	General Characteristics			
1	Abstract of Model Capabilities	OMEGA is a fully-functional numerical weather prediction model with an embedded Atmospheric Dispersion Model (ADM). ADM has both Eulerian and Langrangian modes of operation and can be used to monitor the dispersion of hazardous aerosols and gases, including chemical, biological, and nuclear hazards. OMEGA/ADM can be used in regions of complex terrain and/or in regions that are data-sparse. It can be used either in a true forecast mode, or in analysis mode to aid in the reconstruction of past events. OMEGA can simulate atmospheric conditions of a scale as small as down to 1 km horizontal resolution and, using the Lagrangian mode, the dispersion at even finer scales. OMEGA/ADM is supported by worldwide databases for evaluation, land/water fraction, vegetation, soil type, land use, soil temperature, sea surface temperature, and soil moisture.		
2	Sponsor and/or Developing Organization	Dr. David P. Bacon Science Applications International Corporation 1710 Goodridge Dr., McLean, VA 22102 (703) 821-4594 (703) 821-1134 Fax bacon@apo.saic.com developing organization		
3	Last Custodian/ Point of Contact	Dr. David P. Bacon Science Applications International Corporation 1710 Goodridge Dr., McLean, VA 22102 (703) 821-4594 (703) 821-1134 Fax bacon@apo.saic.com primary individual sarma@apo.saic.com secondary individual		
4	Life-Cycle	OMEGA v 3.5 is the latest version of a model originally developed to support the US DOD in a variety of missions Version 1.0 became operational in April 1995. Since then a significant amount of new functionality has been added. This has included improvements in the Graphical User Interface (GUI), the analysis modules, the model physics and the hydrodynamic solver, and the post-processing routines. Currently capable of point-wise four-dimensional data assimilation (FDDA), a full continuous FDDA scheme is currently under development. In addition, additional real-time data ingest routines are being developed to expand the range of data sources that can be assimilated using the Optimal Interpolation-based data assimilations system.		
5	Model Description Summary	 Governing equations - Fully non-hydrostatic equation set Dimensionality - 3D Grid structure - Unstructured and adaptive triangular prisms Coordinate system - Rotating Cartesian coordinate framework Numerics - Finite volume based upon Smolarkiewicz Horizontal Resolution - 1-100 km Vertical Resolution - 20 - 1000 m Surface Roughness - Specified over land, predicted over water Soil Surface - Based on the force-restore rate method PBL - Planetary boundary layer is treated separately as viscous sublayer, surface layer, and transition layer Turbulence closure - 1.5 order closure: Based on turbulent kinetic energy and its dissipation Cu parameterization - Modified Kuo scheme Microphsyics - Extensive bulk-water microphysics Radiation - Shortwave absorption by water vapor and longwave emissivities of water vapor and carbon dioxide and computationally efficient technique of Sasamori Initialization - Based on 4D data assimilation Transport/diffusion - Embedded Eulerian and Lagrangian aersol transport algorithms Operational Status - Real-time Operational Configuration (Research Mode also Supported) 		
6	Application Limitation	The model is very general. Its primary limitation is an inability to consider urban canyons or other microscale features.		
7	Strengths/ Limitations	Strengths: The model is a state-of-the-art weather prediction model, so all scales (both spatial and temporal) are considered. The model is worldwide relocatable; all required global datasets have been created. The model is extremely easy to use. Initial training for simple problems can take less than 1 day. Limitations: The model does not include urban canyons or other city-scape features. The model does not include mitigation features. The model does not include casualty or human effects modules.		
8	Model References	 The Operational Multiscale Environment model with Grid Adaptivity (OMEGA) David P. Bacon, et al., DNA-TR-95-30, Defense Special Weapons Agency, 6801 Telegraph Rd., Alexandria, VA 22310-3398. 		

