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Chapter 33

Minerals and human health

Introduction

Mineralogy and its methods of investigation are
finding increasing use in medicine and in envi-
ronmental health applications. There are many
examples where biologists, physicians, pharma-
cists, and environmental health professionals
rely on the expertise provided by mineralo-
gists. On the one hand, minerals may consti-
tute health hazards. Exposure to asbestos, toxic
waste from mining operations, or radiation due
to radioactive decay may cause cancer or other
diseases. On the other hand, minerals such as
salt and calcium are essential nutritional compo-
nents and, as we have seen in Chapter 23, both
bones and teeth are composed of mineral-like
crystals.

Minerals are also extensively used in beauty
and grooming products. For example, talc is an
important ingredient of many cosmetic products,
baby powder being one of the better known ones.
Minerals such as kaolinite, smectite, nontronite,
biotonite, and hectorite clays are used in cosmet-
ics, toothpaste, and pharmaceuticals, while mica
provides the sheen in lipstick. Most consumers
are generally unaware of most of these mineral
ingredients.

In this chapter we will explore some of the
aspects of minerals related to human health, in
both positive and negative ways. In so doing,
we will see that our overall health and well-
being is intimately connected with the world of
minerals.

Mineral-like materials in the human
body

The principal mineral-like compounds in humans
are phosphates, but other mineral-like crystals
occur as well (Table 33.1). Bones of adults con-
sist of approximately 70% calcium phosphate and
30% organic matter. Calcium phosphate forms
tiny prismatic crystals less than 1000 Å in length,
with a structure and composition similar to that
of apatite (Ivanova et al., 2001). Organic mat-
ter contains combinations of different collagens,
fats, and proteins. The apatite crystallites line up
in chains and, together with organic material,
form fibers of bone tissue. A portion of the phos-
phate material of newborns is amorphous. As a
child grows, the amorphous material and the ex-
isting crystals increase in size. At the same time
the portion of organic material decreases with
age, with the result that the fibers lose their elas-
ticity and the bone tissue becomes more brittle.

Recent investigations with high-voltage elec-
tron microscopic tomography revealed structural
relationships between collagen fibers and apatite
crystallites (Landis et al., 1996). For example, the
crystals in an embryonic chicken bone are only
800 Å × 300 Å × 80 Å (Figure 33.1a), the largest
dimension being along the c -axis of the hexago-
nal mineral. A computerized reconstruction indi-
cates that apatite c -axes are parallel to the long
axis of the collagen fibers and connect the fibers.
Furthermore, they are stacked in a regular pat-
tern (Figure 33.1b).
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Table 33.1 Mineral-like substances in the human body

Name Paragenesis Place

Apatite
Ca5(PO4)3(OH)

— Bones, teeth, kidneys,
urinary bladder, salivary
glands, prostate, lungs,
heart, blood vessels

Brushite
CaHPO4·2H2O

Apatite, whitlockite Bones, teeth, kidneys,
urinary bladder, prostate

Struvite
MgNH4PO4·6H2O

Whewellite, weddellite,
newberyite, apatite

Kidneys, urinary bladder,
teeth

Newberyite
MgHPO4·3H2O

Struvite, apatite Kidneys, teeth

Whitlockite
Ca9Mg(PO4)6(PO3OH)

Apatite, brushite Bones, teeth, kidneys,
urinary bladder, prostate

Calcite
CaCO3

Apatite, Holesterine Gall bladder
Teeth, salivary glands,

tumors, kidneys, lungs
Whewellite

CaC2O4·H2O
Weddellite, apatite,

struvite, urinary acid
Urinary bladder

Weddellite
CaC2O4·2H2O

Whewellite, apatite,
struvite, urinary acid

Urinary system

Urinary acid
C5H4N4O3

Whewellite, weddellite,
struverite, apatite

Urinary system

Note: From Katkova, 1996.

Biogenic apatite-like minerals have a
rather variable composition, which can be
expressed approximately by a formula such as
Ca10−x (PO4)6−y (CO3)z(OH)2+w ·nH2O. A number of
PO3−

4 tetrahedra in the structure are replaced by
CO3OH3− or CO2−

3 groups. The main crystalline
phase in cartilage is also biogenetic phosphate,
analogous to apatite and constituting about 5%
of the volume. Modifications of apatite form
96% of tooth enamel (the outer coating of teeth)
and 70% of dentine (the material beneath the
enamel), with the rest of tissue volume com-
posed of proteins. In tooth enamel, some OH− is
replaced by F−, which makes teeth more resis-
tant to decay. In enamel, crystals are organized
in a layered structure to improve mechanical
properties (Figure 33.2, see also Figure 23.6).

