$$\Delta(1232) P_{33}$$

 $I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$ Status: ****

Most of the results published before 1977 are now obsolete and have been omitted. They may be found in our 1982 edition, Physics Letters **111B** (1982).

Δ (1232) BREIT-WIGNER MASSES

MIXED CHARGES				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1231 to 1233 (\approx 1232) OUR ESTI	MATE			
1232.9 ± 1.2	ARNDT	04	DPWA	$\pi N \rightarrow \pi N, \eta N$
1231 ±1	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
1232 ± 3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1233 ±2	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
\bullet \bullet \bullet We do not use the following d	ata for averages	, fits	, limits,	etc. ● ● ●
1228 ±1	PENNER	0 2C	DPWA	Multichannel
1234 ±5	VRANA	00	DPWA	Multichannel
1233	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
∠(1232) ⁺⁺ MASS				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following d	ata for averages	, fits	, limits,	etc. • • •
1231.88±0.29	BERNICHA	96		Fit to PEDRONI 78
1230.5 ±0.2	ABAEV	95	IPWA	$\pi N \rightarrow \pi N$
1230.9 ± 0.3	КОСН	80 B	IPWA	$\pi N \rightarrow \pi N$
1231.1 ±0.2	PEDRONI	78		$\pi N \rightarrow \pi N$ 70–370 MeV
∠(1232) ⁺ MASS				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
\bullet \bullet \bullet We do not use the following d	ata for averages	, fits	, limits,	etc. ● ● ●
1231.6	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1234.9 ± 1.4	MIROSHNIC	79		Fit photoproduction
1231.2	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1231.8	BERENDS	75	IPWA	$\gamma p \rightarrow \pi N$
⊿(1232) ⁰ MASS				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
\bullet \bullet \bullet We do not use the following d	ata for averages	, fits	, limits,	etc. ● ● ●
1234.35±0.75	BERNICHA	96		Fit to PEDRONI 78
1233.1 ± 0.3	ABAEV	95	IPWA	$\pi N \rightarrow \pi N$
1233.6 ± 0.5	КОСН	80 B	IPWA	$\pi N \rightarrow \pi N$
1233.8 ± 0.2	PEDRONI	78		$\pi N \rightarrow \pi N$ 70–370 MeV

HTTP://PDG.LBL.GOV

 $m_{\Delta^0} - m_{\Delta^{++}}$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
$\bullet~\bullet~\bullet$ We do not use the following	data for averages,	, fits,	limits,	etc. • • •
2.25 ± 0.68 2.6 ± 0.4 2.7 ± 0.3	BERNICHA ABAEV ³ PEDRONI	96 95 78	IPWA	Fit to PEDRONI 78 $\pi N \rightarrow \pi N$ See the masses

Δ (1232) BREIT-WIGNER WIDTHS

MIXED CHARGES				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
116 to 120 (\approx 118) OUR ESTIMA	TE			_
$118.0\pm~2.2$	ARNDT	04	DPWA	π N \rightarrow π N, η N
118 \pm 4	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
120 ± 5	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
116 \pm 5	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
\bullet \bullet \bullet We do not use the following d	ata for averages	, fits	, limits,	etc. ● ● ●
106 ± 1	PENNER	0 2C	DPWA	Multichannel
112 ±18	VRANA	00	DPWA	Multichannel
114	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
⊿(1232) ⁺⁺ WIDTH				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • We do not use the following d	ata for averages	, fits	, limits,	etc. • • •
109.07 ± 0.48	BERNICHA	96		Fit to PEDRONI 78
111.0 ± 1.0	КОСН	80 B	IPWA	$\pi N \rightarrow \pi N$
111.3 ±0.5	PEDRONI	78		$\pi N \rightarrow \pi N$ 70–370 MeV
∆(1232) ⁺ WIDTH				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
\bullet \bullet \bullet We do not use the following d	ata for averages	, fits	, limits,	etc. ● ● ●
111.2	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
131.1±2.4	MIROSHNIC	79		Fit photoproduction
111.0	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
⊿(1232) ⁰ WIDTH				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
$\bullet~\bullet~\bullet$ We do not use the following d	ata for averages	, fits	, limits,	etc. • • •
117.58 ± 1.16	BERNICHA	96		Fit to PEDRONI 78
113.0 ± 1.5	КОСН	80 B	IPWA	$\pi N \rightarrow \pi N$
117.9 ±0.9	PEDRONI	78		$\pi N \rightarrow \pi N$ 70–370 MeV