Requirements Forecast information. Release data: Location/Elevation (x,y,z coordinates) of Release. Relead quantity as a function of time. 10 Output Summary Three-dimensional snapshots of concentration at regular intervals of times. Two dimensional snapshots of dosage at regular intervals of time. 11 Applications Southeastern US (1996 Olympic Games) Southwestern US (AF Dispersion tests) Europe (ETEX) Asia (continental scale atmospheric radioactivity monitoring) Southeast Asia (Fires in Borneo and Sumatra) 12 User-Friendliness Graphical User Interface (GUI) Command Line Interface for Daily Operations 13 Hardware-Software Interface Constraints/ Requirements Computer operating system: X-windows/Motif Computer platform: CRAY (J-90/Y-MP/C-90/T3E) Disk space requirements: 1 GB for Installation/0.5 GB per run archived. Run execution time (for a typical problem): 0.1 - 0.2 times the simulated time. Programming language: FORTRAN (model) & C (GUI) Other computer peripheral information: 14 Operational Parameters Identify whether the code has any error diagnostic messages to assist the user in troubleshooting operational problems: Set up time for: Typical times are: <i>first-time user</i> : 3 hours <i>experienced user</i> : <1hour 15 Surety Considerations All quality assurance documentation: Benchmark runs: Yes. Installed as part of the system. Validation calculations: Yes			
11 Applications snapshots of dosage ai regular intervals of time. 11 Applications Southeastern US (1996 Olympic Games) Southwestern US (AP Dispersion tests) Europe (ETEX) Asia (continental scale atmospheric radioactivity monitoring) Kuwait (regional scale atmospheric radioactivity monitoring) Southeast Asia (Fires in Borneo and Sumatra) 12 User-Friendliness Graphical User Interface (GUI) Command Line Interface (GUI) Command Line Interface (GUI) Command Line Interface (CUI) Communer platfor:: CRAY (J-90/Y-MPC-90/T3E) Disk space requirements: 1 GB for Installation/0.5 GB per run archived. Run execution time (for a typical problem): 0.1 - 0.2 times the simulated time. Programming language: FORTRAN (model) & C (GUI) Other computer peripheral Information: 14 Operational Parameters Identify whether the code has any error diagnostic messages to assist the user in troubleshooting operational problems: Set up time for: Typical times are: ffrst-time user: 3 hours experienced user: <1hour	9	Input Data/Parameter Requirements	Meteorological data: Upper Air Soundings, Surface Observations, Gridded Analyses and/or Forecast information. Release data: Location/Elevation (x,y,z coordinates) of Release. Release quantity as a function of time.
1 Southwestern US (AF Dispersion tests) Europe (ETEX) Asia (continental scale atmospheric radioactivity monitoring) Kuwait (regional scale atmospheric radioactivity monitoring) 12 User-Friendliness Graphical User Interface (GUI) Command Line Interface (or Daily Operations 13 Hardware-Software Interface Constraints/ Requirements Computer operating system: X-windows/Motif Computer platform: CRAY (J-90/Y-MP/C-90/T3E) 14 Operational Parameters Computer peripheral information: 14 Operational Parameters Identify whether the code has any error diagnostic messages to assist the user in troubleshooting operational problems: Set up time for: Typical times are: first-time user: 3 hours experienced user: <1hour	10	Output Summary	Three-dimensional snapshots of concentration at regular intervals of times. Two dimensional snapshots of dosage at regular intervals of time.
Command Line Interface for Daily Operations 13 Hardware-Software Interface Constraints/ Requirements Computer operating system: X-windows/Motif Computer platform: CRAY (J-90/Y-MP/C-90/T3E) 13 Hardware-Software Interface Constraints/ Requirements Computer operating system: X-windows/Motif Computer problem: 0.1 - 0.2 times the simulated time. Programming language: FORTRAN (model) & C (GUI) Other computer peripheral information: 14 Operational Parameters Identify whether the code has any error diagnostic messages to assist the user in troubleshooting operational problems: Set up time for: Typical times are: <i>first-time user</i> : 3 hours experienced user: <1hour	11	Applications	Southwestern US (AF Dispersion tests) Europe (ETEX) Asia (continental scale atmospheric radioactivity monitoring) Kuwait (regional scale atmospheric radioactivity monitoring)
Interface Constraints/ Requirements Computer platform: CRAY (J-90/Y-MP/C-90/T3E) Disk space requirements: 1 GB for Installation/05. GB per run archived. Run execution time (for a typical problem): 0.1 - 0.2 times the simulated time. Programming language: FORTRAN (model) & C (GUI) Other computer peripheral information: 14 Operational Parameters Identify whether the code has any error diagnostic messages to assist the user in troubleshooting operational problems: Set up time for: Typical times are: <i>Ifrst-time user:</i> 3 hours experienced user: <1hour	12	User-Friendliness	