Crystals may also grow abnormally within the
human body. Aggregations of biogenetic apatite
up to 2 cm in size have been discovered in some
malignant tumors. The lungs of patients with
tuberculosis show calcification, with apatite and
whitlockite (Ca9Mg(PO4)6PO3OH) having been ob-
served. Similarly, in people with heart disease,
heart tissue, including arteries and the aorta, can
become covered with apatite-like calcium phos-
phate crystals (Figure 33.3).

Abnormal ‘‘stones’’ form in the bladder,
kidneys, liver, gall bladder, and trachea, and
are composed of amorphous or very diverse
crystalline phases of phosphates, carbonates, ox-
alates, or urates (Table 33.2). The morphology of
the stones resembles inorganically formed con-
cretions, with rhythmical zoning, geometrical
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(a) (b)

~67 nm

50 nm

Fig. 33.1 (a) Tomographic reconstruction of apatite
crystallites in bone from an embryonic chicken, based on
high-voltage electron micrographs. Note the alignment of
irregularly shaped, platy crystals. (b) Model of the relationship
between apatite platelets and collagen fibrils with a regular
stacking, based on the tomographic evidence (after Landis
et al., 1996).

sorting, and subgrain formation. In some cases
a drusy growth has been documented.

Minerals in nutrition

Apart from table salt, known by mineralogists
as halite (NaCl), minerals are rarely consciously
ingested by humans. Among the exceptions are
barite (BaSO4), called by the Russian mineralogist
A.E. Fersman ‘‘the most edible mineral’’, which is
used as an inert filling of chocolate, and kaoli-
nite, which is added to some ice creams to pro-
vide consistency when they start to melt. There
are also other examples, less well known, where
minerals are part of our food. Yet on shelves in
supermarkets, ‘‘minerals’’ in the form of nutri-
tional additives play a role almost as important
as that of vitamins, and in every modern book

50µm

Fig. 33.2 SEM image illustrating the layered structure of
prismatic apatite crystals in enamel from human teeth
(courtesy V. T. Wright, University of North Carolina,
Chapel Hill).

on nutrition there is a chapter on minerals. This
popularity is in part due to the rather free use of
the term ‘‘mineral’’ by physicians, pharmacists,
and nutritionists. Traditionally they call any in-
organic compound ‘‘mineral’’, following an old
usage that divided chemistry into two branches:
organic and mineral.

In nutrition, so-called minerals are divided
into macrominerals (calcium, chlorine, mag-
nesium, phosphorus, potassium, sodium, and
sulfur) and microminerals (such as chromium,

Fig. 33.3 Micrograph displaying a section through a human
coronary artery. The dark region (right side) is calcified tissue
that is common in arteriosclerosis (courtesy E. C. Klatt,
Florida State University, College of Medicine).
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Table 33.2 Composition of urinary and gall stones

Medical name Mineral name Urinary Gall Formula

Oxalates Whewellite X CaC2O4·H2O
Weddellite X CaC2O4·2H2O

Phosphates Struvite X MgNH4PO4·6H2O
Apatite X X ∼Ca5(PO4,CO3,OH)3(OH)
Newberryite X MgHPO4·3H2O
Brushite X CaHPO4·2H2O
Whitlockite X Ca9Mg(PO4)6(PO3OH)

Carbonates Vaterite X X CaCO3 hexagonal
Calcite X X CaCO3 trigonal
Aragonite X CaCO3 orthorhombic

Oxides Magnetite X FeFe2O4

Hematite X Fe2O3

Goethite X FeOOH
Lepidocrocite X FeOOH

Urates Urea X C5H4N4O3

— X C5H4N4O3·2H2O
— X C5H2O3N4(NH4)2

— X C5H2O3N4Na2·H2O
— X C5H2O3N4Ca·2H2O

Organic Holesterine X C27H46O
compounds Holesterine, hydrous X C27H46O·H2O

Ca-palmaniate X CH3(CH2)14(COO)2Ca

Note: X indicates positive association.
Source: From Katkova, 1996; Korago, 1992.

cobalt, fluorine, iron, manganese, molybdenum,
and zinc). The former are required in rather
large quantities in our daily diet, while the latter
are also essential for physiological functions,
but only in trace amounts. Table 33.3 lists some
of the physiological functions of macro- and mi-
crominerals. Ultimately most of these elements
are derived from ‘‘real minerals’’, but indirectly
through a long chain of natural events. Primary
minerals in rocks decompose to clay minerals
that become part of soils. Plants growing on
those soils accumulate the inorganic elements
and store them in roots and leaves. Animals
eat the plants and transfer the elements into
their tissue, and finally humans acquire these
elements largely by consuming either plants or
animals.