HTTP://PDG.LBL.GOV

Δ^0 - Δ^{++} WIDTH DIFFERENCE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following da	ata for averages,	fits,	limits,	etc. • • •
8.45 ± 1.11	BERNICHA	96		Fit to PEDRONI 78
5.1 ± 1.0	ABAEV	95	IPWA	$\pi N \rightarrow \pi N$
6.6 ±1.0	PEDRONI	78		See the widths

Δ (1232) POLE POSITIONS

REAL PART, MIXED CHARGES					
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
1209 to 1211 (\approx 1210) OUR ESTI	MATE				
1210	ARNDT	04	DPWA	$\pi N \rightarrow \pi N$, ηN	
1209	⁴ HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$	
1210 ± 1	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits	, limits,	etc. • • •	
1217	VRANA	00	DPWA	Multichannel	
1211	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$	
1210	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90	
-2×IMAGINARY PART, MI	XED CHARGES	5			
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
98 to 102 (≈ 100) OUR ESTIMA	TE				
100	ARNDT	04	DPWA	π N \rightarrow π N, η N	
100	⁴ HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$	
100 ± 2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits	, limits,	etc. • • •	
96	VRANA	00	DPWA	Multichannel	
100	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$	
100	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90	
REAL PART. ⊿(1232)++					
VALUE (MeV)	DOCUMENT ID		COMME	NT	
\bullet \bullet We do not use the following	data for averages	, fits	, limits,	etc. ● ● ●	
1212.50 ± 0.24	BERNICHA	96	Fit to F	PEDRONI 78	
1209.6 ±0.5	⁵ VASAN	76 B	Fit to C	CARTER 73	
1210.5 to 1210.8	⁶ VASAN	76 B	Fit to (CARTER 73	
$-2 \times IMAGINARY PART. \Delta(1232)^{++}$					
VALUE (MeV)	DOCUMENT ID		COMME	NT	
\bullet \bullet \bullet We do not use the following	data for averages	, fits	, limits,	etc. • • •	
97.37±0.42	BERNICHA	96	Fit to F	PEDRONI 78	
100.8 ±1.0	⁵ VASAN	76 B	Fit to C	CARTER 73	
99.8 to 100	⁶ VASAN	76 B	Fit to C	CARTER 73	

HTTP://PDG.LBL.GOV

I

REAL PART, $\Delta(1232)^+$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
\bullet \bullet \bullet We do not use the following d	ata for averages,	fits,	limits,	etc. ● ● ●
1211 ± 1 to 1212 ± 1	HANSTEIN	96	DPWA	$\gamma N \rightarrow \pi N$
1206.9 \pm 0.9 to 1210.5 \pm 1.8	MIROSHNIC '	79		Fit photoproduction
1208.0 ± 2.0	CAMPBELL	76		Fit photoproduction

$-2 \times IMAGINARY PART, \Delta(1232)^+$

VALUE (MeV) DOCUMENT ID TECN COMMENT	
• • • We do not use the following data for averages, fits, limits, etc. • • •	
102 ± 2 to 99 ± 2 ¹ HANSTEIN 96 DPWA $\gamma N \rightarrow \pi N$	
111.2 \pm 2.0 to 116.6 \pm 2.2 MIROSHNIC 79 Fit photoprodu	ction
106 \pm 4 CAMPBELL 76 Fit photoprodu	ction

 $^1\,{\rm The}$ second (lower) value of HANSTEIN 96 here goes with the second (higher) value of the real part in the preceding data block.

REAL PART, ⊿(1232)⁰

VALUE (MeV)	DOCUMENT ID		COMMENT		
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$					
1213.20 ± 0.66	BERNICHA	96	Fit to PEDRONI 78		
1210.75 ± 0.6	⁵ VASAN	76 B	Fit to CARTER 73		
1210.2	⁶ VASAN	76 B	Fit to CARTER 73		
$-2 \times IMAGINARY PART. \Delta(1232)^0$					

, 4(1232)

