
Model 204®

User Language Manual
Parts III — VI

Version 5 Release 1

UL251A

Model 204 User Language Manual: Parts III—VI
Document Number UL251A
March 27, 2002

Copyright © 1989–2002 Computer Corporation of America.
All rights reserved. Printed in the United States of America.

Access/204™, Advantage/SQL™, CCA Analytics™, Connect�™, Dictionary/204™, MP/204™,
MQ/204™, PQO/204™, WebGate™, and Workshop/204™ are trademarks, and ACCOLADE®,
Imagine®, MarketPulse®, Model 204®, and 204® are registered trademarks of Computer
Corporation of America.

IBM ® is a registered trademark of International Business Machines, Inc.

Windows ® is a registered trademark of Microsoft Corporation.

Other trademarks and trade names are used to identify entities claiming the marks and names
of their products and are hereby acknowledged.

Any rights not expressly granted herein are reserved.

Permission to use this technical documentation (the “Document”) retrieved from the Computer
Corporation of America’s (“CCA”) server is granted, provided that (1) the copyright notice in the
document appears on all copies, (2) use of this Document is for informational and non-
commercial or personal and internal use only, and (3) no modifications are made to this
Document. Use, duplication, or disclosure by the Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013.

CCA makes no representations about the suitability of the information contained in the
Document. THIS DOCUMENT IS BEING PROVIDED TO YOU “AS IS” ACCORDINGLY, CCA
MAKES NO WARRANTY AS TO ITS ACCURACY OR ITS USE.CCA HEREBY DISCLAIMS ALL
WARRANTIES AND CONDITIONS WITH REGARD TO THIS DOCUMENT, INCLUDING ALL
IMPLIED WARRANTIES AND CONDITIONS OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL CCA BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
INFORMATION CONTAINED IN THIS DOCUMENT.

Any use of the technical documentation or the information contained herein is at the risk of the
user. This document may include technical or other inaccuracies or typographical errors.
Changes are periodically added to this Document and CCA reserves the right to improve or make
changes to the document at any time and without prior notice.

Computer Corporation of America
Corporate Headquarters: CCA International:

500 Old Connecticut Path
Framingham, MA 01701
USA

First Floor, Edinburgh House
43-51 Windsor Road
Slough, Berkshire SL1 2EE
England

Phone: (508) 270-6666 Phone: +44-1753-472800

Fax: (508) 270-6688 Fax: +44-1753-472888

Contents
Model 204®

User Language Manual
Parts III — VI

Preface

Audience .. xvii
Introducing Model 204 electronic documentation... xvii
Contacting CCA Customer Support ... xvii
Notation conventions... xviii

III Advanced Features and Considerations

19 Operations on Multiply Occurring Fields
In this chapter... 19-1

Overview ... 19-2
Special processing for multiply occurring fields.. 19-2

FIND statement ... 19-3
Retrieval ... 19-3
Multi-condition range retrievals .. 19-3
Use of subscripts.. 19-4

NOTE statement ... 19-5
Only first occurrence is noted... 19-5
Use of subscripts.. 19-5

PRINT and PRINT n statements ... 19-6
PRINT statement output format.. 19-6
Use of subscripts.. 19-6
PRINT n statement... 19-7

ADD, CHANGE, and DELETE statements.. 19-9
ADD statement ... 19-9
CHANGE statement ... 19-9
DELETE statement .. 19-10

SORT RECORDS statement .. 19-11
EACH modifier with one sort field... 19-11
EACH modifier with several key fields.. 19-11
If no occurrences are present .. 19-12

FOR EACH RECORD statement .. 19-13
EACH modifier ... 19-13
User Language Manual: Parts III—VI iii

Special statements for multiply occurring fields .. 19-14
COUNT OCCURRENCES OF statement... 19-14
FOR EACH OCCURRENCE OF loops .. 19-15
Deleting occurrences ... 19-16
VALUE IN with FOR EACH OCCURRENCE loops.. 19-17
FOR EACH OCCURRENCE OF against INVISIBLE fields................................ 19-17

UPDATE field attribute .. 19-19
Impact of changing a value .. 19-19
If the UPDATE IN PLACE option is specified... 19-19
If the UPDATE AT END option is specified.. 19-20

Subscripts ... 19-21
Subscripted field extraction .. 19-21
Evaluation of subscript expressions... 19-22
Statements and phrases with which you cannot use subscripts 19-22
Unsubscripted field references... 19-23
Do not use subscripts with INVISIBLE fields.. 19-23

Subscript validity rules .. 19-24
Explanation of the rules.. 19-24
INSERT statement ... 19-24
PRINT statement.. 19-25
DELETE statement .. 19-25
CHANGE statement ... 19-26
SORT RECORDS statement.. 19-26

20 Global Features
In this chapter... 20-1

Overview ... 20-2
GTBL internal work area .. 20-2
Global string variables.. 20-3
Global found sets and lists ... 20-4
Global positions.. 20-4
Global images and screens.. 20-5

Global string variables .. 20-6
Global string variable names and values .. 20-6
Clearing global string variables .. 20-6
Global variable functions and commands .. 20-6
Using global string variables in application subsystems 20-7

Passing string values from one request to another... 20-8
Using global string variables with a conditional INCLUDE command 20-10

Differences between commands and User Language statements..................... 20-10
Conditional and unconditional INCLUDEs.. 20-10
 Keep IF commands at as high a nesting level as possible 20-12

Using global string variables to tailor a request .. 20-13
Global objects ... 20-14

General rules for declarations .. 20-14
Incompatibility .. 20-14
Clearing global objects from GTBL .. 20-14

Using global found sets and lists... 20-15
Example 1: Referencing a global found set.. 20-16
Example 2: Maintaining file context.. 20-16
iv Model 204

Using global sorted sets.. 20-18
Limiting subsequent references ... 20-18
Keeping all fields accessible for subsequent references.................................... 20-18

Saving and recalling a POSITION in a FOR loop ... 20-19
REMEMBER statement.. 20-19
POSITION statement ... 20-20

Global images and screens... 20-21
Declaring global images and screens .. 20-21
How images and screens are processed .. 20-21
Images and screen processing ... 20-21
Using PREPARE and IDENTIFY statements ... 20-23
Performance and efficiency benefits .. 20-24
When to use global images and screens .. 20-24
Consistency checks performed ... 20-24

Using global images and screens .. 20-26
System administration issues .. 20-27

Clearing the GTBL work area ... 20-28
Using the CLEARG and CLEARGO commands .. 20-28
Using the $DELG function.. 20-28
Using the CLEAR statement .. 20-29
Clearing global found sets and lists.. 20-30
RELEASE and COMMIT RELEASE statements with global foundsets and lists20-30
Clearing remembered positions ... 20-31
Timing and placement of a CLEAR statement ... 20-31
Performance considerations... 20-32

21 Large Request Considerations
In this chapter... 21-1

Overview ... 21-2
User Language internal work areas .. 21-3

Summary of work areas ... 21-3
Resetting table sizes .. 21-3
Pushdown list and QTBL size increase.. 21-3

Description of tables.. 21-5
FSCB (full-screen buffer).. 21-5
FTBL (file group table) ... 21-5
GTBL (global variable table)... 21-6
ITBL (dummy string and $READ response table) .. 21-7
NTBL (statement labels/list names/variables table) .. 21-7
QTBL (internal statement table) .. 21-7
STBL (character string table) ... 21-10
TTBL (temporary work page list table) ... 21-11
VTBL, the compiler variable table .. 21-12

Request continuation .. 21-15
MORE command.. 21-15

Rules for request continuation .. 21-17
Avoid too many continuations .. 21-17
Starting and ending requests and continuations .. 21-17
Multiple continuations... 21-17
References in a continuation.. 21-17
User Language Manual: Parts III—VI v

Restrictions applying to request continuations... 21-18
ON units ... 21-18
Interaction with SORT statement ... 21-18

IV Application Development

22 Full-Screen Feature
In this chapter... 22-1

Overview ... 22-3
Menus and screens.. 22-3
LFSCB parameter setting... 22-3
Maximum number of screens and menus .. 22-3
Global screens and menus .. 22-3
Screen and menu formatting.. 22-4
Screen and menu items ... 22-4
Screen and menu definition ... 22-4
Screen and menu manipulation ... 22-4
Full-screen variables .. 22-4

Full-screen processing ... 22-6
Menu displayed .. 22-6
Operator interaction with menu .. 22-6
Screen displayed.. 22-6
Input validation ... 22-7

Application display considerations .. 22-8
Screen display area ... 22-8
Display attributes ... 22-8
Extended display attributes .. 22-8
How display colors are assigned.. 22-9
Display attribute rules and restrictions ... 22-10

Full-screen variables ... 22-11
Types of variables used ... 22-11
Menu and screen variables .. 22-11
Reserved variables .. 22-12
Screen item name variables... 22-12

Defining menus ... 22-14
Summary of menu definition statements .. 22-14

MENU and END MENU statements.. 22-15
MENU statement .. 22-15
END MENU statement ... 22-15

TITLE statement for menus... 22-16
PROMPT statement for menus ... 22-18
SKIP statement for menus .. 22-20
MAX PFKEY statement for menus.. 22-21
Menu definition example ... 22-22
Menu manipulation.. 22-23

Menu manipulation statements .. 22-23
READ MENU statement.. 22-24

AT, TO, LEN, and attributes options for READ MENU....................................... 22-24
vi Model 204

PRINT MENU statement ... 22-25
MODIFY and PREPARE MENU statements... 22-26

MODIFY statement .. 22-26
PREPARE statement ... 22-26

Menu manipulation example ... 22-28
Defining screens ... 22-29

Screen definition format ... 22-29
Screen definition statements .. 22-29
Screenlines .. 22-29
Logical and physical panels ... 22-30

SCREEN and END SCREEN statements ... 22-31
SCREEN statement ... 22-31
END SCREEN statement ... 22-31

TITLE and PROMPT statements for screens.. 22-32
TITLE statement... 22-32
PROMPT statement ... 22-32

INPUT statement... 22-34
AT, TO, LEN, and DP options .. 22-34
COLUMN keyword ... 22-34
UPCASE and NOCASE options... 22-35
DEFAULT option .. 22-36
DEBLANK or NODEBLANK option .. 22-36
PAD WITH ‘c’ option... 22-36
Automatic validation options .. 22-36
READ option .. 22-37
REREAD option ... 22-37
PRINT option.. 22-37
TAG option ... 22-37
ITEMID option .. 22-38

Automatic validation options for INPUT .. 22-39
Multiple validation criteria ... 22-40

DEFAULT statements ... 22-41
Scope of DEFAULT TITLE or PROMPT or INPUT statements.......................... 22-41

SKIP and NEW PAGE statements .. 22-43
SKIP statement .. 22-43
NEW PAGE statement ... 22-43

MAX PFKEY statement for screens .. 22-44
How the pressing of PF keys greater than n is handled..................................... 22-44

INCLUDE statement.. 22-45
Screen definition example... 22-46
Screen manipulation ... 22-48

Screen manipulation statements .. 22-48
MODIFY and PREPARE statements for screens.. 22-49

MODIFY statement .. 22-49
PREPARE statement ... 22-49

PRINT SCREEN statement .. 22-51
READ SCREEN statement ... 22-52

NO REREAD option ... 22-52
WITH CURSOR option... 22-53

REREAD SCREEN statement .. 22-54
User Language Manual: Parts III—VI vii

TAG and CLEAR TAG statements.. 22-55
TAG statement ... 22-55
CLEAR TAG statement ... 22-55

Cursor handling... 22-56
Reserved cursor variables.. 22-56
Using cursor setting ... 22-57
Example of cursor setting... 22-57
Using cursor sensing.. 22-58

READ, REREAD, and PRINT evaluation sequence ... 22-59
Screen manipulation example... 22-60
Line-at-a-time terminal support ... 22-63

Menus .. 22-63
Screens .. 22-63

23 Application Subsystem Development
In this chapter... 23-1

Overview ... 23-2
Advantages of subsystems .. 23-2
Subsystem definition .. 23-2

Subsystem design components .. 23-4
Command line global variable... 23-5

Using the command line global variable... 23-5
Transferring control to another subsystem... 23-5
Impact of the UTABLE command... 23-5

Communication global variable ... 23-6
Transferring control .. 23-6
Transferring control between procedures... 23-6
Transferring control between subsystems.. 23-7
Coding considerations.. 23-8

Error global variable .. 23-9
Error code values ... 23-9
Error procedures .. 23-10

Precompiled and non-precompiled procedures .. 23-11
Defining prefixes .. 23-11
Contents of subsystem procedures.. 23-11
Shared versions of precompiled procedures ... 23-11
Restrictions for precompiled procedures.. 23-12
Restrictions for temporary and ad hoc groups in precompiled procedures 23-12
Recompiling precompiled procedures .. 23-13
Procedure compilation and Parallel Query Option/204 23-14

Subsystem procedures ... 23-16
Types of subsystem procedures .. 23-16
Guidelines and restrictions... 23-16
Initialization procedure ... 23-16
Login procedure ... 23-17
Main processing procedures .. 23-17
Error procedure .. 23-18

Security options .. 23-20
Status of subsystem... 23-20
User class .. 23-20
viii Model 204

Processing of security violations .. 23-21
Compiling procedures with a different SCLASS... 23-21

Operating options.. 23-23
Automatic start ... 23-23
Locking files and groups for subsystem use .. 23-23
Automatic login... 23-24
Automatic logout .. 23-24
Automatic COMMIT.. 23-24
Message displays... 23-25
File usage... 23-25

Subsystem processing flow... 23-27
Initialization processing .. 23-27
Login processing .. 23-28
Driver processing ... 23-28
Disconnect processing ... 23-29
Error processing ... 23-29

Parallel Query Option/204 considerations... 23-30
Remote file access... 23-30
Node availability ... 23-30
File and group availability... 23-31
Trust ... 23-33

Subsystem design considerations... 23-35
Coding considerations.. 23-35

Record locking considerations .. 23-37
If subsystem files are defined as unlocked... 23-37

Subsystem procedure control functions .. 23-38
$SCLASS function ... 23-38
$SUBSYS function ... 23-38

Subsystem development tools .. 23-39
Debugging and testing facilities ... 23-39
Multiple procedure files .. 23-40
Cross-Reference facility ... 23-41

V Data Integrity

24 Record Level Locking and Concurrency Control
In this chapter... 24-1

Overview ... 24-2
Concurrent updates.. 24-2
Record locking ... 24-2

Record level locking .. 24-3
Record locking modes.. 24-3
Request compilation and evaluation .. 24-3
Evaluation rules.. 24-3
Locking conflicts ... 24-5

FIND WITHOUT LOCKS statement .. 24-6
Locking conflicts.. 24-8

Responses to locking conflicts ... 24-8
User Language Manual: Parts III—VI ix

ENQRETRY parameter .. 24-8
ON RECORD LOCKING CONFLICT and ON FIND CONFLICT statements....... 24-8
CLEAR ON statement .. 24-9
PAUSE statement .. 24-9
Handling Parallel Query Option/204 record locking conflicts 24-10

Record locking and release statements .. 24-11
FIND AND RESERVE statement ... 24-11
RELEASE RECORDS statement ... 24-12
RELEASE ALL RECORDS statement.. 24-12
RELEASE and COMMIT RELEASE statements with global foundsets and lists24-13

Lock pending updates ... 24-14
Processing ... 24-14
Set with the FOPT parameter... 24-14

COMMIT statement... 24-15
RELEASE option.. 24-15
RELEASE and COMMIT RELEASE statements with global foundsets and lists24-16

25 Data Recovery
In this chapter... 25-1

Overview ... 25-2
Transaction backout ... 25-2
Application considerations ... 25-2

Transaction backout.. 25-3
FOPT and FRCVOPT parameters ... 25-3
Types of backout .. 25-3

Update units .. 25-4
Backoutable units ... 25-4
Non-backoutable units ... 25-5

Using backout ... 25-6
Automatic backout.. 25-6
Manual backout .. 25-6

Design considerations for transaction backout files .. 25-9
Update requests ... 25-9
ON ATTENTION units .. 25-9
CCATEMP space ... 25-9
Logical inconsistency ... 25-9
Terminal I/O points ... 25-11

VI Reference and Appendix

26 Command and Statement Syntax
In this chapter... 26-1

Overview ... 26-2
Notation conventions used in this chapter .. 26-3
User Language statements ... 26-4
Value specification syntax... 26-21
Retrieval condition syntax ... 26-22

Omitting repeated first words ... 26-23
x Model 204

Omitting duplicated equal signs ... 26-23
Use of parentheses .. 26-23

Print specification syntax... 26-24
Expression syntax ... 26-25
IN clause syntax.. 26-26

IN GROUP MEMBER limitations.. 26-26
Using an IN clause in a BEGIN…END block.. 26-26

Subscript syntax ... 26-27
Terminal display attributes .. 26-28

List of attributes .. 26-28
Type syntax for the DECLARE SUBROUTINE statement 26-29

27 User Language Functions
In this chapter... 27-1

Standard functions .. 27-2
Changes required to user-written $functions.. 27-2
$ACCOUNT ... 27-2
$ACCT ... 27-2
$ALPHA ... 27-2
$ALPHNUM.. 27-4
$ARRSIZE.. 27-5
$ASCII .. 27-6
$BINARY.. 27-6
$BLDPROC.. 27-6
$CENQCT .. 27-9
$CHKMOD ... 27-9
$CHKPAT... 27-10
$CHKPINF ... 27-10
$CHKSFLD .. 27-12
$CHKTAG .. 27-14
$CODE... 27-15
$CURFILE.. 27-16
$CURREC.. 27-16
$C2X .. 27-17
Overview of $DATE functions .. 27-17
$DATE.. 27-20
$DATECHG.. 27-21
$DATECHK .. 27-22
$DATECNV ... 27-23
$DATEDIF .. 27-26
$DATEJ.. 27-28
$DATEP ... 27-28
$DAY.. 27-29
$DAYI... 27-30
$DEBLANK .. 27-31
$DECODE.. 27-31
$DELG ... 27-32
$DSCR ... 27-33
$DSN.. 27-33
$DSNNUM ... 27-34
User Language Manual: Parts III—VI xi

$ECBDGET.. 27-34
$ECBDSET .. 27-35
$ECBTEST... 27-37
$ECFSTAT... 27-38
$EDIT ... 27-39
$EFORMAT.. 27-47
$ENCRYPT .. 27-48
$ENTER ... 27-49
$ERRCLR .. 27-51
$ERRMSG ... 27-51
$FDEF.. 27-51
$FLDLEN ... 27-55
$FLOAT.. 27-55
$FLOATD ... 27-55
$FLSACC ... 27-56
$FLSCHK ... 27-57
$FSTERR .. 27-58
$GETG ... 27-58
$GETL.. 27-59
$GETP ... 27-59
$GRMLOC ... 27-59
$GRMNAME .. 27-59
$GRNLEFT .. 27-59
$GRNMISS .. 27-60
$GROUPFILES .. 27-60
$HPAGE... 27-60
$HSH ... 27-61
$INCRG.. 27-63
$INDEX .. 27-64
$ITSOPEN .. 27-65
$ITSREMOTE .. 27-66
$JOBCODE.. 27-66
$LANGSPEC.. 27-68
$LANGSRT .. 27-69
$LANGUST .. 27-70
$LEN .. 27-70
$LOWCASE ... 27-70
$LSTFLD.. 27-71
$LSTPROC .. 27-73
$MISGRUP .. 27-77
$MISLOC ... 27-78
$MISNAME .. 27-78
$MISNUM... 27-78
$MISSTMT ... 27-78
$MOD... 27-79
$OCCURS ... 27-79
$ONEOF .. 27-80
$PACK ... 27-81
$PAD.. 27-82
$PADR ... 27-82
xii Model 204

$POST ... 27-83
$RDPROC.. 27-85
$READ ... 27-89
$READINV ... 27-92
$READLC... 27-93
$REMOTE.. 27-93
$REVERSE .. 27-93
$RLCFILE .. 27-94
$RLCREC .. 27-94
$RLCUID.. 27-95
$RLCUSR .. 27-95
$ROUND .. 27-96
$SCAN ... 27-96
$SCLASS ... 27-96
$SETG ... 27-97
$SETL .. 27-97
$SETP.. 27-98
$SLSTATS ... 27-98
$SNDX ... 27-99
$SQUARE .. 27-100
$STAT .. 27-100
$STATUS ... 27-101
$STATUSD .. 27-102
$STATUSR .. 27-102
$STRIP... 27-103
$SUBSTR... 27-103
$SUBSYS... 27-104
$TCAMFHP.. 27-105
$TIME... 27-105
$UNBIN .. 27-106
$UNBLANK .. 27-106
$UNFLOAT .. 27-107
$UNPACK .. 27-107
$UNPOST .. 27-109
$UNQREC.. 27-110
$UPCASE .. 27-110
$UPDATE... 27-111
$UPDFILE .. 27-111
$UPDFLD... 27-112
$UPDLOC .. 27-112
$UPDOVAL .. 27-112
$UPDREC .. 27-113
$UPDSTAT .. 27-113
$UPDSTMT.. 27-113
$UPDVAL... 27-114
$USER ... 27-114
$USERID.. 27-114
$USRPRIV ... 27-114
$VALIDATE_NUMERIC_DATA.. 27-116
$VERIFY .. 27-117
User Language Manual: Parts III—VI xiii

$VIEW .. 27-117
$VNUM... 27-119
$WAIT .. 27-121
$WORD.. 27-124
$WORDS ... 27-125
$X2C ... 27-126

Mathematical functions ... 27-127
$ABS(x) .. 27-127
$ARCCOS(x).. 27-127
$ARCSIN(x) ... 27-127
$ARCTAN(x) .. 27-128
$ARCTAN2(x,y).. 27-128
$COS(x) ... 27-128
$COSH(x)... 27-128
$COTAN(x) .. 27-128
$ERF(x) .. 27-128
$ERFC(x) ... 27-128
$EXP(x) .. 27-129
$GAMMA(x) ... 27-129
$IXPI(x,y) ... 27-129
$LGAMMA (x) .. 27-129
$LOG(x) ... 27-129
$LOG10(x) ... 27-129
$MAX(X1, X2, X3, X4, X5) ... 27-130
$MIN(X1, X2, X3, X4, X5) .. 27-130
$PI.. 27-130
$RXPI(x,y) .. 27-130
$RXPR(x,y) .. 27-130
$SIN(x) ... 27-131
$SINH(x) .. 27-131
$SQRT(x) ... 27-131
$TAN(x) .. 27-131
$TANH(x) ... 27-131

28 Abbreviations
In this chapter... 28-1

User Language abbreviations ... 28-2
Command abbreviations ... 28-4

29 Reserved Words and Characters
In this chapter... 29-1

Rules for reserved words and characters ... 29-2
How to refer to a field name containing reserved words or characters 29-3

30 Request Composition Rules
In this chapter... 30-1

Statement labels ... 30-2
Statements that must be labeled.. 30-2
Unlabeled statements .. 30-2
Label references .. 30-3
xiv Model 204

Statement block ends .. 30-4
Beginning a block... 30-4
Ending a block statement ... 30-4

Statement format... 30-5
Begin statements on a new line ... 30-5
Statement continuation .. 30-5
Line length.. 30-6
Blanks between words ... 30-7
Where lines can begin.. 30-7
Logical lines ... 30-7
Use of semicolon to perform a carriage return ... 30-7

Field names and values .. 30-9
Rules for field names ... 30-9
Rules for field values.. 30-10
Use of quotes with field values... 30-10

Quotation marks.. 30-11
Uses for quotation marks ... 30-11
Rules for using quotation marks... 30-11
Quotation marks designating a null string .. 30-12
Quoting a reserved word.. 30-12

31 Floating Point Conversion, Rounding, and Precision Rules
In this chapter... 31-1

Conversion .. 31-2
Mapping and precision adjustment .. 31-3

Assigning floating point numbers to floating point numbers of different lengths .. 31-3

32 Field Attributes
In this chapter... 32-1

File model feature ... 32-2
Field attribute descriptions .. 32-3

AT-MOST-ONE and REPEATABLE attributes... 32-3
AT-MOST-ONE versus UNIQUE attributes.. 32-3
FLOAT attribute.. 32-3
FOR EACH VALUE attribute .. 32-3
INVISIBLE attribute .. 32-4
KEY attribute .. 32-4
LENGTH attribute... 32-4
NON-DEFERRABLE attribute .. 32-4
NUMERIC RANGE attribute... 32-4
OCCURS attribute.. 32-5
ORDERED attribute ... 32-5
UNIQUE attribute .. 32-5
VISIBLE attribute.. 32-5
UPDATE attribute... 32-5

33 DML statements in Parallel Query Option/204
In this chapter... 33-1

Parallel Query Option/204 DML .. 33-2
DML statements and retrieval conditions ... 33-2
User Language Manual: Parts III—VI xv

Using IN clauses .. 33-3
Using field names in expressions... 33-3

Restricted commands and $functions ... 33-4
Restricted Model 204 commands... 33-4
Restricted $functions.. 33-5

A Obsolete Features
In this appendix ..A-1

Statement numbers ..A-2
FOPT parameter ..A-2
Rules for using statement numbers..A-2

$DSCR function ..A-6
$TCAMFHP function ...A-9

Index
xvi Model 204

Preface

The Model 204 User Language Manual describes User Language, the fourth-
generation programming language for Model 204. This manual is divided into
two volumes.

