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A new quantum algorithm has been recently suggested [5, 6] for combinatorial search and opti-
mization problems that is based on the properties of quantum adiabatic evolution. We apply the
algorithm to random instances of the NP-complete Set Partition problem and show that its run
time grows exponentially with the problem size n. We solve the stationary Schrodinger equation for
the instantaneous (adiabatic) eigenstates of the quantum computer and obtained the minimum gap
gmin = O(n 2~/ %) between its ground and excited energy levels during the algorithm execution.
Our analysis describes the connection between the exponentially small size of gmin that determines
poor performance of the algorithm and statistical properties of the optimization problem in ques-
tion. Analytical results are in qualitative agreement with the numerical simulation of the algorithm

for small instances of the Set Partition problem.

PACS numbers: 03.67.Lx,89.70.4+c

I. INTRODUCTION

Since the discovery by Shor [1] nearly a decade ago
of a quantum algorithm for efficient integer factorization
there has been a rapidly growing interest in the devel-
opment of new quantum algorithms capable of solving
computational problems that are practically intractable
on classical computers. Perhaps the most notable exam-
ple of such problems is that of combinatorial optimization
(COP). In the simplest case the task in COP is to mini-
mize the cost function ("energy”) E, defined on a set of
2" binary strings z = {21,...,2n} 2; = 0,1, each contain-
ing n bits. In quantum computation this cost function
corresponds to a Hamiltonian Hp

Hp = Eg|z) (s (1)
|z) = |21)1 ®|22)2 ® - ® [2p)n-

where the indices z; = 0,1 and the summation is over 2"
states |z) forming the computational basis of a quantum
computer with n qubits. State |z;); of the j-th qubit
is an eigenstate of the Pauli matrix ¢, with eigenvalue
S; =1—2z; (S; = £1). It is clear from the above that
the ground state of Hp encodes the solution to the COP
with cost function E,.

COPs have a direct analogy in physics, related to find-
ing ground states of classical spin glass models. In the
example above bits z; correspond to Ising spins S;. The
connection between the properties of frustrated disor-
dered systems and the structure of the solution space
of complex COPs has been noted first by Fu and An-
derson [2]. It has been recognized [3] that many of the
spin glass models are in almost one-to-one correspon-
dence with a number of COPs from theoretical computer
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science that form a so-called NP-complete class [4]. This
class contains hundreds of the most common computa-
tionally hard problems encountered in practice, such as
constraint satisfaction, traveling salesmen, integer pro-
gramming, and others. NP-complete problems are char-
acterized in the worst cases by exponential scaling of the
running time or memory requirements with the prob-
lem size n. A special property of the class is that any
NP-complete problem can be converted into any other
NP-complete problem in polynomial time on a classical
computer; therefore, it is sufficient to find a deterministic
algorithm that can be guaranteed to solve all instances
of just one of the NP-complete problems within a poly-
nomial time bound. However it is widely believed that
such an algorithm does not exist on a classical computer.
Weather it exists on a quantum computer is one of the
central open questions. Ultimately one can expect that
the behavior of the new quantum algorithms for COPs
and their complexity will be closely related to the prop-
erties of quantum spin glasses.

Farhi and co-workers suggested recently a new quan-
tum algorithm for solving combinatorial optimization
problems which is based on the properties of quantum
adiabatic evolution [5]. Running of the algorithm for
several NP-complete problems has been simulated on a
classical computer using a large number of randomly gen-
erated problem instances that are believed to be compu-
tationally hard for classical algorithms [6-8]. Results of
these numerical simulations for relatively small size of the
problem instances ( n < 20) suggest a quadratic scaling
law of the run time of the quantum adiabatic algorithm
with n. In [5, 9] special symmetric cases of COP were
considered where symmetry of the problem allowed to
describe the true asymptotic behavior (n — 00) of the al-
gorithm. In certain examples considered in [9] quantum
adiabatic algorithm finds the solution in time polyno-
mial in n while simulated annealing requires exponential
time. This effect occurs due to the special connectiv-
ity properties of the optimization problems that lead to



the relatively large matrix elements for the spin tunnel-
ing in transverse magnetic field between different valleys
during the quantum adiabatic algorithm. In the exam-
ples considered in [9] the tunneling matrix element scales
polynomially with n. On the other hand, in simulating
annealing algorithm different valleys are connected via
classical activation processes for spins with probabilities
that scale exponentially with n.

However, so far there are no analytical results on the
asymptotic behavior of the algorithm for the general case
of randomly generated hard instances of NP-complete
problems.

