measure	Method	cover	sd	Min	Max	Range	CV	10%	20%	(within:among)
	10-m ²	20.3	10.3	7.3	35.5	28.2	50.9	102	28	0.9
Total live understory	1-m ²	18.1	6.6	7.1	24.6	17.5	36.5	54	16	2.0
canopy cover	Line-point	25.4	10.1	11.3	37.3	26.0	40.0	64	18	1.8
	10-m ²	2.6	1.8	0.6	4.6	4.0	69.5	188	49	2.0
	1-m ²	2.5	2.6	0.7	7.1	6.4	104.9	424	109	1.8
ATCO	Line-point	3.1	2.0	0.0	5.7	5.7	66.7	175	46	3.1
	10-m ²	0.3	0.1	0.2	0.4	0.3	39.3	61	17	2.4
	1-m ²	0.4	0.2	0.2	0.6	0.4	44.6	77	22	3.1
GIIN2	Line-point	0.3	0.6	0.0	1.3	1.3	173.2	1166	291	2.3
	10-m ²	0.5	0.2	0.3	0.7	0.4	29.5	37	12	2.9
	1-m ²	0.6	0.1	0.3	0.7	0.4	25.2	28	9	4.0
ORHY	Line-point	1.2	1.3	0.0	3.3	3.3	106.9	438	112	2.9
	10-m ²	0.8	0.4	0.3	1.3	1.0	44.1	76	21	3.7
	1-m ²	1.2	0.7	0.3	2.1	1.8	62.2	152	40	2.9
Bare soil	Line-point	4.3	2.6	0.7	8.0	7.3	60.6	143	38	3.3
	10-m ²	9.7	5.2	1.3	15.6	14.3	53.9	114	31	1.4
	1-m ²	10.6	5.9	1.7	18.2	16.5	55.9	123	33	2.5
Litter	Line-point	5.5	2.9	0.7	8.0	7.3	52.7	110	30	3.5
	10-m ²	1.8	2.0	0.3	5.3	5.0	110.0	466	119	0.9
	1-m ²	1.5	1.1	0.3	3.2	2.9	74.3	215	56	1.7
BSC	Line-point	3.3	3.5	0.0	8.0	8.0	107.6	446	114	2.2

Table D8. Among-macroplot variation in selected cover measures for five Semidesert Loam macroplots in Dinosaur National Monument, macroplot sample sizes required to achive 10 and 20% precision in estimates of ecological-site-level means, and ratios of within-to-among CV values. See Appendix A for keys to species codes (BSC = biological soil crust).

Semidesert Loam (W	/yoming Big	Sagebru	ısh) ecolog	ical site, n =	= 5 macrople	ots				
•		Mean			olot variation in	es	Sampl (by pre		CV ratio	
Measure	Method	cover	sd	Min	Max	Range	CV	10%	20%	(within:among)
	10-m ²	32.2	15.5	20.7	59.4	38.7	48.0	92	25	0.8
Total live understory	1-m ²	20.2	9.4	14.0	36.6	22.6	46.6	86	24	1.5
canopy cover	Line-point	53.8	24.9	34.0	96.3	62.3	46.3	85	24	1.0
	10-m ²	9.6	5.9	0.7	16.3	15.6	62.0	150	40	1.5
	1-m ²	5.3	3.4	0.1	9.0	8.9	65.1	166	44	3.4
ARTR2	Line-point	4.8	3.1	0.0	8.0	8.0	63.9	160	42	2.1
	10-m ²	11.9	15.5	2.8	39.2	36.4	130.4	653	166	0.9
	1-m ²	7.3	9.4	1.2	23.7	22.5	130.3	653	166	1.1
BRTE	Line-point	30.1	19.2	8.0	57.0	49.0	63.8	159	42	1.4
	10-m ²	2.5	4.1	0.0	9.7	9.7	164.6	1040	260	0.6
	1-m ²	1.3	1.5	0.0	3.4	3.4	113.2	492	126	1.2
STCO4	Line-point	4.2	8.0	0.0	18.3	18.3	190.1	1387	347	0.9
	10-m ²	0.7	0.6	0.2	1.8	1.6	89.1	301	78	1.0
	1-m ²	1.1	0.9	0.1	2.3	2.1	86.5	286	74	1.8
Bare soil	Line-point	10.5	5.0	3.3	15.3	12.0	47.4	89	25	2.3
	10-m ²	34.2	17.5	14.9	60.1	45.2	51.1	103	28	0.9
	1-m ²	35.0	22.2	18.0	72.2	54.2	63.5	158	42	1.3
Litter	Line-point	29.8	18.6	14.7	54.3	39.7	62.4	152	40	1.1
	10-m ²	5.5	2.6	1.8	7.9	6.1	46.2	85	23	1.9
	1-m ²	5.5	3.1	2.4	10.7	8.4	56.2	124	33	1.2
BSC	Line-point	12.1	7.3	4.3	22.0	17.7	60.7	144	38	1.8

Table D9. Among-macroplot variation in selected cover measures for seven Semidesert Shallow Sandy Loam macroplots in Arches and Canyonlands National Parks, macroplot sample sizes required to achive 10 and 20% precision in estimates of ecological-site-level means, and ratios of within-to-among CV values. See Appendix A for keys to species codes (BSC = biological soil crust).

Semidesert Shallow	Sandy Loam	(PJ) ec	ological site	e, n = 7 mac	roplots					
		Mean	Α	mong-macrop	lot variation ir	n cover estimate	es		le size cision)	CV ratio
Measure	Method	cover	sd	Min	Max	Range	CV	10%	20%	(within:among)
	10-m ²	18.8	4.8	13.7	28.2	14.5	25.5	28	9	2.6
Total live understory	1-m ²	16.4	5.4	10.5	24.0	13.5	33.1	45	14	2.9
canopy cover	Line-point	13.3	5.7	6.7	21.7	15.0	42.7	73	21	2.4
	10-m ²	10.3	7.0	2.4	22.9	20.5	68.0	181	47	1.6
	1-m ²	9.2	5.6	4.2	19.6	15.4	61.1	146	39	2.1
CORA	Line-point	6.2	3.2	3.3	10.3	7.0	51.4	105	28	2.6
	10-m ²	0.5	0.5	0.1	1.5	1.4	92.6	332	86	1.2
	1-m ²	0.5	0.3	0.1	0.9	0.8	61.3	147	39	2.1
FEOC3	Line-point	0.9	1.4	0.0	4.0	4.0	157.3	946	237	2.0
	10-m ²	1.0	0.6	0.3	1.9	1.6	64.6	161	42	1.4
	1-m ²	1.5	0.9	0.7	3.1	2.4	63.7	158	42	2.2
Bare soil	Line-point	4.3	2.5	1.7	8.0	6.3	57.9	132	35	3.4
	10-m ²	5.6	4.1	2.0	13.1	11.1	73.7	209	55	2.0
	1-m ²	6.0	3.6	2.5	11.3	8.8	61.2	147	39	3.0
Litter	Line-point	3.6	4.7	0.7	12.3	11.7	128.6	635	161	2.4
	10-m ²	69.8	18.9	30.6	87.5	56.9	27.1	31	10	1.1
	1-m ²	73.7	13.4	46.7	86.7	40.0	18.2	16	6	1.6
Undifferentiated crust	Line-point	70.4	16.1	40.0	84.0	44.0	22.9	23	8	1.3
	10-m ²	5.6	3.1	1.6	10.9	9.3	56.2	124	33	1.9
	1-m ²	6.3	3.6	1.0	12.2	11.2	57.3	129	34	2.0
BSC	Line-point	10.8	6.2	1.7	18.3	16.7	57.5	130	35	2.3

Table D10. Among-macroplot variation in selected cover measures for two Shallow Loamy macroplots in Wupatki National Monument, macroplot sample sizes required to achive 10 and 20% precision in estimates of ecological-site-level means, and ratios of within-to-among CV values. See Appendix A for keys to species codes.

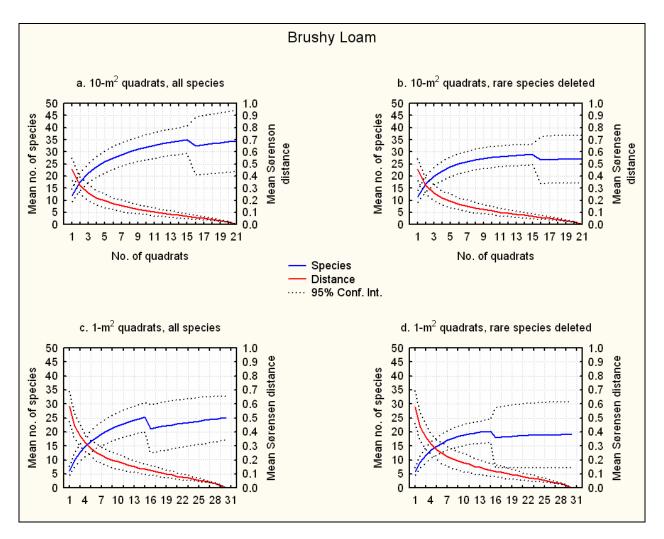
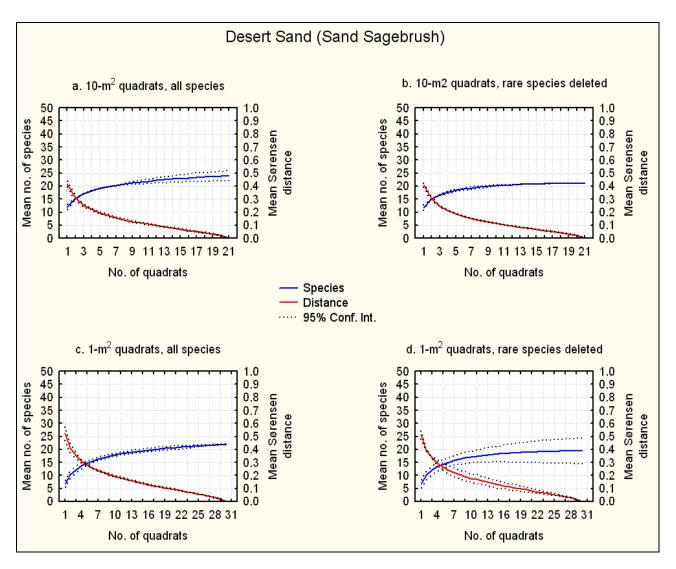
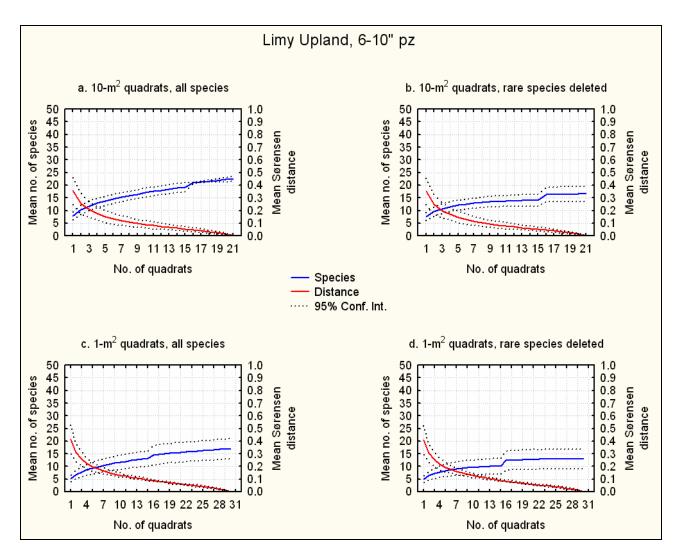
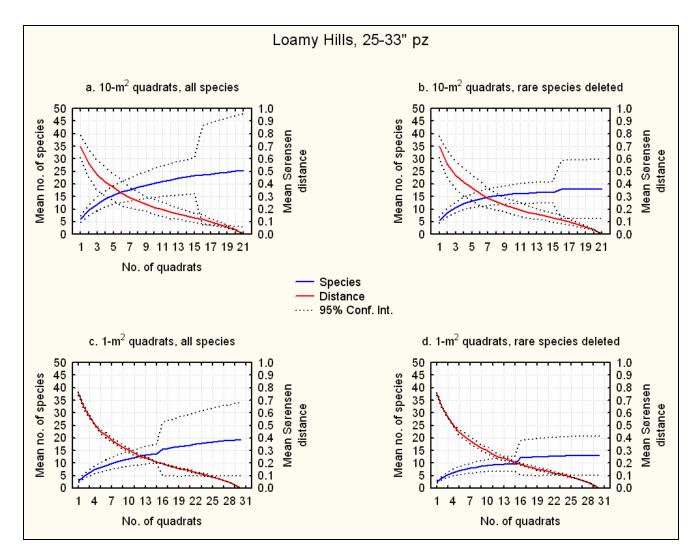

Shallow Loamy, 10-	14" pz ecolog	ical site	, n = 2 mac	roplots						
		Mean		Among-macroplot variation in cover estimates						CV ratio
Measure	Method	cover	sd	Min	Max	Range	CV	10%	20%	(within:among)
	10-m ²	18.3	9.5	11.5	25.0	13.5	52.1	107	29	0.8
Total live understory	1-m ²	17.2	4.7	13.9	20.5	6.6	27.3	32	10	3.2
canopy cover	Line-point	27.3	19.3	13.7	41.0	27.3	70.7	195	51	0.8
	10-m ²	2.0	2.0	0.6	3.4	2.8	100.3	387	100	0.9
	1-m ²	1.7	0.9	1.1	2.4	1.3	53.5	113	31	2.3
CHLE4	Line-point	3.0	3.3	0.7	5.3	4.7	110.0	465	119	2.3
	10-m ²	3.5	2.2	2.0	5.0	3.1	62.3	152	40	1.6
	1-m ²	2.3	1.1	1.5	3.0	1.6	49.2	96	26	1.9
HENE5	Line-point	6.2	5.4	2.3	10.0	7.7	87.9	297	77	1.7
	10-m ²	4.5	2.6	2.7	6.4	3.7	57.8	131	35	1.3
	1-m ²	4.3	2.8	2.3	6.3	4.0	65.8	169	45	1.3
PLJA	Line-point	7.2	3.5	4.7	9.7	5.0	49.3	97	26	2.6
	10-m ²	1.8	0.5	1.5	2.1	0.7	26.4	30	10	3.5
	1-m ²	3.5	1.5	2.5	4.6	2.1	42.7	73	21	3.0
Bare soil	Line-point	9.3	7.1	4.3	14.3	10.0	75.8	221	58	2.0
	10-m ²	6.4	1.4	5.4	7.3	2.0	21.7	21	8	3.8
	1-m ²	8.5	1.1	7.8	9.3	1.5	12.5	9	4	11.5
Litter	Line-point	8.8	3.5	6.3	11.3	5.0	40.0	65	18	2.9

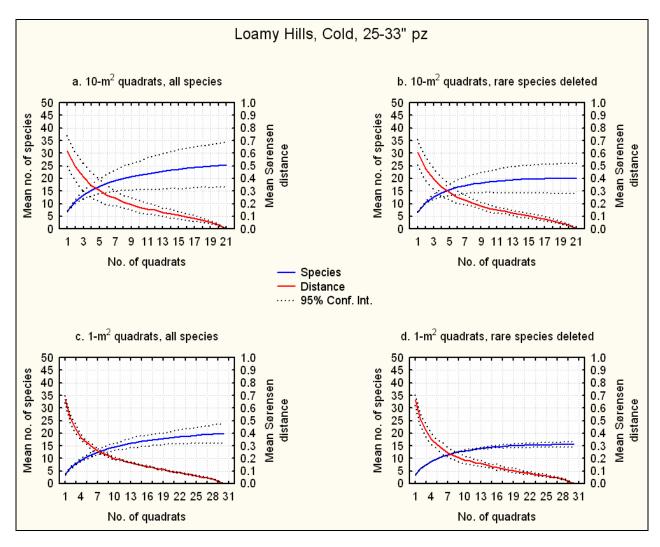
Table D11. Among-macroplot variation in selected cover measures for two Upland Shallow Loam macroplots in Capitol Reef National Park, macroplot sample sizes required to achive 10 and 20% precision in estimates of ecological-site-level means, and ratios of within-to-among CV values. See Appendix A for keys to species codes (BSC = biological soil crust).

