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Weather-related crop losses have always been a concern for farmers, govern-

ments, traders and policy makers for the purpose of balanced food supplies,

demands, trade, and distribution of aid to nations in need. Therefore, early crop

loss assessment in response to weather fluctuations is an important issue. This

paper discusses the utility of Advanced Very High Resolution Radiometer

(AVHRR)-based vegetation health indices as a proxy for modelling corn yield

and for early warning of drought-related losses of agricultural production in

China. The indices were tested in Jilin province on corn yield during 1982–2001

using correlation and regression analysis. A strong correlation between corn yield

and the vegetation health indices were found during the critical period of corn

growth, which starts 2–3 weeks before and 2–3 weeks after corn tassel. Following

the results of correlation analysis, several regression equations were constructed

where vegetation health indices were used as independent variables. The

estimates of corn yield can be carried out well in advance of harvest and the

errors of the estimates are 7–10%. The errors become smaller when

the estimations are related to losses in corn yield due to drought.

1. Introduction

Having a quarter of the world’s population, one of China’s most important

agricultural priorities is aiming to provide enough domestic food and feed, and

commodity for trade. Although China has only 7% of the world’s arable land, the

country is one of the largest producers of agricultural commodities including such

an important food source as grain. In recent years, nearly 20% of the global total

grain, including the largest amount of rice and wheat, have been produced by
China’s farmers. For example, in 2002, China’s contribution to the total world

production of wheat, corn and rice accounted for 16, 20 and 31%, respectively (FAO

2002). Therefore, in addition to domestic use, the amount of grain produced in

China annually is very important for global supply and demand and food security.

The Northern Plains (north-east) are the main agricultural areas of China. Thirty-

eight per cent of China’s arable land and 35% of total number of people are located

there (Ning 1998). Although the lands are generally productive, semi-arid climate
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with frequent droughts limit agricultural output. By the amount of natural water

resources, China is ranked number six in the world. However, the distribution of

water is unbalanced geographically. The Northern Plains makes up only 7.5% of the

total water resources available in China (Ning 1998). Therefore, irrigation can not

offset dry climate in that area. In drought years, up to 25% of agricultural

production might be lost in the Plains. Therefore, the Chinese Government is giving

increasing importance to an early assessment of crop losses.

Since climate controls a large portion of variation in China’s agricultural

production, weather data are normally used for assessment of the losses. However,

the weather-station network in China is not dense enough for a very large

agricultural area and the number of farmers growing crops. Therefore, China’s

Government is considering using satellite sensor data for these purposes. The recent

advances in the application of operational satellites proved that observed radiances

are an excellent tool for monitoring the environment and agricultural activities.

Vegetation health indices were found to be very useful for an early drought detection

and monitoring their impacts on crop and pasture production in Greece, Mongolia,

Brazil, Poland, Argentina, Morocco and other countries (Kogan 2002, Liu and

Kogan 2002, Dabrowska-Zielinska et al. 2002, Kogan et al. 2003, Domenikiotis

et al. 2004). The objective of this paper was to investigate the potential of vegetation

health indices for monitoring agricultural production and assessment of crop losses

in Jilin province, located in the China Northern Plains breadbasket.

2. Data

Both satellite and in situ data were used in this study. In situ data were corn

production (tons, t), area (ha) and yield (t ha21) during 1980–2001 obtained from

the China’s Central Statistical Administration. The data were collected from farmers

at the end of agricultural year and aggregated to the total Jilin province level. Yield

was calculated by dividing total Jilin province corn production by the sown area.

Satellite sensor data included Advanced Very High Resolution Radiometer

(AVHRR)-measured solar energy reflected/emitted from the land surface (in 8-bit

counts) collected from the National Oceanic and Atmospheric Administration

(NOAA) Global Vegetation Index (GVI) dataset from 1981 through 2001. Spatial

data resolution was 4 km, sampled to 16 km and temporal 1 day sampled to 7-day

composite (Kidwell 1997). The GVI counts in the visible (VIS), near-infrared (NIR),

and infrared (IR, 10.3–11.3 mm, Ch4) spectral regions were used in this research.

Post-launch-calibrated VIS and NIR counts were converted to reflectances (Kidwell

1997) and used to calculate the normalized difference vegetation index

(NDVI5(NIR 2 VIS)/(VIS + NIR)). The Ch4 counts were converted to brightness

(radiative) temperature (BT).