II. SET PARTITION PROBLEM

In what follows we derive the asymptotic complexity
of the quantum adiabatic algorithm for the Set Partition
Problem (SPP). It is one of the six basic NP-complete
problems that are at the heart of the theory of NP-
completeness [4]. It can be formulated as combinatorial
optimization problem: Given a sequence of positive
numbers {ay,...,a,) find a partition, i.e. two disjoint
subsets A and A’ such that the residue

E=|Y - Y% ®

a;EA  ajeA

is minimized. In SPP we search for the bit strings
z = {21,...,2n} (or corresponding Ising spin configu-
rations S = {S1,...,5,}) that minimize the energy or
cost function E,

Ez=|ﬂs|, Qszzaij, Sj=1—2Zj, (3)

j=1

Here S; = 1 (z; = 0) if a;j € A and S; = -1
(2 = 1) if a; € A’. The minimum partition can also
be viewed as a ground state of the Ising spin glass, —Q3,
with the Mattis-like (global) antiferromagnetic coupling,
Jij = —a;a;.

SPP also has many practical applications including
multiprocessor scheduling [10], cryptography [11], and
others. The interest in SPP also stems from the remark-
able failure of simulated annealing to find good solutions,
as compared with the solutions found by deterministic
heuristics [12]. The apparent reason for this failure is
due to the existence of order 2" local minima whose en-
ergies are of the order of 1/n [13] which undermines the
usual strategy of exploring the space of configurations S
through single spin flips.

The computational complexity of random instances of
SPP depends on the number of bits b needed to encode
the numbers a;. Numerical simulations show [14, 15] that
for independent, identically distributed (i.i.d.) random
b-bit numbers a;, the solution time grows exponentially
with n for n < b and polynomially for n > b. The tran-
sition from the "hard” to computationally ”easy” phases

has features somewhat similar to phase transitions in
physical systems [16]. Transitions of this kind were ob-
served in various NP-complete problems [17] and can be
analyzed in the framework of statistical mechanics. In
what follows we concentrate on the computationally hard
regime n < b.

We now consider the distribution of the partition ener-
gies E,. It was derived in [18] using statistical averaging
over the assemble of instances of SPP with i.i.d. num-
bers a;. Bearing in mind our eventual goal of deriving the
complexity of the quantum algorithm for a given random
instance of SPP we do not perform such an averaging.
Instead we work with a given set of {a;} and introduce
a coarse-grained “density of states”

p(B) = (Y dE-E)) . (4)

Here 6(z) is Dirac delta-function. The sum in (4) is over
2" bit-strings z; partition energy E, is defined in (3) and
(- -+ ) denotes averaging over the interval of the partition
values (E —n/2,E + n/2) with the window size chosen
self-consistently, n > 1/p(E). Using (3) we can rewrite
(4) in the form
n oo
p(E) = 2—/ ds f (77_23) I(s) cos(Es), (5)
0

I(s) = ﬁ cos(ajs), f(x)=sin(x)/z.
7=0

Here f(z) is a window function that imposes a cut-off
in the integral (5) at s ~ 2/np < p(E). For large n
this integral can be evaluated using the steepest descent
method. To find the saddle points we shall assume that
the b-bit numbers a; are distributed inside of the inter-
val (0,1) and are the integer multiples of 27%, the small-
est number that can be represented with available num-
ber of bits. We note that for large n the function I(s)
has sharp maxima (minima) with width ~ n~1/2 at the
points sy = kr 2%, k = 0,1,...; |I(sx)| = 1. The sum
over these saddle-points was evaluated by Mertens [16]
in the context of the partition function in SPP at finite
temperature. In our case only one saddle point at s =0
contributes to the integral in (5) due to coarse-graining of
the density of states. Indeed, it will be seen below that
the window size 2/n can be chosen to obey the condi-
tions 1 < n'/2/n < 2". Therefore in the high-precision
case (b > n) saddle-points s; with & > 0 lie far outside
the window and their contributions can be neglected [19].
On the other hand the window function f(z) can be re-
placed by unity while computing the contribution from
the saddle-point at s = 0. Finally we obtain for £ < n

[18]
2n+t1 Q(E) E? A
Fl\=m ——— 7 _ 73/2
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1 n
JZZEE a?, E < n. (6)



Here ©(z) denote a step function. ©(z)=1, for z > 0
and ©(z)=0 for z < 0. The coarse-grained state density
in Eq.(6) depends on the set of {a;} through a single
self-averaging quantity o2 (cf. [16]). For E that are not
too large (E < /n) the average separation between the
individual partition energies Emin ~ 1/n2~". This justi-
fies the choice of the window 7 above that corresponds
to coarse-graining over many individual level separations.
For a typical set of numbers {a;} there are only two scales
present in the distribution of partition energies, one is a
“microscopic” scale given by Eni, and another is given
by the mean partition energy (E) = o(2n/m)!/2.