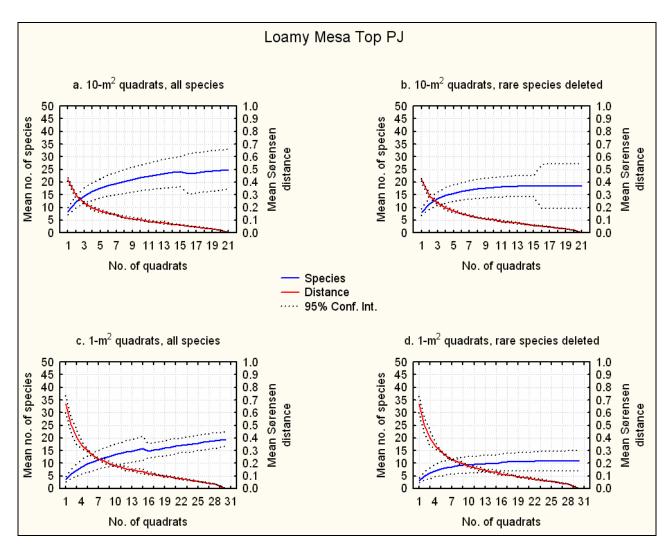

Upland Shallow Loa	m (Pinyon-Ut	ah Juni	per) ecolog	ical site, n =	5 macrople	ots				
		Mean			lot variation ir	es	Sampl (by pre		CV ratio	
Measure	Method	cover	sd	Min	Max	Range	CV	10%	20%	(within:among)
	10-m ²	16.5	4.4	10.2	21.2	11.0	26.4	30	10	4.4
Total live understory	1-m ²	15.4	6.3	7.2	21.1	13.9	40.9	67	19	4.3
canopy cover	Line-point	11.7	4.5	4.7	16.0	11.3	38.7	60	17	3.3
	10-m ²	1.9	1.8	0.0	4.2	4.2	99.4	381	98	2.1
	1-m ²	1.3	2.0	0.0	4.7	4.7	150.3	864	217	1.7
CEMO2	Line-point	2.4	3.6	0.0	8.0	8.0	149.1	855	214	1.3
	10-m ²	1.2	0.4	0.7	1.8	1.1	35.0	51	15	3.3
	1-m ²	1.1	0.6	0.6	1.8	1.2	49.9	98	27	2.3
COWR2	Line-point	2.3	1.8	0.0	4.7	4.7	75.6	219	58	2.8
	10-m ²	5.6	2.1	3.0	8.8	5.7	36.9	55	16	6.2
	1-m ²	4.8	2.7	0.9	8.0	7.1	56.1	124	33	5.5
JUOS	Line-point	2.5	1.3	0.7	4.0	3.3	50.6	101	27	5.1
	10-m ²	1.1	0.5	0.5	1.6	1.1	41.1	69	20	2.6
	1-m ²	1.6	0.4	1.1	2.1	1.0	26.8	31	10	3.7
Bare soil	Line-point	15.3	4.9	6.7	18.7	12.0	32.3	43	13	3.0
	10-m ²	16.8	7.6	5.4	26.4	21.0	45.4	82	23	3.1
	1-m ²	22.0	12.1	8.5	37.7	29.1	55.0	119	32	3.1
Litter	Line-point	6.8	5.2	2.7	14.0	11.3	76.5	225	59	2.7
	10-m ²	0.1	0.1	0.0	0.1	0.1	68.6	169	45	3.2
	1-m ²	0.1	0.1	0.0	0.2	0.2	93.5	309	81	4.3
BSC	Line-point	0.2	0.3	0.0	0.7	0.7	149.1	865	217	3.1

Appendix E—Mean Species-Area and Compositional Curves by Ecological Site


Ecological site	Figure	Page
Brushy Loam	E1	140
Desert Sand (Sand Sagebrush)	E2	141
Limy Upland, 6-10" pz	E3	142
Loamy Hills, 25-33" pz	E4	143
Loamy Hills, Cold, 25-33" pz	E5	144
Loamy Mesa Top PJ	E6	145
Semidesert Alkali Sandy Loam (Alkali Sacaton)	E7	146
Semidesert Loam (Wyoming Big Sagebrush)	E8	147
Semidesert Shallow Sandy Loam PJ	E9	148
Shallow Loamy, 10-14" pz	E10	149
Upland Shallow Loam (Pinyon-Utah Juniper)	E11	150


Figure E1. Mean species-area and compositional curves (mean Sørensen distances) for the Brushy Loam ecological site at Mesa Verde National Park for (a) 10-m² quadrats, including all species; (b) 10-m² quadrats, exluding rare (infrequent) species that occurred in only one subsample quadrat; (c) 1-m² quadrats, including all species; and (d) 1-m² quadrats, excluding rare species. Species-area curves are based on data from five macroplots for quadrats 1-15 and two macroplots for quadrats > 15. Compositional curves are based on data from two macroplots.


Figure E2. Mean species-area and compositional curves (mean Sørensen distances) for the Desert Sand ecological site at Canyonlands National Park for (a) 10-m² quadrats, including all species; (b) 10-m² quadrats, exluding rare (infrequent) species that occurred in only one subsample quadrat; (c) 1-m² quadrats, including all species; and (d) 1-m² quadrats, excluding rare species. All curves are based on data from two macroplots.


Figure E3. Mean species-area and compositional curves (mean Sørensen distances) for the Limy Upland ecological site at Mesa Verde National Park for (a) 10-m² quadrats, including all species; (b) 10-m² quadrats, exluding rare (infrequent) species that occurred in only one subsample quadrat; (c) 1-m² quadrats, including all species; and (d) 1-m² quadrats, excluding rare species. Species-area curves are based on data from five macroplots for quadrats 1-15 and two macroplots for quadrats > 15. Compositional curves are based on data from two macroplots.

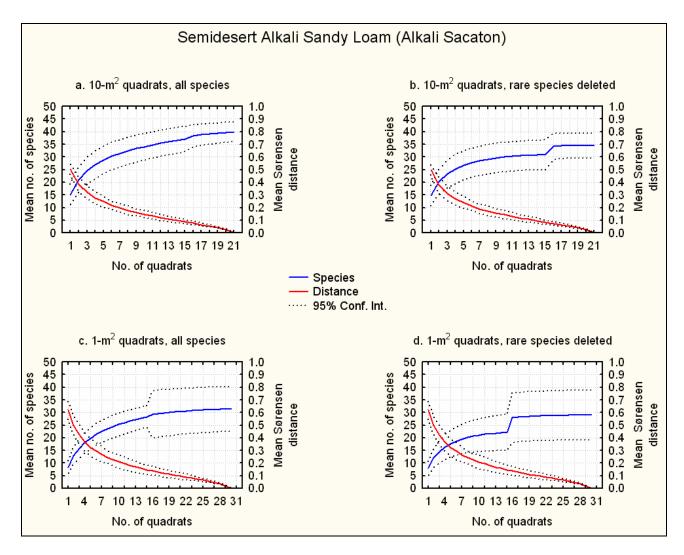
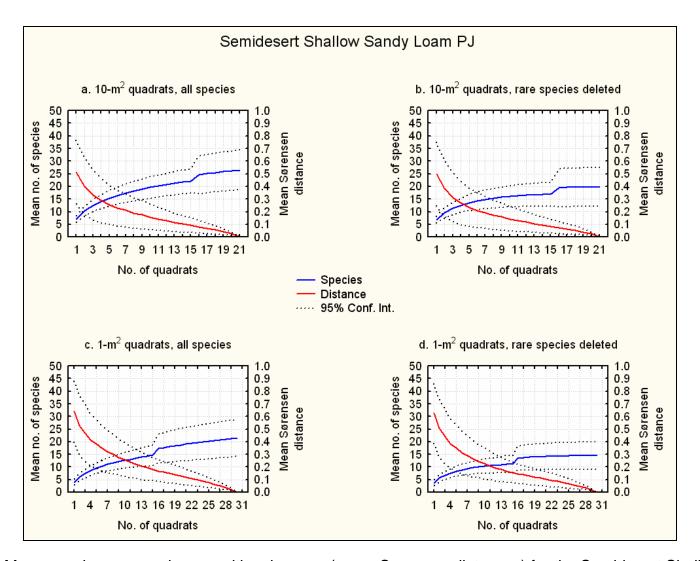
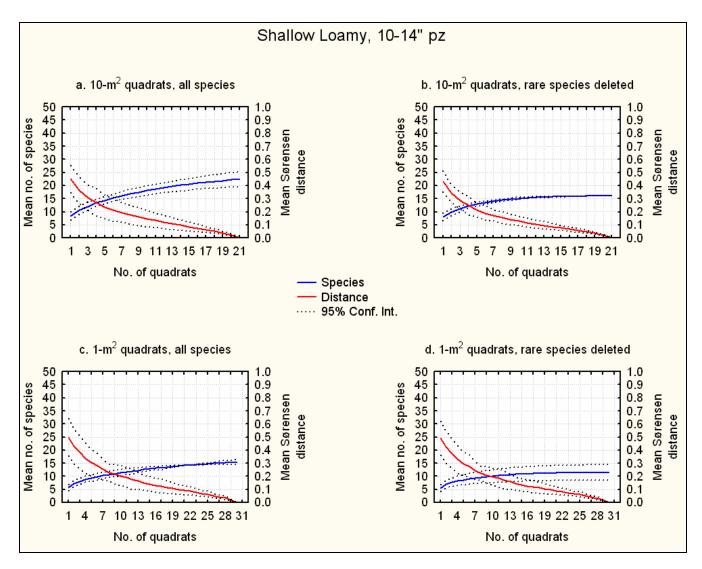

Figure E4. Mean species-area and compositional curves (mean Sørensen distances) for the Loamy Hills ecological site at Grand Canyon National Park for (a) 10-m² quadrats, including all species; (b) 10-m² quadrats, exluding rare (infrequent) species that occurred in only one subsample quadrat; (c) 1-m² quadrats, including all species; and (d) 1-m² quadrats, excluding rare species. Species-area curves are based on data from five macroplots for quadrats 1-15 and two macroplots for quadrats > 15. Compositional curves are based on data from two macroplots.

Figure E5. Mean species-area and compositional curves (mean Sørensen distances) for the Loamy Hills, Cold, ecological site at Grand Canyon National Park for (a) 10-m² quadrats, including all species; (b) 10-m² quadrats, exluding rare (infrequent) species that occurred in only one subsample quadrat; (c) 1-m² quadrats, including all species; and (d) 1-m² quadrats, excluding rare species. Species-area curves are based on data from five macroplots for quadrats 1-15 and two macroplots for quadrats > 15. Compositional curves are based on data from two macroplots.


Figure E6. Mean species-area and compositional curves (mean Sørensen distances) for the Loamy Mesa Top PJ ecological site at Mesa Verde National Park for (a) 10-m² quadrats, including all species; (b) 10-m² quadrats, exluding rare (infrequent) species that occurred in only one subsample quadrat; (c) 1-m² quadrats, including all species; and (d) 1-m² quadrats, excluding rare species. Species-area curves are based on data from five macroplots for quadrats 1-15 and two macroplots for quadrats > 15. Compositional curves are based on data from two macroplots.


Figure E7. Mean species-area and compositional curves (mean Sørensen distances) for the Semidesert Alkali Sandy Loam ecological site at Capitol Reef National Park for (a) 10-m² quadrats, including all species; (b) 10-m² quadrats, exluding rare (infrequent) species that occurred in only one subsample quadrat; (c) 1-m² quadrats, including all species; and (d) 1-m² quadrats, excluding rare species. Species-area curves are based on data from five macroplots for quadrats 1-15 and two macroplots for quadrats > 15. Compositional curves are based on data from two macroplots.

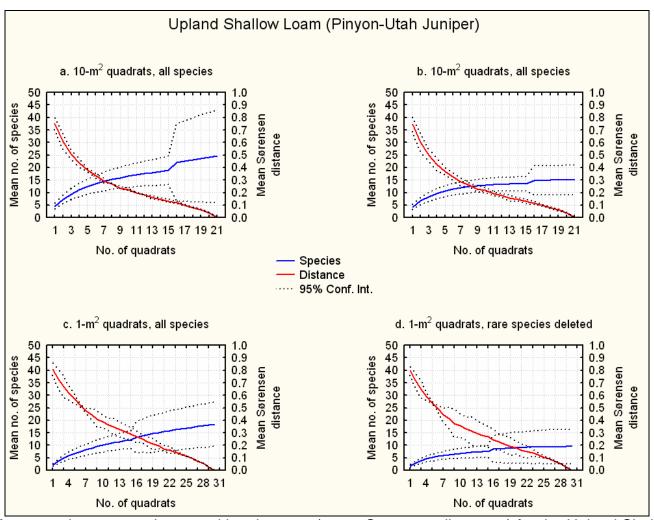

Figure E8. Mean species-area and compositional curves (mean Sørensen distances) for the Semidesert Loam ecological site at Dinosaur National Monument for (a) 10-m² quadrats, including all species; (b) 10-m² quadrats, exluding rare (infrequent) species that occurred in only one subsample quadrat; (c) 1-m² quadrats, including all species; and (d) 1-m² quadrats, excluding rare species. Species-area curves are based on data from five macroplots for quadrats 1-15 and two macroplots for quadrats > 15. Compositional curves are based on data from two macroplots.

Figure E9. Mean species-area and compositional curves (mean Sørensen distances) for the Semidesert Shallow Sandy Loam ecological site at Arches and Canyonlands National Park for (a) 10-m² quadrats, including all species; (b) 10-m² quadrats, exluding rare (infrequent) species that occurred in only one subsample quadrat; (c) 1-m² quadrats, including all species; and (d) 1-m² quadrats, excluding rare species. Species-area curves are based on data from seven macroplots for quadrats 1-15 and four macroplots for quadrats > 15. Compositional curves are based on data from four macroplots.

Figure E10. Mean species-area and compositional curves (mean Sørensen distances) for the Shallow Loamy ecological site at Wupatki National Monument for (a) 10-m² quadrats, including all species; (b) 10-m² quadrats, excluding rare (infrequent) species that occurred in only one subsample quadrat; (c) 1-m² quadrats, including all species; and (d) 1-m² quadrats, excluding rare species. All curves are based on data from two macroplots.

Figure E11. Mean species-area and compositional curves (mean Sørensen distances) for the Upland Shallow Loam ecological site at Capitol Reef National Park for (a) 10-m² quadrats, including all species; (b) 10-m² quadrats, exluding rare (infrequent) species that occurred in only one subsample quadrat; (c) 1-m² quadrats, including all species; and (d) 1-m² quadrats, excluding rare species. Species-area curves are based on data from five macroplots for quadrats 1-15 and two macroplots for quadrats > 15. Compositional curves are based on data from two macroplots.

Appendix F—Between-Observer Differences in Estimates of Cover and Density

Table F1. Mean estimates of plant cover (%) by sampling method (10-m² quadrats, 1-m² quadrats, and line-point intercept) and observer (Obs. 1 and Obs. 2) at Colorado Plateau ecological sites sampled during Phase 3, absolute between-observer differences, and differences expressed as percent of the mean of both observations. See Appendix A for key to species codes associated with cover measures.