The strategy was (1) to separate weather component in corn yield, NDVI and BT

values and (2) to correlate weather-related component of yield with the

corresponding component of vegetation health indices. The goal was to investigate

the strength of the relationship and whether the strongest correlation coincides with

the corn’s critical period. It is important to emphasize that NDVI and BT quantify

both spatial difference between productivity of ecosystem (ecosystem component)

related to the influence of long-term factors (climate, topography, etc.) and year-to-

year variations in each ecosystem related to weather fluctuations (weather

component). Since weather component values are much smaller than the ecosystem,

separation of weather component is an important procedure prior to correlation
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analysis. Other indices (cumulative, maximum, etc.), representing both ecosystem

and weather components are very useful for characterization of vegetation

distribution rather then for analysis of weather-related fluctuations, which are

small compared to ecosystem component (Kogan et al. 2003).

3. Methodology

3.1 Corn yield

Over a long period of time, yield of any crop normally increases because technology

of crop cultivation (breeding, mechanization, fertilizers, etc.) is constantly

improving. The technology-related yield increase can be approximated by a

polynomial (either linear or non-linear depending on longevity of yield series and

climate contribution), which describes a trend in yield time series. At a general

background of the technology-related trend, yield fluctuates around the trend from

year to year due to weather variation. If weather is favourable for crop growth yield

exceeds the level estimated from the trend and in case of unfavourable weather yield

drops below the trend. In sum, yield time series were separated into two

components: technology-related trend and yield deviation from the technological

trend. The first characterizes long-term yield tendency associated with technology

change and the second characterizes variation of yield around the trend due to year-

to-year weather fluctuations. The second component is normally expressed as a ratio

of actual to trend-estimated yield.

The 1980–2001 Jilin province corn yield (Y) time series are shown in figure 1. They

experience stable technology-related growth, which was approximated by the

following linear equation:

Ytrend~0:112 year{216:71 ð1Þ

Fluctuations around the trend (dY) were expressed as a ratio of deviation from

trend:

dY~Y=Ytrend ð2Þ

For any year, trend estimates that yield level which is associated with the

contribution of agricultural technology to crop production line provided that the

Figure 1. Corn yield time series for Jilin province, China.
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weather was near normal (close to many-year mean).Yield deviation from the trend

is associated with weather fluctuations. For example, Jilin province’s deviation of

corn yield from the trend in 1997 and 1998 were estimated at 0.79 and 1.23,

respectively, indicating 21% yield reduction in 1997 due to unfavourable and 23%

increase due to favourable weather in 1998.

3.2 AVHRR-based vegetation health indices

The principle for constructing vegetation health indices stems from the properties of

green vegetation to reflect visible and emit thermal solar radiation. If vegetation is

healthy it reflects little radiation in the VIS part of solar spectrum (due to high

chlorophyll absorption), much in the NIR part (due to scattering the light by leaf

internal tissues and water content), and emits less thermal radiation in IR spectral
bands (because the transpiring canopy is cooler). As a result NDVI becomes large

and BT small. Conversely, for unhealthy vegetation, NDVI becomes small and BT

large.

The vegetation health indices were calculated from NDVI and BT. Details of the

algorithm are presented in Kogan (1997). Here, only the important steps are

mentioned, which include (a) complete elimination of high frequency noise from

NDVI and BT annual time series, (b) approximation of annual cycle, (c) calculation

of multi-year climatology, and (d) estimation of medium-to-low frequency

fluctuations during the seasonal cycle (departure from climatology) associated with

weather variations. The indices Vegetation Condition (VCI), Temperature
Condition (TCI) and Vegetation Health (VHI) were approximated as:

VCI~100 NDVI{NDVIminð Þ= NDVImax{NDVIminð Þ ð3Þ

TCI~100 BTmax{BTð Þ= BTmax{BTminð Þ ð4Þ

VHI~a VCIz 1{að ÞTCI ð5Þ

where NDVI, NDVImax and NDVImin (BT, BTmax and BTtmin) are the smoothed

weekly NDVI (BT) and their 1985–2003 absolute maximum and minimum
(climatology), respectively; a is a coefficient quantifying a share of VCI and TCI

contribution in the VHI. Since this share is not known for a specific location it was

assumed that the share is equal and a50.5. The range of vegetation health indices

changes from 0 quantifying severe vegetation stress to 100 quantifying favourable

conditions. The application of these indices in a number of countries (Poland,

Brazil, Argentina, Zimbabwe, Morocco, Russia, India) showed that they correlate

highly with productivity of crops and pastures and can be used as numerical

weather-related indicators of agricultural losses in advance of harvest (Kogan 1997,
Unganai and Kogan 1998).