Using the same approach one can introduce the distri-
bution () of “signed residues” Qs. Due to the obvious
symmetry of the SPP cost function |Qg]| in (3) does not
change after flipping signs of all spins, S; = —S;. There-
fore

= (Y 6@-0s)) =1/2p(2). (1)
S

Distribution p(2) is Gaussian for E < n and can be
understood in terms of a random walk with coordinate
Q (cf. (3)). The walk begins at the origin, Q@ = 0, and
makes n steps. At the j-th step 2 moves to the right
or to the left by “distance” 2a; if S; = 1or S; = —1,
respectively. In the asymptotic limit of large n the result
(6) corresponds to equal probabilities of right and left
moves and the distribution of step lengths coinciding with
that in the set of numbers {2a;}.

We now consider the “conditional” density of the par-
tition energies

pr(E',E)
p(E)

where p,(E'|E) is a “joint” density defined as follows
rhoEE, rhoEz

pr(E'|E) = (8)

<me 8(E ~ E)>, 9)

E

<Z5E — Ey) 0. D(ar z)> (10)

Here 6y, is a Kronecker delta. Function D(z,2z') above
computes the number of bits that take different values
in the bit-strings z and z', it is a so-called Hamming
distance between the strings

pra(E') =

D(z,2") :i(l—zj)zg + (1 —2) z. (11)
=1

Hamming distance D(z,z') is directly related to the
overlap between the corresponding spin configurations
q(S,S') often used in a theory of spin glasses (cf. [3, 18]),

q

]' - ! 2 !
== S'=1-2-D . 12
2 2 58 =1- 2D (12

Conditional density p,.(E') in (10) determines the dis-
tribution of energies E, for the strings z’' obtained
from z by flipping r bits. Similar to Eq. (4), (---) in
(9),(10) denotes averaging over the small energy interval
(E—n/2, E+n/2) that, however, includes many individ-
ual partition energies E:.

For r = 1 there are exactly n strings z’ on a Hamming
distance r =1 from the string z. Partition energies corre-
sponding to these strings equal |Qg — 2a;S;|,1 <j <n
(cf. (3)). In what following we assume that numbers
{a;} are uniformly distributed in the unit interval. Then
one can show that for E, < 2 the energies |Q2s — 2a;S;|
are distributed nearly uniformly in the range (0,2 — E,).
This is due to the fact that spins S; are nearly equally
distributed between +1 values for configurations with
|Qs| < n. Similar arguments apply for the case r = n—1.
Using a coarse-graining window such that n=! < n <« 1
one can obtain in the range of energies E', E, < 1 the
following result:

pr(E'|E) ~ pra(E') = n/2+ O(1)

r=1,n-1, n>1. (13)

For large r,n — r > 1 one can calculate the condi-
tional densities (9) for a given set of {a;} by evalua-
tion of the appropriate integrals with the steepest de-
scent method, in a similar manner to the derivation of of
p(E) in Eqgs.(4)-(6). The detailed analysis is presented in
Appendix. Here we will skip the derivation and only pro-
vide the result that we found to be in a good agreement
with the numerical simulations of SPP even for modest
values of n (see Fig. 1). State density functions in (9)
are given each by a sum of Gaussian functions defined in
the region E, E' > 0 and have a broad maximum at the
origin. Near the maximum we have:

gy fm
(1B  pralB) - W() (14)
(@) = e(l=2)) 2, rn—r>1.

This result applies in a range E', B, < or'/?,o(n—r)'/2.
We note that conditional density (10) in (13) and (14)
does not depend on E’ and z after the coarse-graining
over the small interval n of energies E,,. We shall refer
to it as p,. Window size n > 1/p,.