Audience

Consult this manual if your need to execute standard Model 204 functions,
including:

• Retrieve stored information.

• Display and print retrieved information in a desired format.

• Perform arithmetic or conditional operations with stored information.

• Store new information.

Introducing Model 204 electronic documentation

Model 204 documentation includes several other manuals to which you might
want to refer. The CD-ROM, titled Model 204 Documentation, contains the
most recently released documentation for Model 204.

The document files are in Portable Document Format; each has a PDF file
extension. You can view, navigate, and print the individual manuals, and you
can search the entire document set using Adobe™ Acrobat Reader™ with
Search software, which is also provided on the CD-ROM. Either view the
manuals directly from the CD-ROM, or download the files to a network server.

In the PDF directory, open the README.TXT file on the Windows Notepad.
This file includes instructions to download a copy of the Acrobat Reader with
Search and to open the Model 204 Documentation Library Catalog.

Note: You may access the documentation online or print out copies, as
needed. However, consistent with the terms of your license agreement, you
may not copy or distribute the CD-ROM, or distribute hard-copies to third
parties.

Contacting CCA Customer Support

If you need assistance with this product beyond the provided online help and
documentation, and you have licensed this product directly from CCA, either
call CCA Customer Support at 1-800-755-4222, or access the Customer
Support section of the CCA Web site. The Web address is:
User Language Manual: Parts III—VI xvii

KWWS���ZZZ�FFD�LQW�FRP

If you have not licensed this product directly from CCA, please consult your
vendor.

Notation conventions

This manual uses the following standard notation conventions in statement
syntax and examples:

Convention Description

7$%/(Uppercase represents a keyword that you
must enter exactly as shown.

7$%/(�WDEOHQDPH In text, italics are used for variables and for
emphasis. In examples, italics denote a
variable value that you must supply. In this
example, you must supply a value for
tablename.

5($'�>6&5((1@ Square brackets ([]) enclose an optional
argument or portion of an argument. In this
case, specify READ or READ SCREEN.

81,48(�_�35,0$5<�.(< A vertical bar (|) separates alternative options.
In this example, specify either UNIQUE or
PRIMARY KEY.

75867�_�1275867 Underlining indicates the default. In this
example, NOTRUST is the default.

,6�^127�_�/,.(` Braces ({ }) indicate that one of the enclosed
alternatives is required. In this example, you
must specify either IS NOT or IS LIKE.

LWHP�« An ellipsis (…) indicates that you can repeat
the preceding item.

LWHP��« An ellipsis preceded by a comma indicates that
a comma is required to separate repeated
items.

$OO�RWKHU�V\PEROV In syntax, all other symbols (such as
parentheses) are literal syntactic elements and
must appear as shown.

QHVWHG�NH\��� �FROXPQBQDPH A double colon followed by an equal sign
indicates an equivalence. In this case, nested-
key is equivalent to column_name.

(QWHU�\RXU�DFFRXQW�

VDOHV��

In examples that include both system-supplied
and user-entered text, or system prompts and
user commands, boldface indicates what you
enter. In this example, the system prompts for
an account and the user enters sales11.
xviii Model 204

File > Save As A right angle bracket (>) identifies the
sequence of actions that you perform to select
a command from a pulldown menu. In this
example, select the Save As command from
the File menu.

Convention Description
User Language Manual: Parts III—VI xix

xx Model 204

Part III
Advanced Features and
Considerations

Part III covers features and considerations which allow you to take further
advantage of the flexibility of the Model 204 file structure, pass information
between requests, and manage lengthy requests effectively. Included are
chapters on:

• Multiply occurring fields

• Global variables, lists, and found sets

• Writing large requests

19
Operations on Multiply Occurring
Fields

In this chapter

• Overview

• FIND statement

• NOTE statement

• PRINT and PRINT n statements

• ADD, CHANGE, and DELETE statements

• SORT RECORDS statement

• FOR EACH RECORD statement

• Special statements for multiply occurring fields

• UPDATE field attribute

• Subscripts

• Subscript validity rules
User Language Manual 19-1

Overview
A single field name that has different values can be stored repeatedly in a
record. For example, the field CHILD in the record shown below is an example
of a multiply occurring field:

FATHER = JOHN DOE
CHILD = ELIZABETH
CHILD = ROBERT

Any field name except for the following types of fields can be present more than
once in a record:

• A NUMERIC RANGE field

• A sort key

• A hash key

Special processing for multiply occurring fields

Certain User Language statements operate differently on multiply occurring
fields than on singly occurring fields. User Language provides special
statements and forms of statements that can be used with multiply occurring
fields—specifically introducing the EACH modifier and subscripts. User
Language also provides for the use of subscripted field references for
accessing a particular occurrence of a multiply occurring field.
19-2 Model 204

FIND statement

Retrieval

Example 1 Assume that we are using this sample record:

FATHER = JOHN DOE
CHILD = ELIZABETH
CHILD = ROBERT

You can use either of these two statements to retrieve the record:

FIND.RECS: FIND ALL RECORDS FOR WHICH
 CHILD = ELIZABETH
 END FIND

FIND.RECS: FIND ALL RECORDS FOR WHICH
 CHILD = ROBERT
 END FIND

Example 2 The record is not retrieved by either of these statements:

FIND.RECS: FIND ALL RECORDS FOR WHICH
 CHILD = NOT ELIZABETH
 END FIND

FIND.RECS: FIND ALL RECORDS FOR WHICH
 CHILD = NOT ROBERT
 END FIND

Multi-condition range retrievals

You should pay special attention to the effect of multiply occurring fields on
multi-condition range retrievals. Undesirable results can occur if a range search
is specified for a multiply occurring field. For example:

FIND.RECS: FIND ALL RECORDS FOR WHICH
 CHILD IS AFTER KEN AND BEFORE PAUL
 END FIND

retrieves the sample record even though neither child’s name in the sample is
between KEN and PAUL. Model 204 evaluates each condition of the FIND
separately, then combines the results of each evaluation to build the set of
records satisfying all conditions. The BETWEEN operator behaves exactly like
any other multi-condition range retrieval when used on a multiply occurring
field.

If a range search must be performed on a multiply occurring field, use the IN
RANGE clause of the FIND statement. Refer to “NUMERIC RANGE and
ORDERED NUMERIC attributes” on page 4-5 for more information about the
IN RANGE clause. Better code for the previous example would be:
User Language Manual 19-3

FIND.RECS: FIND ALL RECORDS FOR WHICH
 CHILD IS ALPHA IN RANGE
 AFTER KEN AND BEFORE PAUL
 END FIND

Use of subscripts

You cannot use subscripted references with the FIND statement. Refer to
“Subscripts” on page 19-21 for more information about using subscripts with
multiply occurring fields.
19-4 Model 204

NOTE statement

Only first occurrence is noted

The NOTE statement notes only the first occurrence of a multiply occurring
field. For example, only the first occurrence of the field (CHILD = ELIZABETH)
are noted by:

KEEP.CHILD: NOTE CHILD

Use of subscripts

In order to note a particular occurrence of a multiply occurring field, the field
name must be subscripted. Refer to the discussion of subscripts on
“Subscripts” on page 19-21 for detailed information on subscripted field names
and usage.
User Language Manual 19-5

PRINT and PRINT n statements

PRINT statement output format

The PRINT statement prints only the first occurrence of a field in a record.

If there is more than one value of a field in a record, the special modifier, EACH,
can be used in a PRINT statement to print out all the values on a single line,
with a single space between values.

Example 1 PRINT EACH INCIDENT

yields:

T1 T2 T1 T3 T2 T1

Example 2 If the field is given a column position, as in:

PRINT FULLNAME WITH EACH INCIDENT AT COLUMN 18

values are printed one to a line and positioned at the column specified.

ABBOTT, GAIL H T1 -
 T3 -
 T1 -
 T3 -
 T2 -
 T1

Example 3 A field cited in a PRINT statement after a multiply occurring field is printed on
the same line as the last value of the multiply occurring field. If you were to
change the PRINT statement in the sample request as here:

PRINT FULLNAME WITH EACH INCIDENT AT COLUMN18 -
 WITH POLICY NO AT COLUMN 23 -
 WITH STATE AT COLUMN 32

this output results:

ABBOTT, GAIL H T1 -
T3 -
T1 -
T3 -
T2 -
T1 100340 CALIFORNIA

Use of subscripts

See “PRINT statement” on page 19-25 for a description of using PRINT with
subscripts.
19-6 Model 204

PRINT n statement

Long fields, such as abstracts, evaluations, or statements of purpose, can be
stored as a multiply occurring field. Each occurrence can contain as many as
255 characters.

Syntax You can use this PRINT statement to print such a field as a paragraph:

PRINT n fieldname

where n must be a number less than 32,768.

Output format The PRINT n statement prints up to n lines of text, composed of all of the
occurrences of the field concatenated in order. Nothing is inserted. At most, n
lines are printed; any extra lines are ignored.

Ordinarily, a PRINT statement that produces more than one line inserts a
hyphen in the continuation column of the output device. Instead of using the
continuation column, this form of PRINT attempts to end each line with a
complete word delimited by spaces. If there is insufficient space to fit the last
word on a line, the word is hyphenated arbitrarily and continued on the next
line.

The AT COLUMN and TO COLUMN clauses can be used to adjust the output
to a narrower column. When used together with PRINT n, text is broken at word
boundaries to fit within the column. The AT clause does not affect the first line,
and the TO clause does not affect the last line (unless the line limit n is
exceeded). This allows indenting.

The AT or TO column options cannot accept negative numbers or numbers
greater than 32767 for the column.

Procedures containing PRINT statements with negative numbers or numbers
greater than 32767 fail at compile time with the following counting error
message:

M204.0263: AT/TO MUST BE BETWEEN 1 AND 32767

Example This example illustrates the use of the PRINT n statement.

BEGIN
 PRINT ’1234567890123456’
 STORE RECORD
 TEXT = ’NOW IS THE T’
 TEXT = ’IME FOR’
 TEXT = ’ ALL GOOD MEN TO’
 ITEM = 1
 END STORE
FD.REC: FIND ALL RECORDS FOR WHICH
 ITEM = 1
 END FIND
 FOR 1 RECORD IN FD.REC
User Language Manual 19-7

PRINT.TEXT: PRINT ’’ AT COLUMN 5 WITH 3 TEXT -
 AT COLUMN 3 TO 16
 END FOR
END

The output produced is:

1234567890123456
 NOW IS THE
 TIME FOR ALL
 GOOD MEN TO

The PRINT.TEXT statement concatenates a null value (two single quotes with
no space between them) with the PRINT n form to indent the first line of text by
using the location of the null value (column 5).

Note that the printing stops short of column 16 to avoid truncating TIME and
GOOD.

Use with subscripts

You cannot use subscripted references with the PRINT n statement. Refer to
“Subscripts” on page 19-21 for more information about using subscripts with
multiply occurring fields.
19-8 Model 204

ADD, CHANGE, and DELETE statements
The ADD and CHANGE statements, and both forms of the DELETE statement,
are supported in remote file and scattered group contexts.

ADD statement

The ADD statement places new occurrences of a field after existing
occurrences. For example, if new children are added to the sample record, the
additions are placed last. Thus:

ADD CHILD = SARAH
ADD CHILD = PATRICK

results in the record:

FATHER = JOHN DOE
CHILD = ELIZABETH
CHILD = ROBERT
CHILD = SARAH
CHILD = PATRICK

The INSERT statement

If the order of occurrence is important, the INSERT statement can be used to
add new occurrences. See the discussion on “INSERT statement” on
page 19-24.

CHANGE statement

The CHANGE statement alters only the first occurrence of a field in a record.

Syntax You can use this form of the CHANGE statement if there is more than one
occurrence:

CHANGE fieldname = value1 TO value2

This form, like the CHANGE fieldname statement, can be used only inside a
FOR EACH RECORD loop. It deletes the first occurrence of the pair
fieldname = value1 from a record, and adds the pair fieldname = value2 to the
record. The new value is added either in the position occupied by the original
value or at the end of the record, depending upon the update attribute specified
for the field by the file manager. See the discussion in “UPDATE field attribute”
on page 19-19.

If the specified field, fieldname = value1, does not appear in the record,
fieldname = value2 is simply added to the record. If the specified
fieldname = value1 pair appears more than once in the record, only the first
occurrence of it is deleted. The pair, fieldname = value2, is added just once.
Occurrences of the field name that have other values are not altered by the
statement.
User Language Manual 19-9

DELETE statement

The DELETE statement deletes only the first occurrence of the field in the
record by default.

Two forms of DELETE statement

For multiply occurring fields, two forms of the DELETE statement are provided;
however only for use inside a FOR EACH RECORD loop:

Use with the FOR EACH OCCURRENCE statement

See “Deleting occurrences” on page 19-16 for a discussion of deleting
occurrences using the FOR EACH OCCURRENCE OF (FEO) statement.

Use with subscripts

See “DELETE statement” on page 19-25 for a discussion of using the DELETE
statement with subscripts.

To delete… Syntax Usage

A particular
occurrence

DELETE fieldname = value To delete the first occurrence of the
pair, fieldname = value, from a
record. Occurrences of the field
that have other values are not
removed. If the field with the
specified value:
• Occurs more than once in the

record, only the first occurrence is
deleted.

• Cannot be found, no deletion
occurs.

Every
occurrence of
the field in the
record

DELETE EACH fieldname To delete all occurrences of the
specified field name. The field to
be deleted cannot have the
INVISIBLE attribute.
19-10 Model 204

SORT RECORDS statement
When a multiply occurring field is chosen as a sort key, each record in the set
being sorted is processed once using the first occurrence of the field as the key.

EACH modifier with one sort field

If the EACH modifier is present in the SORT statement and if there are n
occurrences of the field in the record, similar records are created in the sorted
copy of the original set.

Example The following request:

SORT RECORDS IN FIND.RECS BY EACH KEY

generates three temporary records for the single permanent record in which the
field named KEY occurs three times:

KEY = COMPUTER
KEY = CORPORATION
KEY = AMERICA

The records generated are:

1 KEY = COMPUTER 2 KEY = CORPORATION
 KEY = CORPORATION KEY = AMERICA
 KEY = AMERICA KEY = COMPUTER

3 KEY = AMERICA
 KEY = COMPUTER
 KEY = CORPORATION

These correspond to the n cyclic permutations of the set of field occurrences
and, in this example, are sorted into the order 3, 1, 2 (if no other option is
selected). Statements that refer to the sorted set, such as PRINT, PRINT
EACH, NOTE, and PRINT ALL INFORMATION, reflects the permutation. No
record is generated if n = 0.

EACH modifier with several key fields

When the EACH option is selected for several keys, n occurrences of one key
and m of another produce differently permuted records. If either n or m equal
0, no records are generated.

Example This request:

BEGIN
FIND.RECS: IN CLIENTS FIND ALL RECORDS FOR WHICH
 INCIDENT = T1
 END FIND
SORT.RECS: SORT RECORDS IN FIND.RECS BY FULLNAME -
 AND EACH INCIDENT DATE
User Language Manual 19-11

 FOR EACH RECORD IN SORT.RECS
 PRINT FULLNAME WITH INCIDENT DATE -
 AT COLUMN 25
 END FOR
END

produces printed output of:

ABBOTT, FRANKLIN G 860323
ABBOTT, GAIL H 861022
ABRAMS, RUTH Z 861115
ABRAMS, RUSSELL Y 870218
ABBOTT, FRANKLIN G 870424
ABBOTT, GAIL H 871123
 . .
 . .
 . .

If no occurrences are present

A record that does not contain at least one occurrence of the INCIDENT DATE
field produces no printed output. Similarly:

SORT RECORDS IN FIND.RECS BY EACH A AND EACH B

would produce nothing for those records that do not have at least one
occurrence of both A and B.
19-12 Model 204

FOR EACH RECORD statement
The FOR EACH RECORD IN ORDER BY statement retrieves and loops on
only the first occurrence of a field in a record.

EACH modifier

If there is more than one value of a field in a record, the special modifier, EACH,
can be used to retrieve and loop on all values of the field.

The EACH modifier only can be used on a FOR EACH RECORD statement
that specifies index order processing (the IN ORDER BY fieldname clause
must be used and the field must have the ORDERED attribute). The VALUE IN
phrase must be used to retrieve the current value of the ORDERED field driving
the loop.

Example This example of the FOR EACH RECORD IN ORDER BY statement:

BEGIN
FR1: FOR EACH RECORD IN ORDER BY EACH INCIDENT DATE
 PRINT VALUE IN FR1 WITH FULLNAME AT COLUMN 25
 END FOR
END

returns each record in order by each value of the ORDERED field, as follows:

760323 ABBOTT, FRANKLIN G
761022 ABBOTT, GAIL H
761115 ABRAMS, RUTH Z
770218 ABRAMS, RUSSELL Y
 .
 .
 .
User Language Manual 19-13

Special statements for multiply occurring fields
User Language provides several statements for handling multiply occurring
fields.

• COUNT OCCURRENCES (used with singly occurring fields, too)

• FOR EACH OCCURRENCE (used with singly occurring fields, too)

• DELETE EACH OCCURRENCE

Note: See page 19-24 for a discussion of the INSERT statement, which you
can use to add new occurrences of a field.

COUNT OCCURRENCES OF statement

The COUNT OCCURRENCES OF (CTO) statement counts the number of
occurrences of the named field in the current record.

Syntax The format of the COUNT OCCURRENCES statement is:

label: COUNT OCCURRENCES OF fieldname

or

label: CTO fieldname

The field name cannot be subscripted. The COUNT OCCURRENCES OF
statement can appear only within a FOR EACH RECORD loop.

The COUNT OCCURRENCES statement is supported in remote file and
scattered group contexts.

COUNT IN clause

The COUNT IN clause refers to the count obtained by the COUNT
OCCURRENCES OF statement. This request:

BEGIN
FIND.RECS: IN VEHICLES FIND ALL RECORDS
 END FIND
 FOR 5 RECORDS IN FIND.RECS
NO.OF.VINS: COUNT OCCURRENCES OF VIN
 PRINT OWNER POLICY WITH ’ INSURES ’ WITH -
 COUNT IN NO.OF.VINS WITH ’ VEHICLE(S)’
 END FOR
END

generates the following output:

100025 INSURES 1 VEHICLE(S)
100030 INSURES 1 VEHICLE(S)
100032 INSURES 1 VEHICLE(S)
19-14 Model 204

100051 INSURES 1 VEHICLE(S)
100058 INSURES 1 VEHICLE(S)

FOR EACH OCCURRENCE OF loops

On each loop of FOR EACH OCCURRENCE OF (FEO), the VALUE IN and
OCCURRENCE IN labels refer to value and position, respectively, of the next
field occurrence, starting with occurrence 1 and increasing by 1 for each pass
through the loop. When the next field occurrence number is greater than the
number of field occurrences in the record, the loop terminates.

Syntax The format of the FOR EACH OCCURRENCE loop is:

label: FOR EACH OCCURRENCE OF fieldname

Alternatively,

label: FEO fieldname

The FOR EACH OCCURRENCE OF statement is supported in remote file and
scattered group contexts.

Example Consider this record:

FIRST NAME = RICHARD
LAST NAME = SMITH
CHILD = HENRY
CHILD = SALLY
CHILD = JANE
ADDRESS = AVON DRIVE

This request creates a separate record for each child.

BEGIN
FD.REC: FIND ALL RECORDS FOR WHICH
 FIRST NAME = RICHARD
 LAST NAME = SMITH
 END FIND
 FOR EACH RECORD IN FD.REC
NOTE.ADD: NOTE ADDRESS
CHILD.LOOP: FOR EACH OCCURRENCE OF CHILD
 PRINT VALUE IN CHILD.LOOP
 STORE RECORD
 FIRST NAME = VALUE IN CHILD.LOOP
 LAST NAME = SMITH
 ADDRESS = VALUE IN NOTE.ADD
 END STORE
 END FOR
 END FOR
END
User Language Manual 19-15

Simulating a FOR EACH VALUE loop

The FOR EACH OCCURRENCE OF statement can be used to simulate a FOR
EACH VALUE loop if the field contains a static collection of known values.
Consider the values of states. The user sets up a single record that has a
multiply occurring field in sorted sequence as follows:

TYPE = STATE
CODE = ALABAMA
CODE = ARKANSAS
 .
 .
CODE = WYOMING

These statements would begin a request to generate a report in order by state:

BEGIN
FIND.TYPE: FIND ALL RECORDS FOR WHICH
 TYPE = STATE
 END FIND
 FOR EACH RECORD IN FIND.TYPE
EACH.CODE: FOR EACH OCCURRENCE OF CODE
FIND.STATE: FIND ALL RECORDS FOR WHICH
 STATE = VALUE IN EACH.CODE
 END FIND
 FOR EACH RECORD IN FIND.STATE
 .
 .

This method has the advantage of eliminating the internal sort required by FOR
EACH VALUE IN ORDER and provides an easy way to simulate a FOR EACH
VALUE loop for a field that does not have the FRV or ORDERED attribute.
However, a change in the list of values can require a recreation of the TYPE
record to keep the values in order. Recreation is not required if the UPDATE IN
PLACE field attribute has been specified for the CODE field and if the new and
old values occupy the same place in order. Recreation also is not required if the
INSERT statement (see page 19-24) is used correctly.

Deleting occurrences

A FOR EACH OCCURRENCE OF loop can be used to delete every other
occurrence of a multiply occurring field as explained below. The DELETE
EACH statement can be used to delete all occurrences.

Processing The FOR EACH OCCURRENCE OF loop, when used to delete occurrences,
deletes every other occurrence because the fields and records in Table B are
shifted to eliminate the space the deleted occurrence took (condensing Table
B storage) and the pointer is also shifted, so that the pointer ends up pointing
to the third occurrence.

Example Suppose the following statement is specified for the RICHARD SMITH record
described previously:
19-16 Model 204

DEL.CHILD: FOR EACH RECORD IN FIND.RECS
 FOR EACH OCCURRENCE OF CHILD
 DELETE CHILD
 END FOR
 END FOR

The record originally contained these CHILD entries:

CHILD=HENRY
CHILD=SALLY
CHILD=JANE

On the first pass through the loop, the first value, HENRY, is selected and
deleted. At the end of the first pass, the record contains these CHILD entries:

CHILD=SALLY
CHILD=JANE

On the second pass through the loop, the DELETE CHILD statement again
deletes the first occurrence of the field as described on page 19-10. Since
HENRY has already been deleted, Model 204 deletes the first entry, SALLY.

After the second pass, the FOR EACH OCCURRENCE loop terminates. This
is because the value in DEL.CHILD should be the next (third) occurrence, but
after two passes, only one occurrence remains on the record. Therefore, at the
end of the FOR EACH OCCURRENCE loop, the remaining value in the CHILD
field is:

CHILD=JANE

VALUE IN with FOR EACH OCCURRENCE loops

VALUE IN references to FOR EACH OCCURRENCE (FEO) statements from
outside the FEO loop does not compile. Such references receive the following
error message:

M204.0311 UNACCEPTABLE STATEMENT REFERENCE

At runtime, the space occupied in STBL by the FEO value is reclaimed after
each iteration of the FEO loop (including the last). This results in a reduction in
the runtime STBL space requirements of some programs that use FEO.

To avoid getting that error, move the value into a %variable inside the FEO loop,
and then reference the %variable outside the FEO loop.

FOR EACH OCCURRENCE OF against INVISIBLE fields

Using FOR EACH OCCURRENCE (FEO) syntax against INVISIBLE fields is a
waste of processing time. An FEO causes a scan of the current Table B record,
but INVISIBLE fields are not stored in Table B, so an FEO against an
INVISIBLE field can never find any occurrences. Prior to V4R2.0 this
programming flaw was masked because using FEO syntax against an
User Language Manual 19-17

INVISIBLE field compiled and evaluated successfully, although it never found
occurrences.

Beginning in V4R2.0, FEO syntax against an INVISIBLE field results in
compilation error:

M204.0320 FIELD IS INVISIBLE. FIELD =
19-18 Model 204

UPDATE field attribute

Impact of changing a value

When the user changes the value of a field, how Model 204 changes the
occurrence depends upon whether the field was defined with the UPDATE IN
PLACE or UPDATE AT END attribute, as follows:

Example This example includes both approaches to updating. Suppose a record has the
following fields:

NAME = RICHARD SMITH
CHILD = HENRY
CHILD = SALLY
CHILD = JANE

You could use the technique illustrated below to add a last name to each child.
(This technique involves the use of %variables, which are discussed in
Chapter 10.)

