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Abstract

Bose–Einstein correlations of both neutral and like-sign charged pion pairs are measured in a sample of 2 million hadronic
Z decays collected with the L3 detector at LEP. The analysis is performed in the four-momentum difference range 300 MeV<

Q < 2 GeV. The radius of the neutral pion source is found to be smaller than that of charged pions. This result is in qualitative
agreement with the string fragmentation model. 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Bose–Einstein correlations (BEC), between identi-
cal bosons, have been extensively studied in hadronic
final states produced in e+e−, ep, hadron–hadron and
heavy-ion interactions [1–3]. The bosons studied are
mainly charged pions [4,5]. Only rarely have neutral
pions been studied [6,7], and never before in e+e− in-
teractions. In this Letter, we report a study of BEC
of π0 pairs in hadronic decays of the Z boson at
LEP, and compare them to BEC of pairs of identically
charged pions.

BEC manifest themselves as an enhanced produc-
tion of pairs of identical bosons which are close to one
another in phase space. This can be studied in terms of
the two-particle correlation functionR2 [4]:

(1)R2(p1,p2) = ρBE(p1,p2)

ρ0(p1,p2)
,

whereρBE(p1,p2) is the two-particle number density
for identical bosons with four-momentap1 and p2,
subject to Bose–Einstein symmetry. The reference
distribution, ρ0(p1,p2), is the same density in the
absence of Bose–Einstein symmetry.

1 Supported by the German Bundesministerium für Bildung,
Wissenschaft, Forschung und Technologie.

2 Supported by the Hungarian OTKA fund under contract
numbers T019181, F023259 and T024011.

3 Also supported by the Hungarian OTKA fund under contract
number T026178.

4 Supported also by the Comisión Interministerial de Ciencia y
Tecnología.

5 Also supported by CONICET and Universidad Nacional de La
Plata, CC 67, 1900 La Plata, Argentina.

6 Supported by the National Natural Science Foundation of
China.

Assuming a static spherical boson source with a
Gaussian density and a plane wave description of the
bosons,R2(p1,p2) is written as [8,9]:

(2)R2(Q) =N (1+ αQ)
(
1+ λe−Q2R2)

,

whereQ2 = −(p1 − p2)
2 is the square of the four-

momentum difference. The parameterR can be inter-
preted as the size of the boson source in the centre-of-
mass system of the boson pair and a measurement of
the correlation functionR2 gives access to the source
size. The parameterλ is introduced to describe the
fraction of effectively interfering pion pairs. In this
analysis the normalization factorN (1+αQ) is added.
It takes into account possible long-range momentum
correlations, as well as possible differences in pion
multiplicity in the data and reference samples, over the
four-momentum difference range studied.

The spherical shape of the boson source assumed
here is a simplified picture. High statistics charged
pion data at LEP revealed the source to be elongated
[4,10]. The present measurement has, however, no
sensitivity to the shape of the source of neutral pions,
due to its limited statistics.

Several theoretical predictions exist for differences
in BEC for pairs of bosons in the pion isospin triplet
(π+,π−,π0). From the string model [11] a smaller
spatial emission region, i.e., a wider momentum cor-
relation distribution is expected forπ0π0, than for
π±π±. This follows from the break-up of the string
into qq̄ pairs, which forbids two equally charged pi-
ons to lie next to each other on the string, whereas two
neutral pions can. The same effect is found when the
probabilistic string break-up rule is interpreted as the
square of a quantum mechanical amplitude [12,13].
From a quantum statistical approach to Bose–Einstein
symmetry [14], a small difference betweenπ±π± and
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π0π0 correlation is expected. The size and shape of
this difference is predicted to be similar to an expected
Bose–Einstein correlation ofπ±π∓ pairs. It is theo-
retically uncertain whether BEC between unlike sign
pions are also to be expected on the ground of isospin
invariance [15].