VALUE (MeV)	DOCUMENT ID		COMMENT	
\bullet \bullet \bullet We do not use the following	data for averages	, fits	, limits, etc. • • •	
104.10 ± 1.01	BERNICHA	96	Fit to PEDRONI 78	
105.6 ± 1.2	⁵ VASAN	76 B	Fit to CARTER 73	
105.8 to 106.2	⁶ VASAN	76 B	Fit to CARTER 73	

△(1232) ELASTIC POLE RESIDUES

ABSOLUTE VALUE, MIXED CHARGES

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
53	ARNDT	04	DPWA	$\pi N \rightarrow \pi N$, ηN	
50	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$	_
53±2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
\bullet \bullet \bullet We do not use the following a	data for averages	, fits	, limits,	etc. • • •	
38	⁷ ARNDT	95	DPWA	$\pi N \rightarrow N \pi$	
52	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90	
PHASE, MIXED CHARGES	DOCUMENT ID		TECN	COMMENT	
-47	ARNDT	04	DPWA	$\pi N \rightarrow \pi N. nN$	
- 48	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$	-
-47 ± 1	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
\bullet \bullet \bullet We do not use the following a	lata for averages	, fits	, limits,	etc. • • •	
-22	⁷ ARNDT	95	DPWA	$\pi N \rightarrow N \pi$	
-31	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90	
HTTP://PDG.LBL.GOV	Page 4		Cre	ated: 7/6/2006 16:33	

ABSOLUTE VALUE, △(1232)++					
VALUE (MeV)	DOCUMENT ID		COMMENT			
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits	, limits, etc. • • •			
52.4 to 53.2	⁵ VASAN	76 B	Fit to CARTER 73			
52.1 to 52.4	⁶ VASAN	76 B	Fit to CARTER 73			
PHASE, ⊿(1232) ⁺⁺						
VALUE (rad)	DOCUMENT ID		COMMENT			
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits	, limits, etc. • • •			
-0.822 to -0.833	⁵ VASAN	76 B	Fit to CARTER 73			
-0.823 to -0.830	⁶ VASAN	76 B	Fit to CARTER 73			
ABSOLUTE VALUE, ⊿(1232) ⁰					
VALUE (MeV)	DOCUMENT ID		COMMENT			
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits	, limits, etc. • • •			
54.8 to 55.0	⁵ VASAN	76 B	Fit to CARTER 73			
55.2 to 55.3	⁶ VASAN	76 B	Fit to CARTER 73			
РНАЅЕ, Д(1232) ⁰						
VALUE (rad)	DOCUMENT ID		COMMENT			
\bullet \bullet \bullet We do not use the following	data for averages	, fits	, limits, etc. ● ● ●			
-0.840 to -0.847	⁵ VASAN	76 B	Fit to CARTER 73			
-0.848 to -0.856	⁶ VASAN	76 B	Fit to CARTER 73			

Δ (1232) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$N\pi$	100 %
Г ₂	$N\gamma$	0.52–0.60 %
Г ₃	$N\gamma$, helicity ${=}1/2$	0.11–0.13 %
Γ ₄	N γ , helicity=3/2	0.41–0.47 %

△(1232) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Г1/Г
VALUE	DOCUMENT ID		TECN	COMMENT
1.0 OUR ESTIMATE				
1.000	ARNDT	04	DPWA	π N \rightarrow π N, η N
1.0	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
1.0	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1.0	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fits	, limits,	etc. • • •
1.00	PENNER	0 2C	DPWA	Multichannel
1.00 ± 0.01	VRANA	00	DPWA	Multichannel
1.0	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$