Average spacing between the partition energies in the
subset of strings z' with D(2',z) = r equals 1/p, ~ () -
for not too large E,, E,» (see above). This spacing de-
creases exponentially with magnitude of the string over-
lap factor || = |(n—2r)/n|. Hierarchy of the subsets cor-
responding to different values of ¢ form a specific struc-
ture of SPP. Distribution of energies within the hierar-
chy, given by p, ,(E') = p, is nearly independent on the
“ancestor” string z. One can see that in the interval of
energies E, < E overlap factors g between the strings
are limited by |q| < g where 1/p,(144)/2 = E. Strings
with Ep ~ Emin correspond to |g| = O(1/n), they can
be obtained from each other by simultaneously flipping
clusters with ~ n/2 spins (critical clusters).
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FIG. 1: Plots of (reduced) coarse-grained conditional density
of states (9) s = o(mn/2)"/? (:)_lpm(O) vs 7 are shown with
points. The size of the coarse-graining window 7=0.3. Differ-
ent plots correspond to 29 randomly selected bit-strings z with
energies E, € (0,0.3) for one randomly generated instance of
SPP with n=30 and b = 35. For r close to n/2 values of s
for different strings z are visually indistinguishable from each
other. Dashed line is a plot of a function {(r/n) vs r given
in (14). Insert. Plots of integrated quantity given in (A.11)
Q= (’:)_1 fOE dw prs(w) vs © = E((r/n)/ov/2n for different
values of r = 2,...,n/2 and randomly selected bit-string z
with energy E, close to 0. All plots correspond to the same
instance of SPP as the main figure. Plots for different values
of r are visually indistinguishable from each other and from
the theoretical curve given in (A.12).

We note that one can trivially break the symmetry of
the SPP mentioned above by introducing an extra num-
ber a¢ and placing it, e.g., in the subset 4. In this case
different partition energies will still be encoded by spin
configurations S = {Si,...,S,} (or corresponding bit-
strings z) with Qs = ao+>_:_, aj and E, = |Qg] (cf. 3).
We shall adopt this approach in the analyses of the per-
formance of the quantum adiabatic evolution algorithm
for SPP given below.

III. QUANTUM ADIABATIC EVOLUTION
ALGORITHM

In the quantum adiabatic algorithm [5] one specifies
the time-dependent Hamiltonian H(t) = H(¢t/T)

H(r)=(1-7)V +7Hp, (15)

where 7 = t/T is dimensionless “time”. This Hamil-
tonian guides the quantum evolution of the state
vector |¢(t)) according to the Schrodinger equation
i 0|Y(t))ot = H(t)|¢(t)) from t = 0 to t = T, the run
time of the algorithm (we let A = 1). Hp is the “prob-
lem” Hamiltonian given in (1). V is a “driver” Hamil-
tonian, that is designed to cause the transitions between
the eigenstates of Hp. In this algorithm one prepares the

initial state of the system 1(0) to be a ground state of
H(0) = V. In the simplest case

V=- Z ol W) =22 |, (16)

where o7 is a Pauli matrix for j-th qubit. Consider in-
stantaneous eigenstates |¢q (7)) of H(r) with energies
Aa(7) arranged in nondecreasing order at any value of
7€ (0,1)

ﬁ|¢n) = )‘n|¢n>;

Provided the value of T is large enough and there is a fi-
nite gap for all ¢ € (0,7T) between the ground and exited
state energies, g(7) = A1(7) — Ao(7) > 0, quantum evolu-
tion is adiabatic and the state of the system |¢(t)) stays
close to an instantaneous ground state, |¢o(¢/T")) (up to a
phase factor). Because H(T') = Hp the final state |(T))
is close to the ground state |¢o(7 = 1)) of the problem
Hamiltonian. Therefore a measurement performed on the
quantum computer at t = T (7 = 1) will find one of the
solutions of COP with large probability. Quantum tran-
sition away from the adiabatic ground state occurs most
likely in the vicinity of the point 7 & 7* where the energy
gap g(7) reaches its minimum (avoided-crossing region).
The probability of the transition, 1— |[{¢(t)|¢o(t/T))| 7,
is small provided that

|<¢1|ﬁT|¢O)|T:T*

2
Imin

n=0,1,...,2" —=1.  (17)

T>

,  Gmin = min [/\1 (T) —Xo (T)] )

0<7<1

(18)
(H, = dH/dr). The fraction in (18) gives an estimate for
the required runtime of the algorithm and the task is to
find its asymptotic behavior in the limit of large n > 1.
The numerator in (18) is less than the largest eigenvalue
of H, = Hp —V, typically polynomial in n [5]. However,
Jmin can scale down exponentially with n and in such
cases the runtime of quantum adiabatic algorithm will
grow exponentially fast with the size of COP.