The main purpose of this Letter is to measure the
difference in size of the emission region of neutral and
charged pions. In order to minimize systematic uncer-
tainties on this difference, the procedures followed for
the charged pions are kept as close as possible to those
for the neutral pions.

2. Data and Monte Carlo samples

For this analysis, data collected with the L3 de-
tector [16] during the 1994 and 1995 LEP runs are
used. The analysis is based mainly on measurements
from the high resolution electromagnetic calorime-
ter and from the central tracking device. The data
sample corresponds to an integrated luminosity of
about 78 pb−1 at centre-of-mass energies around√

s = 91.2 GeV. From this sample, about 2 mil-
lion hadronic events are selected, using energy de-
posits in the electromagnetic and hadronic calorime-
ters [17].

The JETSET generator [18] is used to study the de-
tector response to hadronic events. Parameters of the
generator are tuned to give a good description of event
and jet shapes of hadronic events measured in L3. The
effects of Bose–Einstein symmetry are simulated with
the Luboei routine [19]. The routine has two parame-
ters, which have been chosen to obtain a reasonable
description of L3 data. Thisad-hocmodel shifts bo-
son momenta after the hadronization phase in such a
way that the correlation functionR2(Q) for identical
bosons is proportional to a constant plus a Gaussian as
in Eq. (2). The generated events are passed through a
full detector simulation [20] and are reconstructed and
subjected to the same analysis procedure as the data.
This Monte Carlo sample (JETSET-BE) contains about
7 million events. A control sample (JETSET-NOBE) is
also generated with JETSETbut it has Luboei switched
off and the generator parameters returned. Significant
differences are found in the tuned parameters in the
two cases. The number of events in the control sample
is approximately 2 million. Unless stated otherwise,

the JETSET-BE sample is used throughout this Let-
ter.

3. Neutral pion selection

Neutral pions in hadronic events are reconstructed
from photon pairs. Photon candidates are identified
in the electromagnetic calorimeter as a cluster of at
least two adjacent crystals. The clusters are required
to be located in the central region of the detector,
|cos(θcluster)| < 0.73, and to be in the energy range
100 MeV < Ecluster < 6 GeV. Above 6 GeV, the
two photons from aπ0 decay can no longer be
distinguished as two separate clusters.

Discrimination of clusters originating from photons
or electrons from those due to other particles is
based on the distribution of the energy over the
crystals of the cluster. A good photon discrimination
is achieved with a neural network based on this energy
distribution [21]. To reject clusters due to charged
particles, a minimum distance between the cluster and
the extrapolation of the closest track of 30 mm is
required. This corresponds to 1.5 times the size of the
front face of a crystal.

Pairs of photon candidates within an event are used
to reconstructπ0’s. The distribution of invariant mass
of photon pairs shows a peak around theπ0 mass,
above a smooth background. These two components
are extracted by a fit to the mass spectrum. The
background is described by a Chebyshev polynomial
of third order,fbg. Theπ0 peak is parameterized by
a Gaussian function with exponential tails, which is
continuous, and smooth in the first derivative:

(3)fπ(mγγ ) =




exp
(

α2

2

)
exp

(α(mγγ −mπ)

σ

)
if mγγ − mπ < −ασ,

exp
(− (mγγ −mπ )2

2σ2

)
if βσ � mγγ − mπ � −ασ,

exp
(β2

2

)
exp

(−β(mγγ −mπ )

σ

)
if mγγ − mπ > βσ.

Here, mγγ is the two-photon invariant mass,mπ

indicates the peak position, andσ is the width of the
Gaussian peak. The parametersα and β determine
the values ofmγγ where the Gaussian changes into
an exponential. The exponential tail at low mass is
needed to describe the presence of converted photons
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in cluster pairs. If a photon converts, e.g., in the outer
wall of the tracker, it can still be selected as a photon,
although some of the original photon energy is lost.
The high mass tail accounts for an overestimate of the
cluster energy due to another cluster nearby.