			10-m² q	uadrats	;		1-m² qı	uadrats		Line-point			
F 1 1 1	0				Diff %				Diff %				Diff %
Ecological site	Cover measure	Obs.	Obs.	Abs	of	Obs.	Obs.	Abs	of	Obs.	Obs.	Abs	of
Site		1	2	diff	mean	1	2	diff	mean	1	2	diff	mean
	QUGA	1.2	1.5	0.3	22.2	1.3	1.2	0.1	8.0	1.5	1.5	0.0	0.0
Daniel	POFE	12.0	9.8	2.2	20.2	8.6	6.0	2.6	35.6	17.9	16.9	1.0	5.7
Brushy Loam	SYOR2	2.9	4.4	1.5	41.1	1.5	1.1	0.4	30.8	5.0	5.0	0.0	0.0
Loaiii	Total live	45.0	40.0	0.0	4.5	24.0	20.0	5 0	40.4	04.0	70.4	44.0	40.7
	understory	45.3	43.3	2.0	4.5 22.0	34.9	29.6	5.3	16.4 22.7	64.6	76.4	11.8	16.7
	Mean % diff	4.0		1.5	_	2.4	0.4	2.1		0.4	0.0	3.2	5.6
	CHLE4	4.3	2.9	1.4	38.9	3.4	2.4	1.0	34.5	2.4	2.2	0.2	8.7
Limy	HENE5	3.8	3.3	0.5	14.1	2.7	2.1	0.6	25.0	5.6	7.2	1.6	25.0
Upland, 6-	PLJA	3.3	3.1	0.2	6.2	1.6	2.3	0.7	35.9	5.5	6.5	1.0	16.7
10" pz	Total live understory	19.9	16.5	3.4	18.7	13.9	12.8	1.1	8.2	26.9	31.2	4.3	14.8
	Mean % diff	13.3	10.5	1.4	19.5	13.3	12.0	0.9	25.9	20.3	31.2	1.8	16.3
	POFE	0.9	0.8	0.1	11.8	0.5	0.5	0.0	0.0	2.0	0.4	1.6	133.3
	POTR5	1.1	1.2	0.1	8.7	1.1	0.9	0.0	20.0	1.3	1.3	0.0	0.0
	UNGRCA1	1.1	1.2	0.1	0.7	1.1	0.9	0.2	20.0	1.3	1.3	0.0	0.0
Loamy Hills,	(Carex sp.)	1.7	2.2	0.5	25.6	1.4	1.4	0.0	0.0	8.5	9.2	0.7	7.9
25-33" pz	Total live	1.7	۷.۷	0.5	20.0	1.4	1	0.0	0.0	0.5	5.2	0.7	1.5
	understory	12.7	11.7	1.0	8.2	9.8	8.9	0.9	9.6	18.7	21.4	2.7	13.5
	Mean % diff	12.7		0.4	13.6	0.0	0.0	0.3	7.4	10.1		1.3	38.7
	JUOS	5.5	6.0	0.5	8.7	3.3	2.3	1.0	35.7	3.1	2.3	0.8	29.6
	PIED	7.9	7.4	0.5	6.5	5.7	3.6	2.1	45.2	7.3	7.9	0.6	7.9
Loamy Mesa	POFE	3.5	2.8	0.7	22.2	2.6	2.3	0.3	12.2	7.2	6.2	1.0	14.9
Top PJ	Total live	0.0	2.0	0.7	22.2	2.0	2.0	0.0	12.2	1.2	0.2	1.0	14.0
.,	understory	26.1	24.7	1.4	5.5	20.0	15.3	4.7	26.6	23.8	25.9	2.1	8.5
	Mean % diff			0.8	10.7			2.0	29.9		20.0	1.1	15.2
	ATCO	1.2	0.8	0.4	40.0	0.9	0.8	0.1	11.8	0.6	0.6	0.0	0.0
Semidesert	GIIN2	0.3	0.3	0.0	0.0	0.4	0.3	0.1	28.6	0.1	0.1	0.0	0.0
Alkali Sandy	ORHY	0.4	0.5	0.1	22.2	0.5	0.5	0.0	0.0	0.2	0.2	0.0	0.0
Loam (Alkali	Total live	• • • • • • • • • • • • • • • • • • • •									•		
Sacaton)	understory	14.2	12.9	1.3	9.6	14.6	12.9	1.7	12.4	19.6	22.3	2.7	12.9
	Mean % diff			0.5	18.0	_	_	0.5	13.2		_	0.7	3.2
	ARTR2	10.8	9.7	1.1	10.7	5.0	5.4	0.4	7.7	5.5	7.9	2.4	35.8
Semidesert	BRTE	2.9	1.7	1.2	52.2	1.4	1.4	0.0	0.0	16.7	18.9	2.2	12.4
Loam	STCO4	0.8	0.7	0.1	13.3	0.7	0.7	0.0	0.0	1.6	1.2	0.4	28.6
(Wyoming Big	Total live												
Sagebrush)	understory	26.2	23.4	2.8	11.3	14.5	14.2	0.3	2.1	43.6	48.4	4.8	10.4
Ougobiusii)	Mean % diff			1.3	21.9			0.2	2.4			2.5	21.8
	CORA	13.4	12.3	1.1	8.6	8.3	10.3	2.0	21.5	5.5	9.6	4.1	54.3
Semidesert	FEOC3	0.6	0.5	0.1	18.2	0.5	0.7	0.2	33.3	0.6	0.4	0.2	40.0
Shallow	STLO4	0.5	0.5	0.0	0.0	0.6	0.7	0.1	15.4	0	0.3	0.3	200.0
Sandy Loam	Total live												
(PJ)	understory	19.7	18.5	1.2	6.3	13.6	15.8	2.2	15.0	10.7	15.5	4.8	36.6
	Mean % diff			0.6	8.3			1.1	21.3			2.4	82.7
Upland	CEMO2	3.2	2.1	1.1	41.5	1.4	0.9	0.5	43.5	2	1.5	0.5	28.6
Shallow	COWR2	0.8	0.8	0.0	0.0	0.6	0.6	0.0	0.0	0.7	1	0.3	35.3
Loam	JUOS	7.7	5.5	2.2	33.3	2.1	0.9	1.2	80.0	1.4	0.7	0.7	66.7
(Pinyon-	Total live												
Utah	understory	22.2	16.6	5.6	28.9	14.1	11.4	2.7	21.2	10.5	10.4	0.1	1.0
Juniper)	Mean % diff			2.2	25.9			1.1	36.2			0.4	32.9

Table F2. Mean estimates of biological soil crust cover (%) by sampling method (10-m² quadrats, 1-m² quadrats, and line-point intercept) and observer (Obs. 1 and Obs. 2) at Colorado Plateau ecological sites sampled during Phase 3, absolute between-observer differences, and differences expressed as percent of the mean of both observations.

			1-m² qu	uadrats			10-m ² q	uadrats	}		Line-	point	
					Diff %				Diff %				Diff %
Ecological		Obs.	Obs.	Abs	of	Obs.	Obs.	Abs	of	Obs.	Obs.	Abs	of
site	Cover measure	1	2	diff	mean	1	2	diff	mean	1	2	diff	mean
	Undifferentiated												
	crust	46.2	45.1	1.1	2.4	43.8	45.8	2.0	4.5	43.6	38.9	4.7	11.4
Loamy Mesa	Cyanobacteria	1.8	2.2	0.4	20.0	1.3	2.2	0.9	51.4	4.4	5.6	1.2	24.0
Top PJ	Lichen	0.7	1.2	0.5	52.6	0.9	0.8	0.1	11.8	1.1	1.3	0.2	16.7
	Moss	1.0	3.0	2.0	100.0	2.8	1.0	1.8	94.7	3.1	3.3	0.2	6.2
	Mean % diff			1.0	43.8			1.2	40.6			1.6	14.6
	Undifferentiated												
Semidesert	crust	83.6	85.3	1.7	2.0	82.4	83.6	1.2	1.4	84.4	78.2	6.2	7.6
Alkali Sandy	Cyanobacteria	1.8	1.5	0.3	18.2	1.1	1.8	0.7	48.3	2.9	3.1	0.2	6.7
Loam (Alkali	Lichen	0.4	0.6	0.2	40.0	0.5	0.4	0.1	22.2	0.2	0.9	0.7	127.3
Sacaton)	Moss	0.1	0.2	0.1	66.7	0.0	0.2	0.2	200.0	0.0	0.2	0.2	200.0
	Mean % diff			0.6	31.7			0.5	68.0			1.8	85.4
Carrainlanant	Undifferentiated												
Semidesert Loam	crust	60.9	65.4	4.5	7.1	61.3	65.2	3.9	6.2	54.0	52.2	1.8	3.4
(Wyoming	Cyanobacteria	0.5	0.9	0.4	57.1	0.8	0.6	0.2	28.6	1.1	1.8	0.7	48.3
Big	Lichen	1.1	1.3	0.2	16.7	1.1	0.7	0.4	44.4	1.6	2.2	0.6	31.6
Sagebrush)	Moss	4.4	7.2	2.8	48.3	5.1	4.8	0.3	6.1	13.1	15.3	2.2	15.5
eages: ac.i,	Mean % diff			2.0	32.3			1.2	21.3			1.3	24.7
	Undifferentiated												
Semidesert	crust	82.6	80.3	2.3	2.8	83.0	78.2	4.8	6.0	72.0	68.7	3.3	4.7
Shallow	Cyanobacteria	0.8	1.5	0.7	60.9	1.2	1.4	0.2	15.4	2.4	4.0	1.6	50.0
Sandy Loam	Lichen	0.5	0.9	0.4	57.1	0.9	0.5	0.4	57.1	0.0	0.4	0.4	200.0
(PJ)	Moss	5.0	5.8	0.8	14.8	3.1	6.5	3.4	70.8	10.2	11.6	1.4	12.8
	Mean % diff			1.1	33.9			2.2	37.3			1.7	66.9
Upland	Undifferentiated												
Shallow	crust	6.3	9.8	3.5	43.5	4.9	5.5	0.6	11.5	14.9	25.6	10.7	52.8
Loam	Cyanobacteria	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
(Pinyon-	Lichen	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Utah	Moss	0.1	0.2	0.1	66.7	0.0	0.2	0.2	200.0	0.0	0.4	0.4	200.0
Juniper)	Mean % diff			0.9	27.5			0.2	52.9			2.8	63.2

Table F3. Mean estimates of biological soil crust cover (%) based on the characterization of soil darkness (see table 10 and fig. 5 in main body of report) in 25 cm x 25 cm BSC frames for two observers (Obs. 1 and Obs. 2) at Colorado Plateau ecological sites sampled during Phase 3, absolute between-observer differences, and differences expressed as percent of the mean of both observations.

	Biological soil crust				Diff %
Ecological site	(Soil-surface category)	Obs. 1	Obs. 2	Abs diff	of mean
	Darkness 1	0.4	0.9	0.5	76.9
	Darkness 2	17.9	18.2	0.3	1.7
l	Darkness 3	8.8	9.2	0.4	4.4
Loamy Mesa Top PJ	Darkness 4	2.9	3.5	0.6	18.8
PJ	Darkness 5	1.4	1.7	0.3	19.4
	Total	31.4	33.5	2.1	6.5
	Mean % diff			0.7	21.3
	Darkness 1	13.5	11.3	2.2	17.7
	Darkness 2	44.0	45.8	1.8	4.0
Semidesert Alkali	Darkness 3	8.5	11.4	2.9	29.1
Sandy Loam	Darkness 4	0.0	0.0	0.0	0.0
(Alkali Sacaton)	Darkness 5	0.0	0.0	0.0	0.0
	Total	66.1	68.5	2.4	3.6
	Mean % diff			1.6	9.1
	Darkness 1	0.0	0.1	0.1	200.0
	Darkness 2	29.4	18.7	10.7	44.5
Semidesert Loam	Darkness 3	22.1	28.9	6.8	26.7
(Wyoming Big	Darkness 4	0.0	0.4	0.4	200.0
Sagebrush)	Darkness 5	0.0	0.0	0.0	0.0
	Total	51.5	48.0	3.5	7.0
	Mean % diff			3.6	79.7
	Darkness 1	8.7	6.4	2.3	30.5
	Darkness 2	37.2	40.1	2.9	7.5
Semidesert	Darkness 3	16.6	22.8	6.2	31.5
Shallow Sandy	Darkness 4	0.4	0.0	0.4	200.0
Loam (PJ)	Darkness 5	0.0	0.0	0.0	0.0
	Total	62.9	69.4	6.5	9.8
	Mean % diff			3.1	46.5
	Darkness 1	5.9	5.4	0.5	8.8
	Darkness 2	0.2	1.2	1.0	142.9
Upland Shallow	Darkness 3	0.0	0.0	0.0	0.0
Loam (Pinyon-	Darkness 4	0.0	0.0	0.0	0.0
Utah Juniper)	Darkness 5	0.0	0.0	0.0	0.0
	Total	6.1	6.6	0.5	7.9
	Mean % diff			0.3	26.6

Table F4. Mean estimates of litter cover (%) by sampling method (10-m² quadrats, 1-m² quadrats, and line-point intercept) and observer (Obs. 1 and Obs. 2) at Colorado Plateau ecological sites sampled during Phase 3, absolute between-observer differences, and differences expressed as percent of the mean of both observations.

		10-m² qւ	ıadrats			1-m² qı	ıadrats			Line-po	oint	
Ecological site	Obs. 1	Obs. 2	Abs diff	Diff % of mean	Obs. 1	Obs. 2	Abs diff	Diff % of mean	Obs. 1	Obs. 2	Abs diff	Diff % of mean
Brushy Loam	77.8	78.9	1.1	1.4	82.0	79.4	2.6	3.2	73.0	78.3	5.3	7.0
Limy Upland, 6- 10" pz	5.9	4.1	1.8	36.0	6.8	5.1	1.7	28.6	33.8	34.6	0.8	2.3
Loamy Hills, 25- 33"pz	83.3	80.9	2.4	2.9	84.6	84.7	0.1	0.1	88.8	94.1	5.3	5.8
Loamy Mesa Top PJ	43.6	44.7	1.1	2.5	43.4	42.2	1.2	2.8	54.6	50.9	3.7	7.0
Semidesert Alkali Sandy Loam (Alkali Sacaton)	6.6	6.0	0.6	9.5	8.7	6.8	1.9	24.5	15.2	17.8	2.6	15.8
Semidesert Loam (Wyoming Big Sagebrush)	23.9	21.0	2.9	12.9	21.6	19.1	2.5	12.3	40.5	44.4	3.9	9.2
Semidesert Shallow Sandy Loam (PJ)	2.9	3.5	0.6	18.8	3.3	3.9	0.6	16.7	13.3	16.5	3.2	21.5
Upland Shallow Loam (Pinyon- Utah Juniper)	15.5	16.6	1.1	6.9	23.4	23.4	0.0	0.0	23.4	26.2	2.8	11.3
			1.5	11.4			1.3	11.0			3.5	10.0

Table F5. Mean estimates of shrub density (counts per quadrat) by species, height class, and observer (Obs. 1 and Obs. 2) at Colorado Plateau ecological sites sampled during Phase 3, absolute between-observer differences, and differences expressed as percent of the mean of both observations.