The quantity of elements stored in plants
is considerable, particularly in the green parts
(e.g., average contents on a moisture-free basis in
some legumes and grasses are Ca 1--4 weight%,
P 0.1--0.5 weight%, Fe 100--200 ppm, Cu 5--15
ppm). These amounts vary greatly with the
mineral content of the soil, but they are also
affected by many other factors such as climate
and elemental balance. The mineral content of
plants can have a direct effect on the health
of animals. It has been observed that cattle
grazing in pastures with underlying limestone
are less likely to develop bone diseases than
those grazing on granitic soils. The trace element
selenium, an essential antioxidant to preserve
the cellular membrane, can become toxic if con-
centrations are too high, as in some sedimentary
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Table 33.3 Essential nutritional elements and their physiological functions

Physiological functions

Macrominerals (required in large amounts)
Ca Bones, teeth, neural transmission, muscle functions
Cl Water and electrolyte balance, digestive acid
Mg Regulating chemical reactions, nerve transmission, blood vessels
P Bones, cell functions, and blood supply
K Growth, body fluid, muscle contraction, neural transmissions
Na Regulating acid–base balance, neural transmissions, blood pressure
S Constituent of proteins, thiamine, structure of hair, skin

Microminerals (required in trace amounts)
Cr Glucose metabolism
Co Vitamin B12, red blood cells
Cu Red blood cells, prevents anemia, nervous system, metabolism
F Tooth decay, strong bones
Fe Hemoglobin, immune system
I Thyroid hormones, reproduction
Mn Tendon and bone development, central nervous system, enzymatic reactions
Mo Growth, enzymes
Se Prevents cardiovascular disease, cancer, detoxifies pollutants, antioxidant
Zn Enzymes, red blood cells, sense of taste/smell, immune system, protects liver

Source: From Dunn, 1983.

rocks. Conversely, a lack of selenium in the
diet of endangered Bighorn Sheep was recently
implicated in the low survival rate of newborn
lambs. In human nutrition, calcium, magne-
sium, phosphorus, and copper are stored in
legumes, whereas chromium, iron, manganese,
and zinc are enriched in cereals.

A number of drugs used in the treatment
of internal and external diseases contain miner-
als. The halide mineral bischofite (MgCl2·6H2O),
for example, is used for treating arthritis and
rheumatic fever. Calcite, dolomite and apatite are
used as calcium, magnesium, and phosphorus
supplements.

Direct ingestion of soils as a food supple-
ment and medicine, known as geophagy, is com-
mon among some primates and is still practiced
in some countries by humans. Ancient Greeks
and Romans used tablets of soil as a remedy
against poisoning. Traditionally and until fairly
recently, soils were consumed in China as famine
food. Well into the eighteenth century, clay was
mixed with flour in the preparation of bread.

Pomo Indians in northern California (USA) mixed
clay with ground acorns to neutralize the acid-
ity. The most widespread incidence of geophagy
is in Central Africa, as well as among some
African Americans in the southern USA. In Africa
geophagic clays are widely used by pregnant
women as food supplements containing elements
such as phosphorus, potassium, magnesium, cop-
per, zinc, manganese, and iron, and as remedies
against diarrhea. Interestingly the chemical com-
position of these soils and soil extracts is re-
markably similar to modern commercial mineral-
nutrient substitutes. The main clay mineral in
geophagic soils is kaolinite. Soils rich in smectite
are less desirable because of their swelling prop-
erties (see Chapter 27).