Parameters Troubleshooting operational problems: Set up time for: Typical times are: first-time user: 3 hours experienced user: <1hour 15 Surety Considerations All quality assurance documentation: Benchmark runs: Yes. Installed as part of the system. Validation calculations: Yes Verification with field experiments that has been performed with respect to this code: `` Validation calculations: Yes Verification with field experiments that has been performed with respect to this code: `` Validation calculations: Yes Verification with field experiments that has been performed with respect to this code: `` Validation calculations: Yes Verification with field experiments that has been performed with respect to this code: `` Validation calculations: Yes Verification with field experiments that has been performed with respect to this code: `` CRAY Y-MP: 3:26:33 CPU hours:minutes:seconds CRAY J-90: 3:24:00 SUN SPARC-20 24:59:00 Parameters Source Term Submodel Type A1 Source Term Submodel Type A1 Source Term Algorithm? YESNO A2 For Chemical Consequence Assessment Models Liquid spill: pool evaporation particulate resuspension Specified mass flux rate vs. time. sublimation A3 For Radiological Consequence Assessment Gaseous releases: Specified mass flux rate vs. time. Assessment sloble gases iodines other non-reactive gases Aerosol releases: Specified mass flux rate vs. time.	13	Interface Constraints/	Computer platform: CRAY (J-90/Y-MP/C-90/T3E) Disk space requirements: 1 GB for Installation/0.5 GB per run archived. Run execution time (for a typical problem): 0.1 - 0.2 times the simulated time. Programming language: FORTRAN (model) & C (GUI)
Benchmark runs: Yes. Installed as part of the system. Validation calculations: Yes Verification with field experiments that has been performed with respect to this code: Single Processor performance for a 24 hour simulation: CRAY Y-MP: 3:26:33 CPU hours:minutes:seconds CRAY Y-90: 3:42:57 IBM R/S 6000 (580) 13:37:31 SGI (Origen 2000) 3:24:00 SUN SPARC-20 24:59:00 Part A: Source Term Submotel Type A1 Source Term Algorithm? A1 Source Term Algorithm? A2 For Chemical Consequence Assessment Models Liquid spill: <u>v</u> pool evaporation Solid spills:resuspension Solid spills:resuspension Specified mass flux rate vs. time. A3 For Radiological Consequence Assessment Gaseous releases: noble gases iodines other non-reactive gases Aerosol releases: Specified mass flux rate and particle size vs. time. Aerosol releases: Specified mass flux rate and particle size vs. time.	14		troubleshooting operational problems:
Characteristics CRAY Y-MP: 3:26:33 CPU hours:minutes:seconds CRAY J-90: 3:42:57 IBM R/S 6000 (580) 13:37:31 SGI (Origen 2000) 3:24:00 SUN SPARC-20 24:59:00 Specific Characteristics Part A: Source Term Submodel Type A1 Source Term Submodel Type A1 Source Term Algorithm? A2 For Chemical Consequence Models Liquid spill: <u>v</u> pool evaporation Specified mass flux rate vs. time. Pressurized releases: _two-phase jetsflashingentrainmentaerosol formation Specified mass flux rate vs. time. A3 For Radiological Consequence Assessment Gaseous releases: <u>v</u> noble gases <u>v</u> iodines <u>v</u> other non-reactive gases Aerosol releases: Specified mass flux rate and particle size vs. time.	15	Surety Considerations	Benchmark runs: Yes. Installed as part of the system.
Part A: Source Term Submodel Type A1 Source Term Algorithm?	16		CRAY Y-MP: 3:26:33 CPU hours:minutes:seconds CRAY J-90: 3:42:57 IBM R/S 6000 (580) 13:37:31 SGI (Origen 2000) 3:24:00
A1 Source Term Algorithm?			Specific Characteristics
Algorithm?	Part	A: Source Term Submo	del Type
Consequence Specified mass flux rate vs. time. Assessment Pressurized releases:two-phase jetsflashingentrainmentaerosol formation Models Solid spills:resuspensionsublimation A3 For Radiological Consequence Assessment Gaseous releases:noble gasesiodinesother non-reactive gases A3 For Radiological Consequence Assessment Gaseous releases: Specified mass flux rate and particle size vs. time.	A1		_✔_YESNO
Consequence Aerosol releases: Specified mass flux rate and particle size vs. time. Assessment	A2	Consequence Assessment	Specified mass flux rate vs. time. Pressurized releases: two-phase jets flashing entrainment aerosol formation Solid spills: resuspension v sublimation
	A3	Consequence Assessment	Aerosol releases: Specified mass flux rate and particle size vs. time.
Consequence AssessmentSubmodels also exist for specifying the mass flux and particle size depending on the weapon ty and chemical agent used.ModelsBiological weapon release characteristics:Specified mass flux rate and particle size vs. time	A4	Consequence Assessment	Biological weapon release characteristics: Specified mass flux rate and particle size vs. time. Submodels also exist for specifying the mass flux and particle size depending on the weapon type
Part B: Dispersion Submodel Type	Part	B: Dispersion Submode	I Туре
B1 Gaussian Straight-line plumeSegmented plume Statistical plume Statistical puff OMEGA has a Gaussian puff model with uncertainty capabilities. OMEGA has a Gaussian puff Statistical plume Statistical puff	B1	Gaussian	Straight-line plumeSegmented plume 🖌 Statistical plume 🖌 Statistical puff OMEGA has a Gaussian puff model with uncertainty capabilities.