							Diff % of		
Species	Ecological site	Size class	Obs. 1	Obs. 2	Mean	Abs. Diff	Mean		
		0-10 cm	0	0.11	0.055	0.110	200.0		
		10-25 cm	0.04	0.18	0.110	0.140	127.3		
		25-50 cm	0.56	0.78	0.670	0.220	32.8		
	Brushy Loam	50 cm - 1 m	2.4	2.4	2.400	0.000	0.0		
		1-2 m	0.8	0.89	0.845	0.090	10.7		
		>2 m	0.13	0.11	0.120	0.020	16.7		
Amerlanchier utahensis						mean diff	64.6		
(AMUT)		0-10 cm	0.04	0.02	0.030	0.020	66.7		
		10-25 cm	0.02	0.07	0.045	0.050	111.1		
	Upland Shallow	25-50 cm	0.04	0	0.020	0.040	200.0		
	Loam (Pinyon-	50 cm - 1 m	0.04	0.09	0.065	0.050	76.9		
	Utah Juniper)	1-2 m	0.31	0.29	0.300	0.020	6.7		
		>2 m	0	0.02	0.010	0.020	200.0		
						mean diff	110.2		
	Brushy Loam	0-10 cm	1.6	1.3	1.450	0.300	20.7		
		10-25 cm	0.09	0.09	0.090	0.000	0.0		
Artemisia		25-50 cm	0.02	0.07	0.045	0.050	111.1		
bigelovii		50 cm - 1 m	0.02	0.02	0.020	0.000	0.0		
(ARBI3)		1-2 m	0	0	0.000	0.000	n/a		
		>2 m	0	0	0.000	0.000	n/a		
		mean diff							
		0-10 cm	0.29	0.38	0.335	0.090	26.9		
		10-25 cm	0.13	0.36	0.245	0.230	93.9		
	1 14	25-50 cm	0.33	0.62	0.475	0.290	61.1		
	Loamy Mesa Top PJ	50 cm - 1 m	0.76	0.64	0.700	0.120	17.1		
	134.3	1-2 m	0.13	0.16	0.145	0.030	20.7		
		>2 m	0	0	0.000	0.000	n/a		
Artemisia tridentata						mean diff	43.9		
(ARTR2)		0-10 cm	42.8	67	54.900	24.200	44.1		
		10-25 cm	1.4	1.3	1.350	0.100	7.4		
	Semidesert	25-50 cm	3.9	4.3	4.100	0.400	9.8		
	Loam (Wyoming	50 cm - 1 m	3.1	3.2	3.150	0.100	3.2		
	Big Sagebrush)	1-2 m	0.11	0.11	0.110	0.000	0.0		
		>2 m	0	0	0.000	0.000	n/a		
						mean diff	12.9		

Table F5.—Continued

Semidesert Loam (Wyoming Big Sagebrush) Semidesert Loam (Wyoming Big Sagebrush) Semidesert Loam (Wyoming Big Sagebrush) So cm - 1 m	Species	Ecological site	Size class	Obs. 1	Obs. 2	Mean	Abs. Diff	Diff % of Mean
Arriplex canescens CATCA2 Alkali Sandy Loam (Alkali Sandy Loam			0-10 cm	0	0	0.000	0.000	n/a
Altriplex conferitifolia (ATCO) Berberis femontii (BEFR) Chrysothamnus nausseosus (CHNA2) Chrysothamnus n			10-25 cm	0	0	0.000	0.000	n/a
Carriescents Carr	Atriplex		25-50 cm	0.07	0.07	0.070	0.000	0.0
Chrysothamnus nauseosus Chrysothamnus na			50 cm - 1 m	0.11	0.09	0.100	0.020	20.0
Semidesert Alkali Sandy Loam (Alroper) Atriplex Chrysothamnus nauseosus (CHNA2) Early Character (CHNA2) Early Char	(ATCA2)		1-2 m	0	0	0.000	0.000	n/a
Semidesert Alkali Sandy Loam (Alkali Sandy Loam (Alkali Sandy Loam (Alkali Sandy Loam (Alkali Sacton)			>2 m	0	0	0.000	0.000	n/a
Semidesert Alkali Sandy Loam (Alkali Sandy Loam (Alkali Sandy Loam (Alkali Sandy Loam (Alkali Sacaton) 25-50 cm							mean diff	10.0
Atriplex Alkali Sandy Loam (Alkali Sacaton) Semidesert Alkali Sandy Loam (Alkali Sacaton) Semidesert Loam (Myoming Big Sagebrush) Semidesert Semidesert Semidesert Loam (Myoming Big Sagebrush) Semidesert Semi			0-10 cm	2	2.9	2.450	0.900	36.7
Alkail Sandy Loam (Alkail Sacaton)			10-25 cm	0.69	0.69	0.690	0.000	0.0
Loam (Alkali Sacaton)			25-50 cm	0.62	0.82	0.720	0.200	27.8
Atriplex contertifolia (ATCO)			50 cm - 1 m	0	0	0.000	0.000	n/a
Atriplex confertifolia (ATCO) Semidesert Complex (Myoming Big Sagebrush) Semidesert Complex (Myoming Big Sage			1-2 m	0	0	0.000	0.000	n/a
Confertifolia (ATCO) Company Confertifolia (ATCO) Company Confertifolia (ATCO) Company Confertifolia (ATCO) Company Confertifolia (ATCO) Company Confertifolia (ATCO) Company Confertifolia (ATCO) Company Com			>2 m	0	0	0.000	0.000	n/a
ATCO Semidesert Loam (Wyoming Big Sagebrush) 0-10 cm 0.24 0.24 0.240 0.000 0.00 0.00 10-25 cm 0.18 0.16 0.170 0.020 11.8 0.050 37.0 0.000 0							mean diff	21.5
Semidesert Loam (Wyoming Big Sagebrush) 25-50 cm	(ATCO)		0-10 cm	0.24	0.24	0.240	0.000	0.0
Loam (Wyoming Big Sagebrush) 50 cm - 1 m 0.02 0.02 0.020 0.000 0.000 0.000 1.2 m 0 0 0.000 0.000 0.000 n/a	,		10-25 cm	0.18	0.16	0.170	0.020	11.8
Loam (Wyoming Big Sagebrush) 50 cm - 1 m 0.02 0.02 0.020 0.000 0.000 0.000 1.2 m 0 0 0.000 0.000 0.000 n/a 1.2 m 0 0 0.000 0.000 n/a 1.2 mean diff 12.2 mean diff 1.2 mean d		Semidesert	25-50 cm	0.11	0.16	0.135	0.050	37.0
1-2 m		Loam (Wyoming	50 cm - 1 m	0.02	0.02	0.020	0.000	0.0
Derberis fremontii (BEFR) Upland Shallow Loam (Pinyon-Utah Juniper) Utah Juniper) Utah Juniper Utah J		Big Sagebrush)	1-2 m	0	0	0.000	0.000	n/a
Definition of the property o			>2 m	0	0	0.000	0.000	n/a
Depticis fremontii (BEFR) Upland Shallow Loam (Pinyon-Utah Juniper) Utah Juniper) 10-25 cm 0 0 0 0.000 0.0							mean diff	12.2
Upland Shallow Loam (Pinyon-Utah Juniper) 25-50 cm			0-10 cm	0	0	0.000	0.000	n/a
Upland Shallow Loam (Pinyon-Utah Juniper) 25-50 cm			10-25 cm	0.02	0	0.010	0.020	200.0
Limy Upland, 6-10" pz Limy Upland, 6-10" pz Semidesert Alkali Sandy Loam (Alkali Sacaton) Semidesert Alkali Sacaton Semidesert	Rerberis	Unland Shallow	25-50 cm	0	0	0.000	0.000	
Chrysothamnus nauseosus (CHNA2) Semidesert Alkali Sandy Loam (Alkali Sacaton) Sacaton Sa	fremontii	Loam (Pinyon-	50 cm - 1 m	0.04	0.07	0.055	0.030	54.5
Chrysothamnus nauseosus (CHNA2) Semidesert Alkali Sandy Loam (Alkali Sacaton) Semidesert Alkali Sacaton) Semidesert Alkali Sacaton S	(BEFR)	Utah Juniper)	1-2 m	0		0.000	0.000	n/a
Limy Upland, 6-10 cm 0 0 0.000 0.000 0.000 0.66.7			>2 m	0	0	0.000	0.000	n/a
Limy Upland, 6-10 cm 0 0 0.000 0.000 0.000 0.66.7				•	•		mean diff	127.3
Chrysothamnus nauseosus (CHNA2) Limy Upland, 6-10" pz Limy Upland, 6-10" pz Limy Upland, 6-10" pz Limy Upland, 6-10" pz Limy Upland, 6-10" m 0.02 0.02 0.020 0.000 0.00 0.00 1.2 m 0 0.000 0.000 0.000 n/a 1.2 m 0 0 0.000 0.000 0.000 n/a 1.2 m 0 0 0.000 0.000 0.000 n/a 1.2 m 0 0 0.000 0.000 0.000 n/a 1.2 m 0 0 0.000 0.000 0.000 n/a 1.2 m 0.04 0.04 0.040 0.000 0.00 1.2 m 0.000 0.000 1.2 m 0.000 0.000 0.000 1.2 m 0.000 0.000 0.000 0.000 1.2 m 0.000 0.000 0.000 0.000 1.2 m 0.000 0.0			0-10 cm	0	0	0.000	0.000	
Chrysothamnus nauseosus (CHNA2) Semidesert Alkali Sandy Loam (Alkali Sacaton) Limy Upland, 6-10" pz 50 cm - 1 m			10-25 cm	0.04	0.02	0.030	0.020	66.7
Chrysothamnus nauseosus (CHNA2) Semidesert Alkali Sandy Loam (Alkali Sacaton) Limy Upland, 6-10" pz 50 cm - 1 m			1	0.58	0.6		0.020	3.4
1-2 m		, , ,						
Semidesert Alkali Sandy Loam (Alkali Sacaton) Semidesert Chrysothamnus		10 β2						
Chrysothamnus nauseosus (CHNA2) Semidesert Alkali Sandy Loam (Alkali Sacaton) Alkali Sandy Loam (Alkali Sacaton) Alkali Sandy Loam (Alkali Sacaton) Mean diff 23.4 0-10 cm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			>2 m	0	0			
O-10 cm	Chrysothamnus		'					
Semidesert Alkali Sandy Loam (Alkali Sacaton) 10-25 cm 0 0 0.000 0.000 n/a 0.000 0.000 n/a 0.000 0.000 0.000 n/a 0.000 0.000 0.000 n/a 0.000 0.000 0.000 n/a 0.000 0.000 0.000 n/a			0-10 cm	0	0	0.000		
Semidesert Alkali Sandy Loam (Alkali Sacaton) 25-50 cm 0 0 0.000 0.000 n/a 50 cm - 1 m 0.04 0.04 0.040 0.000 0.00 1-2 m 0 0 0.000 0.000 n/a >2 m 0 0 0.000 0.000 n/a	(3/							
Alkali Sandy Loam (Alkali Sacaton) 50 cm - 1 m 0.04 0.04 0.040 0.040 0.00								
Sacaton) 1-2 m 0 0 0.000 0.000 n/a >2 m 0 0 0.000 0.000 n/a								
>2 m 0 0 0.000 0.000 n/a								
		,						
		-		V J	<u> </u>	0.000	mean diff	0.0

Table F5.—Continued

Species	Ecological site	Size class	Obs. 1	Obs. 2	Mean	Abs. Diff	Diff % of Mean
		0-10 cm	0	0	0.000	0.000	n/a
		10-25 cm	0	0.02	0.010	0.020	200.0
Chrysothamnus	Semidesert	25-50 cm	0.09	0.11	0.100	0.020	20.0
nauseosus	Loam (Wyoming	50 cm - 1 m	0.27	0.22	0.245	0.050	20.4
(CHNA2)	Big Sagebrush)	1-2 m	0.04	0.02	0.030	0.020	66.7
		>2 m	0	0	0.000	0.000	n/a
			T			mean diff	76.8
		0-10 cm	0.09	0.11	0.100	0.020	20.0
		10-25 cm	0.58	0.82	0.700	0.240	34.3
Coleogyne	Semidesert	25-50 cm	4.6	5.1	4.850	0.500	10.3
ramosissima (CORA)	Shallow Sandy Loam PJ	50 cm - 1 m	1	0.9	0.950	0.100	10.5
(CORA)	LoaniFJ	1-2 m	0	0	0.000	0.000	n/a
		>2 m	0	0	0.000	0.000	n/a
						mean diff	18.8
		0-10 cm	0	0	0.000	0.000	n/a
		10-25 cm	0	0	0.000	0.000	n/a
Purshia	Upland Shallow	25-50 cm	0.02	0.02	0.020	0.000	0.0
mexicana	Loam (Pinyon-	50 cm - 1 m	0.04	0.07	0.055	0.030	54.5
(PUME)	Utah Juniper)	1-2 m	0.07	0.07	0.070	0.000	0.0
		>2 m	0	0	0.000	0.000	n/a
						mean diff	18.2
		0-10 cm	0.02	0.02	0.020	0.000	0.0
		10-25 cm	0	0	0.000	0.000	n/a
	Upland Shallow	25-50 cm	0	0	0.000	0.000	n/a
	Loam (Pinyon-	50 cm - 1 m	0.02	0	0.010	0.020	200.0
	Utah Juniper)	1-2 m	0	0	0.000	0.000	n/a
		>2 m	0	0	0.000	0.000	n/a
			T			mean diff	100.0
		0-10 cm	0	0	0.000	0.000	n/a
		10-25 cm	0	0	0.000	0.000	n/a
Purshia		25-50 cm	0.02	0.02	0.020	0.000	0.0
tridentata	Brushy Loam	50 cm - 1 m	0	0	0.000	0.000	n/a
(PUTR2)		1-2 m	0	0	0.000	0.000	n/a
		>2 m	0	0	0.000	0.000	n/a
						mean diff	0.0
		0-10 cm	0.04	0.04	0.040	0.000	0.0
		10-25 cm	0	0	0.000	0.000	n/a
	Loomy Mass	25-50 cm	0	0.09	0.045	0.090	200.0
	Loamy Mesa Top PJ	50 cm - 1 m	0.09	0.02	0.055	0.070	127.3
		1-2 m	0	0	0.000	0.000	n/a
		>2 m	0	0	0.000	0.000	n/a
						mean diff	109.1

Table F5.—Continued

Species	Ecological site	Size class	Obs. 1	Obs. 2	Mean	Abs. Diff	Diff % of Mean
Opecies	Ecological site	0-10 cm	0.02	0	0.010	0.020	200.0
		10-25 cm	0.02	0.04	0.010	0.020	54.5
	Semidesert	25-50 cm	0.07	0.04	0.345	0.110	31.9
	Alkali Sandy	50 cm - 1 m	0.58	0.62	0.600	0.040	6.7
	Loam (Alkali Sacaton)	1-2 m	0.02	0.02	0.020	0.000	0.0
	,	>2 m	0.02	0.02	0.010	0.020	200.0
Sarcobatus		72 111	<u> </u>	0.02	0.010	mean diff	82.2
vermiculatus (SAVE4)	Semidesert Loam (Wyoming Big Sagebrush)	0-10 cm	2.8	3.2	3.000	0.400	13.3
(OAVE4)		10-25 cm	0.04	0.04	0.040	0.000	0.0
		25-50 cm	0.04	0.02	0.030	0.020	66.7
		50 cm - 1 m	0.22	0.27	0.245	0.050	20.4
		1-2 m	0.11	0.09	0.100	0.020	20.0
		>2 m	0	0	0.000	0.000	n/a
			<u> </u>	· · · · · · · · · · · · · · · · · · ·		mean diff	24.1
		0-10 cm	0	0	0.000	0.000	n/a
		10-25 cm	0	0	0.000	0.000	n/a
Shepherdia	Upland Shallow	25-50 cm	0.02	0.02	0.020	0.000	0.0
rotundifolia	Loam (Pinyon-	50 cm - 1 m	0.02	0.02	0.020	0.000	0.0
(SHRO)	Utah Juniper)	1-2 m	0.02	0.02	0.020	0.000	0.0
		>2 m	0	0	0.000	0.000	n/a
						mean diff	0.0
		0-10 cm	0	0	0.000	0.000	n/a
		10-25 cm	0.07	0.07	0.070	0.000	0.0
Symphoricarpos		25-50 cm	0.78	0.53	0.655	0.250	38.2
oreophilus	Brushy Loam	50 cm - 1 m	1.6	1.7	1.650	0.100	6.1
(SYOR2)		1-2 m	0.78	0.73	0.755	0.050	6.6
		>2 m	0	0	0.000	0.000	n/a
						mean diff	12.7

Table F6. Mean estimates of tree density (counts per quadrat) by species, size class, and observer (Obs. 1 and Obs. 2) at Colorado Plateau ecological sites sampled during Phase 3, absolute between-observer differences, and differences expressed as percent of the mean of both observations.