As suggested in [5] the quantum adiabatic algorithm
can be recast within the conventional quantum comput-
ing paradigm using the technique introduced by Lloyd
[20]. Continuous-time quantum evolution can be approx-
imated by a time-ordered product of unitary operators,
e i(1=m)V8 g—imelpd corresponding to small time inter-
vals (tg,t; + 6). Operator e ¢(1=7)V3 typically corre-
sponds to a sequence of 1(2)-qubit gates (cf. (16)). Op-
erator e~ *HPJ is diagonal in the computational basis |z)
and corresponds to phase rotations by angles E,4d. Since
in the case n < b, the average separation between the
neighboring values of E, is 1/p(E) = O(27"), the quan-
tum device would need to support a very high precision
of physical parameters (like external fields, etc) to control
small differences in phases, O(27™). Since this precision
scales with n exponentially it would strongly restrict the
size of an instance of SPP that could be solved on such
quantum computer (this technical restriction is generic



for COPs that involve a quasi-continuous spectrum of
cost-function values). To avoid this restriction we divide
an interval of partition energies (0, B), B = Y.’ a; into
bins which size grows exponentially with the energy. The
cost will be an oracle-type function &, that takes a set of
integer values e, = —M + k, 0 < k < M (one value per
bin)

E.=—k+ M, for wy, < E, < Wpt1, (19)
wrp=(2F —1wy, k=0,..., M. (20)

The last bin is wyr < E, < B where we have £, = e =
0. The Hilbert space of 2™ states |z) is divided into M +1
subspaces Ly, each determined by Egs. (19) and (20) for
a given k

Hp = Zek > lz)z (21)

k=0 zELy,

Note that subspace Lo contains the solution(s) to the
SPP. Dimension dg of L is controlled by the value of

wo in (20) which is another control parameter of the
algorithm. We set wg = K/p(0) where the integer
K = dy > 1 is independent of n and determines how
many times in average one needs to repeat the quantum
algorithm in order to obtain the solution to SPP with
probability close to 1.

Operator Hp projects any state [¢)) onto the states
with partition energies in the range 0 < E, < wys. We
assume that 1 < wy < (E) so that the density function
(6) is nearly uniform for E, < wpy. Therefore the di-
mensions of the subspaces L grow exponentially with k:
dr = do 2% for k < M. This simplification does not affect
the complexity of a quantum algorithm that spends most
of the time in “annealing” the system to much smaller
partition energies, was > E, ~ Epin = O(n'/2277).

A. Stationary Schrodinger equation for adiabatic
eigenstates. Minimum gap

We now solve a stationary Schrédinger equation (17)
and obtain the minimum gap gmin (18) in the asymptotic
limit n — oo. To proceed we need to introduce a new
basis of states |x) = |z1)1 ®|T2)2 ®- - -®|2, ), where state
|;); is an eigenstate of the Pauli matrix &, for the j-th
qubit with eigenvalue 1 — 2z; = +1. Driver Hamiltonian
V' can be written in the following form

V:i Vo I™, ITm = Y

m=0 1+ +T=m

(x| (22)

For a particular case given in Eq. (16) we have V,,, =
2m — n. Matrix elements of 7™ in a basis of states |z)
depend only on the Hamming distance D(z,z') between
the strings z and z’

< |Im|z ) D(z z') (23)

n—r 7

m _ 9 "Z

q=0 p=

(“‘T)C)(—HPAWTW (24)

We now rewrite Eq. (17) in the form

’
9 =1———Hpl$), a=a()=1-7 (2
(we drop the subscript 7 indicating the number of a
quantum state and also the argument 7 in ¢ and ).
From (19)-(25) we obtain the equation for the amplitudes
¢. = (z|¢) in terms of the coefficients I'™

7®2° "

Ak¢z = b\

Aoty T T2 Onea bty

z' £z
AkEAk()\):l—TGo()\)Ek, ¢:Z€ZI¢Z"

zZ €Ly (26)

Gr=G

Z )\—aV

Here we separated out a “symmetric” term o« 27" ® cor-
responding to the coupling between the states |z) via the
projection operator Z° (22).

We now make a key observation that ¢, in (26) can be
determined based on the properties of conditional density
of states pr»(E) (9) and the form of G,(X). We compute
a cumulative quantity

Z GD(z z’)( )

zELy,, z#2’

by s = [Carcoim ()60 @9

where p = 2Qp/m(E) , function ((z) is defined in (14)
and fn r(A) is a small correction described below. In
function s(\) we replaced summation over the integer
values of r by an integral. It can be evaluated using the
explicit form of G.()\) that decays rapidly with 7. In what
follows we will be interested in the region |A — aVp| € 1
where

Gr(\) = (”>_ gw_wamﬂ). (29)

r m

0<r<n.

Fe(N) + fa k(D) (27)

Fr,(\) =

m=1

(v is an Euler’s constant) and s(A) & —In2/(2a). We
note that G, ~ (n/2—r)~! (’;)71 forn/2—r > 1. There-
fore the integrand in s(\) is a smooth function of r for
r < n/2 and quickly decays to zero for r 2> n/2. The con-
tribution to the integral in s(\) from the range of r < n
is small (O((r/n)'/?).