B2 SimilarityPlumePuff	B2	Similarity	PlumePuff

B3	Stochastic	✓ Monte Carlo Random walk OMEGA has a Lagrangian Monte Carlo particle dispersion model.
B4	Gradient Transport or K-Theory	OMEGA has an Eulerian dispersion model based on K-theory.
B7	Turbulent Kinetic Energy (TKE)- Driven	The variances and covariances of wind vellocity components and some non-dimensional parameters used in the Monte Carlo Lagrangian particle dispersion model are driven by Turbulent Kinetic Energy (TKE).
B9	Multiple Capabilities	The OMEGA Gaussian puff model has the following capabilities: -horizontal and vertical puff splitting -puff merging -puff purging -mean and variance computation The OMEGA Lagrangian particle model has the following capabilities: -Monte Carlo Dispersion based on TKE
Part C	: Transport Submodel	Туре
C4	Frame of Reference	🖌 Eulerian Lagrangian Hybrid Eulerian-Lagrangian
Part D	: Fire Submodel Type	
D1	Radiant Energy	The current version of RSAC does not have a direct model for fires. Fires can be modeled to some extent by using an artificially short stack with a buoyant plume rise model. The downwind dispersion can then be modeled as either a lofted plume or as a well mixed plume between the ground level and the maximum plume rise height.
Part E	: Energetic Events Sul	omodel Type
E8	High Explosives	Can be initialized from detonation model output once shock wave has been reduced to near-sonic.
E9	Nuclear Detonations	Can be intialized from detonation model output once shock wave has been reduced to near-sonic.
Part F	: Health Consequence	Submodel Type
F1	For Chemical Consequence Assessment Models	Health effects:fatalitiescancerslatent cancerssymptom onset Health criteria IDLHSTELTLVTWA ERPGTEELAEGLWHO Zones with flammable limits:UFLLFL Blast overpressure regions: Fire radiant energy zones: Risk qualification: Concentration:single value time-history integrated dose Probits:
F3	For Weapons Consequence Assessment Models	Health effects:fatalitiescancerslatent cancers symptom onset Health criteria IDLHSTELTLVTWA ERPGTEELAEGL Risk quantification: Concentration:single valuetime-historyintegrated dose Probits:
Part G	: Effects and Counterr	measures Submodel Type (No Information Provided.)
Part H	: Physical Features of	Model
H1	Stability Classification Turbulence Typing	Pasquill-Gilfford-Turner: STAR: Irwin: Sigma theta: Richardson number: Monin-Obukhov length: Monin-Obukhov length is used in the Planetary Boundary Layer model. TKE-driven: The Langrangian Monte Carlo model dispersion is driven by TKE. Split sigma:
H2	Release Elevation	✔ ground

H5	Horizontal/Vertical Wind Shear:	The influence of directional and speed shear is considered in all dispersion algorithms.
H6	Mixing Layer	trapping lofting reflection penetration ✔ inversion breakup fumigation temporal variability
H7	Cloud Buoyancy	✓ neutral [passive] dense [negative] plume rise [positive]
H10	Deposition	
H13	Temporally and Spatially Variant Mesoscale Processes	Urban heat island: Yes Canopies: Yes Complex terrain (land) effects: <u>v</u> mountain-valley wind reversals <u>v</u> anabatic winds <u>v</u> katabaic winds Complex terrain (land-water) effects: <u>v</u> seabreeze airflow trajectory reversals <u>v</u> Thermally Induced Boundary Layer definition <u>v</u> seabreeze fumigation <u>v</u> landbreeze fumigation Thunderstorm outflow: Yes Temporally variant winds: Yes High velocity wind phenomena: <u>v</u> tornado <u>v</u> hurricane <u>v</u> supercane
Part I:	Model Input Requirem	nents
11	Radio(chemical) and Weapon Release Parameters	Release rate: ✓ Continuous ✓ Time dependent ✓ Instantaneous Release container characteristics: vapor temperature tank diameter
Part J	: Model Output Capabi	lities
J10	Other	Internally developed GIS (Geographic Data Analysis and Query System - GDAQS).
Part K	: Model Usage Consid	erations
К2	Time to Process From Notification of Release (including data acquisition) to Production of Product Listed in #K1, Listed for Platforms for Which the Program is Already Compiled	A few hours. Depends very much on the complexity of the problem.
КЗ	Ease of Use of Output, Evaluated as the Time Needed to Train a College Graduate in the Use of the Output	One week.