Species	Ecological site	Size class	Obs. 1	Obs. 2	Mean	Abs. Diff	Diff % of Mean
Оросно		Seedling	0.04	0.04	0.040	0.000	0.0
Abies concolor	Loamy Hills, 25-	Pole	0	0	0.000	0.000	n/a
(ABCO)	33" pz	Overstory	0	0	0.000	0.000	n/a
			mean diff	0.0			
		Seedling	0.02	0.02	0.020	0.000	0.0
	Semidesert Shallow Sandv	Pole	0	0	0.000	0.000	n/a
	Loam PJ	Overstory	0	0	0.000	0.000	n/a
						mean diff	0.0
		Seedling	0.02	0.02	0.020	0.000	0.0
	Upland Shallow Loam (Pinyon-	Pole	0.04	0.02	0.030	0.020	66.7
	Utah Juniper)	Overstory	0.09	0.13	0.110	0.040	36.4
Juniperus osteosperma						mean diff	34.3
(JUOS)		Seedling	0.04	0.13	0.085	0.090	105.9
	Semidesert Loam (Wyoming	Pole	0.04	0.04	0.040	0.000	0.0
	Big Sagebrush)	Overstory	0	0	0.000	0.000	n/a
			mean diff	52.9			
	Loamy Mesa Top PJ	Seedling	1.1	1	1.050	0.100	9.5
		Pole	0.29	0.33	0.310	0.040	12.9
		Overstory	0.18	0.22	0.200	0.040	20.0
						mean diff	14.1
		Seedling	0.07	0.04	0.055	0.030	54.5
	Upland Shallow Loam (Pinyon-	Pole	0.07	0.07	0.070	0.000	0.0
	Utah Juniper)	Overstory	0	0	0.000	0.000	n/a
						mean diff	27.3
		Seedling	1.4	1.3	1.350	0.100	7.4
Pinus edulis	Loamy Mesa	Pole	0.36	0.38	0.370	0.020	5.4
(PIED)	Top PJ	Overstory	0.04	0.04	0.040	0.000	0.0
						mean diff	4.3
		Seedling	0.02	0.02	0.020	0.000	0.0
	Brushy Loam	Pole	0	0	0.000	0.000	n/a
	Brushy Loani	Overstory	0	0	0.000	0.000	n/a
						mean diff	0.0
		Seedling	0.02	0.02	0.020	0.000	0.0
Picea engelmannii	Loamy Hills, 25-	Pole	0.07	0.07	0.070	0.000	0.0
engelmannii (PIEN)	33" pz	Overstory	0	0	0.000	0.000	n/a
·						mean diff	0.0
		Seedling	0	0	0.000	0.000	n/a
Pinus ponderosa	Loamy Hills, 25-	Pole	0.04	0.02	0.030	0.020	66.7
(PIPO)	33" pz	Overstory	0.18	0.16	0.170	0.020	11.8
						mean diff	39.2

Table F6.—Continued

Species	Ecological site	Size class	Obs. 1	Obs. 2	Mean	Abs. Diff	Diff % of Mean
		Seedling	3.4	3.2	3.300	0.200	6.1
Populus tremuloides	Loamy Hills, 25-	Pole	0.29	0.29	0.290	0.000	0.0
(POTR5)	33" pz	Overstory	0.02	0.02	0.020	0.000	0.0
						mean diff	2.0
		Seedling	0.02	0.02	0.020	0.000	0.0
Pseudotsuga menziesii	Loamy Hills, 25-	Pole	0	0	0.000	0.000	n/a
(PSME)	33" pz	Overstory	0	0	0.000	0.000	n/a
						mean diff	0.0
		Seedling	4.3	5.2	4.750	0.900	18.9
Quercus gambelii	Brushy Loam	Pole	0.02	0	0.010	0.020	200.0
(QUGA)	Brushy Loani	Overstory	0	0	0.000	0.000	n/a
				•		mean diff	109.5

Appendix G—Nested Frequency Data by Ecological Site

Ecological site	Table	Page
Brushy Loam	G1	162
Brushy Loan	G2	164
Desert Sand (Sand Sagebrush)	G3	166
Limy Upland, 6-10" pz	G4	167
Limy Opiana, 0-10 pz	G5	168
Loamy Hills, 25-33" pz	G6	169
Loanly Fills, 20-00 pz	G7	170
Loamy Hills, Cold, 25-33" pz	G8	171
Loamy Mesa Top PJ	G9	172
Loanly Mesa Top 1 5	G10	173
Semidesert Alkali Sandy Loam (Alkali Sacaton)	G11	174
Semidesert Aikaii Sandy Loam (Aikaii Sacaton)	G12	176
Semidesert Loam (Wyoming Big Sagebrush)	G13	178
Semidesert Loam (wyoming big Sagebrush)	G14	179
	G15	180
Semidesert Shallow Sandy Loam PJ	G16	182
	G17	184
Shallow Loamy, 10-14" pz	G18	186
Lipland Shallow Loam (Binyon Litab Junipar)	G19	187
Upland Shallow Loam (Pinyon-Utah Juniper)	G20	188

Table G1. Frequency (%) of plant species in different-sized quadrats at three macroplots (MEVE1, MEVE2, and MEVE3) associated with the Brushy Loam ecological site at Mesa Verde National Park. See Appendix A for key to species codes.

					Frequency (%) by macror	olot and qua	drat size				
		MEVE	1			MEVE	2			MEVE	5	
Species code	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²
ACMI2	0	0	0	10	13	13	37	94	13	23	43	80
AGCR	0	0	0	0	0	0	0	0	7	13	17	17
ALAC4	0	3	10	24	0	0	23	42	0	0	0	0
AMUT	3	3	37	70	0	7	13	47	3	7	13	47
ARBI3	0	0	0	0	0	0	0	0	0	0	7	7
ARDR4	0	0	0	0	0	0	0	0	0	0	0	3
BASA3	0	0	0	0	0	0	0	5	0	0	0	0
BRTE	0	0	0	0	3	3	7	16	0	0	0	7
CANU3	0	0	0	0	0	0	3	8	0	0	0	0
CANU4	0	0	0	0	0	0	10	48	0	0	0	0
CEMO2	0	0	3	22	0	0	0	0	0	0	0	0
CHAL7	0	0	0	0	0	7	27	79	0	0	0	0
CHLE4	0	0	0	0	0	0	0	0	0	0	7	17
CHVI8	0	0	0	0	0	0	7	16	0	0	0	0
COUM	0	0	0	5	0	0	0	10	0	0	0	0
DEPI	0	0	0	5	0	0	0	5	0	0	0	7
ELEL5	0	0	0	5	3	3	10	29	13	40	73	83
ERUM	0	0	0	0	0	0	0	0	0	0	3	7
FERU	0	0	3	18	0	0	0	0	0	0	0	3
HECO26	0	0	0	0	0	0	0	0	0	0	3	17
IPAG	0	3	3	13	0	0	0	0	0	0	0	0
JUOS	0	0	0	10	0	0	0	0	0	0	0	0
KOMA	0	0	0	0	0	0	0	0	0	0	13	47
LATA	0	0	0	0	10	33	70	89	0	0	0	0
LUCA	0	3	10	24	0	0	0	0	7	7	57	80
MARE11	0	0	0	5	0	7	13	23	0	0	0	13
PAMY	0	0	3	8	0	0	0	0	0	0	0	0
PASM	0	0	0	0	0	0	0	5	3	20	27	47
PEPU7	0	0	0	5	0	0	0	5	0	7	40	63
PHHE2	0	0	0	0	0	0	0	0	0	0	7	23
PIED	0	0	13	61	0	0	0	0	0	0	0	7
POFE	0	7	33	62	0	0	3	8	43	63	80	87
PUTR2	0	0	0	0	0	0	0	0	0	0	0	0
QUGA	20	43	70	94	17	23	50	100	0	0	10	17
SIAL2	0	0	0	0	0	0	3	13	0	0	0	0

Table G1.—Continued

		Frequency (%) by macroplot and quadrat size												
		MEVE	1			MEVE2				MEVE	5			
Species code	0.01 m ²	0.01 m ² 0.1 m ² 1 m ² 10 m ²				0.1 m ²	1 m ²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m²		
SPCO	0	0	0	0	0	0	0	0	0	0	0	0		
STLO4	3	3	20	34	0	0	0	0	0	0	0	0		
SYOR2	0	13	40	69	3	10	20	39	0	0	13	83		
WYAR	0	0	0	0	0	3	10	24	0	0	17	43		
YUBA	0	3	3	8	0	0	0	0	0	0	0	0		

Table G2. Frequency (%) of plant species in different-sized quadrats at two Brushy Loam macroplots (MEVE6 and MEVE7) and combined frequency values for all five macroplots associated with the Brushy Loam ecological site at Mesa Verde National Park. See Appendix A for key to species codes.

					Frequency (%) by macro	plot and qua	drat size				
		MEVE	6			MEVE	7b		All ma	acroplots cor	mbined (n =	5)
Species code	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²
ACMI2	0	10	27	43	10	20	53	93	7	13	32	64
AGCR	0	0	0	0	0	0	0	0	1	3	3	3
ALAC4	0	0	0	0	0	0	0	0	0	1	7	13
AMUT	0	3	3	13	0	13	43	93	1	7	22	54
ARBI3	0	0	7	17	0	0	0	0	0	0	3	5
ARDR4	0	0	0	0	0	0	0	23	0	0	0	5
BASA3	0	0	0	0	0	0	0	0	0	0	0	1
BRTE	0	0	10	30	0	3	27	50	1	1	9	21
CANU3	0	0	0	0	0	3	3	3	0	1	1	2
CANU4	0	7	13	13	0	0	13	50	0	1	7	22
CEMO2	0	0	0	0	0	0	0	0	0	0	1	4
CHAL7	0	0	0	0	0	0	0	0	0	1	5	16
CHLE4	10	27	50	53	0	0	0	7	2	5	11	15
CHVI8	0	0	0	0	0	0	0	0	0	0	1	3
COUM	0	0	0	0	0	0	0	0	0	0	0	3
DEPI	0	0	0	0	0	0	0	0	0	0	0	3
ELEL5	27	50	80	87	3	13	33	47	9	21	39	50
ERUM	0	0	3	23	0	0	0	7	0	0	1	7
FERU	0	0	0	0	0	0	0	0	0	0	1	4
HECO26	10	20	27	30	0	0	0	0	2	4	6	9
IPAG	0	0	0	0	0	0	0	0	0	1	1	3
JUOS	0	0	0	0	0	0	0	0	0	0	0	2
KOMA	7	13	30	80	0	3	17	47	1	3	12	35
LATA	0	0	0	3	0	0	0	0	2	7	14	18
LUCA	0	3	23	70	3	3	40	63	2	3	26	48
MARE11	0	0	0	0	0	0	0	0	0	1	3	8
PAMY	0	0	0	0	0	0	0	0	0	0	1	2
PASM	7	7	7	17	0	0	0	0	2	5	7	14
PEPU7	23	27	67	80	0	0	0	27	5	7	21	36
PHHE2	0	0	0	0	0	0	13	30	0	0	4	11

Table G2.—Continued

	Frequency (%) by macroplot and quadrat size												
		MEVE	6			MEVE7	7b		All m	acroplots cor	mbined (n =	5)	
Species code	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	
PIED	0	0	0	0	0	0	0	0	0	0	3	14	
POFE	13	47	70	80	80	87	100	100	27	41	57	67	
PUTR2	0	0	0	7	0	0	0	0	0	0	0	1	
QUGA	0	0	7	20	7	13	27	30	9	16	33	52	
SIAL2	0	0	0	0	0	0	0	0	0	0	1	3	
SPCO	0	0	0	0	0	0	0	7	0	0	0	1	
STLO4	0	0	0	0	0	0	0	0	1	1	4	7	
SYOR2	0	0	3	37	17	27	40	87	4	10	23	63	
WYAR	0	0	17	53	0	0	13	23	0	1	11	29	
YUBA	0	0	0	0	0	0	0	0	0	1	1	2	

Table G3. Frequency (%) of plant species in different-sized quadrats at two Desert Sand macroplots (CANY1 and CANY2b) and combined frequency values for both macroplots associated with the Desert Sand ecological site at Canyonlands National Park. See Appendix A for key to species codes.

					Frequency (%) by macro _l	plot and qua	drat size				
		CANY	1			CANY	2b		Both r	nacroplots co	ombined (n =	= 2)
Species code	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m²
ABFR2	0	0	0	0	0	3	7	11	0	2	3	6
ARPU9	0	0	3	3	0	0	0	0	0	0	2	2
ATCA2	0	0	10	53	0	3	10	29	0	2	10	41
BRTE	0	0	0	0	0	3	3	3	0	2	2	2
CELA4	0	0	0	0	0	0	0	10	0	0	0	5
CHAL7	0	0	13	28	0	0	0	0	0	0	7	14
CHST	0	0	0	0	0	0	0	5	0	0	0	2
CORA	0	0	0	0	0	0	0	5	0	0	0	2
EPVI	0	0	0	5	0	0	0	0	0	0	0	2
ERCE2	0	0	3	8	0	0	0	0	0	0	2	4
FEOC3	10	30	63	78	0	13	47	90	5	22	55	84
GAPI	0	17	40	88	7	27	70	99	3	22	55	93
HIJA	3	17	23	33	7	10	43	86	5	13	33	60
LAOC3	0	13	50	83	20	77	100	100	10	45	75	92
LIAR3	0	3	43	72	0	13	40	69	0	8	42	70
MACA2	0	0	3	3	0	10	37	84	0	5	20	44
MEAL6	3	3	20	63	3	10	40	92	3	7	30	78
OEPA	0	0	0	14	0	0	7	16	0	0	3	15
OPPO	0	0	0	10	0	0	0	0	0	0	0	5
PLPA2	7	37	60	89	10	27	57	80	8	32	58	85
SAPA8	0	3	27	84	0	0	3	3	0	2	15	44
SAPE10	3	7	20	68	0	0	17	55	2	3	18	61
SPCO	0	0	0	0	0	3	7	11	0	2	3	6
SPGR2	3	30	70	94	10	43	77	100	7	37	73	97
STEX	0	3	17	36	0	10	30	40	0	7	23	38
STHY6	0	7	10	39	3	27	70	100	2	17	40	69
STLO4	0	0	0	0	0	0	10	29	0	0	5	15
TOAN	0	10	27	46	0	0	10	15	0	5	18	30

Table G4. Frequency (%) of plant species in different-sized quadrats at three macroplots (WUPA1, WUPA2, and WUPA5) associated with the Limy Upland ecological site at Wupatki National Monument. See Appendix A for key to species codes.

					Frequency (%) by macro	plot and qua	drat size				
		WUPA	.1			WUPA	\2			WUPA	.5	
Species code	0.01 m ²	0.1 m ²	1 m ²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m ²	10 m ²
ACHY	0	0	0	10	0	0	0	0	0	0	0	0
ARPU9	0	0	0	0	0	0	0	5	0	0	0	0
BOER4	7	53	90	95	3	20	47	94	0	0	0	0
BOGR2	0	0	0	0	0	0	0	0	0	0	0	0
BRTE	0	0	0	0	0	0	0	0	0	0	0	0
CHLE4	17	77	100	100	0	3	27	74	33	80	93	100
CHNA2	0	3	7	50	3	7	40	92	0	0	3	63
CRCI3	0	7	10	20	0	0	0	0	0	0	0	0
DEPI	3	3	23	76	3	3	7	30	0	7	23	23
ELEL5	0	0	0	0	0	0	0	0	0	0	3	13
GIIN2	37	83	93	100	0	7	27	41	30	70	93	100
HENE5	7	17	53	100	0	20	73	92	0	0	7	37
LAOC3	0	0	0	0	0	0	0	0	0	0	0	0
MEAL6	20	50	83	98	3	27	60	89	23	43	67	87
OPER	0	0	0	0	0	0	0	0	0	0	0	13
PHCR	0	0	0	0	0	0	0	0	0	0	10	43
PLJA	0	7	13	23	33	67	100	100	47	73	100	100
PSSP	0	0	0	5	0	0	0	0	0	0	0	7
SAKA	3	3	23	52	0	0	0	5	0	0	0	0
SPAI	0	0	0	0	0	0	0	5	0	0	0	0
SPHA	0	0	0	0	0	0	0	14	0	0	0	0
SPPA2	0	3	13	51	0	0	0	0	0	0	0	0
ZIGR	0	0	3	3	0	7	7	7	0	0	0	0

Table G5. Frequency (%) of plant species in different-sized quadrats at two Limy Upland macroplots (WUPA6 and WUPA7) and combined frequency values for all five macroplots associated with the Limy Upland ecological site at Wupatki National Monument. See Appendix A for key to species codes.