Minerals as health hazards

Diseases caused by particulates
Minerals are ubiquitous in our daily environ-
ment. Along with their synthetic analogs, they
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are used in household products, as abrasives,
pharmaceuticals, catalysts, fillers, anti-caking
agents, building materials, insulation, and pig-
ments. We are exposed to minerals daily, often
without being aware of it. Many workers, in-
cluding miners, quarry workers, sandblasters,
stone masons, and agricultural workers, are ex-
posed to dust from a variety of sources and
inhale small mineral fragments. These workers
have an increased probability of developing pul-
monary diseases. Since workers are often ex-
posed to dust from a mixture of minerals, it is
difficult to establish whether it is the number
of ingested particles or a specific mineral that
causes a particular disease. Minerals for which a
dose--response relationship between the amount
of exposure and the degree of injury has been
established with some confidence are fibrous
forms of amphibole asbestos (riebeckite, trade
name crocidolite; grunerite, trade name amosite;
tremolite, actinolite, and anthophyllite), serpen-
tine asbestos (chrysotile), quartz, and coal. Recently
several other amphibole minerals (winchite, rich-
terite, and arvedsonite) have been implicated as
causing cancer in workers at the Libby, Montana
(USA), vermiculite mines, and the Environmental
Protection Agency is currently reviewing whether
the existing asbestos regulations in the USA
should be extended to include these minerals.
A brief review of these disease-causing miner-
als and the methods used to assess and monitor
their presence is given below.

The first reported case of the lung disease as-
bestosis was in 1927 in a chrysotile textile worker.
Ten years later asbestosis became generally ac-
cepted by the industry as an occupational dis-
ease with distinct characteristics. Stanton et al.
(1981) demonstrated with a classical, though still
controversial, epidemiological study that rats ex-
posed to fibrous asbestos dust developed carcino-
genic tumors (Figure 33.4). In the Stanton et al.
study, rats exposed to equivalent amounts of
nonasbestos dust (such as talc) did not develop
the diseases. The researchers concluded that the
fibrous morphology caused the disease. Since
then, much further research has been done, and
the fibrous morphology of asbestos has, in fact,
been found to be only part of the reason that as-
bestos is harmful. Numerous other minerals exist
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Fig. 33.4 Incidence of malignant tumors in rats as function
of fiber concentration (after Stanton et al., 1981).

that can occur in a fibrous morphology, such as
talc, gypsum, and clays (i.e., kaolinite, halloysite,
sepiolite) but they have not been associated with
lung disease. In the early 1980s, the use of as-
bestos in the USA and in Europe was largely elim-
inated. However, much asbestos still exists in in-
sulation, fireproofing, flooring, roofing, and sur-
facing materials of older buildings.

The detailed mechanisms of the lung diseases
caused by inhaled dust are still unclear, but it
has been established that sustained exposure to
asbestos minerals can cause cancer of the lung, the
trachea, and the bronchial walls. Mesothelioma is
a rare malignant tumor, correlated with crocido-
lite exposure. It arises from the mesothelial mem-
brane that lines the pleural cavity. Mesothelioma
generally appears 20--40 years after asbestos expo-
sure, but once it appears there is rapid growth,
with the tumor spreading and invading adja-
cent organs such as the heart, liver, and lymph
nodes. Death often occurs within one year after
the first symptoms appear. Asbestosis is a nonma-
lignant disease that involves interstitial fibrosis
with hardening of the lung tissue. It may lead to
severe loss of lung function and ultimate respira-
tory or cardiac failure. The disease is often asso-
ciated with pleural calcification and the appear-
ance of asbestos bodies consisting of fibers coated
with collagen (Figure 33.5). Asbestosis extends
eventually to the walls of the alveoli (small air
cavities where the oxygen exchange takes place)
and leads to the destruction of alveolar spaces.
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Fig. 33.5 SEM image of ferruginous bodies extracted from
a human lung. Particles of asbestos are coated with an
iron-rich material derived from proteins. (from Guthrie and
Mossman, 1993; photograph by L. Smith and A. Sorling).

The fibrous scar tissue narrows the airways, caus-
ing shortness of breath.

The harmful effect of asbestos dust is in part
dependent on the physical shape of the par-
ticles, and the fibrous morphology of asbestos
is particularly detrimental. However, it appears
that the relative ability of the body to dissolve
these materials is also of key importance. As-
bestos is much less soluble in the body than are
nondisease-causing fibrous minerals. Equally sig-
nificant is the surface chemistry and reactivity
of the particles. For example, fresh surfaces of
minerals, exposed by fracture, are highly reac-
tive owing to the presence of under-coordinated
surface atoms and broken bonds that accompany
them. It has been observed that generation of free
radicals by increased grinding of chrysotile fibers
reduces the hemolytic activity because the parti-
cles become less crystalline. In chrysotile fibers
enclosed in tissue, magnesium is preferentially
leached from the fiber. If the surface chemistry
of chrysotile is modified with polymers adsorbed
to the particles, the toxic effect can be dramati-
cally reduced.