We note that term Fj, in (27) provides an “entropic”
contribution to the sum in (27). It comes from the large
number of states z € L, corresponding to large Hamming
distances r from the state z’, 1 < r < n/2. Each state

contributes a small weight, G, o (’:)71, and number of



states for a given r is large, (wr4+1 — wg)pr > 1. Here
(wr41 —wg) is an energy bin for the subspace Ly and g, is
a conditional density of states described in Sec. II. The
size of the bin scales down exponentially with & (cf. (20))
and so does the entropic term F}. Below a certain cross-
over value of k one has |Fy| < | fz x(A\)|. In this case the
dominant contribution to the sum (27) comes from the
states z with small » = D(z,z') ~ 1. In particular for
k = 0 one can obtain

fz’,O(/\) ~ Gl (/\) Z 61,D(z’,w) + 0(7173), (30)

weELoy

where the higher-order terms corresponds to D(z',w) >
2. According to (29), |G1(A\)| ~ n~2 and therefore | f,,0]
is exponentially larger then the entropic term, |Fg| ~
wo ~ dp2~™. We note that, unlike the entropic term
far 0 strongly depends on z’ due to the discreteness of the
partition energy spectrum (wo p1 < 1). E.g., depending
on a state z’, in this case there could be either one or
none of the states w € Ly in the sum (30) satisfying
D(z',w) =1.

It follows from the discussion above that one can look
for solution of Eq. (26) in the following form:

Gy =V + Uz, ZELg, 1<k<M, (31)
where the components vy, and u, satisfy the equations

Apvp =277 [@ (A —aVy) ' +s(N)®], (32)

M
Ak Uz =T ZEk Z GD(z,z’) Uz +TEQ Z GD(z,w)¢w-

k=1 z' €Ly wELy
(33)
Here & and Ay, are given in (26), and
M
d = ZEkdkvk. (34)
k=1

Decomposition (31) is only applied to amplitudes ¢, with
z ¢ Lo. The system of equations for the components vy,
and u, is closed by adding Eq. (26) for the amplitudes
dw with w € Ly (ground states of the final Hamiltonian
Hp) and taking (31) into account.

We note that Eq.(32) for vy is coupled to the rest of
the equations via the symmetric term &

d=T+d+d (35)
M
@ZZEk Zaz’ @0:50 Z ¢W7

k=1 zELy weLo

One can compute ® using equations for u, in (33) and
also the relations in (27), (28)

& = —k (rus(N)) Do, (36)

here k(z) = z/(1+z). In the initial stage of the algorithm
the amplitudes ¢y, of the “solution” states are small and

6

|®o| ~ |®| ~ 27™/2. Neglecting these terms we have
® ~ ®, and (32) gives a closed-form algebraic equation
for A which solution

Mo (1T) = 1)V — 2uT + O(1?), (37)

accurately tracks the adiabatic ground state energy,
Xo(T), from 7 = 0, up until small vicinity of the avoided-
crossing, 7 = 7* (see below) where |®¢| ~ 1.

In the avoided-crossing region branch A} () intersects

with another branch, A} (7), that tracks Ao(7) in the in-
terval of time following the avoided-crossing, 7 < 7 < 1.
This branch can be obtained from simultaneous solution
of equations for u, (33) and ¢, that are approximately
decoupled from (32) after ® is neglected. Keeping this
term gives rise to repulsion between branches Ay f (1) at
7 = 7* that determines minimum gap gmin.

To proceed, we obtain equation for &, by adding
equations for amplitudes ¢, that correspond to differ-
ent states w € Ly and neglecting the coupling be-
tween these states separated by large Hamming dis-
tances, D(w,w’') ~ n/2. It can be shown using Egs. (26)
and (30)-(33) that u, enters equation for ®, through the
term

7’20 Y Eafao(Nua, (38)

z¢ Lo

which is is a self-energy term corresponding to elementary
bit-flip processes with initial and final states belonging to
the subspace Lo (loop diagrams).

To express u, in (38) through ¢w we solve Eq. (33)
using order-by-order expansion in a small parameter n !
(cf. Egs. (27)-(30) and discussion there). In particular,
one can show that to the leading order in n=! self-energy
term (38) is determined by lowest-order loops with two
bit flips that begin and end at L£y. Then after some
transformations equation for ®¢ takes a form

2 6 ,
Bo [ A —rep - 20 LDl w)
A—T1En
z' ¢ Lo
= Neordo2" [ — 2+ B s(N) (39)
= AEQTQo N OtVE)) S .