					Frequency (%) by macro	plot and qua	drat size				
		WUPA	.6			WUPA	۸7		All m	acroplots cor	nbined (n =	5)
Species code	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²
ACHY	0	0	0	0	0	0	0	0	0	0	0	2
ARPU9	0	0	0	0	0	0	0	0	0	0	0	1
BOER4	3	23	80	90	10	20	57	87	5	23	55	73
BOGR2	0	0	0	3	0	0	0	0	0	0	0	1
BRTE	0	0	3	3	0	0	0	3	0	0	1	1
CHLE4	43	83	100	100	30	57	77	100	25	60	79	95
CHNA2	0	0	0	0	0	0	10	60	1	2	12	53
CRCI3	0	0	0	0	0	0	0	0	0	1	2	4
DEPI	3	17	70	93	0	0	0	10	2	6	25	47
ELEL5	0	0	0	0	0	0	0	0	0	0	1	3
GIIN2	10	50	93	97	0	0	3	17	15	42	62	71
HENE5	17	43	97	100	0	0	0	0	5	16	46	66
LAOC3	0	0	0	7	0	0	0	0	0	0	0	1
MEAL6	0	0	0	0	0	0	0	0	9	24	42	55
OPER	0	0	0	0	0	0	0	0	0	0	0	3
PHCR	0	0	0	3	0	0	0	0	0	0	2	9
PLJA	7	10	43	63	17	53	93	100	21	42	70	77
PSSP	0	0	0	0	0	0	0	0	0	0	0	2
SAKA	0	0	20	53	0	0	0	23	1	1	9	27
SPAI	0	0	0	0	0	0	0	0	0	0	0	1
SPHA	0	0	0	0	0	0	0	0	0	0	0	3
SPPA2	0	0	57	90	0	0	17	53	0	1	17	39
ZIGR	0	0	3	10	0	0	0	7	0	1	3	5

Table G6. Frequency (%) of plant species in different-sized quadrats at three macroplots (GRCA3, GRCA4, and GRCA5) associated with the Loamy Hills ecological site at Grand Canyon National Park. See Appendix A for key to species codes.

					Frequency (%) by macro	plot and qua	drat size				
		GRCA	٨3			GRCA	٨4			GRCA	5	
Species code	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²
ABCO	0	0	13	28	0	3	23	90	0	0	0	7
ABLA	0	0	0	29	0	0	3	37	0	0	0	0
ACMI2	0	0	0	0	3	3	10	24	0	0	7	13
ANPA5	0	0	0	0	0	0	0	0	0	0	0	7
BRIN2	0	0	0	0	0	0	3	22	0	3	7	7
BRTE	0	0	0	0	0	0	0	0	0	0	3	7
CHAL7	0	0	0	0	0	0	0	0	7	20	30	30
ELEL5	0	0	0	0	0	3	3	13	0	3	17	30
EPAN	0	0	3	3	0	0	0	0	0	0	0	0
FRVI	0	0	0	5	0	3	10	29	0	0	0	0
GECA3	0	0	0	0	0	7	10	24	0	0	0	0
GOOB2	3	3	23	38	0	0	0	0	0	0	0	0
JUCO6	0	0	0	5	0	0	0	0	0	0	0	0
LUAR3	0	0	0	0	0	0	0	0	0	0	0	0
MARE11	0	3	3	13	3	7	13	23	0	0	0	23
PIEN	0	0	0	38	0	3	7	40	0	0	0	0
PIPO	0	0	0	0	0	0	0	5	0	0	0	7
POFE	0	0	0	0	0	0	7	11	3	13	27	43
POTR5	0	7	37	89	0	0	10	58	0	13	63	80
PSME	0	3	20	44	0	0	7	40	0	0	0	0
PTAQ	0	0	0	0	0	3	3	3	0	0	0	0
PYCH	0	0	0	10	0	0	0	0	0	0	0	0
SEMU3	0	0	0	0	0	0	0	0	3	3	43	70
SYOR2	0	0	0	0	0	0	3	22	0	0	0	0
THFE	0	0	0	0	0	0	0	0	0	0	0	0
UNGRCA1	0	0	7	11	23	63	80	94	10	33	53	93

Table G7. Frequency (%) of plant species in different-sized quadrats at two Loamy Hills macroplots (GRCA6 and GRCA7) and combined frequency values for all five macroplots associated with the Loamy Hills ecological site at Grand Canyon National Park. See Appendix A for key to species codes.

	Frequency (%) by macroplot and quadrat size													
		GRCA	۸6			GRCA	17		All m	acroplots cor	nbined (n =	5)		
Species code	0.01 m ²	0.1 m ²	1 m ²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²		
ABCO	0	0	7	7	0	0	0	0	0	1	9	26		
ABLA	0	0	0	0	0	0	0	0	0	0	1	13		
ACMI2	0	0	0	0	0	0	0	0	1	1	3	8		
ANPA5	0	7	10	17	0	0	0	0	0	1	2	5		
BRIN2	0	7	17	40	0	0	0	0	0	2	5	14		
BRTE	0	0	0	0	0	0	0	0	0	0	1	1		
CHAL7	0	0	0	0	0	0	0	0	1	4	6	6		
ELEL5	0	0	10	50	0	7	17	40	0	3	9	27		
EPAN	0	0	0	0	0	0	0	0	0	0	1	1		
FRVI	0	0	0	0	0	0	0	0	0	1	2	7		
GECA3	0	0	0	0	0	0	0	0	0	1	2	5		
GOOB2	0	0	0	0	0	0	0	0	1	1	5	8		
JUCO6	0	0	0	7	0	0	0	0	0	0	0	2		
LUAR3	0	0	0	0	3	20	27	47	1	4	5	9		
MARE11	0	0	0	0	0	0	7	27	1	2	5	17		
PIEN	0	0	0	20	0	0	0	0	0	1	1	20		
PIPO	0	0	0	30	0	0	0	20	0	0	0	12		
POFE	7	13	27	73	7	33	70	93	3	12	26	44		
POTR5	0	3	13	33	0	0	13	20	0	5	27	56		
PSME	0	0	0	7	0	0	0	0	0	1	5	18		
PTAQ	0	3	37	67	0	0	0	0	0	1	8	14		
PYCH	0	0	0	0	0	0	0	0	0	0	0	2		
SEMU3	0	0	7	33	0	0	0	0	1	1	10	21		
SYOR2	0	0	0	0	0	0	0	0	0	0	1	4		
THFE	0	0	0	13	0	0	0	0	0	0	0	3		
UNGRCA1	37	63	70	100	10	43	60	87	16	41	54	77		

Table G8. Frequency (%) of plant species in different-sized quadrats at two Loamy Hills, Cold, macroplots (GRCA1 and GRCA2) and combined frequency values for both macroplots associated with the Loamy Hills, Cold, ecological site at Grand Canyon National Park. See Appendix A for key to species codes.

	Frequency (%) by macroplot and quadrat size												
		GRCA	1			GRCA	\2		Both r	nacroplots co	ombined (n :	= 2)	
Species code	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	
ABCO	0	0	0	0	0	3	37	84	0	2	18	42	
ABLA	0	0	10	43	0	0	0	0	0	0	5	22	
ACMI2	0	0	0	0	0	10	10	20	0	5	5	10	
ANPA5	3	3	7	7	0	0	0	5	2	2	3	6	
BRIN2	0	10	23	66	0	7	13	37	0	8	18	52	
ELEL5	0	0	10	24	0	0	3	8	0	0	7	16	
ERFO3	0	3	10	24	3	7	7	11	2	5	8	18	
FRVI	0	0	10	24	7	10	27	46	3	5	18	35	
GECA3	0	3	3	13	0	3	17	26	0	3	10	20	
GOOB2	0	3	13	47	0	0	0	14	0	2	7	30	
JUCO6	0	0	17	40	0	0	0	0	0	0	8	20	
MARE11	0	3	10	29	0	0	27	60	0	2	18	45	
PIED	0	0	0	0	0	0	3	8	0	0	2	4	
PIEN	0	0	20	68	0	0	0	5	0	0	10	36	
PIPO	0	0	0	14	0	0	0	5	0	0	0	10	
POFE	0	3	7	26	3	13	17	31	2	8	12	28	
POTR5	3	7	33	81	3	7	7	50	3	7	20	65	
PSME	0	7	37	75	0	3	17	55	0	5	27	65	
PTAQ	0	0	0	0	0	0	7	16	0	0	3	8	
PYCH	0	0	0	0	0	0	3	3	0	0	2	2	
SEMU3	0	0	0	5	3	10	13	18	2	5	7	11	
SISC7	0	0	0	5	0	0	0	10	0	0	0	7	
UNGRCA1	3	20	37	70	10	17	53	77	7	18	45	74	

Table G9. Frequency (%) of plant species in different-sized quadrats at three macroplots (MEVE3, MEVE4, and MEVE8) associated with the Loamy Mesa Top PJ ecological site at Mesa Verde National Park. See Appendix A for key to species codes.

	Frequency (%) by macroplot and quadrat size											
	MEVE3				MEVE4				MEVE8			
Species code	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²
ARTR2	0	0	0	0	0	0	0	0	0	0	0	0
BRTE	0	0	0	0	0	0	0	0	0	0	3	20
CANU3	0	0	0	0	0	0	3	3	0	0	0	0
CANU4	0	0	0	0	0	0	0	0	0	0	7	53
CHAL7	0	0	0	5	0	0	3	13	0	0	0	0
CHLE4	0	0	0	0	0	0	0	0	0	0	0	0
COWR2	0	0	0	0	0	0	0	0	0	0	13	73
DEPI	0	0	0	0	0	0	0	0	0	0	0	0
ELEL5	0	0	0	0	0	0	0	10	0	0	0	0
ERUM	0	0	13	37	0	0	0	0	0	0	0	0
ESVI2	0	0	0	0	0	0	0	5	0	0	0	0
GUSA2	0	0	0	0	0	0	0	0	0	0	0	0
HECO26	0	0	0	0	0	0	0	5	0	0	0	0
JUOS	0	0	10	48	0	3	33	86	3	20	27	87
KOMA	0	0	0	0	0	0	0	5	0	0	0	0
LAOC3	0	0	0	0	0	0	0	0	0	0	0	0
LATA	0	0	0	0	0	0	0	0	0	0	10	47
LEPE2	0	0	3	3	0	0	0	0	0	0	0	0
LEPU	0	7	37	84	0	0	0	0	0	0	0	0
LEPU	0	0	0	0	3	10	27	50	0	0	0	0
LUCA	0	0	3	8	0	0	0	10	0	0	0	0
OPER	0	0	7	78	0	0	3	65	0	0	7	47
PEPU7	0	0	3	13	0	0	0	0	0	0	0	0
PIED	0	0	23	61	0	0	23	80	0	0	27	47
POFE	10	57	97	100	20	57	97	100	27	60	100	100
PUTR2	0	3	20	72	0	0	0	10	0	0	0	20
RATE	0	0	0	0	0	0	3	3	0	0	3	3
SEMU3	0	0	0	0	0	0	0	0	0	0	0	0
SPCO	0	0	0	0	0	0	0	5	0	0	0	0
STHY6	0	0	0	0	0	0	0	0	0	0	0	7
STLO4	0	0	0	5	3	3	3	27	0	0	0	30
YUBA	0	0	3	8	0	3	7	30	0	0	0	17

Table G10. Frequency (%) of plant species in different-sized quadrats at two Loamy Mesa Top PJ macroplots (MEVE9 and MEVE10) and combined frequency values for all five macroplots associated with the Loamy Mesa Top PJ ecological site at Mesa Verde National Park. See Appendix A for key to species codes.

					Frequency (%) by macrop	olot and qua	drat size				
		MEVE	9			MEVE1	10		All m	acroplots co	mbined (n =	5)
Species code	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²
ARTR2	0	0	0	0	7	13	67	97	1	3	13	19
BRTE	0	0	3	17	0	7	20	33	0	1	5	14
CANU3	0	0	0	0	0	0	0	0	0	0	1	1
CANU4	0	0	0	17	0	0	0	3	0	0	1	15
CHAL7	0	0	0	0	0	0	7	10	0	0	2	6
CHLE4	0	0	0	3	0	0	0	3	0	0	0	1
COWR2	0	10	33	77	0	0	43	83	0	2	18	47
DEPI	0	0	0	0	0	0	7	17	0	0	1	3
ELEL5	0	0	0	7	0	0	13	37	0	0	3	11
ERUM	0	0	0	0	0	0	0	0	0	0	3	7
ESVI2	0	0	0	0	0	0	0	0	0	0	0	1
GUSA2	0	0	0	0	0	0	0	30	0	0	0	6
HECO26	0	0	0	0	3	7	7	13	1	1	1	4
JUOS	0	17	20	63	7	7	13	70	2	9	21	71
KOMA	0	0	0	0	0	0	0	0	0	0	0	1
LAOC3	0	0	0	0	0	0	3	10	0	0	1	2
LATA	0	0	13	13	0	0	0	10	0	0	5	14
LEPE2	0	0	0	0	0	0	0	0	0	0	1	1
LEPU	0	0	0	0	0	0	0	0	0	1	7	17
LEPU	0	0	0	33	0	0	0	0	1	2	5	17
LUCA	0	0	3	10	0	0	7	10	0	0	3	8
OPER	0	0	13	67	0	0	33	67	0	0	13	65
PEPU7	0	0	0	0	0	0	0	0	0	0	1	3
PIED	0	3	17	50	0	0	20	63	0	1	22	60
POFE	13	30	87	100	3	10	53	87	15	43	87	97
PUTR2	0	0	7	13	0	0	0	0	0	1	5	23
RATE	0	0	0	0	0	7	13	27	0	1	4	7
SEMU3	0	0	0	10	0	0	0	0	0	0	0	2
SPCO	0	0	0	0	0	0	0	10	0	0	0	3
STHY6	0	0	0	0	0	0	0	0	0	0	0	1
STLO4	0	7	7	17	0	0	13	20	1	2	5	20
YUBA	0	3	7	53	0	0	0	7	0	1	3	23

Table G11. Frequency (%) of plant species in different-sized quadrats at three macroplots (CARE1, CARE2b, and CARE5) associated with the Semidesert Alkali Sandy Loam ecological site at Capitol Reef National Park. See Appendix A for key to species codes.