BEGIN
FIND.RECS: FIND ALL RECORDS FOR WHICH
 NAME = RICHARD SMITH
 END FIND
 FOR EACH RECORD IN FIND.RECS
EACH.CHILD FOR EACH OCCURRENCE OF CHILD
 %A = VALUE IN EACH.CHILD WITH ’ SMITH’
 CHANGE CHILD = VALUE IN EACH.CHILD TO %A
 END FOR
 END FOR
END

If the UPDATE IN PLACE option is specified

If the UPDATE IN PLACE option has been specified for the CHILD field, then
the FOR EACH OCCURRENCE loop change each occurrence of CHILD in
turn.

On the first pass through the loop, the first value, HENRY, is selected and
changed to HENRY SMITH. After the first pass, the record looks like this:

Attribute How the update works…

UPDATE IN
PLACE (the
default)

The value of the field occurrence is changed but its position in
the record is preserved. To change the order of values, the
user must delete the old value and add the new one in
separate statements.

UPDATE AT END The existing occurrence is deleted and the new one is
automatically added at the end. UPDATE AT END is normally
specified for applications that depend on value rotation to
accomplish aging.
User Language Manual 19-19

NAME = RICHARD SMITH
CHILD = HENRY SMITH
CHILD = SALLY
CHILD = JANE

At the end of the second pass, SALLY is changed:

NAME = RICHARD SMITH
CHILD = HENRY SMITH
CHILD = SALLY SMITH
CHILD = JANE

At the end of the third pass, JANE is changed:

NAME = RICHARD SMITH
CHILD = HENRY SMITH
CHILD = SALLY SMITH
CHILD = JANE SMITH

If the UPDATE AT END option is specified

If the UPDATE AT END option has been specified for the CHILD field, the FOR
EACH OCCURRENCE loop proceeds as described here.

On the first pass through the FOR EACH OCCURRENCE loop the first value,
HENRY, is selected and changed to HENRY SMITH. The act of changing,
however, causes the value HENRY to be deleted and the value HENRY SMITH
to be added as the last child. Thus after the first pass, the record looks like this:

NAME = RICHARD SMITH
CHILD = SALLY
CHILD = JANE
CHILD = HENRY SMITH

On the second pass through the loop, JANE, which is now the second
occurrence of CHILD, is deleted and JANE SMITH added to the end of the
record:

NAME = RICHARD SMITH
CHILD = SALLY
CHILD = HENRY SMITH
CHILD = JANE SMITH

On the third pass, the third occurrence is JANE SMITH, and the record ends
with:

NAME = RICHARD SMITH
CHILD = SALLY
CHILD = HENRY SMITH
CHILD = JANE SMITH
19-20 Model 204

Subscripts
Subscripts can be included in Model 204 field references to facilitate the
selection of particular occurrences of multiply occurring fields. Any field name
can be followed by a parenthesized expression. The value of this expression is
used as an ordinal number which specifies the desired occurrence of the
named field. For example:

INCIDENT(3)
COURSE.NUMBER(2)
TRANSACTION(A+B)

Example This request illustrates a class schedule where subscripts are used to change
the room number for a course:

BEGIN
COURSE: FIND ALL RECORDS FOR WHICH
 REC = ROOM ASSIGNMENT
 END FIND
CHANGE: FOR EACH RECORD IN COURSE
 IF ROOM(1) EQ ’214A’ THEN
 CHANGE ROOM(1) TO ’566A’
 END IF
 IF ROOM(2) EQ ’214A’ THEN
 CHANGE ROOM(2) TO ’566A’
 END IF
 END FOR
END

Subscripted field extraction

Subscripted field references attempt to maintain their position inside a record
much as an FEO loop attempts to maintain its position inside a record. This
means that subscripted field references tend to be as efficient as FEO loops.

The following is an example of using subscripted field extraction for a repeating
field group:

%INC IS STRING ARRAY (12) NO FS
%IDATE IS STRING ARRAY (12) NO FS
FEOIDATA: FEO INCIDENT
 %INC(OCCURRENCE IN FEOIDATA) = VALUE IN FEOIDATA
%IDATE(OCCURRENCE IN FEOIDATA) = INCIDENT
DATE(OCCURRENCE IN FEOIDATA)
 END FOR

If you use multiple FEO loops for field group processing, it is possible that using
this technique will require additional VTBL resources for procedures with an
extremely large number of sorts or subscripted field references.
User Language Manual 19-21

Evaluation of subscript expressions

The evaluation of subscript expressions is subject to the rules for determining
an integer result for an arithmetic expression as described in “Arithmetic
operations” on page 10-3.

Statements and phrases with which you cannot use subscripts

Subscripted field references can appear anywhere that unsubscripted
references can, except in the following statements and phrases:

Statements you cannot use with sub-
scripts Because…

ADD Adds a new occurrence of a field.

BY EACH phrase in the SORT
RECORDS

Loops through all occurrences of a field.

DELETE EACH statement Loops through all occurrences of a field.

EACH phrase in a PRINT specification Loops through all occurrences of a field.

FILE Deals with fields having the INVISIBLE
attribute, which cannot be the object of
subscripted references.

FIND Locates records without regard to
which occurrence of a field contains the
desired value.

FOR EACH OCCURRENCE Loops through all occurrences of a field.
Field references within FOR EACH
OCCURRENCE loops can be
subscripted, depending upon the
individual statements in which the
references appear.

FOR EACH VALUE Loops through all values of all
occurrences of the specified field. Field
references within FOR EACH VALUE
loops are not allowed at all, unless the
field reference is embedded in a nested
FOR EACH RECORD loop. See
“Setting up a value loop on one field
and printing a value of another” on
page 8-20 for more information.

IN ORDER BY EACH phrase in the FOR
EACH RECORD

Loops through all occurrences of a field.

PRINT n Loops through all occurrences of a field.

STORE RECORD Adds fields in the order of appearance
in the statement.
19-22 Model 204

Unsubscripted field references

An unsubscripted field reference in a context in which subscripted references
are allowed is always equivalent to a subscripted reference with a value of one.

Do not use subscripts with INVISIBLE fields

You cannot make subscripted references to fields that have the INVISIBLE
attribute (see the discussion on field attributes in Chapter 32). These fields are
not truly multiply occurring, although they can have several different values in
a single record. A subscript specified for a field with the INVISIBLE attribute is
ignored.
User Language Manual 19-23

Subscript validity rules
The rules presented below indicate whether or not a subscript value is valid and
what action to take if the value is not valid. These rules take into account:

• The value of the subscript

• The context in which the subscript appears

• The description of the subscripted field

Explanation of the rules

In these rules, two quantities are used:

1. N is the maximum number of occurrences that can be stored in a record
for a given field. For a preallocated field, N equals the value of n in the
OCCURS clause of the field’s description. For other fields, N has no limit.

2. P is the number of nonempty occurrences of the referenced field found in
the specified record when the reference is evaluated.

For a summary of rules for preallocated fields, refer to the discussion on
preallocated fields in “Storing values in preallocated fields” on page 15-16.

INSERT statement

The INSERT statement, like the ADD statement, is used for adding new
occurrences of a field. INSERT is used to add occurrences when the order of
the values is important and the values are added out of order.

The INSERT statement is supported in remote file and scattered group
contexts.

Syntax

The format of the INSERT statement is:

INSERT fieldname [(subscript)] = value

Example

Assume a record with these fields:

DEPT = PERSONNEL
DEPT = FINANCE
DEPT = MARKETING

The following statement:

INSERT DEPT(3) = ACCOUNTING

results in the record:
19-24 Model 204

DEPT = PERSONNEL
DEPT = FINANCE
DEPT = ACCOUNTING
DEPT = MARKETING

Subscript validity rules

Table 19-1 lists validity rules for subscripts. In this table:

• P is the number of occurrences of the field in the record when the INSERT
statement is issued.

• S is the subscript specified in the INSERT statement.

For fields with the INVISIBLE attribute, only the index is affected.

PRINT statement

In retrieval statements such as PRINT, subscript values less than zero or
greater than P are invalid. Invalid references of this kind cause the null value to
be returned. A subscript of zero returns the value of the first occurrence.

DELETE statement

In the DELETE statement, subscript values less than one or greater than P are
invalid. If an invalid reference of this kind is made, no action is taken.

If several occurrences of a field are being deleted, you should be careful not to
use DELETE in the following way:

FOR EACH RECORD IN FIND.RECS
 DELETE CLIENT(1)
 DELETE CLIENT(2)
 DELETE CLIENT(3)

Table 19-1. Subscript validation rules

If P and S
values are: Then Model 204 takes this action:

P > S Inserts the new occurrence in front of the former Sth occurrence;
the new occurrence becomes the current Sth occurrence of the
field.

P < S Inserts the new occurrence of the field after the Pth occurrence; the
new occurrence becomes the (P+1) occurrence.

P = 0 Adds the new value at the end of the record, as in the ADD
statement.

S = 0, or
no subscript

Treats the new value as if S = 1 and inserts the new value as the
first occurrence, in front of any former occurrence of the field.

S < 0 Does not add a new occurrence.
User Language Manual 19-25

END FOR

As the statements are executed, Model 204 deletes the first occurrence,
CLIENT(1), then locates the current second occurrence, which is the original
CLIENT(3), and deletes it. Then, because a third occurrence cannot be found,
the operation stops, and the original CLIENT(2) is never deleted.

In such a situation, deleting the occurrences in the reverse order achieves the
desired result:

FOR EACH RECORD IN FIND.RECS
 DELETE CLIENT(3)
 DELETE CLIENT(2)
 DELETE CLIENT(1)
END FOR

The desired result also can be achieved by completely omitting the subscripts,
as follows:

FOR EACH RECORD IN FIND.RECS
 DELETE CLIENT
 DELETE CLIENT
 DELETE CLIENT
END FOR

CHANGE statement

In the CHANGE statement, subscript values less than one or greater than P are
treated as attempts to add a new occurrence (P+1). If (P+1) does not exceed
N (the maximum number of occurrences that can be stored), the new
occurrence is added to the record. If (P+1) does exceed N, the request is
cancelled.

SORT RECORDS statement

The use of subscripts in references to the record set yielded by a SORT
RECORDS statement sometimes can produce unexpected results. If the BY
EACH option appears in a SORT statement, records in which the BY EACH
field is multiply occurring are copied several times (once for each field
occurrence) to the system scratch file CCATEMP. In each copy, the
occurrences of the BY EACH field are rotated, so that the occurrence used as
the sort key appears first. Therefore, a subscripted reference to this field can
yield different values for different copies of the record.
19-26 Model 204

20
Global Features

In this chapter

• Overview

• Global string variables

• Passing string values from one request to another

• Using global string variables with a conditional INCLUDE command

• Using global string variables to tailor a request

• Global objects

• Using global found sets and lists

• Using global sorted sets

• Saving and recalling a POSITION in a FOR loop

• Global images and screens

• How images and screens are processed

• Using global images and screens

• Clearing the GTBL work area
User Language Manual 20-1

Overview
Model 204 offers several global features to store information in memory so that
it is not automatically cleared between requests. The memory area for storing
global information is a Model 204 internal work area or server table called
global table or GTBL.

The global features are:

• Global string variables

• Global objects

– Global found sets and lists

– Global screens, images, and menus

– Global positions

Global information is available only to the user who creates it.

GTBL internal work area

Each user’s GTBL is empty when the user logs in. GTBL accumulates global
information that is available for the duration of the terminal session, unless you
intentionally clear it. You can clear GTBL information selectively.

For a discussion of GTBL space requirements, see “GTBL (global variable
table)” on page 21-6.

Global items are stored in a specific order in GTBL. As shown in Figure 20-1
on page 20-3, the area that stores global string variables is at the beginning of
the table, and is built from the top down. The area that stores global objects is
at the end of the table and is built from the bottom up. The unused or free space
is between these two areas.
20-2 Model 204

Figure 20-1. Storage of global variables and global objects in GTBL

Global string variables

You can use global string variables to:

• Pass information from one request to another request

• Include procedures conditionally at the Model 204 command level

• Tailor a request dynamically

As of Version 5.1, you can increase the speed and reduce the CPU time to find
and update a global string variable by setting the GTBLHASH parameter to a
nonzero value. The GTBLHASH parameter specifies the number of buckets
allocated in the global string variable section of GTBL. When GTBLHASH is a
nonzero value, and you set or get a global string variable, the global string
variable name is hashed to determine the bucket in which the name is located.

This reduces the overall amount of data that must be scanned to find a global
string variable or must be moved when a value is deleted or changes in size. If
GTBLHASH=0, global string variables are processed as in pre-5.1 versions of
Model 204. See "GTBLHASH: Number of bucket for global string variables" in
the Model 204 Command Reference Manual.

The GTBLPCT parameter determines the initial percentage of GTBL to allocate
for global string variables. The default value of GTBLPCT is 50, meaning 50
percent of GTBL is initially allocated for global variable strings. The remainder,
in this case 50 percent, is the initial allocation for global objects. However, if
GTBLHASH=0, a nonzero setting for GTBLPCT has no effect.

When in effect, if either area of GTBL fills and there are still free pages in GTBL,
then GTBL can be rearranged if more space is required in the full area of GTBL.

GTBL

Allocated global string variables

TEMP global images, screens, menus

32-byte trailer

Free space

PERM global images, screens, menus

TEMP positions

PERM positions

This area built from
the “top down”

This area built from
the “bottom up”
User Language Manual 20-3

Because these rearrangements can be CPU intensive, CCA recommends that
you determine an accurate setting for GTBLPCT to avoid frequent
rearrangements. You can monitor the performance of the hash GTBL feature
using the GTBLRU user statistic and the GTBLRS since-last statistic. See
"GTBLPCT: Initial percentage of GTBL to allocate for global string variables" in
the Model 204 Command Reference Manual.

Rearranging GTBL and tracking the rearrangements

The following statistics are available as system statistics, user statistics and
since-last statistics to keep track of GTBL rearrangements required for the
hashed GTBL feature:

After reviewing the GTBLRU and GTBLRS statistics, you can consider taking
the following actions:

• If both of these values are high, increase the size of GTBL by increasing
LGTBL.

• If GTBLRU is high but GTBLRS is not, increase GTBLPCT or decrease
GTBLHASH.

• If GTBLRS is high but GTBLRU is low, decrease GTBLPCT.

Global found sets and lists

You can use global found sets and lists to make found sets and lists available
across request boundaries. A global found set or list remains in GTBL until you:

• Explicitly delete it

• Issue a RELEASE or COMMIT RELEASE statement

• The file or group it refers to is closed, including the file close processing
done when exiting a subsystem or stopping

• Log out

Sorted sets are a subgroup of found sets; they are treated the same by the
CLEAR statement that is used to clear global found sets.

Global positions

You can use REMEMBER and POSITION statements to save and recall a
place in a FOR loop, either globally or nonglobally. This lets you suspend

Statistic Tracking

GTBLRU Number of GTBL rearrangements required to add a string variable
global.

GTBLRS Number of GTBL rearrangements required to add a global object.
20-4 Model 204

processing in a FOR loop and resume it later, either within the same request or
in a subsequent request.

Global images and screens

You can use global images and screens to:

• Pass image and screen data from one request to another

• Manage more than one image or screen in one request

• Manage menus, which are a special type of screen

• Reduce I/O by swapping modified global screens to CCASERVR instead of
paging them between the buffer pool and CCATEMP
User Language Manual 20-5

Global string variables

Global string variable names and values

Entries in the GTBL consist of global name=value pairs. The names and values
of the global string variables are created with the $SETG function from within a
request.

• A global name can consist of up to 255 characters and follows the naming
conventions for variables (see “%Variable names” on page 10-7). Global
string variables that contain an underscore (_) cannot be used as ?&
dummy strings; use a period (.) instead.

• A value can be 0, null string, to 255 characters.

Clearing global string variables

When a new value for an existing name is stored, the old entry is first deleted.
Entries remain in the table until you delete them by issuing a CLEARG
command, execute a CLEAR statement, execute a $DELG function call, or you
log out.

If you define a large number of global string variables, Model 204 performance
can be adversely affected.

For details and examples of clearing global string variables, see “Clearing the
GTBL work area” on page 20-28.

Global variable functions and commands

The following functions, statements, commands, and facilities manipulate
entries in the global variable table:

• Use the functions $SETG and $GETG within a request to store and retrieve
global string variables. Use $INCRG to perform simple arithmetic on global
string variables with numeric values. Use the $DELG function to delete
global string variables created by either $SETG or $INCRG. The format of
these functions is described in Chapter 27.

• Use the ?& dummy string within a request to read a variable in the GTBL.
Refer to Chapter 13 for more information about dummy strings.

• Use the conditional INCLUDE command (IF A = B,name) to search the
global variable table for an entry whose name is A and whose value is B. If
the entry is found, the named procedure is included. The IF command is
discussed on “Keep IF commands at as high a nesting level as possible” on
page 20-12.
20-6 Model 204

Using global string variables in application subsystems

In addition to the above facilities, an application subsystem can designate
specific global string variables in the subsystem definition. For more
information about subsystem global string variables, refer to:

• “Command line global variable” on page 23-5

• “Communication global variable” on page 23-6

• “Error global variable” on page 23-9
User Language Manual 20-7

Passing string values from one request to another
It is often necessary to generate data in one request and to save the data for
use in other independent requests to be run later in the terminal session.

Example 1 Suppose that you want to store the current date in every record created during
a session in YYMMDD format, a modified form of the value returned by the
$DATE function. You can derive the date once at the beginning of the day and
hold it for use throughout the day.

At the beginning of the terminal session, you enter:

BEGIN
 %DATE = $DATE
 %DATE = $SUBSTR(%DATE, 1, 2) -
 WITH $SUBSTR(%DATE, 4, 2) WITH -
 $SUBSTR(%DATE, 7, 2)
 IF $SETG(’DATE’, %DATE) THEN
 PRINT ’*** REQUEST TOO LONG - GTBL’
 STOP
 END IF
END

Later in the terminal session, you can use the specially formatted date:

BEGIN
 %DATE = $GETG(’DATE’)
 STORE RECORD
 FIELD = VALUE
 FIELDB = VALUE
 DATE = %DATE
 .
 .
 .
 END STORE

Example 2 Assume that different sets of records are processed and the results are used
to produce a final report. Because of compiler table limitations, you have to
process requests that cannot be continued with the MORE command (see
Chapter 21). You can store intermediate results in GTBL and produce the final
report exclusively from the table.

For example:

BEGIN
 .
 .
 .
 process hourly workers’ wages
 .
 .
 .
 IF $SETG(’HOURLY TOTAL’, %TOTAL) THEN
20-8 Model 204

 PRINT ’*** REQUEST TOO LONG - GTBL’
 STOP
 END IF

END

BEGIN
 .
 .
 .
 process monthly workers’ wages
 .
 .
 .
 IF $SETG(’MONTHLY TOTAL’, %TOTAL) THEN
 PRINT ’*** REQUEST TOO LONG - GTBL’
 STOP
 END IF
END

BEGIN
 %HOURLY = $GETG(’HOURLY TOTAL’)
 %MONTHLY = $GETG(’MONTHLY TOTAL’)
 .
 .
 .
 format report
 .
 .
 .
END
User Language Manual 20-9

Using global string variables with a conditional INCLUDE
command

You can use global string variables to create a modular programming
environment in which you select procedures to perform a particular function
without compiling and evaluating procedures designed for other related
functions.

To use global string variables effectively in creating such an environment, it is
useful to review the differences between commands and User Language
statements and between conditional and unconditional includes, as described
in the following sections.

Differences between commands and User Language statements

Commands and User Language statements have different effects and are used
in different ways:

• System control commands can be issued only outside a request—at
command level. They are acted upon immediately. User Language
statements can be used only within a request. They are compiled on a line-
by-line basis, but the entire request is not executed until Model 204
receives an END statement.

• INCLUDE is both a command and a User Language statement. In either
context, Model 204 is directed to take the next input line from an
appropriate stored procedure. When the procedure lines are exhausted,
the next input line is taken from the command or User Language statement
immediately following the INCLUDE.

• IF has two formats:

– Conditional INCLUDE command

– User Language statement

Conditional and unconditional INCLUDEs

A conditional include can be coded within an IF statement using the INCLUDE
statement or with an INCLUDE command.

An unconditional include can be coded with a standalone INCLUDE statement
or command.

This section describes conditional INCLUDE commands by providing
examples and discussing how each example is processed.

Example 1 The following request illustrates the conditional INCLUDE command:

BEGIN
ALL: FIND ALL RECORDS
 END FIND
20-10 Model 204

 FOR EACH RECORD IN ALL
 IF AGE GT ’10’ THEN
 IF $SETG(’AGE’, ’YES’) THEN
 PRINT ’*** REQUEST TOO LONG - GTBL’
 STOP
 END IF
 END IF
 END FOR
END
IF AGE = YES, COUNT

How Example 1 is processed

The statements between the BEGIN and END are compiled and evaluated. If
the AGE condition is true, a global string variable is set. Model 204 then
processes the IF command. Statements in the COUNT procedure are compiled
and executed only if the condition is true. Otherwise, the statements are never
compiled.

Example 2 Suppose that you enter record selection criteria and then select one of three
reports to be generated. A set of four procedures can be created.

For example, procedure A might contain the prompts for record selection and
report type. Procedures B, C, and D might contain statements to produce the
individual reports. Only procedure A and one of the other three procedures is
compiled and evaluated.

PROCEDURE A
BEGIN
FIND.RECS: FIND ALL RECORDS FOR WHICH
 ??SELECT.RECORDS
 END FIND
 IF $SETG(’REPORTNUM’, $READ(’ENTER REPORT NO’))
 THEN PRINT ’*** REQUEST TOO LONG - GTBL’
 STOP
 END IF
END MORE
IF REPORTNUM = 1, B
IF REPORTNUM = 2, C
IF REPORTNUM = 3, D
END PROCEDURE

Procedures B, C, and D have the same basic format, but variations in
processing are applied to each record.

PROCEDURE B
MORE
PROCESS: FOR EACH RECORD IN FIND.RECS
 .
 .
 .
 processing
 .
User Language Manual 20-11

 .
 .
 END FOR PROCESS
END
END PROCEDURE

How Example 2 is processed

The dialog produced by these procedures is shown below, with user input in
boldface:

INCLUDE A

??SELECT.RECORDS

REGION = SOUTH OR WEST

$$ENTER REPORT NO

2

output from Procedure C

 Keep IF commands at as high a nesting level as possible

An alternate method of writing procedures is to follow each report’s END MORE
statement with IF commands. However, each procedure might then INCLUDE
itself or another procedure, creating a lower level of nesting. If the procedure
continued to INCLUDE itself, the maximum nesting level would be reached. As
a general rule in a complex set of procedures, keep IF commands at as high a
nesting level as possible. The global string variables to be tested can be set at
any level.
20-12 Model 204

Using global string variables to tailor a request
Global string variables can be used in conjunction with the FILE$ condition (see
“FILE$ condition” on page 4-31) to access a set of files in a group.

Example In the following example, the value of the global string variable, FILES, can be
changed to access an alternative set of files. This example consists of two
requests. The first—BEGIN through END MORE—sets the global string
variable during the execution phase; the second—MORE through END—is
then compiled with the correct value.

BEGIN
 .
 .
 .
 IF $SETG(’FILES’,’FILEA OR FILE$ FILEC’)
THEN
 PRINT ’***REQUEST TOO LONG -- GTBL’
 %IGNORE = $SETG(’FILES’, ’’)
 END IF
END MORE
MORE
 IF $GETG(’files’) = ’’ THEN
 STOP
 END IF
 GET.A: FIND ALL RECORDS FOR WHICH
 (FILE$?&FILES) AND FIELDX = ’A’
 END FIND
 FOR EACH RECORD IN GET.A
 PRINT ALL INFORMATION
 END FOR
END
User Language Manual 20-13

Global objects
Global objects include found sets, images, lists, menus, positions, screens, and
sorted sets.

General rules for declarations

• You must declare global lists, found sets, and sorted sets in every request
that references them; the DECLARE statement must come before the
reference.

• If a global object is used in multiple subroutines, or in both the main
program and a subroutine, the label must be declared as global in the main
program before the subroutine(s). The subroutine(s) must then declare the
label as common.

• If you refer to a global object before a DECLARE statement, the system
issues a duplicate label compilation error. Such a reference implicitly
makes the object nonglobal.

Incompatibility

The PQO product does not support global found sets, lists, positions, or sorted
sets. These global objects cannot be used in conjunction with remote files or
scattered groups. This limitation exists, because GTBL does not exist on the
PQO server.

Clearing global objects from GTBL

For syntax, details and examples of clearing global objects, see “Clearing the
GTBL work area” on page 20-28.
20-14 Model 204

Using global found sets and lists
You can pass found sets and lists from request to request by declaring them as
GLOBAL. A global found set or list is stored in the internal work area GTBL for
the duration of the terminal session unless it is intentionally cleared, or the file
or group with which it is associated is closed.

Creating a global found set or sorted set

You can create a global found set using this syntax:

Syntax [DECLARE] LABEL labelname [GLOBAL | COMMON]

Where labelname is a unique global object name.

Creating a global list

You can declare a global list using the following syntax:

Syntax [DECLARE] LIST listname

 [IN [FILE [PERM | TEMP] GROUP] name]

 [GLOBAL | COMMON]

In both cases, the keyword GLOBAL implies COMMON. These two keywords
are mutually exclusive in the declaration statement.