Here o = 1—7 (cf. (25) and @ is defined above. We now
solve Eq. (39) jointly with (32) and obtain a closed-form
equation for \. We give it below in the region of interest
Ir-1/2| < 1

(A= X)) (A= X)) = —n227"A2/4 (40)
A d(l]/2 (1 +pur*In2 + O(u2)) ,

where the branch A (7) is given above and the branch
M (7) satisfies Eq. (39) with r.h.s. there set to zero,

A1)~ Te0 —1/2, |T-1/2| < 1. (41)
Avoided-crossing in (40) takes place at 7 = 7*

Xo(T%) = Xo(77), 7"~ 1/2+10gy(do/p)/(4n).  (42)



The value of minimum gap between the two roots of (40)
equals

min =N A 2 /2, (43)

Based on the above analysis one can estimate the ma-
trix element |(¢1|H;|¢o)|r=r+ ~ n. Then from Eq. (18)
(see also discussion after Eq. (21)) one can obtain the
complexity of the quantum adiabatic algorithm

do H o1/ goin ~ (ndo) ™' 2" (44)

It follows from the above that eigenvalue branch A} (1)
corresponds to a state,

M

o) = > vk Y |2)
k

=1 zELy,

which is exztended in the space of the bit configurations
|z): according to (32) it contains large number (O(2"))
of exponentially small (O(27"/2)) individual amplitudes.
This state originates at 7 = 0 from the totally symmetric
initial state |¢(0)) (16). In the small region |7 — 7*| ~
gmin it is transformed into the state that corresponds to
the eigenvalue branch A (7) and is localized in Hamming
distances near the subspace Lo containing the solution
to SPP

EYERSELY

weLy

(this state merges with £y at 7=1).

We note that at later times 7 > 7* similar picture
applies to the avoided crossing of the extended-state en-
ergy A (7) with energies of localized states X (7) corre-
sponding to z € L with 1 < k <« n (exited levels of
the final Hamiltonian Hp (21)). The existence of the
extended eigenstate of H(7) whos properties do not de-
pend on a particular instance of SPP can be explained as
follows. According to (22)-(26), matrix elements of the
Green function associated with the driver Hamiltonian
(z'|(A — aV)~!|z) depend only on a Hamming distance
r = d(z,z'); on the other hand, the conditional distri-
bution p.(E', E,) ~ p, does not depend on energies in
a broad range 1 < E',E, < (E). This gives rise to an
eigenstate with probability amplitude of individual states
|z) that depends very smoothly on energy in this range
but does not depend on the Hamming distance to the
solution.

B. Numerical results

We also study the complexity of the algorithm by nu-
merical integration of the time-dependent Schrédinger
equation with Hamiltonian H(t) and initial state |(0))
defined in Egs. (15),(16),(19)-(21). Here we relax the
condition wys < (E) used above in the analytical treat-
ment of the problem; in simulations the value of M is set

le+04| 1
le+03}| R
Cmin . [|] H 1.5e+04 § 2 ‘ ]
b
1e+02 —Ell . ' 1.0e+04 | 1
P, c(m)
5.0e+03 L. e e e
0.0e+00 0 50 100 150
T
1e+01 I I I I I I I I I I
9 10 11 12 13 14 15 16 17
n

FIG. 2: Logarithmic plot of Cmin vs n for randomly generated
instances of SPP with 25-bit precision numbers. Vertical sets
of points indicate results of different trials (~ 100 trials for
each n, except n=17 with 10 trials). Median values of Cmin
are shown with rectangles. Linear fit to the logarithmic plot
of median values for n between 11 and 17 is shown by the line
and gives In Cmin & 0.550 (Cmin ~ 2°%") . Very close result
is obtained for the linear fit if all data points are used instead
of the median values. Insert: plot of C(T) vs T for n=15,
precision b=25 bits, dp=22. Point 1 indicated with the arrow
refers to the minimum value of complexity at T = Tmin =
22.67 where the total population of a ground level po(Tmin) =
0.15. Point 2 refers to the value of T' where po(T') = 0.7.

automatically to be an integer closest to log, Z?:o a;
(cf. (20)). We introduce a complexity metric for the
algorithm, C(T) = (1 + T)do/po(T) where po(t) =
Yower, 1w (t)]?. A typical plot of C(T) for an instance
of the problem with n=15 numbers is shown in the insert
of Fig. 1. At very small T the wavefunction is close to
the symmetric initial state and the complexity is ~ 27.
The extremely sharp decrease in C(T) with T is due
to the buildup of the population po(7) in the ground
level, £, = €9, as quantum evolution approaches the adi-
abatic limit. At certain T = Tin the function C(T)
goes through the minimum: for 7" > Tiin the decrease in
the number of trials do/po(T") does not compensate any-
more for the overall increase in the runtime T for each
trial. For a given problem instance the “minimum” com-
plexity Cinin = C(Tmin) is obtained via one dimensional
minimization over T. Plot of the complexity Ciy, for
different values of n in Fig. 1 appears to indicate the
exponential scaling law, Cmin ~ 2°8" for not too small
values of n > 11.