HTTP://PDG.LBL.GOV

△(1232) PHOTON DECAY AMPLITUDES

Δ (1232) $\rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
-0.135 ± 0.006 OUR ESTIMATE				
-0.137 ± 0.005	AHRENS	04A	DPWA	$\vec{\gamma} \vec{p} \rightarrow N \pi$
-0.129 ± 0.001	ARNDT	02	DPWA	$\gamma p \rightarrow N \pi$
$-0.1357\!\pm\!0.0013\!\pm\!0.0037$	BLANPIED	01	LEGS	$\gamma p \rightarrow p \gamma, p \pi^0, n \pi^+$
-0.131 ± 0.001	BECK	00	IPWA	$ec{\gamma} p ightarrow p \pi^0$, $n \pi^+$
-0.1294 ± 0.0013	HANSTEIN	98	IPWA	$\gamma N \rightarrow \pi N$
-0.135 ± 0.005	ARNDT	97	IPWA	$\gamma N \rightarrow \pi N$
-0.1278 ± 0.0012	DAVIDSON	97	DPWA	$\gamma N \rightarrow \pi N$
-0.141 ± 0.005	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
-0.135 ± 0.016	DAVIDSON	91 B	FIT	$\gamma N \rightarrow \pi N$
-0.145 ± 0.015	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
-0.138 ± 0.004	AWAJI	81	DPWA	$\gamma N \rightarrow \pi N$
-0.147 ± 0.001	ARAI	80	DPWA	$\gamma N \rightarrow \pi N$ (fit 1)
-0.145 ± 0.001	ARAI	80	DPWA	$\gamma N \rightarrow \pi N$ (fit 2)
-0.136 ± 0.006	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
$\bullet \bullet \bullet$ We do not use the following c	lata for averages	s, fits,	limits,	etc. • • •
-0.128	PENNER	0 2D	DPWA	Multichannel
-0.1312	HANSTEIN	98	DPWA	$\gamma N \rightarrow \pi N$
-0.143 ± 0.004	LI	93	IPWA	$\gamma N \rightarrow \pi N$
-0.140 ± 0.007	DAVIDSON	90	FIT	See DAVIDSON 91B
-0.142 ± 0.007	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
-0.140	NOELLE	78		$\gamma N \rightarrow \pi N$
-0.141 ± 0.004	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$

A _{3/2}

VALUE (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT	
-0.250 ± 0.008 OUR ESTIMATE					_
-0.256 ± 0.003	AHRENS	04A	DPWA	$\vec{\gamma} \vec{p} \rightarrow N \pi$	
-0.243 ± 0.001	ARNDT	02	DPWA	$\gamma p \rightarrow N \pi$	
$-0.2669 \pm 0.0016 \pm 0.0078$	BLANPIED	01	LEGS	$\gamma p \rightarrow p \gamma, p \pi^0, n \pi^+$	
-0.251 ± 0.001	BECK	00	IPWA	$ec{\gamma} p ightarrow p \pi^0$, $n \pi^+$	
-0.2466 ± 0.0013	HANSTEIN	98	IPWA	$\gamma N \rightarrow \pi N$	
-0.250 ± 0.008	ARNDT	97	IPWA	$\gamma N \rightarrow \pi N$	
-0.2524 ± 0.0013	DAVIDSON	97	DPWA	$\gamma N \rightarrow \pi N$	
-0.261 ± 0.005	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$	
-0.251 ± 0.033	DAVIDSON	91 B	FIT	$\gamma N \rightarrow \pi N$	
-0.263 ± 0.026	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$	
-0.259 ± 0.006	AWAJI	81	DPWA	$\gamma N \rightarrow \pi N$	
-0.264 ± 0.002	ARAI	80	DPWA	$\gamma N \rightarrow \pi N$ (fit 1)	
-0.261 ± 0.002	ARAI	80	DPWA	$\gamma N \rightarrow \pi N$ (fit 2)	
-0.247 ± 0.010	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$	

HTTP://PDG.LBL.GOV Page 6

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

-0.247	PENNER	02D DPWA	A Multichannel
-0.2522	HANSTEIN	98 DPWA	$\gamma N \rightarrow \pi N$
-0.262 ± 0.004	LI	93 IPWA	$\gamma \textit{N} \rightarrow \pi \textit{N}$
-0.254 ± 0.011	DAVIDSON	90 FIT	See DAVIDSON 91B
-0.271 ± 0.010	BARBOUR	78 DPWA	$\gamma N \rightarrow \pi N$
-0.247	⁸ NOELLE	78	$\gamma \textit{N} \rightarrow \pi \textit{N}$
-0.256 ± 0.003	FELLER	76 DPWA	$\gamma N \rightarrow \pi N$