• Because GLOBAL implies COMMON, a list or found set can be declared
GLOBAL at any scope. See “Scope of elements” on page 12-15 for a
discussion.

• The global name, labelname, or listname, must be unique across all global
objects. For a discussion, see “Sharing common elements” on page 12-15.

Usage rules The following rules apply to global found sets and lists:

• You must declare each global list or global found set as labelname
GLOBAL in each procedure that uses it.

• The file context in which a global list or found set is used must be the same
as the file context in which it was created.

The Model 204 compiler does not currently enforce this rule; therefore, your
code must maintain this requirement. CCA recommends that you populate
a global found set or list only once within the scope of these global objects.
However, this is not a restriction as long as file context is maintained.

• Global found sets and lists are invalid in ad hoc group context.

• Each global object name must be unique.
User Language Manual 20-15

• Global found sets and lists are not supported in remote file or scattered
group contexts.

Example 1: Referencing a global found set

In this example, Procedure 1 declares the global found set and then performs
the find. Procedure 2 needs only to declare the global found set and then
reference the global found set labeled F1. The FOR loops in both procedures
process records in the VEHICLES file for which the value of the field COLOR
was equal to BLUE at the time of the evaluation of the FIND command in
Procedure 1.

Procedure 1 BEGIN
DECLARE LABEL F1 GLOBAL
F1: IN VEHICLES FIND ALL RECORDS WHERE COLOR = ’BLUE’
 END FIND
 FOR EACH RECORD IN F1
 PAI
 END FOR
END

Procedure 2 BEGIN
DECLARE LABEL F1 GLOBAL
 FOR EACH RECORD IN F1
 PAI
 END FOR
END

Example 2: Maintaining file context

Example 2 illustrates repopulating a global found set across the scope of its
usage, maintaining the same file context throughout. In this example,
Procedure 1 is identical to Procedure 1 in Example 1 above, and Procedure 3
is identical to Procedure 2 in Example 1. The second procedure in this
example, however, performs a different find than the first. Procedure 3 then
processes the records found in Procedure 2.

So in this example, Procedure 1 processes records in the VEHICLES file for
which the value of the field COLOR is equal to BLUE, while Procedures 2 and
3 process records for which COLOR was equal to RED at the time of the FIND
command evaluation in Procedure 2.

Procedure 1 BEGIN
DECLARE LABEL F1 GLOBAL
F1: IN VEHICLES FIND ALL RECORDS WHERE COLOR = ’BLUE’
 END FIND
 FOR EACH RECORD IN F1
 PAI
 END FOR
END
20-16 Model 204

Procedure 2 BEGIN
DECLARE LABEL F1 GLOBAL
F1: IN VEHICLES FIND ALL RECORDS WHERE COLOR = ’RED’
 END FIND
 FOR EACH RECORD IN F1
 PAI
 END FOR
END

Procedure 3 BEGIN
DECLARE LABEL F1 GLOBAL
 FOR EACH RECORD IN F1
 PAI
 END FOR
END
User Language Manual 20-17

Using global sorted sets
A global sorted set is created when a SORT RECORDS statement or a FOR
EACH RECORD IN ORDER BY statement is preceded by a label that has been
declared GLOBAL.

Limiting subsequent references

For example, in Procedure 1 below, MAKE is the only field referenced in the
request. Therefore, MAKE is the only field that can be referenced in
subsequent requests. Thus, in Procedure 2, because the field MODEL was not
referenced in the previous request, a blank is printed each time through the
FOR loop.

Procedure 1 BEGIN
DECLARE LABEL S1 GLOBAL
F1: IN VEHICLES FIND ALL RECORDS
 END FIND
S1: SORT RECORDS IN F1 BY MAKE
 FOR EACH RECORD IN S1
 PRINT MAKE
 END FOR
END

Procedure 2 BEGIN
DECLARE LABEL S1 GLOBAL
 FOR EACH RECORD IN S1
 PRINT MODEL
 END FOR
END

Keeping all fields accessible for subsequent references

To ensure that all fields are accessible to subsequent requests, use a PAI or
field name variable with the statement that creates the found set.

The sort key field(s) used on the SORT statement cannot be referred to by a
subsequent request unless referred to in the SORT statement FOR loop in the
request creating the set. While this restriction applies to the use of the SORT
RECORDS statement, it does not apply to the use of the SORT RECORD
KEYS statement.

If you are not going to refer to the sorted set in the request that creates the
sorted set, you can code a FOR loop, which is compiled but never executed,
that refers to each field that you want to refer to in a subsequent request.
20-18 Model 204

Saving and recalling a POSITION in a FOR loop
You can include statements in a FOR loop to provide for the possibility of
terminating the loop before the set of records or values being processed is
exhausted. For example, you might use a JUMP TO or LOOP END statement
in conjunction with an IF statement to test each record or value before
processing, and terminating the loop if a certain condition is met.

The REMEMBER and POSITION statements let you store the current
processing position in a FOR loop, then recall it at a later time and resume FOR
processing where you left off earlier.

REMEMBER statement

The purpose of the REMEMBER statement is to store the processing position
in a FOR loop. Each REMEMBER statement creates a GTBL entry of variable
length. See Chapter 21 for detailed descriptions of GTBL entries. If you
remember a position as GLOBAL, the entry remains in GTBL after the current
request ends. Model 204 clears nonglobal REMEMBER positions at the end of
each request.

Syntax REMEMBER [GLOBAL] position_name

 [IN foundsortset_name | ON list_name]

Where • The GLOBAL option retains the REMEMBER position after the current
request terminates. If GLOBAL is not specified, the position is temporary,
and is cleared from GTBL after the current request terminates.

• position_name is a unique object name you assign to the REMEMBER
position.

• The foundsortset_name or list_name must be identical to the listname or
label specified on the FOR loop:

– If you are processing a found set or a sorted set, IN foundsortset_name
is the label of the FIND statement that generated it.

– If you are processing a list, ON list_name is the name you gave to the
list when you originally declared it.

Usage notes The following rules apply to the use of the REMEMBER statement:

• Can appear only within a FOR loop, but not a nested FOR loop. The file
context must be identical to the context of the FOR loop.

• Is invalid in ad hoc group context, if used with the GLOBAL option.

• The REMEMBER statement is incompatible with FOR EACH RECORD IN
ORDER BY clauses.
User Language Manual 20-19

POSITION statement

A POSITION statement recalls a remembered position, so you can resume
FOR processing in a list or found set that was terminated at an earlier time. For
example, if you remembered the position at record number 5, then your
foundset is positioned at record number 6 for further processing.

This POSITION statement is not to be confused with the POSITION statement
used to read records sequentially in an external VSAM KSDS file. See
“POSITION statement” on page 17-42.

Syntax POSITION {FOUNDSET foundsortset_name

 | LIST list_name} [AT] position_name

Where • The foundsortset_name or list_name must be identical to the list or label
name used on a previous REMEMBER statement and in the FOR
statement that follows.

– If you are about to resume the processing of a found set,
foundsortset_name is the label of the FIND statement that generated it.

– If you are about to resume the processing of a list, list_name is the
name you gave to the list when you originally declared it.

• position_name is a name that you assigned to the remembered position
when you stored it on a previous REMEMBER statement.

Usage notes The following rules apply:

• The POSITION statement must appear outside, immediately before the
FOR loop to which it refers; it cannot be in the FOR loop itself.

• The FOR statement that follows the POSITION statement must have an
identical file context and list name or label name as the statement that
initiated the FOR loop of the remembered position.

• The POSITION statement is incompatible with FOR EACH RECORD IN
ORDER BY clauses.
20-20 Model 204

Global images and screens
You can use global images and screens to pass image and screen data from
one request to another and to efficiently manage more than one image or
screen in one request.

You can also declare global menus, because a menu is a special type of
screen. In this section, the term “screen” applies to both screens and menus,
unless otherwise noted.

Declaring global images and screens

You make an image or screen global by specifying the keyword GLOBAL in its
declaration statement. You can declare global images and screens to be
TEMPORARY, deleted at request termination, or PERMANENT, persist across
request termination.

How images and screens are processed

When you declare an image or screen as GLOBAL, it is stored in GTBL.
Nonglobal images and screens, declared as COMMON, or neither COMMON
nor GLOBAL, are stored in FSCB.

This section provides some background information about how Model 204
processes images and screens, contrasting how global and nonglobal images
and screens are processed.

Images and screen processing

Figure 20-2 and Figure 20-3 represent how nonglobal and global objects are
processed. Comparing the two types of processing highlights the I/O and
storage savings associated with the global images and screens
User Language Manual 20-21

Nonglobal object processing.

Figure 20-2. Processing of nonglobal objects

Figure 20-2 illustrates the following process in steps:

1. The compiler loads a compiled version of the screen or image into FSCB
in the user’s server.

2. A copy of the compiled object is stored in the buffer pool.

3. A PREPARE statement acts on the compiled object in the buffer pool and
copies it into FSCB.

4. Update statements act on the copy of the object in FSCB.

5. The updated object is copied from FSCB to a working copy of the object in
the buffer pool.

6. If a user waits too long or the buffer pool fills up, the object is written to
CCATEMP. When a user presses ENTER for that object, the object is
loaded back from CCATEMP to the buffer pool.

User X’s Server

FSCB

Buffer pool

Compiled version of
nonglobal object

User X’s working copy
of nonglobal object

CCATEMP

Compiler

PREPARE
statement

Update
statement

1

2

3

3

4

5

6

20-22 Model 204

GLOBAL object processing

Figure 20-3. Processing of global objects

Figure 20-3 illustrates the processing in steps:

1. The compiler loads a compiled version of the screen or image into FSCB
in the user’s server.

2. A copy of the compiled object is stored in the buffer pool. This copy is
called ‘VIRGIN’, as it is never updated.

3. A PREPARE statement acts on the compiled object in the buffer pool and
copies it into GTBL.

4. Update statements act on the copy in GTBL.

Using PREPARE and IDENTIFY statements

To help you decide how to use the PREPARE and IDENTIFY statements
review the following:

• “Storage of global variables and global objects in GTBL” on page 20-3

• “Timing and placement of a CLEAR statement” on page 20-31

• “Performance considerations” on page 20-32

• For syntax and usage of the PREPARE statement, see “PREPARE
statement” on page 22-26

• For syntax and usage of the IDENTIFY statement, see “IDENTIFY
statement” on page 17-38

User X’s Server

FSCB

Buffer pool

Compiled version of
global object

 Compiler

PREPARE
statement

Update
statement

1

2

3

3

4

GTBL with User X’s
working copy of

global object
User Language Manual 20-23

Also when using the IDENTIFY statement, see “Consistency checks
performed” on page 20-24.

Performance and efficiency benefits

Global images and screens can simply and efficiently perform image-to-image
processing and screen to image processing, eliminating the need to map
screen items to image items when passing or preserving screens. Using global
images and screens:

• Reduces CPU resources required to pass data between requests in
applications where a large number of global variables would have been
necessary.

• Reduces the FSCB I/O between multiple images and between images and
screens.

• Makes the declaration of global data explicit, thus traceable by using
naming conventions and cross-reference tools.

• Simplifies code, eliminating the need for ,)��6(7*���7+(1�« sequences
to map request %variables into global variables and for �;<=� ��*(7*��
sequences to map global variables into request %variables.

• Reduces I/O by swapping modified global screens to CCASERVR instead
of paging them between the buffer pool and CCATEMP.

When to use global images and screens

You achieve the greatest benefit by declaring as GLOBAL the most frequently
used images and screens in an application.

Infrequently used images and screens declared as nonglobal do not put
pressure on the buffer pool, because there would not be many copies in the
buffer pool for many users, and little I/O with CCATEMP. If an application has
many images and/or screens, GTBL might overflow if all the images and/or
screens are defined as global.

Consistency checks performed

When a global image or screen is first referred to in a request, GTBL is
searched for the object.

If the object is not already present in GTBL, the object is written into GTBL.

If the object is present, two consistency checks are performed:

• Persistence—PERMANENT or TEMPORARY status—of the new object
must match the persistence of the object already in GTBL.

• Definition—PERMANENT or TEMPORARY—of the new object must match
the definition of the object already in GTBL.
20-24 Model 204

Note: If a global image has an array that uses the DEPENDING ON %variable
option, the names of the %variables are not compared when the definition
check is performed.

If either of these consistency checks fails—for example, an image is declared
as TEMPORARY, but the same image already exists in GTBL, declared as
PERMANENT—then the request is canceled and the following message is
generated:

M204.2158: GLOBAL object-type DEFINITION DOESN’T
MATCH DEFINITION IN GTBL error-description, NAME
HASH=hash-code
User Language Manual 20-25

Using global images and screens
The following example illustrates using global images and screens to pass
screen and image data between User Language requests. The example
consists of the following procedures:

• SCREENDEF defines a global screen.

• IMAGEDEF defines a global image.

• PROCA sets the screen item value and an image item value.

• PROCB displays the updated image item and the original screen item.

PROCEDURE SCREENDEF
 * KEEP GLOBAL SCREENS AND IMAGES IN SEPARATE PROCEDURES
 * FOR CENTRAL DEFINITION
 SCREEN SCREEN1 GLOBAL
 PROMPT ’SCREEN1’
 INPUT ITEM NUMERIC LEN 4 AT 10
 END SCREEN
END PROCEDURE

PROCEDURE IMAGEDEF
 * KEEP GLOBAL SCREENS AND IMAGES IN SEPARATE PROCEDURES
 * FOR CENTRAL DEFINITION
 IMAGE IMAGE1 GLOBAL
 ITEM IS FLOAT LEN 8
 END IMAGE
END PROCEDURE

PROCEDURE PROCA
 BEGIN
 INCLUDE SCREENDEF
 INCLUDE IMAGEDEF
 * INITIALIZE SCREEN1 AND IMAGE1
 PREPARE SCREEN SCREEN1
 PREPARE IMAGE IMAGE1
 * USER SEES SCREEN1 AND ENTERS A VALUE N (E.G., 10) AS INPUT
 READ SCREEN SCREEN1
 %IMAGE1:ITEM = %SCREEN1:ITEM + 3
 END
END PROCEDURE

PROCEDURE PROCB
 BEGIN
 INCLUDE SCREENDEF
 INCLUDE IMAGEDEF
 * DO NOT INITIALIZE, JUST IDENTIFY FOR SUBSEQUENT REFERRAL
 IDENTIFY IMAGE IMAGE1
 * USER SEES UPDATED IMAGE ITEM (N+3) IN NEW REQUEST
 PRINT ’IMAGE ITEM = ’ WITH %IMAGE1:ITEM
 * USER SEES ORIGINAL SCREEN ITEM WITH DATA THAT USER ENTERED
 READ SCREEN SCREEN1
 END
20-26 Model 204

END PROCEDURE

Note: You can run several procedures between PROCA and PROCB with the
same results as if you ran those two procedures sequentially, because the
defined global objects persist.

System administration issues

To review the implications of the global images and screens feature for system
administrators, see the Model 204 System Manager’s Guide on the following
topics:

• GTBL size

• VTBL usage with COMMON images and screens

• User since-last statistics
User Language Manual 20-27

Clearing the GTBL work area
When you log off, all global objects and global variables are cleared. If you want
to clear some or all global objects or global variables from GTBL during your
working session, prior to logging out, you can issue:

• CLEAR statement

• CLEARG and/or CLEARGO commands

• $DELG function to selectively delete global string variables

• RESET command for the GTBLEHASH and GTBLPCT parameters

• UTABLE command that changes the size of FTBL, XTBL, or GTBL clears
all global objects of any type

Using the CLEARG and CLEARGO commands

The CLEARGO command takes no arguments. See the Model 204 Command
Reference Manual for syntax and detailed information on the CLEARG and
CLEARGO commands.

Using the $DELG function

You can use the $DELG function to delete global string variables created by
either $SETG or $INCRG.

For syntax and usage of the $DELG function, see “$DELG” on page 27-32 in
the Model 204 User Language Manual.

The $DELG function deletes a single or group of similar global string variables,
releasing and compacting the GTBL space for reuse.

Use this command To Remove…

CLEARG Only global string variables.

CLEARGO All global objects: images, screens, menus, found sets,
lists, and temporary and permanent positions from GTBL; it
does not clear global string variables.
20-28 Model 204

Using the CLEAR statement

You can use the CLEAR statement to clear global objects of the same type, an
individual global object, or all global string variables, as shown in the following
table:

Syntax The format for the CLEAR statement is:

CLEAR {[[ALL | TEMP | LISTFDST | POSITION] [GLOBAL]]

 OBJECTS

 | GLOBAL {IMAGE | SCREEN | MENU | LIST | FOUNDSET

 | POSITION [PERM | TEMP]} {’objectname’

 | %variable}}

 | GLOBALS

Where • ALL clears all permanent and temporary global objects, including: found
sets, lists, images, menus, positions, screens, and sorted sets from GTBL.

• TEMP clears only global objects explicitly declared as TEMP in your
request, including images, menus, and screens from GTBL.

• LISTFDST clears all global found sets, lists, and sorted sets from GTBL.

• POSITION clears all permanent and temporary positions from GTBL.

• OBJECTS specifies CLEAR command is operating on the object type you
specified or all types of objects.

• GLOBAL clears a specific global object from GTBL. You cannot clear a
global string variable created with the $SETG function using this form.

• objectname is the literal name of the specific global object to be cleared
from GTBL. Enclose objectname in single quotation marks.

• %variable contains a value that specifies the global object to be cleared
from GTBL.

• GLOBALS clears all global string variables created with the $SETG
function from GTBL. This form does not clear any global objects.

The statement Clears…

CLEAR [type-of-
object] OBJECTS

A class of global objects or all global objects. Global string
variables are not cleared, because they are not objects.

CLEAR GLOBAL Individual global objects from GTBL.

CLEAR GLOBALS All global string variables. You cannot selectively clear
individual global string variables with the CLEAR statement.
User Language Manual 20-29

Usage notes The following statements clear all permanent and temporary global found sets,
images, lists, menus, positions, screens, and sorted sets:

CLEAR OBJECTS

CLEAR ALL OBJECTS

CLEAR ALL GLOBAL OBJECTS

CLEAR GLOBAL OBJECTS

Clearing global found sets and lists

You can clear global found sets and lists in GTBL without logging off using the
following examples:

• Clear a specific global list or found set by issuing one of these statements:

CLEAR GLOBAL LIST ’objectname’

CLEAR GLOBAL LIST %variable

CLEAR GLOBAL FOUNDSET ’objectname’

CLEAR GLOBAL FOUNDSET %variable

• Clear all global found sets and lists with the statement:

CLEAR LISTFDST [GLOBAL] OBJECTS

(Global found sets and lists are among the global objects cleared by the
CLEARGO command.)

• Close a file or group with which a global list or found set is associated. This
includes the file close processing done when exiting or stopping a
subsystem.

• Issue a UTABLE command that changes the size of FTBL, XTBL, or GTBL.

If you clear a global list or global found set, then any request that uses the
global and does not have the FIND statement that creates the global object
receives either of the following error messages:

M204.0301 REFERENCED STATEMENT LABEL UNDEFINED

M204.0311 UNACCEPTABLE STATEMENT REFERENCE

RELEASE and COMMIT RELEASE statements with global foundsets and lists

The RELEASE statements and the COMMIT RELEASE statements empty the
contents of a global found set, global sort set, or global list. The label and
positions associated with a found set, sort set, or the list is still considered
global, but it is empty. Global positions are not cleared by RELEASE or
20-30 Model 204

COMMIT RELEASE statements, however, without records there is nothing to
process.

Clearing remembered positions

Each REMEMBER statement creates a GTBL entry, whether or not GLOBAL
is specified. If GLOBAL is not specified, the position is temporary and is cleared
from GTBL at the end of request execution.

All remembered positions, along with all other GTBL entries, are cleared when
you log off. You can also clear remembered positions in the following ways:

• You can clear a specific temporary position by issuing one of these
statements:

CLEAR GLOBAL POSITION TEMP ’objectname’

CLEAR GLOBAL POSITION TEMP %variable

• You can clear a specific permanent position by issuing one of these
statements:

CLEAR GLOBAL POSITION PERM ’objectname’

CLEAR GLOBAL POSITION PERM %variable

• You clear all global found sets, lists, or sorted sets with which a
remembered position is associated.

CLEAR LISTFDST [GLOBAL] OBJECTS

• You clear all remembered positions by issuing the statement:

CLEAR POSITION [GLOBAL] OBJECTS

Usage notes When you are using the CLEAR GLOBAL POSITION statement, PERM is the
default.

The CLEARGO command has the effect of clearing all remembered positions.

Any UTABLE command that changes the size of FTBL, GTBL, or XTBL clears
all remembered positions.

Timing and placement of a CLEAR statement

The CLEAR GLOBAL statement takes effect at evaluation time and its
placement in a request can have significant consequences:

• If the global object being cleared is referenced in the same request, it is
marked as pending clear. The global is then emptied (zero records), and all
its record locks are removed. It is cleared and deleted from GTBL at the end
of the request.
User Language Manual 20-31

• If the global object is not referenced in the same request, it is cleared
immediately when the CLEAR GLOBAL statement is executed.

Any list, found set, or sort set that is cleared by a CLEAR GLOBAL statement
or CLEAR command is no longer GLOBAL and is not available to any
subsequent request.

If you specify the CLEAR GLOBAL statement for an object that is not declared
as a global, your request is canceled.

Performance considerations

When an entry is cleared from GTBL, other entries in its area are moved as
necessary so that all the free space remains between the two main areas.
Therefore, when you are clearing more than one entry from GTBL, it is most
efficient to begin by clearing the entry that is stored nearest the free space.

For example, if you want to clear all temporary and permanent global images,
it is best to clear the temporary images first.

Similarly, if you are clearing two entries within the same category, it is more
efficient to clear them in the reverse of the order in which they were created.

The forms CLEAR ALL, CLEAR TEMP, CLEAR LISTFDST, and CLEAR
POSITION present exceptions to this principle, because they do not move any
data around in GTBL.
20-32 Model 204

21
Large Request Considerations

In this chapter

• Overview

• User Language internal work areas

• Description of tables

• Request continuation

• Rules for request continuation
User Language Manual 21-1

Overview
There is a practical limit to the number of statements allowed in each request.
This limit varies depending on the installation and the type of statements used.

Requests that are too large exceed the amount of memory allotted for one or
more of the internal work areas, also referred to as server tables. Such an event
produces an error message of the form:

REQUEST TOO LONG - xTBL

You can take a combination of any of these approaches to handle large
requests:

• Rewrite large requests to make them shorter and less complex.

• Increase the sizes of internal work areas (server tables).

• Use the request continuation feature.

This chapter focuses on the second two approaches.
21-2 Model 204

User Language internal work areas
Model 204 uses several internal tables as work areas for processing User
Language requests.

The size of these tables (which can be set by the user) determines the number
of statements allowed in each request. The number of statements allowed also
depends on the types of statements used.

Summary of work areas

The internal work areas required by the User Language compiler and evaluator
are listed in Table 21-1:

Each of these tables is described in more detail in “Description of tables” on
page 21-5.

Resetting table sizes

The size of these tables can be reset by the user with the UTABLE command.
Table sizes are controlled by the LxTBL parameters described in the Model 204
Command Reference Manual. Resetting these table sizes can increase the
total server size requirement at your site. If this is the case, you must refine your
request using the techniques discussed in this chapter.

The size of the FSCB is controlled by the LFSCB parameter.

Pushdown list and QTBL size increase

Note that if you get unrecoverable errors when running a request, you might
need to increase the size of the pushdown lists or QTBL parameters or both.

Table 21-1. User Language internal work areas

Table Contents

FSCB Menus, screens, and images

FTBL File groups

GTBL Global variables

ITBL Dummy strings and $READ responses

NTBL Statement labels, list names, variables

QTBL Statements in internal form

STBL Character strings

TTBL List of temporary work pages

VTBL Compiler variables
User Language Manual 21-3

Use the UTABLE command (refer to the Model 204 Command Reference
Manual) or see your system administrator to increase and reset these tables:

• The pushdown list parameter, LPDLST, approximately ten to twenty
percent. (Note that, in Version 3.2, the pattern matcher work space uses
LPDLST instead of LCPDLST. See “Pattern matching” on page 4-20 for
more information on pattern matching.)

• The server pushdown list parameter, LSERVPD, approximately ten
percent.

• The LQTBL approximately one percent.

These percentages might vary at your site.
21-4 Model 204

Description of tables
Each table and its use by the User Language compiler and evaluator is
described separately below. The descriptions should help you to restructure
large requests to make more efficient use of the available table space.

FSCB (full-screen buffer)

The FSCB (full-screen buffer) is used to store menu, screen, and image
definitions and the values of screen variables and image data blocks. FSCB
space is reused by each logical menu definition, logical screen definition, or
block definition. Therefore the FSCB need only be large enough to hold the
largest menu, screen, or image definition. FSCB requirements are:

• Every menu requires 144 bytes of fixed overhead in the FSCB, which
includes the menu title. In addition, each menu prompt adds another 144
bytes in the FSCB.