IV. CONCLUSION

In conclusion, we have developed a general method for
the analysis of avoided-crossing phenomenon in quantum



spin-glass problems and used it to study the performance
of quantum adiabatic evolution algorithm on random in-
stances of Set Partition problem. We described the onset
of avoiding-crossing during the algorithm where adiabatic
ground state changes from the extended in the energy
space to mostly localized near the minimum energy of
the optimization problem. Because the extended and lo-
calized state amplitudes are nearly orthogonal to each
other the repulsion between the corresponding branches
of eigenvalues (the minimum gap) is exponentially small,
gmin ~ 7.27"/2 and the run time of the algorithm scales
exponentially with n. Analytical results are in qualitative
agreement with numerical results for small-to-moderate
instances of Set Partition problem.

This method can be applied to study the performance
of continuous-time quantum algorithms for different ran-
dom combinatorial optimization problems. Among the
other possible applications is the analysis of tunneling
phenomenon in the low-temperature dynamics of random

1 Q4n/2 Q+n'/2 -
5o(, Q) = —,/ dw/g . 42" 37576, pis.snd(@ — 08)( — g), D(S,S)
I_TII

nn Q—n/2 S s/

Here D(S,S') is a Hamming distance between the spin
configurations S,S’ (cf. (11)). Using integral representa-
tion for delta function we perform summation of the spin
configurations in (A.2) and obtain (cf. Eq.(5))

U
5e(Q, ) = 47r2/ ds/ ds'f ”5 f(”)

xei(s+s'2) Ur(s,s). (A.3)
s') = Z H cos(a;(s — ")) H cos(a;(s + s')).
J jel i¢d

Here the sum is over all possible subsets J =
{j1,J2,---,Jr} of the length r obtained from the set of
integers j = 1,2,...,n. Window function f(x) is de-
fined in (5). Similar to the analyses of Eq.(5) integrals in
(27) can be evaluated by steepest descent method. With
appropriate choice of the coarse-graining windows 7, o’
(see below) contribution to the integrals comes from the
vicinity of the point (s = 0,s' = 0). Near this point we

use
- e (-5

n—r

3 (s + s')zag(J))

(A.5)

where

magnets.
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APPENDIX: CONDITIONAL DENSITY OF
STATES

Using the symmetry of the SPP we write p,.(E', E)
from Egs. (9),(10) in the following form:

Z Z pr(sE,s'E").

s==x1s'=

(A1)

Here p,(9Q,Q') is the joint distribution function of the
unsigned partition residues (cf. Eq. (7))

1 n
=52 18-Sl (A2)
j=1

For r,n —r > 1 and i.i.d. random numbers {a;} one has

02(J) = 02(J) = o2, (A.7)
where 02 = (a?) is given in (6). Using (A.5),(A.7) and
replacing window functions in (A.3) by unity, we compute
the Gaussian integrals in (A.3) and obtain

o = e e (5
() o

The size of coarse-graining windows in (A.3) is chosen
self-consistently, 1/p,(Q, ) < r'/2,n —r1/2.

Finally, using (A.1) and (A.8) we obtain the joint con-
ditional density of states

n+1 n 2 2\¢2(r /m
5= ESIG) o (e
x cosh [w (1 - Qn—r)] . (A.9)

From the equation above and Eq. (6) one can directly ob-
tain conditional density of states p.(E|E') (8). Expres-
sion for p.(E|E') in the case of relatively small energies
E,E' is given in (14).

We note that p.(E|E") is obtained by coarse-graining
with respect to both energy arguments (cf. (A.2)). How-



ever our numerical results indicate that the following ap-
proximate equality holds:

pr(E'\E,) = pra(E'), E'SE, < n. (A.10)

(We were able to derive this relation analytically only
with an accuracy to pre-exponential factor which is small
compare to () > 1). To illustrate this relation numeri-
cally we compute the following quantity

Q= (:) _1/0 ’dwpr,z(w)

for different r and strings z with E, < 1. The results are
presented in the insert to Fig. 1. Curves corresponding

(A.11)

to different r are nearly coincide with each other and with
the theoretical curve computed using p,(E'|E)

(:)1/0 Idwpr(w|0)=erf (M) (A.12)

oV?2n

To accurately compare prefactors in (A.10) we compute
pr(0|E,) for different r and strings z with E, <« 1.
We then compare these values with theoretical result for
pr(0|E;). The results are plotted in Fig. 1.
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