As we have seen in Chapter 27, tetrahedral--
octahedral sheets in chrysotile are rolled up
similar to a scroll (see Figure 27.5). The outside of

the ‘‘scroll’’ is made up of the magnesium octa-
hedral sheet, consisting of hydroxyl atoms on the
surface that can be imaged with atomic force mi-
croscopy (AFM) (Figure 33.6). Each bright node in
this image represents a hydroxyl on the surface,
and each gray triangular region is a magnesium
ion. It is on this surface that the chrysotile reacts
with biological tissue. In the case of chrysotile,
this surface is charge-balanced and fairly regular.

In the amphibole crocidolite, the surface is
dominated by {110} cleavages parallel to the sili-
cate chains. The surface structure is much more
irregular, containing not only OH− but also tetra-
hedral Si4+, octahedral Mg2+/Fe2+, and larger
cations (Ca2+, Na+). During dissolution, amphi-
boles become depleted in iron, sodium, calcium,
and magnesium. If iron is oxidized during the
leaching process, it reprecipitates as ferric oxy-
hydroxide. Analyses of leached crocidolite fibers
in human tissue display amorphous surface lay-
ers. Because of these layers, crocidolite fibers have
a much longer lifetime than chrysotile, and for
this reason crocidolite is more pathogenic.

Exposure to quartz dust leads to silicosis, a
progressive lung disease characterized by the
development of scar tissue. Inhalation of quartz
particles 0.5--0.7 �m in size causes proteins to
develop that surround the particles, stimulat-

0.4 nm

Fig. 33.6 AFM image showing the atomic arrangement in
the surface of lizardite, with a hexagonal pattern of hydroxyl
ions (bright spots) and magnesium ions in depressions (gray)
(from Wicks et al., 1992).
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ing fibroblast growth and producing collagen, an
essential component of scar tissue. Fibrotic nod-
ules develop in the region of small airways. As
silicosis progresses, nodules coalesce and lesions
develop that may involve one third of the lung,
leading ultimately to respiratory failure. Silicosis
has symptoms similar to those of asbestosis. Un-
like asbestos exposure, however, there is no clear
evidence for a relationship between lung cancer
and silicosis.

Coal worker’s pneumoconiosis is caused by fine-
grained coal dust composed of carbonaceous ma-
terial. Dust-laden cells form a mantle around
respiratory bronchioles, which dilate as the
mantle enlarges, causing emphysema. Pneumo-
coniosis often takes many years to develop and,
unlike silicosis, there is often no progression of
this disease in the absence of further exposure.

These lung diseases illustrate that the interac-
tion of fibers with human tissue is very complex.
Fibers with minor differences in composition and
defect structure may have quite different biolog-
ical activities. For example, glass fibers are not
dangerous because they maintain their mechani-
cal integrity and their dissolution rate is orders of
magnitude faster than that of crystalline fibers.

Particle analysis
The assessment of hazardous concentrations of
mineral particulates in the environment requires
a combination of standardized industrial hygiene
site-assessment techniques and mineralogical an-
alytical procedures. We discuss these procedures
in some detail because a fair number of min-
eralogists find employment in this field. The
industrial hygiene assessment techniques typi-
cally involve a variety of sampling procedures
(air drawn into membrane filters, wiping or vacu-
uming of known areas, direct sampling of build-
ing materials or rock/soil, etc.). The mineralog-
ical procedures typically include the use of a
polarized light microscope (PLM), phase contrast
microscope (PCM), and transmission electron mi-
croscope (TEM) for asbestos, and X-ray diffraction
(XRD) for quartz.