• Every screen requires 432 bytes of fixed overhead for the first panel and
144 bytes (includes the screen title) for any other panels. An additional 32
bytes is used for each screen prompt and input item, as well as a 32-byte
entry for every screen line containing at least one input item. Each defined
screen line adds 80 bytes to FSCB requirements, including skipped lines.

Additional space is used in the FSCB if automatic validation options are
used. Each validation option adds 2 or 4 bytes to the FSCB. In addition,
VERIFY adds 256 bytes the first time a particular character set is used in a
logical panel. Additional occurrences of the same character set do not add
extra space. ONEOF and character RANGE store each character string
plus one byte for each string’s length. NUMERIC RANGE adds 8 bytes for
each number (16 bytes for each range pair).

• Every block used in image definition requires space in the FSCB. The
amount of space required is computed as the sum of the following:

– 32 bytes

– 16 bytes for each IMAGE statement

– 32 bytes for each ARRAY statement

– 16 bytes for each item definition

– 16 bytes for each OCCURS clause in an item definition

– 32 bytes for each INITIAL clause in an item definition that specifies a
value or number (other than the ZERO keyword) plus the length of the
value or number

– Total length of the block in bytes

FTBL (file group table)

Data structures relating to file groups are stored in FTBL.
User Language Manual 21-5

Two types of FTBL entries are allocated by Model 204 when file groups are
used:

• The first type is allocated each time a group is opened (explicitly by OPEN
or implicitly for an ad hoc group) and is released when the group is closed.
This type of entry has a fixed-size portion of 62 bytes, plus 2 bytes for each
file in the group definition.

• The second type is used for collecting field name codes and properties
during a request. An entry is allocated each time a new field name is
encountered in the request. The entry size is variable, consisting of 9 fixed
bytes plus a number of bytes equal to the length of the field name plus 11
bytes for each file in the group. These field entries are deleted at the END
statement (including END MORE).

In addition to the space required by the two types of entries described above,
Model 204 allocates a fixed amount of space in FTBL equal to 4 bytes times the
value of the NGROUP runtime parameter.

GTBL (global variable table)

Global variables, lists, found sets, images, screens, menus, and
REMEMBERed positions in FOR loops are special mechanisms for
communicating across User Language request boundaries, as described in
Chapter 20.

A GTBL entry is created when any global object is declared. In addition to the
entries created by individual declarations, the last 32 bytes of your GTBL space
allocation is reserved for a GTBL trailer.

You can delete entries from GTBL by using different forms of the CLEAR
statement, or the CLEARG or CLEARGO commands. See “Clearing the GTBL
work area” on page 20-28 for detailed instructions on clearing objects.

The types of GTBL entries are listed below:

• A global variable (declared or changed with the $SETG or $INCRG
function) creates an entry with a length of 4 bytes plus the length of the
variable name plus the length of the current value. If a global variable is
redefined, its old entry is deleted and a new entry is added.

• A global list or found set in single file context creates an entry with a length
of 28 bytes.

• A global list or found set in group context creates an entry with a length of
28 bytes plus eight bytes for each file in the group.

• A sorted found set creates an entry with a length of 40 bytes.

• A position in an unordered or sorted record set creates an entry with a base
length of 32 bytes.
21-6 Model 204

• A position in a non-pattern driven ordered (BTREE) record set creates an
entry with a length of 60 bytes plus a number of bytes equal to the size of
the BTREE key.

• A position in a pattern driven ordered (BTREE) record set creates an entry
with a length of 68 bytes.

• A position in a sorted file record set creates an entry with a length of 80
byes.

ITBL (dummy string and $READ response table)

ITBL is used to hold dummy string and $READ responses entered as
arguments to an INCLUDE statement or command.

Argument strings are saved as entered, including delimiters, with an additional
4 bytes of overhead for each saved string.

Space taken by a string is released when the included procedure is exhausted.

NTBL (statement labels/list names/variables table)

One entry (12 bytes) is allocated in NTBL for each statement label, list name,
%variable, and image, menu, and screen variable. An entry also is allocated for
each partner process opened by a request. Data defined as common takes two
entries for the first COMMON declaration and one additional entry for each
additional COMMON declaration.

One entry is allocated for each unlabeled FIND. An extra entry is allocated for
each FOR EACH VALUE statement or each FOR statement with the IN
ORDER clause. Most NTBL entries are preserved by MORE, but the unlabeled
FIND and secondary FOR entries are deleted.

During request evaluation, one entry is required for each sequential or VSAM
file opened simultaneously.

QTBL (internal statement table)

Each statement is compiled into internal Model 204 instructions in QTBL. After
compilation, the entries in QTBL are used to drive the evaluator. The entries
generated by each User Language statement vary in number and in size.

Under certain circumstances, users sharing precompiled procedures can use a
shared version of QTBL, thus reducing server I/O. See the Model 204 System
Manager’s Guide for more information.
User Language Manual 21-7

Some common examples are listed on the following pages.

Statement or other
functions

Bytes
generated Comments

ADD 20 Each fieldname=value

CALL 16

CHANGE 44 fieldname=value TO

CLEAR ON 16

CLEAR TAG 16

CLOSE 16

CLOSE PROCESS 16

COMMIT 4

COMMIT RELEASE 20

COUNT RECORDS 52 Plus 20 or a group

DELETE 24 fieldname=vaue

DELETE RECORD 16 Each

END 4

Expressions Varies Depends on the complexity of the expression and on whether
conversion between data types is required.

FIND ALL
RECORDS (with no
qualification)

64 • Record security adds 52 bytes.

• Group adds 20 more.

• Each inverted condition adds about 36 bytes; NUMERIC RANGE
conditions a little less.

• Each direct and Ordered Index condition (for example, AFTER,
GREATER THAN) generates an entry of 20 bytes in length.

• The IN RANGE FROM and TO clause and BETWEEN operator
clause generate entries of 28 bytes, plus 16 for each AND (except
where AND is part of the BETWEEN clause).

• An additional 16 bytes are added for each FIND statement with at
least one direct condition.

• AND and OR as operators generate 16 bytes.

• At request evaluation time, additional space can be required in
QTBL for a FIND with direct conditions; this requirement never
exceeds the number of direct bytes already compiled by more
than 16 bytes. The extra QTBL space is released after evaluation
of the FIND. Numeric conditions, when used with NUMERIC
RANGE fields, also generate bytes during evaluation that are
released as soon as the FIND has been executed.

FIND ALL VALUES • 32

• 74

• For an ORDERED field

• For an FRV field
21-8 Model 204

FOR EACH
RECORD

20 In addition to the body of the loop.

FOR EACH VALUE
OF

88 In addition to the body of the loop:

• IN ORDER adds 68 bytes

• A group adds 20 more

Function call 16 Plus the bytes necessary to evaluate the arguments.

IDENTIFY 16

IF 32 for each
line in the IF
statement

• THEN clause generates 16 bytes, plus additional for the body of
the clause.

• Each operator in the IF statement generates 16 bytes.

• Conversions between strings and numbers take 16 bytes each.

• Each ELSE and ELSEIF generates 16 bytes, plus additional for
the body of the ELSE or ELSEIF.

Index loop 40 In addition to the bytes necessary to evaluate expressions
used in the statement, plus any generated within the body of
the loop.

INSERT 24 Each fieldname=value

MODIFY 16

NOTE 20 Each fieldname=value

ON units 16 Each ON unit also generates bytes for the statements within
the ON unit and 16 bytes for the automatically generated STOP
statement.

OPEN 16 For external entities.

OPEN PROCESS 16

PAUSE 16

POSITION 20

PREPARE IMAGE 8

PREPARE MENU 8

PREPARE SCREEN 8

PRINT 16 For each term in the print specification:

• Field from a record takes an additional 20 bytes.

• AND connective generates 16 bytes.

• TAB generates 4 bytes.

• WITH generates no bytes.

PRINT MENU 16

PRINT SCREEN 16

Statement or other
functions

Bytes
generated Comments
User Language Manual 21-9

QTBL is emptied by END and END MORE (see “Starting and ending requests
and continuations” on page 21-17 for a discussion of END MORE).

STBL (character string table)

All character strings are stored in STBL. The strings are kept in counted form,
with a 1-byte length preceding the string itself.

The following types of strings are stored in STBL:

• Quoted strings

• Values in FIND specifications

• Literal values in ADD, CHANGE, DELETE, and INSERT statements

• %Variable values (space reserved for maximum length) for STRING
%variables

READ IMAGE 16

READ MENU 20

READ SCREEN 20

RECEIVE 16

References to a
subscripted
%variable

16 in addition to the bytes required to evaluate the expression for
each dimension.

RELEASE
POSITION

8

REPEAT 16 Additional bytes are required to evaluate each condition for the
WHILE clause.

REREAD SCREEN 20

RETRY 16 Each pending statement.

RETURN 16

SEND 16

SIGNAL PROCESS 12

STORE RECORD 16 Plus 16 for each field to be included in the record.

TAG 16

TRANSFER 16

WRITE IMAGE 12

Statement or other
functions

Bytes
generated Comments
21-10 Model 204

• Array %variables

During evaluation, the following types of strings also are stored in STBL:

• Results of functions that return character strings

• Intermediate string results during arithmetic expression evaluation

• NOTE values and fields to be printed

• FOR EACH VALUE values

• FOR EACH OCCURRENCE values

• FOR EACH RECORD IN ORDER BY values when the Ordered Index is
used to drive the loop

The space utilized for the storage of intermediate results during the evaluation
of an arithmetic expression is freed when the evaluation of that expression is
completed.

The last three categories above occur only within FOR EACH RECORD, FOR
EACH OCCURRENCE, or FOR EACH VALUE loops. Each pass through the
loop reuses the STBL space from the previous pass. When the loop is finished,
the last NOTE, FOR EACH OCCURRENCE, or FOR EACH VALUE values
remain in STBL (the space is not freed). Thus, if FOR statements are executed
a large number of times or if many NOTE statements are issued, STBL fills up
rather quickly.

A FIXED or FLOAT %variable array uses 8 bytes of STBL space for each
element. If the FIELD SAVE option is used when a STRING %variable array is
declared (if field information is saved where the element is used for a field name
variable), then 13 bytes plus the maximum length of the string plus 1 byte are
reserved in STBL for each element of the array. If the NO FIELD SAVE option
is specified, the extra 13 bytes for field information are not reserved. Using NO
FIELD SAVE can result in a significant saving in a multi-dimension array. For
example, in an array with dimensions 100 by 2, specifying NO FIELD SAVE
saves 100*2*13 (or 2600) bytes.

The MORE command (see “MORE command” on page 21-15) releases most
STBL space, keeping only the entries used for %variables and arrays. STBL is
filled in during evaluation, when a value is assigned to the %variable. The
space in STBL is reused when the %variable is reassigned.

TTBL (temporary work page list table)

TTBL entries keep track of scratch file (CCATEMP) pages. The FIND
statement uses scratch pages as a work space for evaluating Boolean
expressions. The number of TTBL entries depends on the complexity of the
Boolean operation. TTBL entries are released at the end of the evaluation of
the FIND statement.
User Language Manual 21-11

VTBL, the compiler variable table

Entries in VTBL vary in size. Most range from 8 to 20 bytes; some are much
larger. Many User Language statements and some constructs cause one or
more compiler variables to be allocated in VTBL. Common examples are listed
in the following sections.

Expressions, commands, and statements

• Arithmetic expressions allocate 8-byte entries for string expressions and
16-byte entries for numeric expressions, some of which are used for
intermediate results. The intermediate result space is reused by
subsequent expressions.

• COUNT statement allocates one 8-byte entry.

• SORT statement allocates a 12-byte entry, plus one 20-byte entry for each
field referenced in the sorted records (or one entry for a PRINT ALL
INFORMATION statement), plus one 28-byte entry for each sort key.

• User Language function calls allocate one entry that is
4 + (4*number-of-arguments) bytes long. The arguments themselves have
their own VTBL entries that are independent of the function call.

• Each subroutine declaration takes 16 bytes, plus the associated space for
%variables and lists used as parameters.

• FIND allocates one basic 8-byte entry for a single file or 8+(8*number-of-
files) bytes for a group. At least two 20-byte entries and one 28-byte entry
are allocated for work space (more for complex Boolean operations). Also,
one entry is allocated for each fieldname = value (property) pair mentioned
in the FIND. The length of a property entry is at least 20 bytes; more for
large files. Each direct retrieval requires an additional 28 bytes in VTBL. All
space except that allocated by the basic entry is released after the FIND
has been evaluated and is reused by subsequent FINDs.

Each Ordered Index retrieval requires an entry of 4 bytes plus 4 bytes per
segment in the file.

Defined objects

• Starting in Version 5.1, the size of the header record of a value set is
increased from 20 bytes to 48 bytes.

• Each %variable adds one entry. The entry is 16 bytes for a FIXED
%variable, 12 bytes for a FLOAT %variable, and 16 bytes for a STRING
%variable. Each %variable array adds one 24-byte entry. There is also a
12-byte entry for every reference to an array element, regardless of the
number of dimensions in the subscript.
21-12 Model 204

• Every menu definition adds a 48-byte entry. Every screen definition adds a
68-byte entry, plus 4 bytes for each physical screen panel. A one-panel
screen entry in VTBL is 72 bytes.

• Every set of related images adds a 12-byte entry plus 4 bytes for
approximately every 256 items in the block.

• Lists allocate 8-byte entries for single files or 8+(8*number-of-files) bytes
for groups.

CALL statements

• Each CALL statement with parameters allocates one entry that is
4 + (4 * number of arguments) bytes in length.

• Evaluation of a CALL statement generates one 28-byte entry that is
released by RETURN. These entries are placed in a LIFO stack area.

Value loops

• FOR EACH RECORD without the IN ORDER clause allocates a 16-byte
entry.

• FOR EACH VALUE with FROM, TO or LIKE specified, and/or using an
ORDERED field allocates a 40-byte entry.

• FOR EACH VALUE and FOR EACH RECORD IN ORDER BY, using an
ORDERED field, allocate an additional 44-byte entry.

• Every FOR loop position declared with a REMEMBER statement adds an
8-byte entry.

• When an ON unit is invoked, one 28-byte entry is used. The entry is
released by BYPASS, RETRY, or STOP.

Many VTBL entries are deleted by the MORE command (refer to “MORE
command” on page 21-15). Entries are retained in the following cases:

• %Variables

• COUNT’s 8-byte entry (Not retained if the original User Language
statement was unlabeled.)

• FIND’s basic 8-byte (larger for groups) entry (Not retained if the original
User Language statement was unlabeled.)

• Entries for lists

• Image, menu, and screen

• SORT’s basic 12-byte entry plus the 20-byte sort key entries. (Not retained
if the original User Language statement was unlabeled.)
User Language Manual 21-13

Entries in the last three categories are not retained if the original User
Language statement was not labeled.
21-14 Model 204

Request continuation
A continuation is a request that refers to certain items in the preceding
request.

Request continuation is used to increase user interaction with Model 204
without increasing retrieval costs, or to break up into smaller logical units
requests that would be too large to run otherwise (requests that would exceed
work table space, as described in the previous sections).

Request continuation is particularly effective when the request consists of a
large and complex retrieval section followed by a similarly complicated report
generation section.

Specific benefits of request continuation include:

• The opportunity to enter certain Model 204 commands between a request
terminated by END MORE and its continuation.

• The ability to decide whether to continue a request based on its
(intermediate) results.

• The opportunity to reduce the size of your QTBL, since this work area is
cleared with the execution of an END MORE statement (unlike other work
areas, which retain their contents when END MORE is encountered).

See the next section for rules relating to the use of request continuation.

MORE command

Description If a BEGIN command is replaced by the MORE command, the request that
follows is considered to be a continuation of the previous request and can refer
to statement labels and other information from that request.

Example 1 Suppose the user is interested in high vehicle premiums for a particular
garaging location. The user might write the following request:

BEGIN
HIGH.PREM: FIND ALL RECORDS FOR WHICH
 VEHICLE PREMIUM IS GREATER THAN 200
 GARAGING LOCATION = VA03
 END FIND
END MORE

Before printing information for the record set, the user can determine the
amount of records to be printed by adding the following statements:

MORE
LOW.DEDUCT: FIND AND PRINT COUNT
 FIND$ HIGH.PREM
 END FIND
END MORE
User Language Manual 21-15

The LOW.DEDUCT statement refers to the records retrieved by the
HIGH.PREM statement in the original request. In this way, the expense of
retrieving that set of records a second time is avoided.

If this continuation indicates that there are less than 40 records meeting the
extended retrieval conditions, the user can continue the request again:

MORE
 FOR EACH RECORD IN LOW.DEDUCT
 PRINT OWNER POLICY -
 WITH PRINCIPLE DRIVER TO COLUMN 25
 END FOR
END

Example 2 In the preceding example, the user also could redirect the output, depending
on the number of records found. For example, if there were more than 100
records in the set the user could precede the request continuation with a USE
command:

USE OUTPRINT
MORE
 FOR EACH RECORD IN LOW.DEDUCT
 PRINT OWNER POLICY -
 WITH PRINCIPLE DRIVER TO COLUMN 25
 END FOR
END

In this way the user can decrease the output time without having to reduce the
number of records found in the initial request.
21-16 Model 204

Rules for request continuation

Avoid too many continuations

In theory, requests can be continued indefinitely. However, information saved
from the pieces of a basic request can fill the internal work areas (see “User
Language internal work areas” on page 21-3), preventing further continuations.

Sets of records retrieved in one request remain locked through all
continuations.

For these reasons, you should issue a fresh BEGIN command when
information from the last request is no longer needed.

Starting and ending requests and continuations

A request is started by a BEGIN command; a continuation is started by a
MORE command. Both are terminated by END or END MORE statements (with
a USE specification if desired).

Multiple continuations

You can continue a request several times, as long as you issue an END MORE
statement at the end of each section to be continued. Each new continuation,
the initial request, and all previous continuations constitute the basic request.
Once a request or a continuation ends with an END statement without the
MORE option, it is no longer continued.

References in a continuation

A continuation can refer to the following elements of the basic request:

• Statement labels for COUNT, FIND, and SORT statements

• List names

• %Variables

• Menus and screens

• Images

Statement labels for statements other than COUNT, FIND, and SORT in the
basic request can be reused in the continuation.

When a request is continued, all found sets, lists, and %variables of the main
request are preserved for later use. The found sets, lists, and %variables of
complex subroutines are discarded after END MORE unless they are common.
User Language Manual 21-17

If a request opens a dataset, and you want to leave the dataset open after the
request terminates, you can end the request with END MORE USE. This allows
the continuation to add to the USE output without resetting the page number.

Restrictions applying to request continuations

A request continuation cannot:

• JUMP TO statement labels or CALL subroutines in the basic request

• Alter the type, length, or decimal place parameters of any %variable
mentioned in the basic request

• Use a FOR RECORD NUMBER IN statement that refers to a label in the
basic request

A basic request cannot continue if the user issues any of the following
commands:

• BEGIN (a new request is started)

• CLOSE

• FILELOAD

• FLOD

• INITIALIZE

• LOGIN

• LOGOUT

• MONITOR

• UTABLE

ON units

An ON unit definition is not preserved across an END MORE statement and
MORE command. Each new request continuation must define its own ON
units.

Interaction with SORT statement

The records produced by a SORT statement contain only fields necessary to
satisfy the initial request (or continuation) in which the SORT statement
appears. If the initial request contains these statements:

SORT.RECS: SORT RECORDS IN FIND.RECS BY FULLNAME
 FOR EACH RECORD IN SORT.RECS
 %A = AGENT
21-18 Model 204

a continuation retrieves only the AGENT field from the sorted records. All other
fields are treated as missing in the sorted records.
User Language Manual 21-19

21-20 Model 204

Part IV
Application
Development

Part IV describes two ways to develop Model 204 applications.

Using the full-screen feature you can design menus and screens for
displaying data and accepting end user input.

The Subsystem Management facility provides a more sophisticated way of
creating end user applications. Subsystem Management features include:

• Minimized end-user intervention

• Improved performance through precompiled procedures

• Centralized error handling

• Security facilities

22
Full-Screen Feature

In this chapter

• Overview

General screen and menu usage topics

• Full-screen processing

• Application display considerations

• Full-screen variables

Menu definition and manipulation topics

• Defining menus

• MENU and END MENU statements

• TITLE statement for menus

• PROMPT statement for menus

• SKIP statement for menus

• MAX PFKEY statement for menus

• Menu definition example

• Menu manipulation

• READ MENU statement
User Language Manual 22-1

• PRINT MENU statement

• MODIFY and PREPARE MENU statements

• Menu manipulation

Screen definition and manipulation topics

• Defining screens

• SCREEN and END SCREEN statements

• TITLE and PROMPT statements for screens

• INPUT statement

• Automatic validation options for INPUT

• DEFAULT statements

• SKIP and NEW PAGE statements

• MAX PFKEY statement for screens

• INCLUDE statement

• Screen definition example

• Screen manipulation

• READ SCREEN statement

• REREAD SCREEN statement

• TAG and CLEAR TAG statements

• Cursor handling

• MODIFY and PREPARE statements for screens

• Cursor handling

• READ, REREAD, and PRINT evaluation sequence

• Screen manipulation example

Use of the Screen/Menu feature with Line-at-a-Time terminals

• Line-at-a-time terminal support
22-2 Model 204

Overview
The Model 204 full-screen feature provides data entry capability invoked
through User Language. The full-screen feature allows the entire screen of a
video display terminal (an IBM 3270) to be formatted, displayed, and accepted
as a single entity, rather than field by field.

User Language also supports line-at-a-time screen handling, which is
described in this chapter.

Menus and screens

The full-screen feature provides two major capabilities:

You can define and manipulate each display type in a User Language request.

Most statements used with screens also apply to menus, with some minor
differences. The first part of this chapter discusses menu definition and
manipulation, and the second part discusses screen definition and
manipulation.

LFSCB parameter setting

The system manager sets the LFSCB parameter (size of full-screen buffer) to
a positive number during system initialization, or the user sets the LFSCB
parameter Online with the UTABLE command. For details regarding the LFSCB
parameter, refer to the Model 204 Command Reference Manual.

Maximum number of screens and menus

The maximum number of screens and menus combined is 256 per request.

Global screens and menus

Global screens and menus provide a means for passing screen and menu data
from one request to another, and for efficiently managing more than one screen
or menu in one request.

Although there are some differences in the way you use the DECLARE
SCREEN and DECLARE MENU statements, you generally define global

Capability Displays…

Menu Options or programs that can be selected by a terminal operator.

Screen Information for inquiry or updating purposes. Screens frequently
are used for data entry applications in which a terminal operator
views a formatted screen and enters data in response to specific
prompts. The application then validates the entered data, flags
errors, and prompts for corrections.
User Language Manual 22-3

screens and menus in the same way as non-global screens and menus. See
“Global images and screens” on page 20-21 for a discussion.

This chapter describes these statements for global and non-global screens:

• DECLARE MENU

• DECLARE SCREEN

• MODIFY

• PREPARE

Screen and menu formatting

The full-screen feature specifies:

• Where screen items are to appear on the video display terminal

• How screen items are displayed (for example, highlighted and/or in color)

Screen and menu items

Screens and menus can include:

• Title (name of the screen or menu)

• Prompts

• Input areas (for screens only)

Screen and menu definition

Screen and menu definitions begin with a SCREEN or MENU statement,
respectively, and end with a corresponding END SCREEN or END MENU
statement. The screen or menu definition is made up a series of statements that
define the screen/menu components: title, prompt(s), and input area(s).

Screen and menu manipulation

User Language provides a number of statements that read previously defined
screens and then accepting input items from the terminal operator. You can
also use screen manipulation statements to redisplay corrected screens,
restore previous default values for screen items, and flag incorrect values.

Full-screen variables

Full-screen application design normally requires the use of special variables:

• Menu and screen variables—Refer to titles, prompts, and input items.
22-4 Model 204

• Reserved variables—Have special meaning to Model 204; used to perform
special functions.

• Screen item name variables—Refer indirectly to screen items.
User Language Manual 22-5

Full-screen processing
To design data entry applications using the full-screen feature, you must
accommodate the sequence of events that normally occurs during a data entry
session.

Menu displayed

The application request normally begins the application by displaying a menu
to the terminal operator. A menu typically contains a title and formatted
prompting information. For example:

 EMPLOYEE MENU

1 ADD EMPLOYEE
2 CHANGE ADDRESS
3 CHANGE INSURANCE
4 ADD DEPENDENT

Operator interaction with menu

The operator (application end user) selects a menu option by indicating the
appropriate option number with a Program Function (PF) key or by tabbing to
the desired selection number (using →, ←, or ↵) and pressing the ENTER key.
Control is then transferred to the selected option’s program. The operator is
reprompted if the cursor is not positioned correctly.