$\Delta(1232) \rightarrow N\gamma, E_2/M_1 \text{ ratio}$

VALUE	DOCUMENT ID		TECN	COMMENT
-0.025 ± 0.005 OUR ESTIMATE				
$-0.0274 \pm 0.0003 \pm 0.0030$	AHRENS	04A	DPWA	$\vec{\gamma} \vec{p} \rightarrow N \pi$
-0.020 ± 0.002	ARNDT	02	DPWA	$\gamma p \rightarrow N \pi$
$-0.0307 \pm 0.0026 \pm 0.0024$	BLANPIED	01	LEGS	$\gamma p \rightarrow p \gamma, p \pi^0, n \pi^+$
$-0.016 \pm 0.004 \pm 0.002$	GALLER	01	DPWA	$\gamma p \rightarrow \gamma p$
$-0.025 \pm 0.001 \pm 0.002$	BECK	00	IPWA	$\vec{\gamma} p \rightarrow p \pi^0, n \pi^+$
-0.0254 ± 0.0010	HANSTEIN	98	DPWA	$\gamma N \rightarrow \pi N$
-0.015 ± 0.005 g	ARNDT	97	IPWA	$\gamma N \rightarrow \pi N$
-0.0319 ± 0.0024	DAVIDSON	97	DPWA	$\gamma N \rightarrow \pi N$
\bullet \bullet \bullet We do not use the following d	ata for averages	, fits	, limits,	etc. • • •
-0.026	PENNER	0 2D	DPWA	Multichannel
-0.0233 ± 0.0017	HANSTEIN	98	IPWA	$\gamma N \rightarrow \pi N$
$-0.025 \ \pm 0.002 \ \pm 0.002$	BECK	97	IPWA	$\gamma N \rightarrow \pi N$
$-0.030 \pm 0.003 \pm 0.002$	BLANPIED	97	DPWA	γ N \rightarrow π N, γ N
$-0.027 \pm 0.003 \pm 0.001$	KHANDAKER	95	DPWA	$\gamma N \rightarrow \pi N$
-0.015 ± 0.005	WORKMAN	92	IPWA	$\gamma N \rightarrow \pi N$
-0.0157 ± 0.0072	DAVIDSON	91 B	FIT	$\gamma N \rightarrow \pi N$
-0.0107 ± 0.0037	DAVIDSON	90	FIT	$\gamma N \rightarrow \pi N$
-0.015 ± 0.002	DAVIDSON	86	FIT	$\gamma N \rightarrow \pi N$
$+0.037 \pm 0.004$	TANABE	85	FIT	$\gamma N \rightarrow \pi N$
Δ (1232) $\rightarrow N\gamma$, absolute value	ie of E_2/M_1 r	atio	at pole	9

VALUE	DOCUMENT ID		TECN	COMMENT	
$\bullet \bullet \bullet$ We do not use the following	ng data for average	s, fits	, limits,	etc. • • •	
0.065±0.007	ARNDT HANSTEIN	97 96	DPWA	$\gamma N \to \pi N$ $\gamma N \to \pi N$	
$\Delta(1232) \rightarrow N\gamma$, phase of	E_2/M_1 ratio at r	ole	DIWA		

VALUE	DOCUMENT ID		TECN C	COMMENT
$\bullet \bullet \bullet$ We do not use the follow	ving data for average	es, fits	, limits, et	.c. ● ● ●
-122 ±5 -127.2	ARNDT HANSTEIN	97 96	DPWA γ DPWA γ	$\begin{array}{ccc} \mathcal{N} \to & \pi \mathcal{N} \\ \mathcal{N} \mathcal{N} \to & \pi \mathcal{N} \end{array}$

Δ (1232) MAGNETIC MOMENTS

Δ (1232)⁺⁺ MAGNETIC MOMENT

The values are extracted from UCLA and SIN data on $\pi^+ p$ bremsstrahlung using a variety of different theoretical approximations and methods. Our estimate is *only* a rough guess of the range we expect the moment to lie within.

VALUE (μ_N)	DOCUMENT ID	TECN	COMMENT

3.7 to 7.5 OUR ESTIMATE

• • • We do not use the following data for averages, fits, limits, etc. • • •

6.14 ± 0.51	LOPEZCAST.	01 DPWA	$\pi^+ \rho \rightarrow \pi^+ \rho \gamma$
$4.52\!\pm\!0.50\!\pm\!0.45$	BOSSHARD	91	$\pi^+ p ightarrow \pi^+ p \gamma$ (SIN data)
3.7 to 4.2	LIN	91 B	$\pi^+ ho ightarrow \pi^+ ho \gamma$ (from UCLA data)
4.6 to 4.9	LIN	91 B	$\pi^+ {\it p} ightarrow ~\pi^+ {\it p} \gamma$ (from SIN data)
5.6 to 7.5	WITTMAN	88	$\pi^+ ho ightarrow \pi^+ ho \gamma$ (from UCLA data)
6.9 to 9.8	HELLER	87	$\pi^+ ho ightarrow \pi^+ ho \gamma$ (from UCLA data)
4.7 to 6.7	NEFKENS	78	$\pi^+ {\it ho} ightarrow ~\pi^+ {\it ho} \gamma$ (UCLA data)