In the case of airborne particles, a known vol-
ume of air is collected onto a special type of mem-
brane filter. Analysis of the particulate found on
the filter is then performed using the appropri-
ate technique. For asbestos air samples, a section

of an air filter is either (1) mounted on a glass
slide and saturated with a special immersion oil
for examination with a PLM or PCM or (2) pre-
pared to create a carbon film replica of the fil-
ter surface for examination with a TEM. Figure
33.7a is a PLM image of amosite. Figure 33.7b and
c are TEM images of amosite and chrysotile, re-
spectively, each with a characteristic morphology.
The number of fibers in a given area is counted
and, if the volume of air sampled is known, the
number of fibers per unit volume of air (mea-
sured as fibers per cubic centimeter) can be calcu-
lated. For example, in the USA the Occupational
Safety and Health Administration (OSHA) has es-
tablished a permissible time-weighted exposure
limit for workers at 0.1 fibers per cubic centime-
ter of air during an 8 hour work day. Many other
countries have similar regulations.

In the case of asbestos bulk samples of build-
ing materials and rock/soil samples, a differ-
ent technique called optical polarized light mi-
croscopy is generally used. It involves taking a
small sample of the bulk material, mounting it
in immersion oil (see Chapter 10), and identifying
the minerals present, quantifying the amount of
asbestos by area estimate or by point count. It is
a fairly straightforward, although tedious, tech-
nique, which gives good general data on mass
quantities of asbestos.

A major limitation in the performance of as-
bestos analysis is the fact that asbestos fibers are
considered to be hazardous down to a length of
0.5 �m, which is well below the resolution limit
of optical microscopes. For the precise identifica-
tion of the extremely small asbestos fibers, the
TEM is the analytical method of choice, as it can
easily resolve particles much smaller that 0.5 �m
(Figure 33.7b,c). Furthermore the mineral iden-
tity of each individual asbestos fiber can be as-
certained structurally by selected area electron
diffraction (SAD) and chemically by energy dis-
persive X-ray analysis (EDXA).

Commercial testing laboratories that perform
asbestos analysis must be certified by government
agencies to perform each specific type of test
that they offer. To become certified, they must
pass a detailed inspection of their facilities and
pass proficiency tests whereby blind samples are
submitted to their facilities. Such laboratories
employ a substantial number of mineralogists
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(a)

(b)

(c)

Fig. 33.7 Samples containing asbestos in airborne dust.
(a) Polarized microscope sample of amosite (width 1.2 mm)
(b) TEM image of amosite (width 6 �m) (c) TEM image of
chrysotile (width 10 �m). (All micrographs are courtesy of
Mark Bailey, Asbestos TEM Laboratories, Berkeley,
California.)

to perform both optical and electron microscopy
analyses.

Chemical contamination from mining
With the increasing industrialization of society,
the demand for both metallic and non-metallic
mineral products increases constantly. It is es-
timated that about 1.5 billion tonnes of rock
mass are excavated each year during mining of
mineral resources. This causes irreparable dam-
age to the environment. Open pit mines expand
and deepen; underground mining causes subsi-
dence; dumps of waste rocks grow and tailings
of ore-dressing plants expand; the atmosphere be-
comes polluted with gases from smelters, often
enriched in SO2 and CO2; and natural water sys-
tems are also polluted. Soils in the vicinity of
Sudbury in Canada, which is the world’s largest
nickel producer, have a pH of only 3 and this
causes extensive loss of vegetation. Metals such
as nickel, lead, and copper vaporize during the
high temperatures of smelting and are dispersed
over extensive areas surrounding the smelters
(Figure 33.8).

The most important pollutant of the hydro-
sphere is H+, in the form of acid rain and acid
mine drainage. Acid mine drainage results largely
from the decomposition of pyrite to form iron hy-
droxide, H+ and SO2−

4 . These reactions are often
catalyzed by bacteria at low pH, increasing reac-
tion rates by several orders of magnitude. Acid
water produced by oxidation of sulfides can dis-
solve other metal sulfides and leach metals that
are adsorbed in clays, thereby increasing the
trace metal content in streams. Extremely low
pH, even negative, never observed in natural sys-
tems, have been documented in mine waters in
northern California (USA), and such acid waters
have high concentrations of toxic metals such as
arsenic, zinc, and cadmium.