4. Corn and the environment

Although Jilin province is the largest producer of corn in China (USDA 1994),

geographic location and the environmental conditions are not favourable there. The

major area of corn planting in the central and western Jilin province (figure 2)

receives 500–700 mm of annual precipitation (P), 80% of which falls during May–
September (Hou 1990). This amount is generally marginal for corn growth.

Moreover, because of the hot summer, potential evapotranspiration (PET) in this
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area is large, exceeding the amount of precipitation. As a result, the natural annual

water balance (P – PET) in Jilin province is 200–400 mm short. Ninety per cent of

this deficit occurred during warm period. Therefore, corn, which is planted in Jilin

province during May through mid June and harvested in September and October is

affected severely (USDA 1994).

Since the exact coordinates of the major corn area in Jilin province are not

available, this area was derived based on general distribution of corn indicated

in Hou (1990) and USDA (1994). Weekly vegetation health indices data were

collected for all pixels inside the major area of corn growth (46u to 42.5uN and 122u
to 126uE) shown shaded in figure 2. Weekly average Jilin province indices (VCI,

TCI and VHI) were calculated from the total number of 600 pixels inside the

indicated area.

5. Results and discussion

The Ytrend analysis shows that during 1980–2001, technology-related corn yield

increased 30% (from 4.5 to 5.8 t ha21). This growth was moderate considering large

investments of China’s Government in agricultural technology of Jilin province

(Ning 1998). Besides, moderate growth emphasizes also that climate put

considerable constraints on agricultural productivity and limits the efforts of

technology to overcome shortage of water. At the background of yield increase,

weather-related fluctuations of yield around the trend or de-trended yields (dY) were

large and as seen in figure 1, in the latest 2 years (2000, 2001) corn yield dropped to

the level of the early 1980s because Jilin province was affected by large area,

intensive drought.

Since dY corn yield and vegetation health indices were similarly expressed as a

deviation from climatology (from trend for corn and from max-min for vegetation

health indices), further investigation included correlation and regression analysis

Figure 2. Location of Jilin province and the area of satellite sensor data collection.
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of these deviations. Figure 3 shows dynamics of correlation coefficients of dY versus

VCI, TCI and VHI between weeks 10 (mid-March) and 40 (end of October).

These results were analysed first, to interpret the response of corn productivity to

moisture (VCI) and thermal (TCI) conditions expressed by the vegetation health

indices. As seen in figure 3, in the early period of the corn growing season, which is

pre-planting, planting and emergence (weeks 15–20, April to early June), the

correlation for both indices is small. It increases sharply during the corn’s green

mass accumulation (weeks 22–28), reaching maximum in late June for VCI and mid

July for TCI. This maximum correlation coincides with the critical period in corn

development, which starts 2–3 weeks prior to and ends 2–3 weeks after corn tassels

(Chirkov 1969). During this period, plentiful water supply and cooler temperatures

stimulate larger corn production. Figure 3 confirms that positive correlation with

VCI and TCI indicates that below trend yield is associated with moisture and

thermal stress (both VCI and TCI below 40) and above trend yield is associated with

favourable (moist and cool) conditions (VCI and TCI above 60).

Although the correlation dynamics were in line with corn response to the

environment, it should be noted that even for the weeks of the highest correlation,

VCI explained only 30% of dY variance (Pearson correlation coefficient, CC50.55);

TCI explained 50% (CC50.73). However, this relationship increased for the VHI

(figure 3). Analogous to the other two indices, the correlation of dY with VHI had

similar dynamics reflecting the described corn response to the environment (low

correlation during the earlier stages of corn development, sharp increase during

biomass accumulation and high correlation during the critical period, around

Figure 3. Dynamics of correlation coefficients for corn yield departure from trend with
VCI, TCI and VHI.
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taselling (Chirkov 1969)). Concerning the critical period, the peak of the correlation

shifted slightly to the later weeks and show high CC (0.75) at week 31. This

emphasizes the importance of combining VCI (moisture conditions) and TCI

(thermal conditions) together even if their contribution to VHI was approximated as

equal (equation (5)).