Δ (1232)⁺ MAGNETIC MOMENT

VALUE (μ_N) DOCUMENT IDCOMMENT• • • We do not use the following data for averages, fits, limits, etc. • • $2.7 + 1.0 \pm 1.5 \pm 3$ 2 KOTULLA02 $\gamma p \rightarrow p \pi^0 \gamma'$

 2 The second error is systematic, the third is an estimate of theoretical uncertainties.

Δ (1232) FOOTNOTES

³Using $\pi^{\pm} d$ as well, PEDRONI 78 determine $(M^{-} - M^{++}) + (M^{0} - M^{+})/3 = 4.6 \pm 0.2$ MeV.

⁴ See HOEHLER 93 for a detailed discussion of the evidence for and the pole parameters of N and Δ resonances as determined from Argand diagrams of πN elastic partial-wave amplitudes and from plots of the speeds with which the amplitudes traverse the diagrams.

- ⁵ This VASAN 76B value is from fits to the coulomb-barrier-corrected CARTER 73 phase shift.
- ⁶ This VASAN 76B value is from fits to the CARTER 73 nuclear phase shift without _ coulomb barrier corrections.
- ⁷ This ARNDT 95 value is in error, as pointed out by HOHLER 01. The corrected value is in line with the ARNDT 91 value (R.A. Arndt, private communication).
- ⁸ Converted to our conventions using M = 1232 MeV, $\Gamma = 110$ MeV from NOELLE 78.

⁹ This ARNDT 97 value is very sensitive to the database being fitted. The result is from a fit to the full pion photoproduction database, apart from the BLANPIED 97 cross-section measurements.

Δ (1232) REFERENCES

For early references, see Physics Letters 111B 70 (1982).

AHRENS	04A	EPJ A21 323	J. Ahrens <i>et al.</i>	(Mainz GDH, A2 Collab.)
ARNDT	04	PR C69 035213	R.A. Arndt <i>et al.</i>	` (GWU, TRIU)
ARNDT	02	PR C66 055213	R. A. Arndt <i>et al.</i>	(GWU)
KOTULLA	02	PRL 89 272001	M. Kotulla <i>et al.</i>	(MAMI TAPS Collab.)
PENNER	02C	PR C66 055211	G. Penner, U. Mosel	(GIES)
PENNER	02D	PR C66 055212	G. Penner, U. Mosel	(GIES)
BLANPIED	01	PR C64 025203	G. Blanpied <i>et al.</i>	(BNL LEGS Collab.)
GALLER	01	PL B503 245	G. Galler et al.	(Mainz LARA Collab.)
HOHLER	01	NSTAR 2001 185	G. Hohler	` (KARL)