Many industrialized countries have put se-
vere limitations on mining operations to main-
tain some environmental standards. One of the
first environmental mining laws was the prohi-
bition of hydraulic mining in California (1860) to
prevent erosion and destruction of fertile farm-
land. Today in the USA, groundwater must be
protected during mining operations, requiring
elaborate schemes to ensure such protection. In
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Fig. 33.8 Nickel content (�g/l) of atmospheric precipitation
around Sudbury (Canada) recorded 1970–1974. The
asymmetrical pattern is due to prevailing winds. Since then,
the situation has much improved, but large concentrations of
nickel and other heavy metal contaminants remain in soils. A
zone of vegetation loss near Sudbury is shaded (after Semkin
and Kramer, 1976).

addition, mines must be restored to a natural
state after mining operations cease. This so-called
‘‘reclamation’’ is very costly, necessitating new
efficient and effective technologies. Only a few
years ago, the majority of mining mineralogists
were engaged in prospecting and extraction tech-
nologies. Today many are conducting research
into remediation of environmental damage. Mod-
ern mineral processing plants, at least in indus-
trialized countries, must limit their emissions.
The USA is the largest producer of SO2 and CO2

emissions from all sources combined, and emis-
sions of SO2 from mining and mineral process-
ing still exceed 1000 tonnes per year. The result
of such emissions is acid precipitation, which is
prevalent in Eastern North America, Russia and
many other parts of the word.

Whitton and Diaz (1980) documented world-
wide a dramatic decrease in the number of pho-
tosynthetic organisms in rivers as zinc content

increased (Figure 33.9). Compounding the prob-
lem is that under anaerobic conditions, metal
ions may form highly toxic organometallic com-
plexes, such as methylated mercury (CH3Hg+).
Natural waters acidified by mine drainage have
killed enormous numbers of fish and benthic or-
ganisms and have made groundwater unsafe for
human consumption. Geochemical reactions in
mined areas are more rapid than in natural en-
vironments because of extensive exposures and
large surface areas, particularly in tailings. It
has been suggested that the effect of acid mine
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Fig. 33.9 Worldwide survey of the number of taxa of
photosynthetic plants in stream water as function of the zinc
content of the stream (after Kelly, 1999; see also Whitton and
Diaz, 1980).
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if ingested in high doses. Also indicated are significant
radioactive elements (after Smith and Huyck, 1999).

drainage is comparable to that of acid rain, owing
to the atmospheric spread of industrial sources of
acidification. It should be noted that mercury is
not always a natural component of mining wastes
but has been used extensively in gold extraction,
in the process called amalgamation mentioned in
Chapter 30. When this process was in extensive
use, large amounts of mercury entered the at-
mosphere and rivers. Amalgamation was largely
replaced by the environmentally more benevo-
lent cyanide process in the early 1900s, but high
concentrations of mercury are still present in
soils around old mining districts, as well as in
sediments of regions that receive the stream and
river drainage of these districts. An example is
San Francisco Bay in California, which received
deposits from streams draining Sierra Nevada
mining districts, more than 160 km away, during
the Gold Rush period of the 1850s.

Figure 33.10 is a periodic system of elements
on which the essential human nutrients are

marked, as well as toxic elements. The toxic
elements are divided into those that are known
to be carcinogenic, those that cause birth de-
fects (teratogenic), and some that are radioactive.
Among the radioactive elements, radon is most
significant. It forms during radioactive decay of
potassium, a major element in alkali feldspars,
which are common in granitic rocks of continen-
tal shields.

Test your knowledge

1. List some mineral-like crystals that are found
in the human body.

2. In health and nutritional sciences the defini-
tion of mineral is somewhat different from that
in mineralogy. Explain the difference.

3. List some (‘‘true’’) minerals that are directly
used in human nutrition.

4. Give examples of some elements that are es-
sential for physiological functions but are
toxic when used in larger doses.

5. Which minerals, if inhaled as particulate dust,
are most hazardous to human health?

6. Review some of the dangers of acid mine
drainage.
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Important concepts

Minerals in the human body: apatite, calcite,
Essential macroelements: Ca, Cl, Mg, P, K, Na, S
Essential microelements: Cr, Co, Cu, F, Fe, I, Mn, Mo, Se, Zn
Diseases related to mineral dust:

Asbestosis (crocidolite, chrysotile)
Lung cancer (crocidolite, chrysotile)
Mesothelioma (crocidolite, chrysotile)
Silicosis (quartz and silicates)
Pneumoconiosis (coal)

Chemical contamination (e.g., acid mine drainage)
Carcinogenic elements: Be, Cr, Co, Ni, As, Zr, Cd, Pb
Teratogenic: Li, Al, Mn, Cu, Zn, As, Se, Mo, Cd, In, Te, Hg, Tl, Pb
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