An example of the fit result is given in Fig. 1. The
sum of the two functionsfbg and fπ describes the
distribution well. Also, the shape and the size of the
π0 peak in the data and Monte Carlo agree. The mass
resolution as determined from the fit is about 7.4 MeV.

The photon pair is then selected as aπ0 candidate
if it has an energy 200 MeV< Eγγ < 6 GeV. For a
mass window 120 MeV< mγγ < 150 MeV, a total of
1.3 million π0’s is selected in data. Theπ0 purity of
the candidate sample is of the order of 54% and the
π0 selection efficiency is approximately 17%. About
half of the background is combinatorial, i.e., photons
from differentπ0’s. The other half consists of pairs
where one or both of the photons do not come from a
π0 decay.

Fig. 1. Distribution of (a) the two-photon invariant massmγγ for

data together with the fit result and (b) theπ0 signal as obtained
from fits to data and to Monte Carlo. The arrows indicate the mass
selection window.

4. Charged pion selection

Charged pions are detected as tracks in the central
tracker. They are selected in the same kinematic range
as neutral pions:|cos(θtrack)| < 0.73 and 200 MeV<
Etrack < 6 GeV, where the energy is calculated from
the track momentum, assuming theπ± mass. In
addition, at least 35 out of 62 possible wire hits are
required in the track fit, and the number of wires
between the first and the last must be at least 50.
Furthermore, the track must have at least one hit in
the inner part of the tracker, and the distance of closest
approach to the e+e− vertex in the plane transverse
to the beam is required to be less than 5 mm. Finally,
a high resolution measurement of the polar angle is
demanded. Charged pions are analyzed in the 1995
data only, in which 4.1 million tracks are selected.

5. Pion pair analysis

5.1. Neutral pions

After the neutral pion selection,π0 candidates
within an event are paired, requiring that no cluster
is common to the two candidates, and their four-
momentum differenceQ is calculated. Theπ0π0

component of theQ distribution is estimated by a
fit to the two-dimensional mass spectrum for every
bin in Q. An example of these mass distributions is
shown in Fig. 2(a), for the bin 0.48< Q < 0.52 GeV.
The various contributions are clearly visible: non-π0

pairs give the smooth background,π0 with non-π0

pairs give the two “ridges” in theπ0 peak regions,π0

pairs give part of the peak in the centre of the plot,
the other part being caused by the sum of theπ0 with
non-π0 ridges.

This two-dimensional distribution is derived from
the product of two one-dimensional mass distributions
[21]:

f2d(m1,m2)

= Aππfπ (m1)fπ (m2)

+ Aπbg
[
fπ (m1)fbg(m2) + fbg(m1)fπ (m2)

]

(4)+ Abgbgfbgbg(m1,m2),

where the first term describes theπ0π0 part, the
second term describes theπ0 with non-π0 pair ridges
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and the third term is the non-π0 pair background. The
number ofπ0 pairs in the mass window 120 MeV<
m1,2 < 150 MeV is related to the parameterAππ . The
functionsfπ andfbg have the same functional form
as described before,fbgbg follows from the product
of two Chebyshev polynomials of third order and is
required to be symmetric in the two masses. All 18
parameters off2d are left free in the fit.

The result of a binned maximum likelihood fit
for the mass distribution in Fig. 2(a) is shown in
Figs. 2(b)–(d). In this representative example, theχ2 is
4737 for 4606 degrees of freedom, which corresponds
to a 9% confidence level.

Fig. 3(a) presents theQ distribution for π0 pairs
in the mass window 120 MeV< m1,2 < 150 MeV,

obtained from the values of the parameterAππ from
two-dimensional mass fits of Eq. (4) to both data
and Monte Carlo. Some deviations between data and
Monte Carlo are caused by the imperfect modeling of
BEC. The efficiency to select aπ0 pair in an event
ranges from about 1% atQ = 300 MeV to 4% at
Q = 2 GeV.