It is known that crop response to moisture and thermal conditions is not equal

during the growing season. Corn is more moisture-dependent in the period of green

leaf formation and more temperature dependent during the reproductive stages

(Chirkov 1969). However, in the environment of Jilin province, thermal conditions

are more important, especially during and after corn tassels (weeks 26–36, June–

July). For example, for week 22 (leaf formation), the contribution of VCI and TCI

are almost the same (CCvci50.52 and CCtci50.59), while for week 32 (reproductive

stage), TCI contribution considerably exceeds VCI (CCvci50.16 and CCtci50.60).

In addition to equal VCI and TCI contribution (equation (5)), the test was

performed for non-equal contribution. The later was calculated based on weights

(W) estimated from the CC following the approximation below. Squares were used

in order to give slightly more weight to the index with the larger CC. It would be

appropriate to indicate that Ws do not change from year-to-year since they are

derived from CC, which characterize the entire period of observations (1982–2001).

Wvci~CC2
vci

�
CC2

vcizCC2
tci

� �

Wtci~CC2
tci

�
CC2

vcizCC2
tci

� � ð6Þ

Table 1 compares CC dynamics for weighted and non-weighted VHI. For the

critical period (weeks 25–35), the strength of the correlation remains the same for

both indices. This is an important conclusion because it is normally unknown how

to weight VCI and TCI contribution to VHI for a pixel and even an area. This task

requires calibration of satellite indices based on ground data, which are often not

easily available.

Figure 4 shows a scatter plot of dY versus VHI for week 31 (early August) which is

the peak of the correlation (figure 3). This relationship approximated by equation (7)

explains 64% of dY variance at 5% level of significance:

dY~14:888z1:6561VHI31

CC~0:81; R2~0:64; E~15%
ð7Þ

Since the 31st week is in the middle of critical period for corn and has the

strongest dY versus VHI relationship, this 1-week equation can be used for

estimation of dY. However, the shortcomings in using equation (7) include high

error of estimation (15%) and low R2 (64%). Besides, other weeks around 31, as seen

Table 1. Pearson correlation coefficients for dY versus weighted VHI and non-weighted VHI.

Parameter Week 15 Week 20 Week 25 Week 30 Week 35

Weighted 0.120 0.492 0.776 0.799 0.581
Non-weighted 0.269 0.646 0.792 0.743 0.555
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in figure 3, are also highly correlated with dY. Therefore, in addition to 1-week

analysis, the tests were also performed regressing dY with several weeks (with the

highest CC) of the same independent variable or their combination. The tests

included building regression equations and investigation of the contribution of

different weeks into total dY variance.

The criteria used for this analysis were partial correlation coefficients (PCC),

which estimate the contribution of each independent variable when other variables

are fixed at the average level (Snedecor 1965). The PCC indicator is important to use

for selection of the parameters with the largest contribution to variability of a

dependent (predictant) variable. This analysis is necessary because independent

variables (predictors) are correlated with each other (collinear), duplicating their

contribution to variability of a dependent variable. If two variables are collinear, the

regression coefficients of such an equation become unstable and the equation

becomes less accurate. In order to improve the equation stability one of the variables

should be removed.

Table 2 presents the results of PCC analysis. The first test included all weeks with

the highest CC and in the following tests, the independent variable which had the

lowest PCC was removed and PCCs were re-estimated for the remaining variables.

As seen in table 2, VCI25 had the largest contribution (PCC50.468) if week 26 was

Figure 4. Scatter plot of corn yield departure from trend versus VHI.
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included in regression analysis. The PCC for week 25 increased to 0.518 if week 27

was included and 26 excluded (third test). The tightness of the relationship between

dY and all independent variables (equation (8)) is estimated with the multiple CC

(MCC). The MCC is calculated based on PCC of dY with each of the independent

variables and PCC between all pair of independent variables (Dlin 1958). Following

the third test of dY versus VCI only in table 2, the MCC for the entire regression was

not large (0.628). The MCC increased to 0.811 (third test) when TCIs for weeks 26–

29 were included in the regression. A combination of VCI and TCI together further

increased MCC to 0.863 (second test). However, the highest MCC and the lowest

error were received when VHIs were used as independent variables.