					Frequency (%) by macrop	olot and qua	drat size				
		CARE	1			CARE	2b			CARE	5	
Species code	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m²
AMAC2	0	3	33	48	0	0	3	3	0	0	7	20
ARBI3	0	0	0	0	0	0	0	10	0	0	0	0
ARDR4	0	0	0	0	0	0	0	0	0	0	0	7
ARFI2	0	0	0	0	0	0	0	5	0	0	0	0
ARTR2	0	0	0	0	0	0	0	10	0	0	0	0
ATCA2	0	0	0	0	0	0	0	0	0	0	10	33
ATCO	0	3	30	97	3	13	50	98	0	7	30	57
BOER4	3	10	13	18	0	0	0	0	0	0	0	0
BOGR2	3	3	23	57	3	7	10	29	0	0	0	7
BRIN2	0	0	0	0	0	0	0	0	0	3	3	7
BRTE	0	0	0	5	0	0	0	5	0	3	7	43
CELA4	0	3	17	50	0	0	7	21	0	0	7	33
CHAL7	7	13	20	63	7	37	47	80	0	10	20	50
CHLE4	0	13	33	67	0	0	0	0	7	10	37	67
CHNA2	0	0	0	0	0	0	0	0	0	0	0	0
CHST	0	0	0	0	0	0	0	5	0	20	60	90
COWR2	0	0	0	0	0	0	0	0	0	0	7	13
DEPI	0	0	0	0	0	0	0	14	0	0	0	10
ERCE2	17	40	73	100	0	10	30	44	3	10	23	50
ERIN4	0	0	0	0	0	0	0	0	0	0	0	0
GIIN2	0	10	33	48	0	3	20	44	3	20	50	80
GUSA2	0	3	43	96	0	3	37	70	0	3	7	33
HAGL	0	0	0	0	0	0	0	0	0	0	0	0
HIJA	0	7	7	21	7	10	10	15	0	0	7	30
LAOC3	0	7	17	45	0	3	3	18	3	37	70	90
LIAR3	0	0	0	0	0	0	7	11	0	0	0	0
MACA2	0	3	13	51	0	0	7	11	0	3	7	23
MATA2	3	7	17	36	0	10	30	68	0	7	30	80
MEAL6	0	3	3	18	0	0	0	0	0	33	67	93
MUSQ	0	0	0	0	0	0	0	5	0	0	0	0
OECE2	0	0	0	10	0	0	0	0	0	0	0	0
OEPA	0	0	0	0	0	0	0	10	0	0	0	7
OPER	3	17	57	100	0	13	37	75	0	0	0	7
ORHY	0	10	53	100	7	20	53	100	3	23	67	90
PHCR	0	0	0	0	0	0	0	0	0	0	0	10

Table G11.—Continued

					Frequency (%) by macro	plot and qua	drat size				
		CARE	1			CARE	2b			CARE	:5	
Species code	0.01 m ²	0.1 m ²	1 m ²	10 m ²	0.01 m ²	0.1 m ²	1 m ²	10 m ²	0.01 m ²	0.1 m ²	1 m ²	10 m ²
PLPA2	40	80	100	100	47	70	83	93	0	3	30	63
SAIB	13	57	80	90	0	0	0	0	53	77	93	100
SAPA8	0	0	0	0	3	23	63	73	0	0	0	0
SAVE4	0	7	17	55	0	0	10	72	0	0	17	53
SIHY	0	3	7	73	0	0	3	22	0	0	0	7
SPAI	0	0	3	3	0	0	0	0	0	0	0	3
SPCO	0	0	20	49	0	7	13	56	0	0	0	13
SPCO4	37	57	87	96	7	17	57	80	3	7	13	27
SPCR	0	0	0	0	0	3	10	10	0	0	0	0
SPPA2	0	0	0	0	0	0	0	0	3	7	10	63
STLO4	0	0	0	0	0	0	0	0	0	0	0	0
TESP2	0	0	0	5	0	0	0	0	0	0	0	0
THSU	0	0	0	0	0	0	0	10	0	0	0	0
VUOC	0	3	10	29	0	0	0	10	10	23	63	90

Table G12. Frequency (%) of plant species in different-sized quadrats at two Semidesert Alkali Sandy Loam macroplots (CARE6 and CARE7) and combined frequency values for all five macroplots associated with the Semidesert Alkali Sandy Loam ecological site at Capitol Reef National Park. See Appendix A for key to species codes.

					Frequency (%) by macrop	olot and qua	drat size				
		CARE	6			CARE	7		All m	acroplots co	mbined (n =	5)
Species code	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m ²	10 m ²	0.01 m ²	0.1 m ²	1 m ²	10 m ²
AMAC2	0	0	7	23	7	13	47	70	1	3	19	33
ARBI3	0	0	0	0	0	0	0	0	0	0	0	2
ARDR4	0	0	0	0	0	0	0	0	0	0	0	1
ARFI2	0	0	0	0	0	0	0	0	0	0	0	1
ARTR2	0	0	0	0	0	0	0	0	0	0	0	2
ATCA2	0	0	0	0	0	0	0	0	0	0	2	7
ATCO	0	7	20	47	0	3	60	100	1	7	38	80
BOER4	0	0	0	0	0	0	0	0	1	2	3	4
BOGR2	0	0	0	0	0	0	0	0	1	2	7	18
BRIN2	0	0	0	0	0	0	0	0	0	1	1	1
BRTE	0	0	0	0	3	3	7	33	1	1	3	17
CELA4	0	0	0	0	7	10	17	23	1	3	9	26
CHAL7	0	0	0	0	0	0	0	0	3	12	17	39
CHLE4	0	0	0	0	0	7	13	23	1	6	17	31
CHNA2	0	0	0	7	0	0	0	0	0	0	0	1
CHST	0	0	0	0	0	3	3	3	0	5	13	20
COWR2	0	0	0	0	0	0	0	0	0	0	1	3
DEPI	0	0	0	0	0	0	7	7	0	0	1	6
ERCE2	0	3	7	20	0	0	23	47	4	13	31	52
ERIN4	0	0	0	0	0	0	0	20	0	0	0	4
GIIN2	3	17	27	33	3	20	43	83	2	14	35	58
GUSA2	0	10	17	17	0	7	13	37	0	5	23	50
HAGL	0	0	0	0	7	13	33	47	1	3	7	9
HIJA	7	23	30	63	0	3	27	57	3	9	16	37
LAOC3	0	10	30	60	17	70	93	100	4	25	43	63
LIAR3	0	0	0	0	0	0	0	0	0	0	1	2
MACA2	0	3	3	10	0	0	0	0	0	2	6	19
MATA2	0	0	0	0	0	0	0	0	1	5	15	37
MEAL6	0	0	0	3	0	0	33	63	0	7	21	36
MUSQ	0	0	0	0	0	0	0	0	0	0	0	1
OECE2	0	0	0	0	0	0	0	0	0	0	0	2
OEPA	0	0	0	0	0	0	0	0	0	0	0	3
OPER	0	0	7	13	0	0	0	47	1	6	20	48
ORHY	0	10	33	63	0	3	60	93	2	13	53	89
PHCR	0	0	0	0	0	0	0	0	0	0	0	2

Table G12.—Continued

					Frequency (%) by macro	olot and qua	drat size				
		CARE	6			CARE	7		All m	acroplots co	mbined (n =	5)
Species code	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m ²	10 m ²
PLPA2	0	0	7	13	0	23	87	100	17	35	61	74
SAIB	0	0	0	13	20	73	93	97	17	41	53	60
SAPA8	0	0	0	0	0	0	0	0	1	5	13	15
SAVE4	0	0	0	7	0	3	23	50	0	2	13	47
SIHY	0	0	7	7	0	0	0	7	0	1	3	23
SPAI	0	3	20	60	0	0	0	13	0	1	5	16
SPCO	0	0	0	7	0	0	0	7	0	1	7	26
SPCO4	0	0	0	0	0	0	0	0	9	16	31	41
SPCR	0	0	0	0	0	0	0	0	0	1	2	2
SPPA2	0	0	7	7	0	0	3	10	1	1	4	16
STLO4	0	0	0	0	0	0	7	63	0	0	1	13
TESP2	0	0	0	0	0	0	0	0	0	0	0	1
THSU	0	0	0	0	0	0	0	0	0	0	0	2
VUOC	0	0	0	0	0	0	3	7	2	5	15	27

Table G13. Frequency (%) of plant species in different-sized quadrats at three macroplots (DINO1, DINO2b, and DINO3) associated with the Semidesert Loam ecological site at Dinosaur National Monument. See Appendix A for key to species codes.

					Frequency (%) by macrop	olot and qua	drat size				
		DINO1	1			DINO2	?b			DINO:	3	
Species code	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²
AGSM	0	13	33	52	0	0	0	0	0	0	0	10
ARTR2	0	0	3	41	7	23	70	99	30	57	73	100
ASMO7	0	0	0	0	0	0	0	0	0	0	0	0
ATCA2	0	0	0	5	0	0	0	0	0	0	0	0
ATCO	0	0	0	10	0	0	3	51	0	0	3	37
BRTE	73	97	100	100	87	93	93	93	27	60	67	100
CANU3	0	7	27	70	0	0	0	0	0	0	0	0
CANU3	0	0	0	0	0	0	0	0	0	0	0	0
CELA4	0	0	0	0	0	0	0	0	0	0	3	7
CHLE4	0	0	0	0	0	0	0	0	0	3	3	7
CHNA2	0	0	0	0	0	0	0	0	0	0	0	0
DEPI	0	7	30	82	0	7	23	52	0	7	37	87
ERCE2	0	0	0	0	0	0	0	0	0	0	7	13
GIIN2	0	0	33	67	0	0	0	0	0	0	7	10
GUSA2	0	0	3	3	0	7	20	63	0	0	0	0
HIJA	7	7	7	11	3	3	13	23	7	17	37	53
JUOS	0	0	0	0	0	0	0	0	0	0	0	0
LAOC3	0	0	0	0	0	0	0	0	0	0	17	33
LARE	0	3	20	30	10	30	70	94	0	0	0	0
LASE	0	0	0	5	0	0	0	0	0	0	0	0
LEPU	0	0	0	0	0	0	0	0	0	0	0	7
OPER	0	0	3	18	0	3	3	3	0	0	7	60
ORHY	0	3	7	21	0	0	0	0	0	0	0	37
PLPA2	0	0	3	27	0	0	0	0	0	0	0	0
POSE	0	10	23	52	0	0	0	0	0	0	20	40
RATE	0	0	0	0	0	0	0	0	0	0	0	0
SAIB	0	0	0	0	0	0	3	8	0	0	10	17
SAVE4	0	0	3	8	0	0	0	0	0	0	0	0
SIAL2	0	0	0	0	0	0	3	46	0	0	0	0
SIHY	0	0	3	3	3	20	47	99	0	3	17	53
SPCO	0	20	57	80	0	0	0	38	0	10	37	77
STCO4	17	37	73	88	0	0	0	0	3	23	77	93
STLO4	0	0	0	0	0	0	0	0	0	0	0	0
VUOC	77	97	97	97	3	7	13	23	0	0	0	0
ZIPA2	0	0	0	5	0	0	0	0	0	0	0	0

Table G14. Frequency (%) of plant species in different-sized quadrats at two Semidesert Loam macroplots (DINO4b and DINO5) and combined frequency values for all five macroplots associated with the Semidesert Loam ecological site at Dinosaur National Monument. See Appendix A for key to species codes.

					Frequency (%) by macrop	plot and qua	drat size				
		DINO4	b			DINO	5		All m	acroplots co	mbined (n =	5)
Species code	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²
AGSM	0	0	0	0	3	17	30	47	1	6	13	22
ARTR2	0	10	43	100	10	13	67	100	9	21	51	88
ASMO7	0	0	0	7	0	0	0	0	0	0	0	1
ATCA2	0	0	0	0	0	0	0	0	0	0	0	1
ATCO	0	0	0	13	0	0	0	0	0	0	1	22
BRTE	87	100	100	100	30	43	53	83	61	79	83	95
CANU3	0	0	0	0	0	0	0	0	0	1	5	14
CANU3	0	0	0	0	3	10	23	73	1	2	5	15
CELA4	0	0	0	0	7	13	27	57	1	3	6	13
CHLE4	0	0	0	0	0	0	0	0	0	1	1	1
CHNA2	0	0	0	33	0	0	0	0	0	0	0	7
DEPI	0	3	7	47	0	0	0	10	0	5	19	56
ERCE2	0	0	0	0	0	0	0	0	0	0	1	3
GIIN2	0	0	7	13	0	0	0	3	0	0	9	19
GUSA2	3	7	53	83	0	0	0	20	1	3	15	34
HIJA	0	0	7	20	7	20	20	23	5	9	17	26
JUOS	0	0	0	23	0	0	0	17	0	0	0	8
LAOC3	0	0	0	3	0	0	0	0	0	0	3	7
LARE	0	0	0	0	0	0	0	0	2	7	18	25
LASE	0	0	0	3	0	0	0	0	0	0	0	2
LEPU	0	0	0	0	0	0	7	30	0	0	1	7
OPER	0	0	7	43	0	0	20	60	0	1	8	37
ORHY	0	0	0	0	0	0	0	7	0	1	1	13
PLPA2	0	0	0	0	10	20	33	63	2	4	7	18
POSE	3	10	20	67	43	73	100	100	9	19	33	52
RATE	3	10	20	37	0	0	0	0	1	2	4	7
SAIB	0	0	0	0	0	0	0	0	0	0	3	5
SAVE4	0	0	7	67	0	0	0	0	0	0	2	15
SIAL2	0	0	0	0	0	0	0	0	0	0	1	9
SIHY	0	0	3	13	0	0	0	7	1	5	14	35
SPCO	3	7	7	17	7	13	30	67	2	10	26	56
STCO4	0	3	17	50	7	17	77	97	5	16	49	66
STLO4	3	3	3	10	0	0	0	0	1	1	1	2
VUOC	13	40	63	83	10	27	87	97	21	34	52	60
ZIPA2	0	0	0	0	0	0	0	0	0	0	0	1

Table G15. Frequency (%) of plant species in different-sized quadrats at three macroplots (ARCH1b, ARCH2, and ARCH3) associated with the Semidesert Shallow Sandy Loam ecological site at Arches National Park. See Appendix A for key to species codes.

					Frequency (%) by macrop	olot and qua	drat size				
		ARCH1	b			ARCH	2			ARCH	3	
Code	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m ²	10 m ²	0.01 m ²	0.1 m ²	1 m ²	10 m ²
ARFI2	0	0	0	0	0	0	0	0	0	0	0	3
ASMA10	0	0	0	10	0	0	0	0	0	0	0	0
ASMO7	0	0	0	0	0	0	0	0	0	0	0	0
ATCA2	0	0	0	0	0	0	0	0	0	0	0	0
BRTE	0	0	0	0	0	0	0	5	0	0	7	10
CANU3	0	0	0	0	0	0	0	0	0	0	0	0
CHAL7	0	0	0	0	0	0	0	0	0	0	0	0
CHST	0	0	0	0	0	0	0	0	0	3	20	40
CHVI8	0	0	7	35	0	0	0	0	0	0	0	0
CORA	3	20	77	100	17	47	97	100	0	10	67	100
COWR2	0	0	0	0	0	0	0	0	0	0	0	0
DAFL	0	3	20	53	0	0	0	0	0	0	0	0
DEPI	0	0	0	0	0	0	0	5	0	0	0	20
ELEL5	0	0	0	0	0	0	0	0	0	0	0	0
EPVI	0	3	7	64	0	0	13	47	0	7	7	17
ERCE2	0	0	0	0	0	0	0	0	0	0	0	0
ERCO14	0	0	0	0	0	0	0	0	0	0	0	0
ERIN4	0	3	7	11	0	0	0	0	0	0	0	0
ERMI4	0	0	3	8	0	0	0	0	0	0	0	0
EUFE2	3	10	23	52	0	0	0	0	0	0	0	0
FEOC3	0	7	10	24	0	3	27	46	10	30	50	83
FRAN2	0	0	0	0	0	0	0	0	0	0	0	0
GIIN2	0	0	10	15	0	3	37	56	0	3	3	7
GUSA2	0	0	0	0	0	0	0	0	0	0	0	0
HIJA	3	10	53	77	0	0	0	0	0	0	0	10
JUOS	0	0	0	5	0	0	0	5	0	0	0	7
LAOC3	0	0	0	0	3	7	33	48	0	0	0	0
LEMO2	0	0	0	0	0	0	0	0	0	0	0	0
LEPE2	0	0	0	0	0	0	0	0	0	0	0	0
MAFR3	0	0	0	0	0	0	0	0	0	0	0	0
MEAL6	0	0	3	3	0	0	3	8	0	0	0	0
OECE2	0	0	0	5	0	0	0	0	0	0	0	0
OPER	0	0	0	0	3	10	47	70	0	3	23	53
OPPO	0	0	0	0	0	0	0	0	0	0	0	0
PEPU7	0	0	0	0	0	0	0	5	0	0	0	0

Table G15.—Continued

					Frequency (%) by macrop	olot and qua	drat size				
		ARCH1	b			ARCH	12			ARCH	3	
Code	0.01 m ²	0.1 m ²	1 m ²	10 m²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²
PHCR	0	0	0	0	0	0	3	13	0	0	0	7
PIED	0	0	0	0	0	0	0	0	0	0	0	0
PLPA2	0	0	0	0	0	0	0	0	0	0	0	0
PUME	0	0	0	0	0	0	0	0	0	0	0	7
SAPE10	0	0	0	0	0	0	0	0	0	0	0	0
SCWH	0	0	0	0	0	0	0	0	0	0	0	0
SEMU3	0	0	0	0	0	0	0	0	0	0	0	0
SPCO	0	0	0	0	0	0	0	0	0	0	0	0
STEX	0	0	0	0	0	0	0	0	0	0	0	0
STHY6	0	0	3	8	0	0	0	5	0	0	0	0
STLO4	0	7	13	18	3	23	83	93	23	37	80	93
YUHA	0	0	0	5	0	0	0	0	0	0	0	7
ZIPA2	0	0	0	0	0	0	0	0	0	0	0	0

Table G16. Frequency (%) of plant species in different-sized quadrats at three macroplots (ARCH4b, ARCH5, and CANY3) associated with the Semidesert Shallow Sandy Loam ecological site at Arches and Canyonlands National Parks. See Appendix A for key to species codes.