Bins in Q below 300 MeV are not used for the rest
of the analysis for two reasons. First, the efficiency
estimate depends strongly on the BEC modeling in
the generator, in the region of smallQ. This occurs
because the BEC modeling moves identical pions
closer together, which lowers the detection efficiency.
Secondly, the four-momentum difference of any pair
of π0’s from η → π0π0π0 decays is kinematically

Fig. 2. (a) Two-dimensional distribution of the mass ofπ0 pair candidates with a four-momentum difference in the range 0.48< Q < 0.52 GeV,
in bins of 2.5× 2.5 MeV2. Result of the fit for (b)π0 pairs, (c)π0 with non-π0 pairs, (d) non-π0 pairs.
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constrained to haveQ < 311.7 MeV, and in that
Q-range, more than 20% of allπ0 pairs originate from
this decay. A rejection of the smallQ region thus
avoids systematic uncertainties due to the simulation
of theη multiplicity.

5.2. Charged pions

The distribution of four-momentum difference of
equally charged pion pairs is obtained by calculating
Q for pairs of tracks selected within an event and with
the same charge. This rawπ±π± spectrum is cor-
rected bin-by-bin for both pion purity and efficiency
using the Monte Carlo simulation. The uncorrected
distribution is shown in Fig. 3(b). Compared to the
π0π0 case, smaller deviations are observed between
the raw spectrum in data and Monte Carlo. These de-
viations are due to the imperfect modeling of BEC in
the Monte Carlo.

Fig. 3. Data and Monte Carlo distribution of the four-momentum
difference of (a) pairs ofπ0’s, as obtained from fits of Eq. (4), and
(b) pairs ofπ± candidates.

6. Results

6.1. Neutral pions

To obtain the final correlation functionR2(Q), the
Q distribution of π0 pairs in the data, Fig. 3(a), is
corrected for selection efficiencies. The efficiency is
defined as the number of selectedπ0 pairs in Monte
Carlo events (JETSET-BE) divided by the number of
generatedπ0 pairs in the same events, where the
generated pions have to be in the same kinematic
range as the selected pions. This definition includes
an acceptance correction for thoseπ0’s which cannot
be selected kinematically. In this way, the correlations
of π0 pairs can directly be compared to those of
charged pion pairs. The reference distributionρ0(Q) is
calculated from a JETSET-NOBE sample at generator
level, where pions are taken in the same kinematic
range as in the definition of the selection efficiency.
We choose this reference distribution rather than the
distribution for π±π∓ because of the uncertainty
concerning BEC between unlike sign pions mentioned
in the introduction. The correlation distributionR2(Q)

is then the ratio of the corrected data spectrum to the
reference spectrum.

The distribution ofR2(Q) is displayed in Fig. 4(a).
An enhancement at lowQ values, expected from
Bose–Einstein symmetry, is clearly visible. The func-
tion R2(Q) from Eq. (2) is fitted to this ratio in the
interval 300 MeV< Q < 2 GeV. Extending the fit to
lower values ofQ results in consistent values of the
parameters but with much larger systematic uncertain-
ties. The overall normalizationN is determined from
the integrals ofR2(Q) and the fit function; the only
free parameters areλ, R andα. In this fit, theχ2 is
46.1 for 40 degrees of freedom, corresponding to a
23% confidence level.

The systematic uncertainty on the result due to
theπ0 selection is determined by varying the photon
selection cuts and by changing the size of theπ0

mass window by±10 MeV. The π0π0 mass fit
of Eq. (4) is tested by varying the fit range by
±12.5 MeV. The uncertainty due to the modeling
of Bose–Einstein correlations in the Monte Carlo
generator is taken into account by using the control
sample JETSET-NOBE in the efficiency correction
procedure. In addition, the influence on the final result
of the agreement between data and Monte Carlo of
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Table 1
Systematic uncertainties onλ, R andα for theπ0π0 data sample