HTTP://PDG.LBL.GOV

Page 8

Created: 7/6/2006 16:33

LOPEZCAST	01	PL B517 339	G. Lopez Castro, A. Mariano	
Also		NP A697 440	G. Lopez Castro, A. Mariano	
BECK	00	PR C61 035204	R. Beck et al. (Mainz M	icrotron DAPHNE Col.)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman,, TS.H. Le	ee (PITT+)
HANSTEIN	98	NP A632 561	O. Hanstein, D. Drechsel, L. Tiator	
ARNDT	97	PR C56 577	R.A. Arndt, I.I. Strakovsky, R.L. Worl	kman (VPI)
BECK	97	PRL 78 606	R. Beck et al. (MAN	IZ, SACL, PAVI, GLAS)
Also		PRL 79 4510	R.L. Beck, H.P. Krahn	(MANZ)
Also		PRL 79 4512	R.L. Beck, H.P. Krahn	(MANZ)
Also		PRL 79 4515 (erratum)	R.L. Beck et al. (MAN	IZ, SACL, PAVI, GLAS)
BLANPIED	97	PRL 79 4337	G.S. Blanpied et al.	(LEGS Collab.)
DAVIDSON	97	PRL 79 4509	R.M. Davidson, N.C.A. Mukhopadhya	ay (RPI)
ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L. Worl	kman (VPI)
BERNICHA	96	NP A597 623	A. Bernicha, G. Lopez Castro, J. Pest	tieau (LOÙV+)
HANSTEIN	96	PL B385 45	O. Hanstein, D. Drechsel, L. Tiator	(MANZ)
ABAEV	95	ZPHY A352 85	V.V. Abaev, S.P. Kruglov	(PNPI)
ARNDT	95	PR C52 2120	R.A. Arndt <i>et al.</i>	(VPI, BRCO)
KHANDAKER	95	PR D51 3966	M. Khandaker, A.M. Sandorfi	(BNL, VPI)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
LI	93	PR C47 2759	Z.J. Li <i>et al.</i>	(VPI)
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski	(KÉNT) IJP
Also		PR D30 904	D.M. Manley et al.	(VPI)
WORKMAN	92	PR C46 1546	R.L. Workman, R.A. Arndt, Z.J. Li	(VPI)
ARNDT	91	PR D43 2131	R.A. Arndt <i>et al.</i>	(VPI, TELE) IJP
BOSSHARD	91	PR D44 1962	A. Bosshard <i>et al.</i>	(ZURI, ĽBL, VILL+)
Also		PRL 64 2619	A. Bosshard <i>et al.</i>	(CATH, LAUS, LBL+)
DAVIDSON	91B	PR D43 71	R.M. Davidson, N.C. Mukhopadhyay,	R.S. Wittman
LIN	91B	PR C44 1819	D.H. Lin, M.K. Liou, Z.M. Ding	(CUNY, CSOK)
Also		PR C43 R930	D. Lin, M.K. Liou	ČUNY)
DAVIDSON	90	PR D42 20	R.M. Davidson, N.C. Mukhopadhyay	(RPI)
WITTMAN	88	PR C37 2075	R. Wittman	(ŤRIU)
HELLER	87	PR C35 718	L. Heller <i>et al.</i>	(LANL, MIŤ, ILL)
DAVIDSON	86	PRL 56 804	R.M. Davidson, N.C. Mukhopadhyay,	R. Wittman (RPI)
TANABE	85	PR C31 1876	H. Tanabe, K. Ohta	(KOMAB)
CRAWFORD	83	NP B211 1	R.L. Crawford, W.T. Morton	(GLAS)
PDG	82	PL 111B	M. Roos <i>et al.</i>	(HELS, CIT, CERN)
AWAJI	81	Bonn Conf. 352	N. Awaji, R. Kajikawa	(NAGO)
Also		NP B197 365	K. Fujii <i>et al.</i>	(NAGO)
ARAI	80	Toronto Conf. 93	I. Arai	(INUS)
Also		NP B194 251	I. Arai, H. Fujii	(INUS)
CRAWFORD	80	Toronto Conf. 107	R.L. Crawford	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky <i>et al.</i>	(CMU, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky <i>et al.</i>	(CMU, LBL)
KOCH	80B	NP A336 331	R. Koch, E. Pietarinen	(KARLT) IJP
HOEHLER	79	PDAT 12-1	G. Hohler <i>et al.</i>	(KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP
MIROSHNIC	79	SJNP 29 94	I.I. Miroshnichenko <i>et al.</i>	(KFTI) IJP
	70	Iranslated from YAF 29 1	88. IM Daukawa DJ Curvefaud NJI Da	
BARBOUR	18	NP B141 253	I.W. Barbour, R.L. Crawford, N.H. Pa	arsons (UCLA CATU) UD
NEFKENS	78	PR D18 3911	B.W.K. Netkens <i>et al.</i>	(UCLA, CATH) IJP
NUELLE	78 70	PTP 00 778	P. Noelle	
	10 76	NF A300 321	E. rearoni et al.	(SIN, ISING, KARLE+) IJP
	10 76		N.N. Campbell, G.L. Snaw, J.S. Ball	
	10 76 D	NF D104 219	F. Feller <i>et al.</i>	
VASAN	10D	ND B106 526	S.S. Vasali S.S. Vasan	
RERENIDS	75	NP R84 342	F A Berende A Donnachia	
CARTER	73	ND R58 378	IR Carter DV Rugg IR Carter	(CAVE LOOM)
CINILIN	15	NI 230 310	J.N. Carter, D.V. Dugg, J.N. Carter	

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$