These results were used to build and test regression equations. Two equations

were developed the first, with VCI and TCI combination used as independent

variables (equation (8)) and the second, VHI (equation (9)). The variables in these

equations were selected based on the largest values of PCC:

dY~0:502z0:005 VCI27z0:034 TCI26{0:106 TCI27z0:107 TCI28{0:03 TCI29

MCC~0:86; R2~0:75; n~20; d:f :~15
ð8Þ

dY~0:501z0:114 VHI26{0:316 VHI27z0:289 VHI28{0:076 VHI29

MCC~0:90; R2~0:81; n~20; d:f :~16
ð9Þ

In addition, in order to improve the stability of regression coefficients (Snedecor

1965), the number of independent variables was reduced to one-two resulting in the

degree of freedom (d.f.) increase. Following the transformation in equation (6) the

Table 2. Assessment of independent variables’ contribution based on partial correlation
coefficients.

Parameter

Partial correlation coefficients

First test Second test Third test

VCI25 0.289 0.468 0.518
VCI26 0.149 2 0.366
VCI27 0.055 2 0.342
MCC for VCI regression 0.625 0.637 0.628
TCI24 0.030 0.077
TCI25 0.001
TCI26 0.002 0.102 0.321
TCI27 0.099 0.162 0.235
TCI28 0.200 0.207 0.207
TCI29 0.174 0.173 0.156
MCC for TCI regression 0.629 0.810 0.811
VCI25 0.131
VCI27 0.132 0.503
TCI26 0.430 0.437
TCI27 0.436 0.434
TCI28 0.426 0.424
TCI29 0.347 0.341
MCC for VCI and TCI regression 0.865 0.863
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equations (8) and (9) were presented in the following form:

dY~0:462z0:004 VCI27z0:006 TCI26{29

TCI26{29~0:269 TCI26z0:257 TCI27z0:246 TCI28z0:229 TCI29

ð10Þ

MCC~0:83; R2~0:69; n~20; d:f :~18

dY~0:496z0:006 VHI26{29

VHI26{29~0:246 VHI26z0:249 VHI27z0:253 VHI28z0:252 VHI29

MCC~0:86; R2~0:74; n~20; d:f :~19

ð11Þ

Regarding significance, underlined variables and all MCC indicate probabilities

equal to or less than 0.01, without underline indicates probabilities between 0.05 and

0.01. Equation (8) was used to calculate the estimated dY (EdY) and the scatter plot

of EdY versus dY in figure 5 confirms that this relationship is quite strong.

The MCC and R2 estimations of equations (8) and (9) show that the relationships

are strong explaining 75 and 81% of the dY variance, respectively. The scatter plot of

EdY versus dY shown in figure 5 confirms this strong relationship for equation (9).

The weighted variables (equations (10) and (11)) have smaller MCC and R2.

However, all four equations (8)–(11) were tested independently. For that a ‘Jacknife’

approach was used when years were eliminated one by one from the dataset, in each

case, new equation (with the same variables) was developed (without an eliminated

year) and each equation was tested using independent variables of the eliminated

years. This procedure was performed 19 times and estimated dY (EdY) was

calculated for each year not included in the development of the regression. Finally,

Figure 5. Scatter plot of VHI-based EdY and dY for corn yield.
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EdY was used to estimate simulated (S) corn yield, which was compared with the

observed (O) yield.

The statistics of an independent testing of S versus O corn yield in Jilin province is

shown in table 3. Following R2 and Mean Square Error (MSE) values the best

models are 9 and 11, which are based on VHI variables (both weighted and non-

weighted). This again emphasizes importance of combining together VCI (calculated

from NDVI and estimating moisture conditions) and TCI (calculated from BT and

estimating thermal conditions). Although the R2 for these equations are the same,

equation (11) (weighted VHI) has 6% smaller (0.314 versus 0.333) MSE and 28%

smaller systematic error (0.014 versus 0.018), which is an important indicator of how

good might be model performance. It is important to mention that in ‘good’ models

systematic error should approach zero while non-systematic error should approach

MSE (Willmont 1981). In this sense, models 9 and 11 showed the best performance

because systematic errors are low, 5 and 4%, respectively. Regarding the models 8

and 10, their systematic errors (0.071 and 0.041) as well as MSE (0.478 and 0.409)

are larger (15 and 10%, respectively) compared with models 9 and 11. It should be

mentioned again that compared with (8) the model (10), which is based on weighted

TCI variables, has 17% smaller MSE and 42% smaller systematic error. Finally,

figure 6 displays corn yield time series of observed versus independently simulated

corn yield in Jilin province, which showed that except for two years (1984 and 1991)

the two time series match quite well.