Source �λ �R (fm) �α

Photon selection 0.020 0.052 0.009

Mass window 0.011 0.008 0.007

2D fit range 0.056 0.019 0.036

MC modeling 0.037 0.035 0.020

Data-MC agreement 0.012 0.018 0.034

Q-binning 0.004 0.013 0.003

Total 0.072 0.070 0.055

distributions relevant to the photon andπ0 selection,
such as neural network output and energy and polar
angle ofπ0’s, is studied. Finally, the binning inQ is
varied. The systematic uncertainty on the result due to
each of the sources, is assigned as half the maximum
deviation. A summary is given in Table 1. The total
systematic uncertainty is calculated as the quadratic
sum of these uncertainties.

6.2. Charged pions

The final correlation functionR2(Q) for π±π± is
calculated in a similar way as that forπ0π0. The
π±π± data distribution, Fig. 3(b), is corrected for
purity and efficiency. As forπ0π0, the efficiency is
calculated for generated pions in the same kinematic
range as the selected pions. The reference distribution
ρ0(Q) and the correlation distributionR2(Q) are
obtained in the same way as forπ0π0.

The correlation function forπ±π± is shown in
Fig. 4(b). Due to the higher selection efficiency for
charged pions as compared to neutral pions, the
significance of the lowQ value enhancement is much
larger. As forπ0π0, the function defined in Eq. (2) is
fitted to the final distribution. In this fit, theχ2 is 42.6
for 40 degrees of freedom, corresponding to a 36%
confidence level.

The systematic uncertainty on the result due to the
track selection is determined by varying the require-
ments on number of hits, distance of closest approach
and polar angle determination. As in theπ0π0 case,
the uncertainty on the modeling of Bose–Einstein cor-

Table 2
Systematic uncertainties onλ, R andα for theπ±π± data sample

Source �λ �R (fm) �α

Track selection 0.011 0.009 0.009

MC modeling 0.022 0.003 0.002

Q-binning 0.001 0.001 0.001

Total 0.025 0.010 0.009

relations in the Monte Carlo generator is obtained by
using the control sample JETSET-NOBE in the analy-
sis. Finally, the binning inQ is varied. The systematic
uncertainties are attributed as in theπ0π0 case, and
are summarized in Table 2. The total systematic un-
certainty is calculated as the quadratic sum of these
uncertainties.

Fig. 4. Distribution of R2(Q) for (a) π0π0 and (b) π±π±,
and results of the fits. The points indicate the data, the full line
corresponds to the fit result and the dashed line is the normalization
factorN (1+ αQ).
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Table 3
Values forλ, R andα, for both theπ0π0 and theπ±π± data samples. The first uncertainty is statistical, the second systematic

Sample λ R (fm) α

π0π0 0.155± 0.054± 0.072 0.309± 0.074± 0.070 0.021± 0.034± 0.055

π±π± 0.286± 0.008± 0.025 0.459± 0.010± 0.010 0.015± 0.003± 0.009

6.3. Comparison

The final values for the strength of the correlationλ

and the corresponding radii of the boson sourcesR are
given in Table 3.

Due to the lower efficiency of theπ0π0 selection,
the statistical uncertainty on theπ0π0 result is larger
than the statistical uncertainty on theπ±π± result.
Within these uncertainties, the data indicate both a
weaker correlation and a smaller source radius for
π0π0. The weakness of theπ0π0 correlation can
be partly explained by the bigger contribution of
resonance decays to theQ spectrum. The difference
of the source sizes is

R±± − R00 = 0.150± 0.075(stat.)

(5)± 0.068(syst.) fm,

where R±± and R00 indicate the value ofR for
π±π± andπ0π0, respectively. In this difference, the
systematic uncertainties due to the modeling of Bose–
Einstein correlations and the binning inQ are taken
to be correlated between the two samples. The smaller
radius found forπ0π0 is in qualitative agreement with
the predictions of the string model.
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