					Frequency (%) by macrop	plot and qua	drat size				
		ARCH4	b			ARCH	15			CANY	3	
Species code	0.01 m ²	0.1 m ²	1 m ²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²
ARFI2	0	0	0	0	0	0	0	0	0	0	0	0
ASMA10	0	0	0	0	0	0	0	0	0	0	0	0
ASMO7	0	0	0	0	0	0	0	0	0	0	0	10
ATCA2	0	0	0	0	0	0	0	0	0	0	0	5
BRTE	0	0	3	7	0	3	23	50	0	7	43	72
CANU3	0	0	0	0	0	0	0	0	0	0	0	0
CHAL7	0	0	0	0	0	0	0	0	0	0	3	3
CHST	0	0	7	47	3	43	83	97	0	0	3	3
CHVI8	0	0	0	0	0	0	0	0	0	3	3	3
CORA	0	10	43	97	3	7	73	100	3	7	40	73
COWR2	0	0	0	0	0	0	0	0	0	13	53	100
DAFL	0	0	0	0	0	0	0	0	0	0	0	0
DEPI	0	0	7	23	0	0	0	0	0	10	17	55
ELEL5	0	0	0	0	0	0	0	0	0	0	3	8
EPVI	0	0	13	27	0	10	33	40	0	3	7	11
ERCE2	0	0	0	0	0	0	0	0	0	0	0	5
ERCO14	0	0	0	0	0	0	0	0	0	0	13	47
ERIN4	0	0	0	0	0	0	0	0	0	0	0	0
ERMI4	0	0	0	0	0	0	0	0	0	0	0	0
EUFE2	0	0	3	10	0	0	7	13	3	10	13	13
FEOC3	13	13	53	90	27	77	97	97	3	30	83	83
FRAN2	0	0	0	0	0	0	0	0	0	0	0	0
GIIN2	3	3	47	87	30	60	80	87	3	13	47	80
GUSA2	0	0	0	7	0	0	0	0	0	3	13	42
HIJA	0	0	0	0	0	0	0	0	0	0	0	0
JUOS	0	0	0	0	0	0	0	0	0	0	0	10
LAOC3	0	0	0	17	7	17	27	57	0	10	23	33
LEMO2	0	0	0	0	0	0	0	0	0	0	17	50
LEPE2	0	0	30	43	0	0	0	0	0	0	0	0
MAFR3	0	0	0	0	0	0	0	0	0	0	0	10
MEAL6	0	0	0	13	0	0	0	0	0	0	0	0
OECE2	0	0	0	0	0	0	0	0	0	0	0	0
OPER	3	3	7	13	3	17	77	100	0	0	0	0
OPPO	0	0	0	0	0	0	0	0	3	3	17	40
PEPU7	0	0	0	0	0	0	0	0	0	0	0	0

Table G16.—Continued

					Frequency (%) by macrop	plot and qua	drat size				
		ARCH4	4b			ARCH	15			CANY	3	
Species code	0.01 m ²	0.1 m ²	1 m ²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²
PHCR	20	43	67	80	0	0	0	0	0	0	3	3
PIED	0	0	0	0	0	0	0	0	0	0	0	5
PLPA2	0	0	0	0	0	0	0	13	0	0	0	0
PUME	0	0	0	0	0	0	0	0	0	0	0	0
SAPE10	0	0	3	13	0	0	0	0	0	0	0	0
SCWH	0	0	0	0	0	0	0	0	0	0	0	5
SEMU3	0	0	0	0	0	0	0	0	0	0	3	8
SPCO	0	0	0	3	0	0	3	3	0	0	0	0
STEX	0	0	0	0	0	0	0	0	0	0	0	5
STHY6	0	0	0	0	0	0	0	0	0	0	7	26
STLO4	0	13	30	100	37	50	93	100	0	0	7	21
YUHA	0	0	0	0	0	0	0	0	0	0	0	0
ZIPA2	0	0	0	0	0	0	0	0	0	0	0	0

Table G17. Frequency (%) of plant species in different-sized quadrats at one Semidesert Shallow Sandy Loam macroplot (CANY4) at Canyonlands National Park and combined frequency values for all seven macroplots associated with the Semidesert Shallow Sandy Loam ecological site at Arches and Canyonlands National Parks. See Appendix A for key to species codes.

			Frequency (%) by macr	oplot and qua	drat size		
		CANY	4		All m	acroplots co	mbined (n =	7)
Species code	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²
ARFI2	0	0	0	0	0	0	0	0.5
ASMA10	0	0	0	0	0	0	0	1
ASMO7	0	0	10	34	0	0	1	6
ATCA2	0	0	0	0	0	0	0	1
BRTE	0	3	7	30	0	2	12	25
CANU3	0	3	3	8	0	0.5	0.5	1
CHAL7	0	0	0	10	0	0	0.5	2
CHST	0	0	3	22	0.5	7	17	30
CHVI8	0	0	0	0	0	0.5	1	6
CORA	0	3	17	31	4	15	59	86
COWR2	3	13	33	62	0.5	4	12	23
DAFL	0	0	0	0	0	0.5	3	8
DEPI	0	0	20	49	0	1	6	22
ELEL5	0	3	10	10	0	0.5	2	3
EPVI	0	3	10	24	0	4	13	33
ERCE2	0	0	0	0	0	0	0	1
ERCO14	0	0	0	0	0	0	2	7
ERIN4	0	0	0	0	0	0.5	1	2
ERMI4	0	0	0	0	0	0	0.5	1
EUFE2	0	0	0	0	1	3	7	13
FEOC3	3	13	50	69	8	25	53	70
FRAN2	0	0	3	3	0	0	0.5	0.5
GIIN2	0	10	37	70	5	13	37	57
GUSA2	0	0	3	13	0	0.5	2	9
HIJA	0	0	0	0	0.5	1	8	12
JUOS	0	0	0	0	0	0	0	4
LAOC3	3	3	7	16	2	5	13	24
LEMO2	0	0	0	0	0	0	2	7
LEPE2	0	0	0	0	0	0	4	6
MAFR3	0	0	0	0	0	0	0	1

Table G17.—Continued

	Frequency (%) by macroplot and quadrat size											
		CAN	Y4		All macroplots combined (n = 7)							
Species code	0.01 m ²	0.1 m ²	1 m ²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²				
MEAL6	0	0	0	0	0	0	1	4				
OECE2	0	0	0	0	0	0	0	1				
OPER	0	0	0	0	1	5	22	34				
OPPO	0	3	7	35	0.5	1	3	11				
PEPU7	0	0	0	0	0	0	0	1				
PHCR	0	0	0	0	3	6	10	15				
PIED	0	0	0	10	0	0	0	2				
PLPA2	0	0	0	0	0	0	0	2				
PUME	0	0	0	0	0	0	0	1				
SAPE10	0	0	0	0	0	0	0.5	2				
SCWH	0	0	0	0	0	0	0	1				
SEMU3	0	3	3	22	0	0.5	1	4				
SPCO	0	0	0	0	0	0	0.5	1				
STEX	0	0	3	18	0	0	0.5	3				
STHY6	3	3	17	26	0.5	0.5	4	9				
STLO4	0	0	10	43	9	19	45	67				
YUHA	0	0	0	14	0	0	0	4				
ZIPA2	0	0	3	8	0	0	0.5	1				

Table G18. Frequency (%) of plant species in different-sized quadrats at two Shallow Loamy macroplots (WUPA3 and WUPA4) and combined frequency values for both macroplots associated with the Shallow Loamy ecological site at Wupatki National Monument. See Appendix A for key to species codes.

	Frequency (%) by macroplot and quadrat size											
		WUP	A3			WUP	A4		Both macroplots combined (n = 2)			
Species code	0.01 m ²	0.1 m ²	1 m ²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²
ACHY	0	0	0	0	0	0	0	33	0	0	0	17
ATCA2	0	0	0	0	0	0	0	10	0	0	0	5
BOER4	7	7	47	90	0	3	13	18	3	5	30	54
CHLE4	7	40	77	91	10	30	70	99	8	35	73	95
CHNA2	0	0	7	16	0	0	3	22	0	0	5	19
CRCI3	0	0	0	5	0	0	0	0	0	0	0	2
DEPI	0	0	17	69	0	0	7	7	0	0	12	38
ELEL5	0	0	0	0	0	0	3	13	0	0	2	6
EPVI	0	0	0	0	0	3	7	16	0	2	3	8
GACO5	0	0	0	5	0	0	0	0	0	0	0	2
GIIN2	47	87	100	100	0	33	77	86	23	60	88	93
HENE5	17	50	87	100	10	33	80	99	13	42	83	100
MEAL6	10	23	60	84	13	43	83	100	12	33	72	92
OPER	0	0	0	5	0	0	0	0	0	0	0	2
PLJA	23	57	97	97	10	53	87	100	17	55	92	98
SAKA	0	0	3	3	0	0	0	5	0	0	2	4
SPAI	0	3	10	15	0	0	10	10	0	2	10	12
SPPA2	0	0	0	0	0	0	3	13	0	0	2	6
STPI	0	0	0	0	0	0	0	5	0	0	0	2

Table G19. Frequency (%) of plant species in different-sized quadrats at three macroplots (CARE3, CARE4b, and CARE8) associated with the Upland Shallow Loam ecological site at Capitol Reef National Park. See Appendix A for key to species codes.

					Frequency (%) by macrop	plot and qua	drat size					
		CARE	3			CARE	4b		CARE8				
Species code	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²	
AMUT	0	0	0	0	0	3	3	13	0	0	0	0	
BEFR	0	0	0	5	0	0	0	0	0	0	3	17	
BRTE	0	0	0	0	0	0	0	0	0	0	0	7	
CEMO2	0	0	0	0	0	0	0	0	0	0	3	37	
CHAL7	0	0	0	0	0	0	0	0	0	0	0	3	
CHVI8	0	0	3	3	0	0	0	0	0	0	0	0	
COME5	0	0	0	0	0	3	3	3	0	0	0	0	
COWR2	17	53	90	95	17	47	80	99	3	7	60	80	
CRFL5	0	0	7	30	0	0	7	35	0	0	3	40	
DEPI	0	3	10	20	0	0	20	25	0	3	33	57	
EPVI	0	0	0	14	0	0	0	5	0	3	13	30	
ERCE2	0	0	0	5	0	0	0	0	0	0	0	0	
ERMI4	0	0	7	21	0	0	3	3	0	0	0	0	
FRAN2	0	0	0	5	0	0	0	0	0	0	0	0	
GIIN2	0	10	17	21	0	0	0	0	0	7	20	43	
GUSA2	0	0	0	5	0	0	0	0	0	3	7	30	
HIJA	0	0	7	30	0	0	0	0	0	0	0	0	
JUOS	0	0	0	14	0	0	0	5	0	3	3	23	
ORHY	0	0	0	14	0	0	0	10	0	7	7	10	
PEPU7	0	0	0	0	0	0	0	14	0	0	0	7	
PIED	0	0	0	19	0	0	3	18	0	0	0	7	
POFE	0	3	3	3	0	0	0	0	0	0	0	0	
POSA12	0	0	3	3	0	0	0	0	0	0	0	0	
PUME	0	0	0	0	0	0	0	0	0	0	0	7	
PUTR2	0	0	0	0	0	0	0	0	0	0	0	0	
SHRO	0	0	0	5	3	3	3	3	0	0	0	3	
SIHY	3	3	3	3	0	0	0	0	0	0	0	0	
STPI	0	0	7	30	0	0	3	22	0	0	0	7	

Table G20. Frequency (%) of plant species in different-sized quadrats at two Upland Shallow Loam macroplots (CARE9 and CARE10) and combined frequency values for all five macroplots associated with the Upland Shallow Loam ecological site at Capitol Reef National Park. See Appendix A for key to species codes.

	Frequency (%) by macroplot and quadrat size											
		CARE	9			CARE	10		Ecological Site Mean			
Species code	0.01 m ²	0.1 m ²	1 m²	10 m²	0.01 m ²	0.1 m ²	1 m²	10 m ²	0.01 m ²	0.1 m ²	1 m²	10 m ²
AMUT	0	0	0	0	0	0	0	0	0	1	1	3
BEFR	0	0	0	0	0	0	0	0	0	0	1	4
BRTE	0	0	0	0	0	0	0	0	0	0	0	1
CEMO2	0	0	7	13	0	3	10	27	0	1	4	15
CHAL7	0	0	0	0	0	0	0	0	0	0	0	1
CHVI8	0	0	0	0	0	0	0	0	0	0	1	1
COME5	0	0	0	0	0	0	0	0	0	1	1	1
COWR2	20	37	47	67	17	33	47	80	15	35	65	84
CRFL5	0	0	0	0	0	0	7	43	0	0	5	30
DEPI	0	3	20	53	7	13	20	23	1	5	21	36
EPVI	0	0	0	7	0	0	17	37	0	1	6	18
ERCE2	0	0	0	0	0	0	0	0	0	0	0	1
ERMI4	0	0	0	0	0	0	0	0	0	0	2	5
FRAN2	0	0	0	0	0	0	0	0	0	0	0	1
GIIN2	0	0	0	13	0	0	0	0	0	3	7	16
GUSA2	0	0	10	20	0	0	0	7	0	1	3	12
HIJA	0	0	0	0	0	0	0	0	0	0	1	6
JUOS	0	0	0	0	0	0	0	27	0	1	1	14
ORHY	0	0	0	3	0	0	7	10	0	1	3	9
PEPU7	0	0	0	13	0	0	0	0	0	0	0	7
PIED	0	0	0	0	0	0	3	23	0	0	1	13
POFE	0	0	0	0	0	0	0	0	0	1	1	1
POSA12	0	0	0	0	0	0	0	0	0	0	1	1
PUME	0	0	0	30	0	0	0	0	0	0	0	7
PUTR2	0	0	0	10	0	0	0	0	0	0	0	2
SHRO	0	0	0	7	0	0	0	10	1	1	1	6
SIHY	0	0	0	0	0	0	0	0	1	1	1	1
STPI	0	0	0	0	0	0	0	0	0	0	2	12