Reduced Quintic Finite Element

S. C. Jardin

Princeton University
Plasma Physics Laboratory

FDM3D Workshop
March 19-21, 2007

Reduced Quintic 2D Triangular Finite Element

k	$\mathrm{m}_{\mathrm{k}}-\mathrm{n}_{\mathrm{k}}$	
1	0	$0^{\underline{2}}$
2	1	0
3	0	1
4	2	0
5	1	1
6	0	2
7	3	0
8	2	1
9	1	2
10	0	3
11	4	0
12	3	1
13	2	2
14	1	3
15	0	4
16	5	0
17	3	2
18	2	3
19	1	4
20	0	5

For C^{1}, require that the normal slope along the edges ϕ_{n} have only cubic variation:
$5 b^{4} c_{16}+\left(3 b^{2} c^{3}-2 b^{4} c\right) a_{17}+\left(2 b c^{4}-3 b^{3} c^{2}\right) a_{18}+\left(c^{5}-4 b^{2} c^{3}\right) a_{19}-5 b c^{4} a_{20}=0$
$5 a^{4} \mathrm{ca}_{16}+\left(3 a^{2} \mathrm{c}^{3}-2 \mathrm{a}^{4} \mathrm{c}\right) \mathrm{a}_{17}+\left(-2 \mathrm{ac}^{4}-3 \mathrm{a}^{3} \mathrm{c}^{2}\right) \mathrm{a}_{18}+\left(\mathrm{c}^{5}-4 \mathrm{a}^{2} \mathrm{c}^{3}\right) \mathrm{a}_{19}-5 \mathrm{ac}^{4} \mathrm{a}_{20}=0$
20-2 = 18 unknowns:
These are determined in terms of $\left[\phi, \phi_{x}, \phi_{y}, \phi_{x x}, \phi_{x y}, \phi_{y y}\right.$] at $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$

Implies C^{1} continuity at edges and C^{2} at nodes!

$a_{i}=g_{i j} \Phi_{j}$
 The Trial Functions:

$$
\phi=\sum_{i=1}^{20} a_{i} \xi^{m_{i}} \eta^{n_{i}}=\sum_{i=1}^{20} \sum_{j=1}^{18} g_{i j} \Phi_{i} \xi^{m^{m}} \eta^{n_{i}}=\sum_{j=1}^{18} v_{j} \Phi_{j}
$$

$$
v_{j}=\sum_{i=1}^{20} \xi^{m_{i}} \eta^{n_{i}} g_{i j}
$$

These are the trial functions. There are 18 for each triangle.

The 6 shown here correspond to one node, and vanish at the other nodes, along with their derivatives

Each of the six has value 1 for the function or one of it's derivatives at the node, zero for the others.

Note that the function and it's derivatives (through $2^{\text {nd }}$) play the role of the amplitudes

Element Order

If an element with typical size h contains a complete polynomial of order M, then the error will be at most of order h^{M+1}

This follows directly from a local Taylor series expansion:

$$
\phi(x, y)=\sum_{k=0}^{M} \sum_{l=0}^{k} \frac{1}{l!(k-l)!}\left[\frac{\partial^{k} \phi}{\partial x^{l} \partial z^{k-l}}\right]_{x_{0}, z_{0}}\left(x-x_{0}\right)^{l}\left(z-z_{0}\right)^{k-l}+O\left(h^{M+1}\right)
$$

Thus, linear elements will be $\mathrm{O}\left(\mathrm{h}^{2}\right)$ quadratic elements will be $\mathrm{O}\left(\mathrm{h}^{3}\right)$ cubic elements will be $\mathrm{O}\left(\mathrm{h}^{4}\right)$ quartic elements will be $\mathrm{O}\left(\mathrm{h}^{5}\right)$ complete quintic elements will be $\mathrm{O}\left(\mathrm{h}^{6}\right)$

Reduced quintic contains a complete quartic and thus its error is $\mathrm{O}\left(\mathrm{h}^{5}\right)$

Element Continuity

Theorem: A finite element with continuity C^{k-1} belongs to Hilbert space H^{k}, and hence can be used for differential operators with order up to $2 k$

Continuity	Hilbert Space	Applicability
C^{0}	H^{1}	second order equations
C^{1}	H^{2}	fourth order equations

H^{k} means that
derivatives exist
up to order k

The vast majority of the literature concerns C^{0} elements, (including Spectral Elements, NIMROD elements)
The reduced quintic elements are C^{1} and thus can be used on spatial derivatives up to $4^{\text {th }}$ order.

This applicability is made possible by performing integration by parts in the Galerkin method, shifting derivatives from the unknown to the trial function
recall:

$$
\begin{aligned}
\iint_{\text {domain }} v_{i}[\nabla \cdot f(x, y) \nabla \phi] d x d y & =-\iint_{\text {domain }} f(x, y) \nabla v_{i} \bullet \nabla \phi d x d y \\
\iint_{\text {domain }} v_{i}\left[\nabla^{2} f(x, y) \nabla^{2} \phi\right] d x d y & =\iint_{\text {domain }} f(x, y) \nabla^{2} v_{i} \nabla^{2} \phi d x d y
\end{aligned}
$$

NOTE: requires the trial function have appropriate boundary conditions

Comparison with a popular C^{0} Element

Lagrange Cubic: C^{0}, h^{4}
9 new unknowns: 2 new triangles $9 / 2=4^{1 / 2}$ unknowns/ triangle

Reduced Quintic: C^{1}, h^{5}

6 new unknowns: 2 new triangles
$6 / 2=3$ unknowns/ triangle

Comparison of reduced quintic to other popular triangular elements

	Vertex nodes	Line nodes	Interior nodes	accuracy order h^{p}	$\mathrm{UK} / \mathrm{T}^{1}$	continuity
linear element	3	0	0	2	$1 / 2$	C^{0}
Lagrange quadratic	3	3	0	3	2	C^{0}
Lagrange cubic	3	6	1	4	$41 / 2$	C^{0}
Lagrange quartic	3	9	3	5	8	C^{0}
reduced quintic	18	0	0	5	3	$\mathrm{C}^{1 *}$

$U K / T^{1}$ is number of unknowns (or Degrees of Freedom) per triangle

Second order equation:

$$
\nabla^{2} \Phi=S
$$

Linear Elements $E_{L}=a \frac{1}{N^{2}}$

Reduced Quintic Elements $E_{Q}=b \frac{1}{M^{5}}$

$$
\text { same error } \Rightarrow E_{L}=E_{Q} \Rightarrow M=\left(\frac{b}{a}\right)^{1 / 5} N^{2 / 5} \sim N^{2 / 5}
$$

Win for $\mathrm{N}>20$!

Fourth order equation: $\quad \nabla^{4} \Phi=S$

Reduced Quintic Elements $E_{Q}=b \frac{1}{M^{5}}$

same error $\Rightarrow E_{L}=E_{Q} \Rightarrow M=\left(\frac{b}{a}\right)^{1 / 5} N^{2 / 5} \sim N^{2 / 5}$

Win for $\mathrm{N}>6$!

Summary

- Triangular finite element with error $O\left(h^{5}\right)$ and C^{1} continuity
- Advantages
- Minimum number of DoF per triangle for a given accuracy
- Because it can treat up to $4^{\text {th }}$ order spatial derivatives, does not require intermediate variables such as vorticity and current density
- Both of these advantages lead to smaller matrices for implicit solution
- Question: are there new numerical stability issues associated with this element?