Figure 6. Observed versus independently simulated Jilin province corn yield (t ha21), China
1982–2001.

Table 3. Statistics of an independent testing of equations (8)–(11).

Parameter 8 9 10 11

Mean bias (MB) 0.101 0.087 0.028 0.067
SD of MB 0.70 0.59 0.66 0.57
Mean Square Error (MSE) 0.478 0.333 0.409 0.314
Systematic Error 0.071 0.018 0.041 0.014
Non-systematic Error 0.408 0.314 0.368 0.300
R2 between simulated (S) and

observed (O) yield
0.782 0.860 0.813 0.861
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6. Conclusions

This globally universal technique for monitoring vegetation health, including drought,

from AVHRR data was applied for statistical modelling of corn yield in Jilin province,

one of the major producers of corn in China’s Main Plains. Correlation and regression
analysis relating corn yield deviation from the technological trend (dY) with three

vegetation health indices (VCI, TCI and VHI) during 1982–2001 showed strong

correlation during the critical period of corn growth, which starts 2–3 weeks before and

end 2–3 weeks after corn taselling. These estimates can be carried out well in advance of

harvest. From the two indices characterizing moisture (VCI) and thermal (TCI)

conditions, the second was found to be more sensitive to corn yield.

Further investigation might include combining satellite sensor data with weather

data specifically during winter and early spring when vegetation is still dormant and
the application of VCI is limited. The vegetation health indices and data are

delivered in real time (every Monday) to http://orbit.nesdis.noaa.gov/smcd/emcb/

vci. They show global and regional vegetation health, moisture and thermal

conditions, and fire risk potential. They also demonstrate climate issues and utility

of vegetation health indices in global observing systems.

References

CHIRKOV, Y.I., 1969, Agrometeorological Conditions and Productivity of Corn

(Hydrometiszdat: Leningrad).

DABROWSKA-ZIELINSKA, K., KOGAN, F., CIOLKOSZ, K.A., GRUSZCZYNSKA, M. and

KOWALIK, W., 2002, Modeling of crop conditions and yield in Poland using

AVHRR-based indices. International Journal of Remote Sensing, 23, pp. 1109–1123.

DLIN, A.M., 1958, Mathematical Statistics in Engineering (Moscow: Soviet Science).

DOMENIKIOTIS, C., SPILIOTOPOULOS, M., TSIROS, V. and DALEZIOS, N.R., 2004, Early cotton

yield assessment by the use of the NOAA/AVHRR derived Vegetation Condition

Index (VCI) in Greece. International Journal of Remote Sensing, 25, pp. 2807–2819.

FAO, 2002, Crop production. Available online: http://fao.org (Rome Italy: FAO).

HOU, R. (Ed.), 1990, Maps of China’s Agriculture and the Environment (Beijing: Zhongguo,

Zonghe and Dituji).

KIDWELL, K.B., 1997, Global Vegetation Index user’s guide. NOAA Technical Report,

Department of Commerce, Washington DC.

KOGAN, F., 2002, World droughts in the new millennium from AVHRR-based Vegetation

Health Indices. Eos, 83, pp. 557–564.

KOGAN, F., GITELSON, A., ZAKARIN, E., SPIVAK, L. and LEBED, V., 2003, AVHRR-based

spectral vegetation indices for quantitative assessment of vegetation state and

productivity: calibration and validation. Photogrammetry Engineering and Remote

Sensing, 69, pp. 899–906.

KOGAN, F.N., 1997, Global drought watch from space. Bulletin of the American

Meteorological Society, 78, pp. 621–636.

LIU, W.T. and KOGAN, F., 2002, Monitoring Brazilian soybean production using NOAA/

AVHRR based vegetation condition indices. International Journal of Remote Sensing,

23, pp. 1161–1179.

NING, S., 1998, Scientists: water transfer feasibility. China Daily, p. 9, 20 July 1998, Beijing.

SNEDECOR, G.W., 1965, Statistical Methods (Ames, Iowa: The Iowa State University).

UNGANAI, L.S. and KOGAN, F.N., 1998, Drought monitoring and corn yield estimation

in Southern Africa from AVHRR data. Remote Sensing of Environment, 63,

pp. 210–232.

USDA (United States Department of Agriculture), 1994, Major World Crop Areas and

Climate Profile, Agricultural Handbook, No 664 (Washington, DC: USDA).

2336 Simulation of corn yield with vegetation health indices