Screen displayed

The screen for the selected option is then displayed. A screen typically contains
a title, formatted prompting information, and areas in which the user can enter
data. For example:

 EMPLOYEE ADD SCREEN

 FILL IN THE FOLLOWING INFORMATION
 FOR EACH NEW EMPLOYEE

 NAME:
 STREET:
 CITY:
 STATE:
 ZIP:
 AGE:
 SEX:
 SSN:

In this example, each prompt is followed by an input area in which data can be
entered. Titles and prompts are protected and cannot be modified by the
operator.
22-6 Model 204

The operator presses the tab key on the terminal to move between input areas,
filling in data. The operator can tab backward or forward on the screen, entering
data. The input areas can be filled in any order, and can be corrected if
erroneous data is entered, as long as the screen has not been transmitted.
When data entry for the screen is completed, the operator presses the ENTER

key or a PF key to transmit the data to Model 204.

Input validation

The input entered at the terminal is then validated according to criteria specified
in the application request. Two types of validation can be performed:

Items that do not pass the validation criteria are tagged with an error indicator.
If the screen is redisplayed for correction, the error indicator appears in column
80 of the line containing the error. An example of a screen redisplayed for
correction is shown below.

 EMPLOYEE ADD SCREEN

 REENTER VALUES MARKED WITH *

 NAME: JOE SMITH
 STREET: 87 OAK DRIVE
 CITY: NORFOLK
 STATE: VA
 ZIP: 501B3 *
 AGE:14 *
 SEX: M
 SSN: 042-54-9803

The terminal operator can then correct the items in error and press ENTER when
all corrections have been made. This cycle is repeated until all items on the
screen pass the validation criteria. Control is then returned to the request to
continue processing.

Type of validation Request can specify…

Automatic Validation criteria (for example, the response must be all-
numeric) using special full-screen options.

Manual Statements that check for errors in terminal responses (for
example, statements that verify that an input code matches
a code in a particular record).
User Language Manual 22-7

Application display considerations
Prior to application design, you should be familiar with the following aspects of
the full-screen feature and the terminal display area:

• Positions on the video screen, often described as layout

• Terminal display attributes for color and light intensity

Screen display area

The typical 3270-type video display terminal consists of 24 rows of 80 columns.
Every screen position, except the system-reserved positions specified below,
can be used for menus and screens.

Display attributes

The following basic display attributes available on 3270-type terminals can be
used within a full-screen application design. Abbreviations are capitalized.

VISible UNPROTected BRIGHT
INVisible PROTected DIM
or
INVISible

Extended display attributes

In addition, extended display attributes available on some 3278 and 3279-type
terminals can be used within an application to alert the terminal operator to
areas of the display and error conditions. To use extended attributes, the
FSOUTPUT parameter must be set. For details about the FSOUTPUT
parameter, refer to the Model 204 Command Reference Manual.

Position Is reserved for…

Column 1 (the
leftmost column)

Internal system use.

Columns 2 through 4 System-generated menu selection numbers when menus
are displayed. These columns are not reserved for menu
titles or for screen use.

Column 80, the
rightmost column

Error indicators when user-defined screens are displayed.
This column is not reserved for menu use.

Line 1, the top row on
the screen

Screen and menu titles that can be specified by the user.

Last line, the bottom
row on the screen,
usually row 24

Model 204 backpaging feature. Backpaging allows the
terminal operator to review previous pages of output. For
detailed information about backpaging, refer to the
Model 204 Terminal User’s Guide.
22-8 Model 204

Extended attributes are a combination of display attributes selected from the
categories listed below. Abbreviations are capitalized. Consult the appropriate
hardware support person within your installation to determine if extended
attributes are supported.

Highlighting attributes

NOUnderSCORE NOBLINK NOREVerse
UnderSCORE BLINK REVerse

Color attributes

BLUE TURQuoise
GREEN WHITE
PINK YELLOW
RED

How display colors are assigned

3270-type display devices—both actual 3278 and 3279 terminals, and terminal
emulators—operate according to a protocol defined by IBM. Display devices
operate in either base-color or extended-color mode. Each time a screen is
displayed, one of these modes is selected for display.

Base-color mode attribute assignments

In base-color mode, fields have no color explicitly specified. The display color
is determined by whether the field is DIM or BRIGHT and whether the field is
PROTECTED or UNPROTECTED, as follows:

If Model 204 displays a screen with… Then 3270 selects…

NO fields with a color attribute set Base-color mode

ANY field with a color attribute set Extended-color mode

Color attributes Color displayed Default color for…

DIM, PROTECTED BLUE TITLE and PROMPT fields

DIM, UNPROTECTED GREEN INPUT fields

BRIGHT, PROTECTED WHITE

BRIGHT, UNPROTECTED RED TAG fields
User Language Manual 22-9

Extended-color mode attribute assignments

In extended-color mode, each screen field has a color associated with it. If a
field does not have a color explicitly specified, the field is displayed, as follows:

Note: The display of a field without a specified color might be altered if a
change to extended-color mode is triggered by the modification of some other
field in the screen.

Most terminal emulators provide a mechanism to modify color mappings. Any
change to the color mapping using this mechanism is local, and is not reported
to Model 204.

Consult the following IBM manuals for additional screen display information:

Display attribute rules and restrictions

You should be aware of these rules and restrictions when specifying display
attributes:

• The INVISIBLE attribute overrides all other display attributes.

• A color attribute overrides the BRIGHT and DIM attributes.

• Color and highlighting attributes can be mixed.

• Color attributes cannot be mixed together.

• Highlighting attributes cannot be mixed together.

• The PROTECTED attribute implies an autoskip. Autoskip causes a screen
item to be skipped by the forward and backward tab keys.

Color attributes Color displayed Default color for…

DIM GREEN TITLE, PROMPT and INPUT fields

BRIGHT WHITE TAG fields

Part no. IBM Title

GA23-0059 3270 Data Stream Programmer’s Reference

GA23-0218 3174 Establishment Controller - Functional Description
22-10 Model 204

Full-screen variables

Types of variables used

Full-screen application design normally requires the use of special types of
variables.

Menu and screen variables

Every input item area on a screen must have a name. Optionally, a menu,
screen title, or prompt also can have a name to which a value is assigned
before the menu or screen is displayed.The name must be unique within a
particular screen or menu definition. However, the same name can be used on
multiple screens or menus.

To avoid the confusion of duplicate names for different menus and screens (for
example, a NAME item on an EMPLOYEE screen and a NAME item on a
CREDITOR screen), you must refer to a screen or menu name using the
following formats:

• Titles and prompts—Named titles or prompts on menus and screens are
referenced in the following format:

%menuname:promptname

or

%screenname:promptname

Values for named titles or prompts are specified by an assignment
statement of the following format:

%menuname:promptname = value

or:

%screenname:promptname = value

For example, this statement:

%EMPLOYEE:PNAME = ’ENTER NAME:’

assigns the text string, ENTER NAME:, as the value of the prompt PNAME
on the EMPLOYEE screen.

Type of variable Refers to…

Menu and screen Titles, prompts, and input items

Reserved Special meaning to Model 204 and are used to perform
special functions

Screen item name Screen items, indirectly
User Language Manual 22-11

• Input items—Input items entered on screens are referenced in the
following format:

%screenname:inputname

For example, this statement:

%EMPLOYEE:INNAME

identifies the input item INNAME entered on the EMPLOYEE screen.

Reserved variables

Model 204 provides the following reserved variables for storing values entered
by the terminal operator:

Screen item name variables

Screen item name variables refer indirectly to screen item names, thereby
allowing portions of a request, such as subroutines, to be generalized. A screen
item name variable is indicated in the following format:

:%screen-item-name

During the evaluation of a request, a string value can be assigned to a
%variable, as illustrated below:

%SCRVAR = ’SCREEN:AGE’

and that %variable can then be used in statements where screen item names
normally appear.

For example, to tag the screen item AGE, enter:

Reserved variable Stores…

%menuname:SELECTION Menu selection number entered by a PF key or by
tabbing to the desired selection number and pressing
ENTER. The value stored in
%menuname:SELECTION can be used:
• Directly in either an arithmetic expression or a

computed JUMP statement

• As the target of an assignment statement to specify
the initial cursor position for the next menu display.

%screenname:PFKEY Value of the PF key number entered by the terminal
operator for a screen. If the terminal operator presses
the ENTER key, a zero is returned in
%screenname:PFKEY.

You can use the value stored in
%screenname:PFKEY to select the next group of
statements to be executed. Typically, this is
accomplished with a series of IF statements or a
computed JUMP statement.
22-12 Model 204

TAG :%SCRVAR

A screen item name variable and a menu or screen variable are actually the
same variable.
User Language Manual 22-13

Defining menus
Use menu definition statements to define and format menus. Formatting
involves specifying a title and all prompts to be displayed on the screen. A
menu definition must be included in the User Language request for every menu
to be displayed by that request.

Syntax The statements described below define a menu. Each menu is defined using
the following format:

MENU menuname
menuline
 .
 .
 .
END MENU

Each menu definition must begin with a MENU statement and end with an END
MENU statement. Between these statements, you describe the titles, prompts,
and blank lines that are to appear on the menu. This is done by specifying a
series of menulines that describe the contents of each line of the menu.

The number of menulines must not exceed 23 lines.

Comments and blank lines included in a menu definition (between MENU and
END MENU statements) are ignored by Model 204.

Summary of menu definition statements

Menulines are composed of the statements listed below:

Table 22-1. Menu definition statements

Statement Description

TITLE Specifies the menu title.

PROMPT Defines a particular menu option.

SKIP Skips one or more lines on the screen.

MAX PFKEY Specifies the maximum PF key value associated with a menu.
22-14 Model 204

MENU and END MENU statements

MENU statement

The MENU statement must be the first statement in a menu definition. MENU
signals Model 204 that the statements specified between the MENU and the
END MENU statement define a logical menu.

Syntax The format of the MENU statement is:

[DECLARE] MENU menuname [GLOBAL [PERMANENT

 | TEMPORARY]

 | [PERMANENT | TEMPOARY] GLOBAL | COMMON]

 Where • menuname is a user-defined string from 1 to 255 characters in length.
Every menu name defined in a request must be unique. The menu name
specified in the MENU statement is assigned to the menu being defined; it
subsequently can be referenced in menu manipulation statements.

• DECLARE and COMMON specify that the menu is a common element in
the request. Specifying COMMON (or specifying neither COMMON nor
GLOBAL) results in the menu being stored in FSCB and processed as it
would have been prior to Version 2.2. Common elements, as well as
DECLARE and COMMON, are discussed in detail in “Sharing common
elements” on page 12-15.

• GLOBAL specifies that the menu is stored in GTBL. Global menus have an
implied scope of COMMON (see above).

Note: Do not specify the GLOBAL attribute for multi-page (logical pages)
menus.

• PERMANENT (PERM) can only be used with global menus. PERM global
menus persist across request boundaries (they are maintained in GTBL
even after a request has been terminated).

• TEMPORARY (TEMP) can only be used with global menus. TEMP global
menus are allocated in GTBL, but are deleted at request termination. An
example of using a TEMP global menu would be when you do not need to
pass the menu to another request; using TEMP global menus eliminates
the need for you to explicitly delete globals that do not need to persist.

END MENU statement

Every MENU statement must terminate with a corresponding END MENU
statement, which must be the last statement in a menu definition.
User Language Manual 22-15

TITLE statement for menus
The TITLE statement specifies a character string that is displayed as the menu
title on the first line of the screen.

If a TITLE statement is not defined in a menu definition, a menu title can be
specified when the menu is displayed (see the section titled “READ MENU
statement” on page 22-24). If no title is specified, this system menu title is
displayed:

INDICATE NUMBER FOR DESIRED SELECTION

Syntax A TITLE statement must be the first menuline of a menu definition. The format
of the TITLE statement is:

TITLE {’text’ | promptname} [AT [COLUMN] n]

 [TO [COLUMN] m | [LEN m] [DP {k | *}]]

 [DEFAULT ’value’]

 [[READ] attributes] [REREAD attributes]

 [PRINT attributes]

Where • text is a character string enclosed in single quotes with a maximum length
of 79 characters. If the string exceeds 79 characters, a compilation error
occurs.

• promptname is a menu variable to which a value can be assigned before
the menu is displayed with the READ MENU or PRINT MENU statement.

Location
options

• Location options (optional) are listed and described in the following table:

• COLUMN keyword (optional). An n value of 1 automatically is converted to
2, because a title cannot begin in the reserved first column. If the AT option
is not included in the TITLE statement, the title begins at column 2.

Options Specifies…

 AT n Where the title is to begin on the screen.

 TO m Column where the title is to end.

 LEN m Length of a title beginning at the n specified in the AT option. If a
menu variable is used to supply the title, and you do not specify a
length, the default length is the remainder of the line.

DP k or
DP *

Number of decimal places displayed in a title.
• DP k displays k decimal places for the title. Any additional decimal

places are truncated.

• DP * displays all decimal places.
22-16 Model 204

If the difference between the AT and TO specifications or the LEN
specification is less than the length of the string, the string is truncated. If
the specified length exceeds the length of the string, spaces are used to
pad the end of the title. Note that the title string is not right-justified at the
column indicated by the TO specification. This TITLE statement indicates
that the text string within single quotes is to be displayed, beginning in
column 13:

TITLE ’EMPLOYEE MENU’ AT COLUMN 13

• DEFAULT lets you provide a default literal value for a named title. The
value must be enclosed in single quotes. This option eliminates the need to
use an assignment statement to set the initial value of a TITLE variable.

• READ selects the display attributes for the title on execution of a READ
statement. The default display attributes for a title are PROTECTED, DIM,
and VISIBLE.

Note: The UNPROTECTED attribute is not allowed in a title. Specifying the
UNPROTECTED attribute results in an error message.

• PRINT selects the display attributes for the title on execution of a PRINT
statement. If no PRINT option is specified, the READ attributes are used
during PRINT.
User Language Manual 22-17

PROMPT statement for menus
The PROMPT statement specifies a text string for each menu selection option.
You supply the text for each prompt and Model 204 automatically generates the
selection number to accompany each prompt.

The menu selection number is displayed at columns 2 and 3. The numbers are
assigned in sequence, beginning with 1, and incremented by one for each
additional prompt.

Syntax The syntax for the PROMPT statement is:

PROMPT {’text’ | promptname}

 [AT [COLUMN] n] [TO [COLUMN] m | [LEN m]

 [DP {k | *}]]

 [DEFAULT ’value’] [[READ] attributes]

 [REREAD attributes]

 [PRINT attributes] [ITEMID n]

Where • text is a character string enclosed in single quotes with a maximum length
of 76 characters.

• promptname is a menu variable to which a value is assigned before the
menu is displayed with the READ MENU or PRINT MENU statement.

• Location options (optional) listed in the following table specify the position
of a prompt on the screen.

• COLUMN (optional). If an AT option is not specified in a PROMPT
statement, the prompt begins at column 5. If an AT option is specified, the
prompt begins at the position indicated by n. A prompt cannot start before
column 5. If the difference between the AT and TO specifications or the
LEN specification is less than the length of the string, the string is truncated.

Option Specifies…

AT n Where the title is to begin on the screen.

TO m Column where the title is to end.

LEN m Length of a title beginning at the n specified in the AT option. If
a menu variable is used to supply the title, and you do not
specify a length, the default length is the remainder of the line.

DP k or DP * Number of decimal places displayed in a title.
• DP k displays k decimal places for the title. Any additional decimal

places are truncated.

• DP * displays all decimal places.
22-18 Model 204

If the specified length exceeds the length of the string, spaces are used to
pad the end of the prompt.

Note: The prompt string is not right-justified at the column indicated by the
TO specification.

• DEFAULT lets you provide a default literal value for a named prompt. The
value must be enclosed in single quotes. This option eliminates the need to
use an assignment statement to set the initial value of a PROMPT variable.

• READ selects the display attributes for the item on execution of a READ
statement. The default display attributes for prompts are PROTECTED,
DIM, and VISIBLE.

Note: You incur an error message if you use an UNPROTECTED attribute
in a prompt.

• PRINT selects the display attributes for the item on execution of a PRINT
statement. If no PRINT option is specified, the READ attributes are used
during PRINT.

Usage Normally, each PROMPT statement starts a new line of text on the screen.
However, multiple-line prompts can be handled by repeating text or
promptname for a single PROMPT statement. An example of this is shown
below.

PROMPT ’EMPLOYEE ADD’ AT 10 ’(NEW PERSONNEL ONLY)’ -
 AT 10

This produces the following output:

1 EMPLOYEE ADD
 (NEW PERSONNEL ONLY)
User Language Manual 22-19

SKIP statement for menus
The SKIP statement passes over one or more lines on the screen between
menu options. Do not to exceed the total number of lines on a screen when
using SKIP. Skipping beyond 23 lines is not allowed.

Syntax The syntax for the SKIP statement is:

SKIP n LINE[S]

where n is a positive integer that specifies the number of lines to be left blank
on the screen. For example:

SKIP 2 LINES

causes two blank lines before the next menu line.

The SKIP %variable LINE(S) option is not supported for this application of the
SKIP statement.
22-20 Model 204

MAX PFKEY statement for menus
The MAX PFKEY statement specifies the maximum PF key value associated
with a particular menu.

If a MAX PFKEY statement is present and the terminal operator presses a PF
key with a value greater than n in response to a READ or PRINT MENU
statement, the PF key value is divided by n. If the PF key value is evenly divided
by n, n is returned to %menuname:SELECTION. If the PF key value is not
evenly divided by n, the value of the remainder is returned to
%menuname:SELECTION. For example, if MAX PFKEY 12 is specified,
Model 204 returns PF13 through PF24 as PF1 through PF12.

Syntax The syntax for the MAX PFKEY statement is:

MAX PFKEY n

where n is a number from 1 to 255. If n exceeds 255, a default value of 255 is
used. The statement can appear anywhere in the menu definition after the title
line. Only one MAX PFKEY statement is allowed for each menu definition.
User Language Manual 22-21

Menu definition example
In this example, the user defines the format of the EMPLOYEE MENU selection
screen:

MENU PERSONNEL
TITLE ’EMPLOYEE MENU’ AT 13 BRIGHT
MAX PFKEY 12
SKIP 2 LINES
PROMPT ’NEW EMPLOYEE ADD’ AT 10
PROMPT ’EMPLOYEE UPDATE’ AT 10
PROMPT ’EMPLOYEE INQUIRY’ AT 10
PROMPT ’EMPLOYEE DELETE’ AT 10
PROMPT ’YTD EARNINGS INQUIRY’ AT 10
PROMPT ’INSURANCE INQUIRY’ AT 10
PROMPT ’DONE’ AT 10
END MENU

The preceding statements result in a menu in the format shown in Figure 22-1
when displayed by the request.

Figure 22-1. Sample menu created by menu statements

 EMPLOYEE MENU

 1 NEW EMPLOYEE ADD

 2 EMPLOYEE UPDATE

 3 EMPLOYEE INQUIRY

 4 EMPLOYEE DELETE

 5 YTD EARNINGS INQUIRY

 6 INSURANCE INQUIRY

 7 DONE

22-22 Model 204

Menu manipulation
Menu manipulation involves reading a previously defined menu and then
accepting input items from the terminal operator.

Menu manipulation statements

You can initialize and display a menu and accept a response from the terminal
operator. You can specify these statements anywhere in the User Language
request, except within a menu or screen definition.

Menus are manipulated using the following statements:

An example program using these statements is described in “Menu
manipulation example” on page 22-28.

Statement Displays…

MODIFY Changed attributes of a menu item during request execution.

PREPARE MENU Reinitialized menu.

PRINT MENU Menu on a terminal or as USE output.

READ MENU Menu and accepts a response from the terminal operator.
User Language Manual 22-23

READ MENU statement
The READ MENU statement lets you display a defined menu on the screen and
accept user selections from that menu. When the menu is displayed, the cursor
automatically is positioned under the first menu selection number.

Syntax The syntax for the READ MENU statement is:

READ [MENU] menuname [ALERT] [TITLE

 {’text’ | %variable}

 [AT [COLUMN] n] [TO [COLUMN] m | LEN m]

 [attributes]]

Where • menuname refers to a menu previously defined by a set of menu definition
statements.

• ALERT sounds the audible alarm on the terminal when the menu is
displayed. ALERT is ignored and no warning is issued if the terminal is not
equipped with an alarm.

• TITLE specifies a new title to override the menu title specified in the TITLE
statement of the original menu definition. This new title is effective only for
the current READ statement. The title specified in this option can be either
a character string (‘text’) or a variable that has been set to a string before
the READ MENU statement is executed.

AT, TO, LEN, and attributes options for READ MENU

• The AT, TO, LEN, and attributes options are identical to those described in
“Location options” on page 22-16. If these options are omitted, the AT, TO,
LEN, and attribute options defined for the title in the menu definition are
used.
22-24 Model 204

PRINT MENU statement
The PRINT MENU statement lets you display a menu on a terminal or as USE
output with all menu items protected.

When the PRINT MENU statement is evaluated, and output is to an IBM 3270
or compatible terminal, the menu is displayed as it normally would appear
during a READ except that the tab keys are ineffective. The terminal operator
presses the ENTER key or a PF key to complete the operation of the PRINT. The
key that the operator pressed is returned to the request.

Syntax The syntax for the PRINT MENU statement is:

PRINT [MENU] menuname [ALERT] [TITLE

 {’text’ | %variable}

 [AT [COLUMN] n] [TO [COLUMN] m | LEN m]

 [attributes]]

Where The ALERT, TITLE, AT, TO, LEN, and attributes options are identical in
“Location options” on page 22-16.
User Language Manual 22-25

MODIFY and PREPARE MENU statements

MODIFY statement

The MODIFY statement changes the display attributes of a menu item during
the execution of a User Language request.

A MODIFY statement changes only those attributes that you wish to change
(for example, from VISIBLE to INVISIBLE); the statement leaves other
attributes unchanged. If ALL is specified or the FOR clause is omitted, the new
attributes apply to both READ and PRINT.

Syntax The syntax for the MODIFY statement is:

MODIFY %menuname:itemname

 [TO] attributes [ALL | [FOR] READ | PRINTS]

Usage notes Consider the following when using the MODIFY statement:

• The UNPROTECTED attribute is not allowed for titles and prompts.

• The PREPARE MENU statement restores display attributes to their original
state.

PREPARE statement

The PREPARE statement reinitializes a menu. PREPARE can be issued at any
point in a request to restore values that were altered by assignment and
MODIFY statements. The PREPARE statement restores:

• A cursor that was moved to select a menu option back to its original position

• Specified default values (those indicated by DEFAULT options) to the title
and prompts

• Null values to prompts specified with variable prompt names that do not
have default values

• Original display attributes if the attributes were overridden by MODIFY
statements

Syntax The syntax for the PREPARE statement is:

PREPARE [MENU] menuname

Where menuname refers to a menu previously described by a set of menu definition
statements.
22-26 Model 204

Use with global menus

Defining a menu as global affects the order in which you should issue
PREPARE statements. See “Clearing the GTBL work area” on page 20-28 for
a discussion of performance considerations related to declaring and clearing
global objects from GTBL.
User Language Manual 22-27

Menu manipulation example
In this example, the user defines a procedure that prompts the terminal
operator for the next function to be performed, sets a global variable,
SELECTION, with the user’s response, and uses the conditional include
capability to include the appropriate procedure.

PROCEDURE PERSONNEL.APPLICATION
BEGIN
MENU PERSONNEL
TITLE ’EMPLOYEE MENU’ AT 13 BRIGHT
MAX PFKEY 12
SKIP 2 LINES
PROMPT ’NEW EMPLOYEE ADD’ AT 10
PROMPT ’EMPLOYEE UPDATE’ AT 10
PROMPT ’EMPLOYEE INQUIRY’ AT 10
PROMPT ’EMPLOYEE DELETE’ AT 10
PROMPT ’YTD EARNINGS INQUIRY’ AT 10
PROMPT ’INSURANCE INQUIRY’ AT 10
PROMPT ’DONE’ AT 10
END MENU
READ MENU PERSONNEL
IF $SETG (’SELECTION’,%PERSONNEL:SELECTION) THEN
 PRINT ’GLOBAL TABLE FULL’
END IF
END
IF SELECTION=1,ADD.EMPLOYEE
IF SELECTION=2,UPDATE.EMPLOYEE
IF SELECTION=3,INQUIRE.EMPLOYEE
IF SELECTION=4,DELETE.EMPLOYEE
IF SELECTION=5,INQUIRE.EARNINGS
IF SELECTION=6,INQUIRE.INSURANCE
IF SELECTION=7,CLEANUP.EMPLOYEE
END PROCEDURE
22-28 Model 204

Defining screens
You define and format screens using screen definition statements. Formatting
involves specifying a title and all prompts to be displayed on the screen, and
describing input items to be entered by the terminal operator.

You must include a screen definition in the User Language request for every
screen to be displayed by that request.

Screen definition format

The statements described on the following pages allow you to logically define
a screen. Each screen is defined using the following format:

SCREEN screenname
screenline
 .
 .
 .
END SCREEN

The logical screen definition must begin with a SCREEN statement and end
with an END SCREEN statement. Between these statements, you describe the
titles, prompts, input areas, and blank lines that are to appear on the screen. To
do this, you specify a series of screenlines that describes the contents of a
particular line or portions of lines on the screen.

Screen definition statements

Screenlines are composed of the following statements:

Screenlines

Each screenline normally corresponds to a single line on the physical panel.
The User Language compiler regards a screenline as a logical input line. If the
definition of a screenline is longer than a single request input line, use a hyphen
for continuation.

Statement Description

DEFAULT Specifies the various screen item defaults.

INCLUDE Includes a stored procedure within a screen definition.

INPUT Describes an input item entered by the terminal operator.

MAX PFKEY Specifies the maximum PF key value associated with a menu.

PROMPT Defines a particular text prompt.

SKIP Skips one or more lines on the screen.

TITLE Specifies the screen title.
User Language Manual 22-29

Comments or blank lines included in a screen definition (between SCREEN
and END SCREEN statements) are ignored by Model 204.

You can include any number of screenlines in a screen definition.

Logical and physical panels

The screen actually displayed to the terminal operator depends on the logical
panel and physical panel.

Logical screen

A logical screen (panel) is that part of the logical screen definition which is
ended by a NEW PAGE or by an END SCREEN statement. These statements
control where the display screen is to end.

Physical screen

A physical screen (panel) is that part of the logical panel which fits on the user’s
physical terminal as determined by the MODEL parameter. The full-screen
formatting feature defines screens independently of the terminal operator’s
3270 terminal model; the correct length is displayed when the request is
evaluated. If the prompts and/or input items specified in a screen definition
exceed the number of lines available on a physical panel, Model 204
automatically constructs an overflow panel for the remaining lines. The
overflow panel has the same title as the original screen.
22-30 Model 204

SCREEN and END SCREEN statements

SCREEN statement

The SCREEN statement must be the first statement in a screen definition.
SCREEN signals Model 204 that statements preceding the END SCREEN
statement define a logical screen.

Syntax The format of the SCREEN statement is:

[DECLARE] SCREEN screenname

 [GLOBAL [PERMANENT | TEMPORARY]

 | [PERMANENT | TEMPORARY] GLOBAL | COMMON]

Where • screenname is a user-defined string from 1 to 255 characters in length.
Every screen name defined in a request must be unique. The screen name
specified in the SCREEN statement is assigned to the screen being
defined; it subsequently can be referenced in screen manipulation
statements.

• DECLARE and COMMON are used if the screen is a common element in
the request. Specifying COMMON (or specifying neither COMMON nor
GLOBAL) results in the screen being stored in FSCB and processed as it
would have been prior to Version 2.2. Common elements, as well as
DECLARE and COMMON, are discussed in detail in “Sharing common
elements” on page 12-15.

• GLOBAL specifies that the screen is stored in GTBL. Global menus have
an implied scope of COMMON (see above).

Note: Do not specify the GLOBAL attribute for multi-page (logical pages)
screens.

• PERMANENT (PERM) can only be used with global screens. PERM global
screens persist across request boundaries (they are maintained in GTBL
even after a request has been terminated).

• TEMPORARY (TEMP) can only be used with global screens. TEMP global
screens are allocated in GTBL, but are deleted at request termination. An
example of using a TEMP global screen would be when you do not need to
pass the screen to another request; using TEMP global screens eliminates
the need for you to explicitly delete globals that do not need to persist.

END SCREEN statement

Every SCREEN statement must have a corresponding END SCREEN
statement, which terminates the definition of a screen. The END SCREEN
statement must be the last statement in a screen definition.
User Language Manual 22-31

TITLE and PROMPT statements for screens

TITLE statement

The TITLE statement specifies a character string to be displayed as the screen
title on the first line of the screen.

If you do not specify a TITLE statement

If a TITLE statement is not defined in a menu definition, a menu title can be
specified when the menu is displayed (see the section titled “READ SCREEN
statement” on page 22-52). If no title is specified, the following system menu
title is displayed:

INDICATE NUMBER FOR DESIRED SELECTION

Syntax If a you specify a TITLE statement, the statement must be the first menuline
defined in a menu definition. The format of the TITLE statement is:

TITLE {’text’ | promptname} [AT [COLUMN] n]

 [TO [COLUMN] m | [LEN m] [DP {k | *}]]

 [DEFAULT ’value’]

 [[READ] attributes] [REREAD attributes]

 [PRINT attributes]

Where • text is a character string enclosed in single quotes with a maximum length
of 79 characters.

• promptname is a screen variable to which a value can be assigned before
the screen is displayed with the READ SCREEN, REREAD SCREEN, or
PRINT SCREEN statement.

• REREAD selects the display attributes for the title on execution of a
REREAD statement. If no REREAD option is specified, the READ attributes
are used during REREAD.

• The other options for the TITLE statement used with screens are the same
as the options described in “TITLE statement for menus” on page 22-16.

PROMPT statement

The PROMPT statement specifies the text to be displayed as a prompt for the
terminal operator. A prompt usually asks the operator to enter a particular data
value.

Syntax The syntax for the PROMPT statement is:
22-32 Model 204

PROMPT {’text’ | promptname} [AT [COLUMN] n]

 [AT [COLUMN] m | [LEN m] [DP {k | *}]]

 [DEFAULT ’value’]

 [[READ] attributes] [REREAD attributes]

 [PRINT attributes]

 [ITEMID n]

Where • text is a character string in single quotes; use up to 78 characters.

• promptname is a screen variable to which a value can be assigned before
the screen is displayed with the READ SCREEN, REREAD SCREEN, or
PRINT SCREEN statement.

Note: Each prompt can start a new line of text on the screen or multiple
prompts can be defined for one screenline. However, each prompt must
occupy its own position on a screenline.

• REREAD selects the display attributes for the prompt on execution of a
REREAD statement. If no REREAD option is specified, the READ attributes
are used during REREAD.

• ITEMID assigns a number from 1 to 32767 to a prompt. This number is used
for reference by the cursor variable %screenname:ITEMID. For more
information about %screenname:ITEMID, refer to the section titled “Cursor
handling” on page 22-56.

• The other options for the PROMPT statement used with screens are the
same as the options for the PROMPT statement used with menus, as
described in “PROMPT statement for menus” on page 22-18.
User Language Manual 22-33

INPUT statement
The INPUT statement defines the characteristics of an input value to be
entered by the terminal operator, usually in response to a prompt. An INPUT
statement typically is defined in conjunction with one or more PROMPT
statements. Any mixture of INPUT and PROMPT statements can be included
on the same logical screenline in a screen definition.

Syntax The format of the INPUT statement is:

INPUT inputname [AT [COLUMN] n]

 [TO [COLUMN] m | [LEN m] [DP {k | *}]]

 [UPCASE | NOCASE] [DEFAULT ’value’]

 [DEBLANK | NODEBLANK] [PAD WITH ’c’]

 [automatic validation options]

 [[READ attributes] [REREAD attributes]

 [PRINT attributes]

 [TAG [attributes] [WITH ’c’]] [ITEMID n]

Where inputname indicates the name of the data item entered by the terminal operator.

AT, TO, LEN, and DP options

AT, TO, LEN, and DP options are described in the following table:

COLUMN keyword

COLUMN (optional). If the AT specification is omitted, and the input item is the
first item on the screenline, the input area begins in column 2. If it is not the first
item on the screenline, the input area begins, following one blank space, to the

Option Specifies…

AT n Where the title is to begin on the screen.

TO m Column where the title is to end.

LEN m Length of a title beginning at the n specified in the AT option. If a
menu variable is used to supply the title, and you do not specify a
length, the default length is the remainder of the line.

DP k or DP * Number of decimal places displayed in a title.

• DP k displays k decimal places for the title. Any additional decimal
places are truncated.

• DP * displays all decimal places.
22-34 Model 204

right of the text displayed by the previous PROMPT statement or space
reserved by the previous INPUT statement.

When both AT and TO are specified, space is reserved for the input item on the
current line at locations n through m inclusive. For example, the ADDRESS
item defined below:

INPUT ADDRESS AT 15 TO 29

reserves space on the screen in positions 15–29. The length of the ADDRESS
is thus 15 characters (m-n+1).

When AT and LEN are both specified, space is reserved for the input item on
the current line starting at position n and extending m characters (to position
n+m). The following statement also reserves space on the screen in positions
15–29:

INPUT ADDRESS AT 15 LEN 15

UPCASE and NOCASE options

UPCASE and NOCASE allow one item (or multiple items) on a screen to be
specified with a case attribute that differs from the rest of the screen. UPCASE
forces case translation and NOCASE prevents case translation. See “Case
translation” on page 22-35.

Case translation

Case translation specifies whether screen input is displayed on the screen as
entered, or displayed as uppercase. If case translation is in effect, all input to
the screen is displayed in upper case, regardless of whether it is entered in
upper or lower case. For input items, case translation specifies how the screen
input is stored in Model 204.

Case translation is based on:

• The setting for *LOWER

• The setting of UPCASE or NOCASE

• The value of the LANGUSER parameter

The settings of UPCASE and NOCASE take precedence over the setting for
*LOWER and *UPPER. Even if *UPPER is in effect, if an item is specified as
NOCASE, it is stored or displayed in the case in which it was entered.
Conversely, if *LOWER is in effect and an item is specified as UPCASE, the
item is translated and stored or displayed in uppercase.

When UPCASE is specified, the value of the LANGUSER parameter is
checked to determine the language that is in use, and, consequently, the
correct case translation rules to use. See the Model 204 Language Support
Summary for more information on language processing and the LANGUSER
parameter.
User Language Manual 22-35

DEFAULT option

The DEFAULT option specifies a default or initial value for an input item. The
value must be enclosed in single quotes.

This default is shown as the value of the input item when the screen is first
displayed. It can be changed at that time by the terminal operator.

If the default string exceeds the length specified for the input item, the string is
truncated. If the length of the default string is less than the specified length, the
default is padded with spaces at the end. The value must be enclosed in single
quotes.

This option eliminates the need to use an assignment statement to set the initial
value of an INPUT variable.

DEBLANK or NODEBLANK option

The DEBLANK option specifies that leading and trailing blanks on the input
item are to be removed from any value entered into the input item by the
terminal operator. The NODEBLANK option specifies that leading and trailing
blanks are to be retained. DEBLANK is the system default.

Default values and values assigned to an input item by the request are not
affected by this option.

PAD WITH ‘c’ option

The PAD WITH ‘c’ option displays an input item as padded with a user-specified
character. The keyword WITH is optional; ‘c’ can be any character you select.

This option helps to delineate the length of an input item. It differs from the
DEFAULT option because the pad character are not retained as part of the
input (any leading or trailing pad characters are removed).

Be careful when combining the PAD WITH ‘c’ option with the DEBLANK option
(which is the default). If both options are present, any leading or trailing mixture
of blanks and pad characters are removed. If PAD WITH ‘c’ is specified with
NODEBLANK and the input item begins or ends with blanks, any adjacent pad
characters are not removed.

Automatic validation options

Automatic validation options specify the criteria by which Model 204
automatically validates an input value before that value is used in the request.
See “Automatic validation options for INPUT” on page 22-39 for more
information.
22-36 Model 204

READ option

The READ option selects the display attributes for the item on execution of a
READ statement. The default display attributes for input items are
UNPROTECTED, DIM, and VISIBLE.

REREAD option

The REREAD option selects the display attributes for the item on execution of
a REREAD statement. For an input item, the REREAD attributes are used only
if the item is not tagged. If no REREAD option is specified, the READ attributes
are used during REREAD.

PRINT option

The PRINT option selects the display attributes for the item on execution of a
PRINT statement. If no PRINT option is specified, the READ attributes other
than UNPROTECTED are used during PRINT.

TAG option

The TAG option specifies the display attributes for an item on the execution of
a REREAD statement when the item is tagged. You also can specify the
character to be displayed as the error indicator when an input value does not
meet the automatic validation criteria. If a TAG option is not specified for a
particular input item, the default error indicator, an asterisk (*), is displayed in
column 80. If more than one value on the same screenline is in error, the error
indicator of the rightmost item is used as the tag character.

Syntax The format of the TAG option is:

TAG [attributes] [WITH ’c’]

where:

• attributes indicate any valid display attribute supported by the user’s
terminal (see the section titled “Display attributes” on page 22-8). The
default TAG attributes are UNPROTECTED, BRIGHT, and VISIBLE.

• WITH ‘c’ specifies the character (c) to be displayed in column 80 as the
error indicator; any EBCDIC character can be specified. The default
character is * (asterisk).

The use of BRIGHT, highlighting, and/or color attributes for tagged items is
especially useful when more than one input item appears on the same line
on the screen. If you do not wish an error indicator to be displayed, a space
must be explicitly specified as the tag character, as shown below.

INPUT CODE TAG BRIGHT WITH ’ ’
User Language Manual 22-37

ITEMID option

The ITEMID option assigns a number from 1 to 32767 to an input item. This
number is used for reference by the cursor variable %screenname:ITEMID. For
more information on %screenname:ITEMID, as it relates to cursor handling,
refer to “Reserved cursor variables” on page 22-56.
22-38 Model 204

Automatic validation options for INPUT
Automatic validation options specify the criteria by which Model 204
automatically validates an input value before that value is used in the request.
Automatic validation is performed after the DEBLANK option is processed. For
more information on automatic input validation, refer to “Input validation” on
page 22-7.

Automatic validation is performed by specifying any of the options listed below
in an INPUT statement. If validation requirements are not met, the error is
tagged and an error indicator is displayed if the screen is redisplayed with a
REREAD statement.

Option If specified for an input item…

ALPHA Only upper- and lowercase alphabetic characters (for the
language specified by the LANGUSER parameter) are
accepted.

ALPHANUM Only upper- and lowercase alphabetic characters (for the
language specified by the LANGUSER parameter) and/or
digits (0-9) are accepted.

MUST FILL Either the number of characters entered must match the
specified length, or no characters must be entered.
Otherwise, an error is signaled.
• If both the DEBLANK and MUST FILL options are specified and

the terminal operator has entered leading and/or trailing spaces,
the input item is tagged as in error.

• REQUIRED must be specified if null input values are not
acceptable.

NUMERIC Only digits (0-9), minus sign, and one decimal point are
accepted. A minus sign must be in the leftmost character
position.

ONEOF
value[,value]…

Value entered must be one of a specified set of values. You
can include any number of values in the list; values are
separated by commas.

Enclose values containing commas or spaces with quotation
marks. (for example, ‘1,000,000’).

The following example specifies that an entered value is one
of the New England states:
INPUT STATE ONEOF MA, CT, RI, NH, VT, ME
User Language Manual 22-39

Multiple validation criteria

With the exception of REQUIRED, multiple validation criteria for a single input
item are treated as if they were connected by OR Boolean operators. If an input
value satisfies any one of the item’s criteria, the value is accepted. Note that
both numeric and nonnumeric validation criteria can be specified for a single
input item. If REQUIRED is specified, the input value is checked for a null value
before the input value is validated against other item criteria.

RANGE Only numbers or character strings in the specified range are
allowed in the input value. RANGE performs range checking
in the form:

[NUMERIC] [RANGE lo [TO] hi [AND lo [TO] hi] …
If the NUMERIC option is specified immediately before
RANGE, the number entered must be greater than or equal to
lo, and less than or equal to hi. If the input value falls within
either range, it is accepted.

Numbers used with this option can be integers and/or
fractions.

If the NUMERIC option is not specified, a character range is
assumed. The string you specify must be between lo and hi,
inclusive, in EBCDIC collating sequence.

A string that contains more than one word (containing either
a space or a character that normally ends a word, such as
right parenthesis or =) must be quoted, as shown below.
INPUT NAME RANGE ADAMS TO ’LE BLANC’

Both types of range option allow any number of ranges to be
specified using AND. The following statement tests for two
distinct ranges of numbers:
INPUT CODE NUMERIC RANGE 1001 TO 2999 AND
5001 TO 6999

If the input value falls within either range, it is accepted.

REQUIRED Item is tagged when a null value is entered.

VERIFY
‘characters’

Only the specified set of characters can be included in the
input value. Each character can appear in the input value any
number of times and in any order. For example, the following
statement ensures that input IDs contain only, but not
necessarily all, the specified characters

INPUT ID VERIFY ’ABCDXYZ.:-&’

Thus, the following IDs are acceptable:
A.B
DD
XCZ -:

and the following IDs are unacceptable:

A,B
MNO
AB*

Option If specified for an input item…
22-40 Model 204

DEFAULT statements
Default statements define various screen item defaults, in some cases
replacing the need for specification on each screen item.

The DEFAULT TITLE (or PROMPT or INPUT) statement sets the READ,
REREAD, TAG, and PRINT display attributes globally for screen items. The
DEFAULT CURSOR statement defines the default cursor position for the
defined screen.

Syntax The format for the DEFAULT TITLE (or PROMPT or INPUT) statement is:

DEFAULT {TITLE | PROMPT | INPUT [DEBLANK | NODEBLANK]

 [PAD WITH ’c’]

 [LEN m [DP [k | *}]]

 [UPCASE | NOCASE]

 | [TAG [attributes] [WITH ’c’]}

 [[READ] attributes] [REREAD attributes]

 [PRINT attributes]

Where The options are the same as described on “INPUT statement” on page 22-34.

Scope of DEFAULT TITLE or PROMPT or INPUT statements

The scope of a particular DEFAULT statement is either until another DEFAULT
statement for the same screen item type or until the END SCREEN statement.
Any display attribute defined explicitly for a screen item overrides the
corresponding display attribute specified in the DEFAULT statement.

For example:

DEFAULT INPUT READ YELLOW BLINK
 .
 .
 .
INPUT MSGLINE READ WHITE

results in WHITE and BLINK attributes for the MSGLINE item.

The DEFAULT statement does not affect items defined earlier in the screen.

Syntax The format for the DEFAULT CURSOR statement is:

DEFAULT CURSOR [READ | REREAD | PRINT]

 {ITEMID n | itemname | ROW n COLUMN m}
User Language Manual 22-41

Where ITEMID, itemname, or ROW and COLUMN specify where the cursor is
positioned initially on the execution of a READ, REREAD, or PRINT SCREEN
statement, unless overriding cursor setting information exists (a WITH
CURSOR option). For more information on cursor positioning, refer to “Cursor
handling” on page 22-56.

The DEFAULT CURSOR statement can appear anywhere in a screen
definition; only one DEFAULT CURSOR statement is allowed for each screen
definition.
22-42 Model 204

SKIP and NEW PAGE statements

SKIP statement

The SKIP statement passes over one or more lines on the screen.

Syntax The format for the SKIP statement is:

SKIP n LINE[S]

where n is a positive integer that specifies the number of lines to be left blank
on the screen. For example, this statement causes two blank lines to appear
before the next screenline:

SKIP 2 LINES

NEW PAGE statement

The NEW PAGE statement forces a new page for multi-panel screens.
User Language Manual 22-43

MAX PFKEY statement for screens
The MAX PFKEY statement specifies the maximum PF key value associated
with a particular screen.

Syntax The format for the MAX PFKEY statement is:

MAX PFKEY n

where n is a number from 1 to 255. If n exceeds 255, a default value of 255 is
used. The MAX PFKEY n statement can appear anywhere in the screen
definition after the title line. Only one MAX PFKEY statement is allowed per
screen definition.

How the pressing of PF keys greater than n is handled

If a MAX PFKEY statement is present and the terminal operator presses a PF
key with a value greater than n in response to a READ, REREAD, or PRINT
SCREEN statement, the PF key value is divided by n.

• If the PF key value is evenly divided by n, n is returned to
%screenname:PFKEY.

• If the PF key value is not evenly divided by n, the value of the remainder is
returned to %screenname:PFKEY.

For example, if MAX PFKEY 12 is specified, Model 204 returns PF13 through
PF24 as PF1 through PF12.
22-44 Model 204

INCLUDE statement
The INCLUDE statement includes a stored procedure within a screen
definition. The stored procedure can contain screen definition statements,
followed by any other valid procedure input.

The INCLUDE statement must occur at the beginning of a screen definition line.
The format of this statement is the same as that for the INCLUDE statement
(see Chapter 13) with the optional IN clause.
User Language Manual 22-45

Screen definition example
In the following screen definition example, the user defines the format of the
UPDATE CURRENT EMPLOYEE INFORMATION screen:

SCREEN UPDATE
MAX PFKEY 12
DEFAULT CURSOR READ NBR
TITLE ’UPDATE CURRENT EMPLOYEE INFORMATION’ AT 19
BRIGHT
SKIP 2 LINES
*
*THE TEXT FOR MSGLINE IS DEFINED LATER IN THE REQUEST
*
INPUT MSGLINE BRIGHT
SKIP 2 LINES
PROMPT ’ENTER EMPLOYEE NUMBER OR PRESS PF3 TO QUIT:’
-
 BRIGHT INPUT NBR LEN 4 NUMERIC
SKIP 2 LINES
PROMPT ’NAME:’ INPUT NAME LEN 50 -
 PROMPT ’AGE:’ AT 59 INPUT AGE LEN 2 NUMERIC -
 PROMPT ’SEX:’ AT 67 INPUT SEX LEN 1 UPCASE ONEOF
M,F
PROMPT ’ADDRESS:’ INPUT ADDRESS1
 INPUT ADDRESS2 AT 11
 INPUT ADDRESS3 AT 11
 INPUT ADDRESS4 AT 11
PROMPT ’TELEPHONE:’ INPUT PHONE
SKIP 2 LINES
PROMPT ’SUPERVISOR:’ INPUT SUPER
PROMPT ’POSITION:’ INPUT POSITION LEN 20 -
PROMPT ’DEPARTMENT NO:’ AT 35 INPUT DEPT LEN 5 DP *
PROMPT ’SALARY:’ INPUT SALARY LEN 8 DP 2 -
PROMPT ’START DATE:’ AT 35 INPUT DATE
END SCREEN

The preceding statements result in a screen of the format shown in Figure 22-
1 when displayed by a request:
22-46 Model 204

Figure 22-2. Sample screen created by a SCREEN statement

 UPDATE CURRENT EMPLOYEE INFORMATION

 TYPE OVER CURRENT INFO TO CHANGE OR PRESS PF3 TO QUIT

 ENTER EMPLOYEE NUMBER OR PRESS PF3 TO QUIT:

 NAME: AGE: SEX:
 ADDRESS:

 TELEPHONE:

 POSITION:
 SUPERVISOR:
 SALARY: START DATE:
User Language Manual 22-47

Screen manipulation
Screen manipulation involves reading a previously defined screen and
accepting input items from the terminal operator. You manipulate screens by
using screen manipulation statements that:

• Initialize and display a screen

• Accept responses from the terminal operator

• Validate input

• Highlight errors.

• Control cursor placement (refer to “Cursor handling” on page 22-56).

You can specify screen manipulation statements anywhere in the User
Language request, except within a screen definition (between a SCREEN and
an END SCREEN statements).

Screen manipulation statements

Table 22-2 lists and briefly describes the screen manipulation statements.

Each of these statements, along with cursor handling, is discussed separately
on the pages that follow. In addition, a discussion is provided on the sequence
in which screens are evaluated when a READ SCREEN, REREAD SCREEN,
or PRINT SCREEN statement is executed. An example illustrating screen
manipulation appears at the end of the discussion.

Note: The functions, “$CHKMOD” on page 27-9 and “$CHKTAG” on
page 27-14, are particularly useful when performing screen manipulation.

Table 22-2. Screen manipulation statements

Statement Description

CLEAR TAG Clears the error indicator.

MODIFY Changes display attributes of a screen item.

PREPARE SCREEN Reinitializes a screen during request execution.

PRINT SCREEN Displays a screen on a terminal or as USE output.

READ SCREEN Displays a screen and accepts responses from the terminal
operator.

REREAD SCREEN Redisplays a screen for correction.

TAG Highlights invalid responses with an error indicator.
22-48 Model 204

MODIFY and PREPARE statements for screens

MODIFY statement

The MODIFY statement changes the display attributes of a screen item during
the execution of a User Language request.

Note these considerations when using the MODIFY statement:

• The UNPROTECTED attribute is not allowed for titles and prompts.

• The PREPARE SCREEN statement restores display attributes to their
original state.

Syntax The format for the MODIFY statement is:

MODIFY %screenname:itemname [TO] attributes

 [ALL | READ | [FOR] REREAD | TAG | PRINT]

A MODIFY statement changes only those attributes that you wish to change
(for example, from BRIGHT to DIM); the statement leaves other attributes
unchanged. If ALL is specified or the FOR clause is omitted, the new attributes
apply to READ, REREAD, TAG, and PRINT.

PREPARE statement

The PREPARE statement reinitializes the values of all input items and other
text displayed on a screen. PREPARE can be issued at any point in a request
to restore values that were altered by READ, REREAD, TAG, MODIFY, and
assignment statements.

The PREPARE statement performs the following operations:

• Restores specified default values (those indicated by DEFAULT options) to
the title, prompts, and input items

• Restores null values to items that do not have default values

• Clears all tags

• Restores the original display attributes if the attributes were overridden by
a MODIFY statement

Syntax The format of the PREPARE statement is:

PREPARE [SCREEN] screenname

where screenname refers to a screen that was previously described in a screen
definition.
User Language Manual 22-49

Use with global screens

Defining a screen as global affects the order in which you should issue
PREPARE statements. See “Performance considerations” on page 20-32 for a
discussion of performance considerations related to declaring and clearing
global objects from GTBL.
22-50 Model 204

PRINT SCREEN statement
The PRINT SCREEN statement displays a screen on a terminal or as USE
output with all screen items protected. With the PRINT statement, a single
screen definition can be used for both data entry and reporting purposes.

When the PRINT SCREEN statement is evaluated, and output is to an IBM
3270 or compatible terminal, the screen is displayed on the terminal in panels
as normally would appear during a READ. All INPUT items are protected. The
terminal operator presses the ENTER key or a PF key to complete the operation
of the PRINT. The key that the user presses is returned to the request.

If a USE command has been issued prior to executing a PRINT SCREEN
statement, the output is formatted in the same manner as PRINT SCREEN
output on a line-at-a-time terminal (item spacing is preserved). For more
information, refer to the section titled “Line-at-a-time terminal support” on
page 22-63.

Syntax The format for the PRINT SCREEN statement is:

PRINT SCREEN screenname [ALERT] [[WITH] CURSOR]

 [TITLE {’text’ | %variable} [AT [COLUMN] n]

 [TO [COLUMN] m | LEN m] [attributes]]

where the WITH CURSOR attribute option is identical to that described earlier
for the READ SCREEN statement, and the other options being the same as the
corresponding ones for the READ MENU statement (see “READ MENU
statement” on page 22-24).
User Language Manual 22-51

READ SCREEN statement
The READ SCREEN statement lets you perform these activities:

• Display a user-formatted screen on the terminal.

• Cause Model 204 to wait for the terminal operator to enter appropriate input
values. Model 204 then performs automatic validation on those values.

• Make input values available for further validation and processing.

• Optionally redisplay the screen for corrected input.

The first time a particular READ SCREEN statement is executed for a request,
the items on the screen are displayed either as null or with the default values
specified in the DEFAULT option on the INPUT statement or assigned by the
request. Subsequent READ statements for that screen clear all old tags and
display the values entered by the terminal operator.

Syntax The format of the READ SCREEN statement is:

READ [SCREEN] screenname [ALERT] [NO REREAD]

 [[WITH] CURSOR]

 [TITLE {’text’ | %variable} [AT [COLUMN] n]

 [TO [COLUMN] m | LEN m] [attributes]]

Where • screenname refers to a screen previously defined by a set of screen
definition statements.

• Except as noted below, the other components of the READ SCREEN
statement are the same as the corresponding ones for the “READ MENU
statement” on page 22-24.

NO REREAD option

The NO REREAD option cancels the automatic redisplay of the screen when
errors are detected in input items. In this case, Model 204 performs the
automatic validation and tags invalid items, but the terminal operator is not
prompted to correct them.

NO REREAD is used in application requests that specify both automatic
validation (using INPUT statement validation options) and manual validation
(using other statements in the request). This option allows the user-specified
error checking statements within the request to detect errors, tag invalid items,
and then redisplay the screen using the REREAD statement. The redisplayed
screen shows both the system- and user-tagged errors and allows the terminal
operator to correct both types of errors at the same time.
22-52 Model 204

WITH CURSOR option

The WITH CURSOR option positions the cursor using a cursor setting variable.
Refer to “Cursor handling” on page 22-56 for a detailed description of how the
WITH CURSOR option is used to position the cursor.
User Language Manual 22-53

REREAD SCREEN statement
The REREAD statement redisplays a screen so that the terminal operator can
correct the values on input items tagged as errors.

Note: If no items are tagged, the screen is not redisplayed.

REREAD is the only statement that allows the operator to correct input values
tagged as a result of manual validation. The terminal operator can modify items
other than tagged items when the screen is redisplayed.

All input is validated again using the automatic validation options on the INPUT
statements before it is returned to the User Language request for manual
validation. However, the screen is not redisplayed automatically if any of the
input fails automatic validation.

Syntax The format of the REREAD SCREEN statement is:

REREAD [SCREEN] screenname [ALERT] [[WITH] CURSOR]

 [TITLE {’text’ | %variable} [AT [COLUMN] n]

 [TO [COLUMN] m | LEN m] [attributes]]

where screenname refers to a screen that was previously described in a screen
definition.

The WITH CURSOR attribute option is identical to those described earlier for
the READ SCREEN statement; the other options are the same as for
corresponding options for the see “READ MENU statement” on page 22-24.

Do not reread a screen which has no TAG fields. You can either explicitly tag a
field before using REREAD, or use the following construct:

IF $CHKTAG(’screenname’) THEN
 REREAD SCREEN screenname
 * process screen
ENDIF
22-54 Model 204

TAG and CLEAR TAG statements

TAG statement

The TAG statement activates the error indicator associated with an input item.

Syntax The format of the TAG statement is:

TAG %screenname:inputname [attributes] [WITH ’c’]

where %screenname:inputname identifies the item to be tagged. The attributes
and WITH ‘c’ options are the same as those described earlier for the TAG
option of the INPUT statement.

The last TAG or MODIFY statement executed (referred to below as the “active”
statement) defines the attributes.

CLEAR TAG statement

The CLEAR TAG statement clears an activated tag for a particular input item,
or clears the tags for all input items on a screen.

Syntax The format of the CLEAR TAG statement is:

CLEAR TAG {screenname | %screenname:inputname}

If you omit inputname, all tags for the specified screen are cleared. If you
include inputname, only the tag associated with the specified input item is
cleared.

If the TAG
statement is
specified… Then the input item…

Without options Is tagged with the character specified in the TAG option of the
INPUT statement.

Without attributes Attributes are those specified on the TAG option of the INPUT
statement, unless there is an active MODIFY statement that
applies to the input item.

With attributes Attributes are those specified on the TAG statement, even if
there is an active MODIFY statement in effect. Furthermore,
the NUMERIC and INVISIBLE attributes are preserved, if they
are present.
User Language Manual 22-55

Cursor handling
Model 204 provides the following cursor handling features that can be used in
the manipulation of screens:

Cursor setting or sensing is implemented by using special reserved cursor
handling variables.

Reserved cursor variables

The reserved variables listed below are used when performing cursor setting
or sensing. The format for each is:

%screenname:variable

These variables can be used to tie a cursor to a particular screen item or to a
specific row and column number.

After the execution of a READ, REREAD, or PRINT statement, the cursor
variables contain values. These values are not reset by a PREPARE statement.

Cursor handling
feature

During the execution of a READ, REREAD, or PRINT
SCREEN statement, selects…

Cursor setting Initial position of the cursor

Cursor sensing Final position of the cursor.

Variable Use to perform cursor…

COLUMN Setting and sensing. The range values for COLUMN is 1 through
80. The column number is relative to the beginning of the screen as
it is defined logically, which is the same as its physical display
position.

ITEMID Setting and sensing. The number corresponds to an ITEMID option
specified in a prompt or input definition.

ITEMNAME Setting only. %screenname:ITEMNAME sets the cursor under a
particular screen item. The value is a character string identical to
one of the item names in the screen definition.

ROW Setting and sensing. The row number is relative to the beginning of
the screen as it is defined logically. Defined rows (TITLE, PROMPT,
INPUT, or SKIP statements) in the logical screen are all included in
the calculation of %screenname:ROW.

A logical row number is the same as its physical display position
only within the first display panel of a SCREEN. For example, on a
24-row terminal, the first 23 rows of the SCREEN (including the title)
are rows 1 through 23. The title line of the second panel is row 1.
The second line of the second panel is row 24. Rows would
continue to be numbered in this manner, with each physical panel
accounting for 22 rows. The title line is always row 1.
22-56 Model 204

It is the responsibility of the User Language request to reset the variables, if
necessary, before the next READ, REREAD, or PRINT statement.

Using cursor setting

You specify the cursor setting by assigning values to cursor setting variables
and using the WITH CURSOR option on the READ, REREAD, or PRINT
SCREEN statements.

The order of precedence for where the cursor is placed under:

1. The item named by %screenname:ITEMNAME, if the variable’s value is
not null and appears in the screen definition.

2. The item identified by %screenname:ITEMID, if the variable’s value is not
0 and appears in the screen definition.

3. The position indicated by %screenname:ROW and %screenname:COL-
UMN, if one or both variables are not zero and both are within the screen
definition.

Note: If one of the variables is 0, a 1 is forced.

4. The position indicated by the DEFAULT CURSOR statement in the screen
definition if all cursor setting variables have a null, 0, or invalid value, or if
there is no WITH CURSOR option.

5. The first UNPROTECTED input item on the current panel for READ, under
the first UNPROTECTED tagged input item on the current panel for
REREAD, or in the upper left corner of the screen for PRINT.

6. If the above conditions fail, the cursor is placed in the upper left corner.

The screen panel with the position selected by these rules is the first one
displayed, with the cursor properly positioned. Variables that have higher
precedence must be cleared explicitly by the request to allow variables that
have lower precedence to take effect.

Be careful when coding requests that loop around READ, REREAD, or PRINT
SCREEN statements with the WITH CURSOR option. If the variables are not
explicitly changed before each statement, the previous input cursor position is
used for the new output position.

Example of cursor setting

BEGIN
SCREEN A
TITLE ’ SCREEN A’ AT 2
SKIP 2 LINES
DEFAULT INPUT TAG RED WITH ’ ’
PROMPT ’ ENTER PFKEY3 TO QUIT:’ -
 INPUT NMR
PROMPT ’ ENTER YOUR FAVORITE COLOR ’ -
User Language Manual 22-57

 AT 11 INPUT COLOR
PROMPT ’ ENTER YOUR FAVORITE CAR ’ -
 AT 15 INPUT CAR
END SCREEN
%A:ITEMNAME=’CAR’
READ SCREEN A WITH CURSOR
IF %A:PFKEY EQ 3 THEN
 STOP
END IF
REREAD SCREEN A
END

Using cursor sensing

After a READ, REREAD, or PRINT SCREEN statement is executed, the cursor
sensing variables contain information on the position of the cursor in the logical
screen definition. Cursor position variables are set as follows:

Model 204 returns ROW and COLUMN values beyond the bounds of the
logical screen if that is where the terminal operator has placed the cursor. The
request is responsible for validating the input cursor position.

Variable Value

%screenname:COLUMN Logical screen column

%screenname:ITEMID Value of ITEMID on the PROMPT or INPUT
statement, or 0

%screenname:ITEMNAME Null

%screenname:ROW Value of 1 on the TITLE statement, or logical screen
row
22-58 Model 204

READ, REREAD, and PRINT evaluation sequence
The rules that govern the evaluation of the READ SCREEN, REREAD
SCREEN, and PRINT SCREEN statements are:

1. If the cursor has been explicitly set, the logical panels preceding the one
holding the cursor position are validated on a READ SCREEN or REREAD
SCREEN statement. If a READ SCREEN statement is executed with the
automatic reread enabled and tagged items exist, the first tagged logical
panel is displayed first (skip to Step 4).

2. If there is no automatic reread to perform, the logical panel that contains
the cursor position is handled (skip to Step 4).

3. Otherwise, the first logical panel is handled.

4. If the cursor has been explicitly set, the physical panels preceding the one
holding the cursor position is validated on a READ SCREEN or REREAD
SCREEN statement.

5. If there is no automatic reread to perform, the physical panel with the cur-
sor position is displayed (skip to Step 7).

6. Otherwise, the first physical panel is displayed.

7. Input is accepted for the current physical panel.

8. The physical panel is automatically validated on a READ SCREEN or
REREAD SCREEN statement. If the automatic reread is enabled and any
item is tagged, the panel is redisplayed (return to Step 7).

9. If the ENTER key is used, the next physical panel, if any, is displayed for
input (return to Step 7).

10. If a PF key is pressed, all remaining physical panels are validated for a
READ SCREEN or REREAD SCREEN statement. If there are any tagged
items and the automatic reread is in effect, the next physical panel follow-
ing the panel on which the PF key was pressed is displayed (return to step
7). If an automatic reread is not in effect, each remaining logical panel is
validated. If any item fails validation, the first physical panel on that logical
panel is displayed (return to Step 7).

11. If ENTER continues to be pressed, all remaining logical panels in the logical
screen are handled.

12. %screenname:ROW, %screenname:COLUMN, %screenname:PFKEY,
and %screenname:ITEMID all reflect values from the last physical panel
displayed on the terminal.
User Language Manual 22-59

Screen manipulation example
The following request uses the UPDATE CURRENT EMPLOYEE
INFORMATION screen defined in “Screen definition example” on page 22-46
to allow the terminal operator to display an employee record. The operator
selects the record to be displayed by entering the employee number. Once the
record is displayed, the operator can change the employee information.

Once all the necessary information has been changed, the record is updated.
A message is immediately displayed in order to notify the operator as to
whether the update process was successful.

BEGIN
*
* DEFINE SCREEN FOR EMPLOYEE UPDATE PROMPTING FOR
EMPLOYEE
* NUMBER
*
SCREEN UPDATE
MAX PFKEY 12
DEFAULT CURSOR READ NBR
TITLE ’UPDATE CURRENT EMPLOYEE INFORMATION’ AT 19
BRIGHT
SKIP 2 LINES
INPUT MSGLINE BRIGHT
SKIP 2 LINES
PROMPT ’ENTER EMPLOYEE NUMBER OR PRESS PF3 TO QUIT:’
-
 BRIGHT INPUT NBR LEN 4 NUMERIC
SKIP 2 LINES
PROMPT ’NAME:’ INPUT NAME LEN 50 -
 PROMPT ’AGE:’ AT 59 INPUT AGE LEN 2 NUMERIC -
 PROMPT ’SEX:’ AT 67 INPUT SEX LEN 1 UPCASE ONEOF
M,F
PROMPT ’ADDRESS:’ INPUT ADDRESS1
 INPUT ADDRESS2 AT 11
 INPUT ADDRESS3 AT 11
 INPUT ADDRESS4 AT 11
PROMPT ’TELEPHONE:’ INPUT PHONE
SKIP 2 LINES
PROMPT ’POSITION:’ INPUT POSITION
PROMPT ’SUPERVISOR:’ INPUT SUPER
PROMPT ’POSITION:’ INPUT POSITION LEN 20 -
PROMPT ’DEPARTMENT NO:’ AT 35 INPUT DEPT LEN 5 DP *
PROMPT ’SALARY:’ INPUT SALARY LEN 8 DP 2 -
PROMPT ’START DATE:’ AT 35 INPUT DATE
END SCREEN

*
* PROMPT USER FOR EMPLOYEE ID NUMBER. IF NOT FOUND
THEN
* GIVE MESSAGE.
* IF FOUND THEN GET RECORD AND DISPLAY CURRENT INFO.
22-60 Model 204

*
READ.SCRN:READ SCREEN UPDATE
CANCEL: IF %UPDATE:PFKEY EQ 3 THEN
 SKIP 3 LINES
 PRINT ’REQUEST CANCELLED - RECORD -
 NOT UPDATED’ AT COLUMN 10
 STOP
 END IF

GET.EMP: FIND ALL RECORDS FOR WHICH
 ENUM=%UPDATE:NBR
 END FIND
CT.RECS: COUNT RECORDS IN GET.EMP
 IF COUNT IN CT.RECS EQ 0 THEN
 %UPDATE:MSGLINE =-
 ’**THERE IS NO EMPLOYEE WITH THIS -
 RECORD NUMBER PLEASE CHANGE OR PRESS
PF3**’
 READ SCREEN UPDATE
 %UPDATE:MSGLINE=’’
 JUMP TO CANCEL
 END IF
*
* RETRIEVE CURRENT INFO TO DISPLAY ON SCREEN
*
GET.INFO: FOR EACH RECORD IN GET.EMP
 %UPDATE:NAME=NAME
 %UPDATE:AGE=AGE
 %UPDATE:SEX=SEX
 %UPDATE:PHONE=PHONE
 %UPDATE:POSITION=POSITION
 %UPDATE:DEPARTMENT NO=DEPT
 %UPDATE:SUPER=SUPERVISOR
 %UPDATE:SALARY=SALARY
 %UPDATE:DATE=SDATE
 FOR %I FROM 1 TO 4
 %ADDR=’UPDATE:ADDRESS’ WITH %I
 :%ADDR=ADDRESS(%I)
 END FOR
 END FOR

 %UPDATE:MSGLINE =-
 ’ **TYPE OVER CURRENT INFO TO CHANGE OR -
 PRESS PF3 TO QUIT**’
 READ SCREEN UPDATE
 %UPDATE:MSGLINE=’’
 IF %UPDATE:PFKEY EQ 3 THEN
 SKIP 3 LINES
 PRINT ’REQUEST CANCELLED - RECORD NOT -
 UPDATED’ AT COLUMN 10
 STOP
 END IF
 IF NOT $CHKMOD(’UPDATE’) THEN
 SKIP 3 LINES
User Language Manual 22-61

 PRINT ’NO CHANGES WERE ENTERED - RECORD
-
 NOT UPDATED’ AT COLUMN 10
 STOP
 END IF

*
* UPDATE CURRENT EMPLOYEE RECORD
*
UPDT.REC: FOR EACH RECORD IN GET.EMP
 CHANGE NAME TO %UPDATE:NAME
 CHANGE AGE TO %UPDATE:AGE
 CHANGE SEX TO %UPDATE:SEX
 CHANGE PHONE TO %UPDATE:PHONE
 CHANGE POSITION TO %UPDATE:POSITION
 CHANGE DEPARTMENT NO TO %UPDATE:DEPT
 CHANGE SUPERVISOR TO %UPDATE:SUPER
 CHANGE SALARY TO %UPDATE:SALARY
 CHANGE DATE TO %UPDATE:SDATE
 FOR %I FROM 1 TO 4
 %ADDR=’UPDATE:ADDRESS’ WITH %I
 CHANGE ADDRESS(%I) TO :%ADDR
 END FOR
 END FOR
*
* DISPLAY SUCCESSFUL COMPLETION MESSAGE
*
UPDT.GOOD: SKIP 3 LINES
 PRINT ’EMPLOYEE RECORD SUCCESSFULLY
UPDATED’ -
 AT 10
 STOP
END
22-62 Model 204

Line-at-a-time terminal support
Although the full-screen features described in this chapter are oriented to the
use of IBM 3270 video display terminals, requests that invoke menus and
screens can be run from line-at-a-time terminals as well. Model 204
automatically changes its mode of full-screen operation to match the
characteristics of the line-at-a-time terminal.

The following discussion applies to all line-at-a-time terminals.

Menus

Menu output is handled on a line-by-line basis. When a READ MENU
statement is issued, each line of the menu is displayed on a separate terminal
line, preceded by the system-generated selection number. At the end of the
menu, Model 204 prompts the terminal operator by displaying:

ENTER SELECTION, CR FOR n

where n is the current value of %menuname:SELECTION. If the terminal
operator enters an invalid menu selection number, Model 204 reprompts.

If the terminal operator decides not to view the entire menu, the attention key
(for example, BREAK or ATTN) can be pressed to stop the display. Model 204
then skips automatically to the ENTER SELECTION prompt shown above.

Pressing the attention key at any time other than when a menu is being
displayed either causes the ON ATTENTION unit (if present) to be executed or
the request to be cancelled.

When a PRINT MENU statement is issued and output is sent to a line-at-a-time
terminal, each line of the menu is sent a row at a time. Item spacing from the
menu definition is preserved.

Screens

All screen inputs and outputs are handled on a line-by-line basis. When a
READ SCREEN statement is issued, each TITLE, PROMPT, and INPUT
statement included in the screen definition is handled as a separate interaction
with the terminal. The titles, prompts, and default input values are shown in the
order of appearance in the screen definition. Titles and prompts are displayed
on separate lines on the terminal. Consecutive prompts that have no
intervening INPUT statements are displayed on the same line. Every INPUT
statement included in the request causes the terminal operator to be prompted
for input.

If an input item already has a value when the READ is issued, the value is
displayed as follows:

DEFAULT:value
User Language Manual 22-63

The user can indicate acceptance of the default value by pressing carriage
return. Alternatively, the user can enter a new value.

If an invisible item is specified, the item is preceded by a user-specified prompt,
or by the default prompt:

INVISIBLE INPUT:

Default values of invisible items are not displayed.

If an input value has automatic validation options specified for it; see the section
titled “Screen manipulation” on page 22-48. Model 204 checks the response
immediately, and the user is not able to proceed until a correct value is entered.
Note, however, that if the NO REREAD option was specified in the READ
statement, Model 204 moves on to the next item whether or not the terminal
operator enters the correct value.

The operation of the REREAD SCREEN statement is similar to that of READ
SCREEN. REREAD displays the title:

THE FOLLOWING ITEMS HAVE INVALID VALUES:

before the user-specified title. Following these titles, only items that have been
tagged as errors are displayed. The prompt preceding the tagged input item in
the screen definition is displayed, followed by the tagged input.

When a PRINT SCREEN statement is issued and output is to a line-at-a-time
terminal, each line of the screen is sent a row at a time. Item spacing from the
screen definition is preserved.
22-64 Model 204

23
Application Subsystem
Development

In this chapter

• Overview

• Subsystem design components

• Command line global variable

• Communication global variable

• Error global variable

• Precompiled and non-precompiled procedures

• Subsystem procedures

• Security options

• Operating options

• Subsystem processing flow

• Parallel Query Option/204 considerations

• Subsystem design considerations

• Record locking considerations

• Subsystem procedure control functions

• Subsystem development tools
User Language Manual 23-1

Overview
Although only a system manager can define a subsystem, the determination of
a subsystem’s options and components typically also involves the file manager
and application developer. This chapter focuses on subsystem facility topics
most relevant to the application developer:

The Subsystem Management facility of Dictionary lets you define a collection
of procedures to Model 204 as a subsystem and to assign certain
characteristics to that subsystem.

Advantages of subsystems

The following table summarizes the advantages of subsystems over other User
Language procedure applications:

Subsystem definition

The characteristics and components of a subsystem are defined to Model 204
by the system manager during a process called subsystem definition. The
defined options and components are stored in the system file CCASYS. Once
a subsystem has been defined, all Dictionary users can display the options and
components through Dictionary. For more information about:

Advantage Subsystems…

Minimal end-user
intervention

Require minimal knowledge of Model 204. The end user need
not know what files and procedures exist for the application. The
subsystem is invoked simply by entering the subsystem name
as a Model 204 command.

Driver facility Eliminate the need for user-written drivers containing
conditional INCLUDEs based on a global variable. This driver
facility leads to smaller, more modular procedures that are
easier to maintain and enhance.

Performance
improvements

Improve performance by saving and reloading compiled User
Language requests, called precompiled procedures. Depending
upon how often precompiled procedures are included, 20–90%
of the operating costs of a Model 204 application can be saved.

Error handling
facilities

Trap and handle Model 204 errors in a single, centralized
routine. Each subsystem can have one error procedure that is
invoked each time a Model 204 error occurs during that
subsystem’s processing. Model 204 provides facilities for
determining the type of error that caused the error procedure to
be invoked.

Security facilities Either allow or restrict access to the subsystem.

Parallel Query
Option/204
compatibility

Can be defined to allow referral to remote files and scattered
groups.
23-2 Model 204

• Displaying a subsystem definition, see the Model 204 System Manager’s
Guide.

• Defining subsystems that refer to remote files and scattered groups, see
the Parallel Query Option/204 User’s Guide.
User Language Manual 23-3

Subsystem design components
During subsystem definition, the components listed below can be defined.
These components impact various aspects of subsystem design. The following
table summarizes the required component designations.

Component Subsystem design requires designation of…

Command line global
variable

(Optional) parameter global variable. The parameter global
variable allows any parameters specified by a user during a
subsystem login to be stored in this variable and retained
when control is transferred to another subsystem.

Communication
global variable and
exit value

Communication global variable and exit value. The
communication global variable is used to transfer control
from one procedure to another. The exit value is used to
leave the subsystem. Optionally, a reserved global variable
is available for transferring control between subsystems.

Error global variable Error global variable. If an error occurs while the subsystem
is executing, a three-character error code is stored in this
variable. This code can then be used by an error procedure
to determine the action to be taken by the subsystem.

Prefix designations Two prefixes for procedure names. These prefixes allow
Model 204 to determine whether a procedure can be saved
in its compiled form for later evaluation.

Processing
components

Specific procedures for types of special processing. These
procedures allow Model 204 to determine the flow of control
within a subsystem.
23-4 Model 204

Command line global variable
A command line global variable allows you to store any parameters specified
by an end user during a subsystem login and retain this information when
control is transferred to another subsystem. The designation of a command line
global variable is optional.

Using the command line global variable

The command line global variable is used in the following manner:

• A user logs into a subsystem by entering the subsystem name followed by
the parameter information. The total length of the parameter information
entered by the user can consist of as many as 255 characters. (The portion
of the command line reserved for parameter information is discarded if no
parameter information is defined.)

• The portion of the input following the subsystem name is placed into a
command line global variable, which then is available to the application
program. For example:

PAYROLL parameter1 parameter2

is the command that logs the current user into the subsystem named
PAYROLL. The string parameter1 parameter2 is the subsystem command
line and is made available to the application via a global variable. If CMDL
is the name assigned to the command line global variable, the following
statements:

BEGIN
 %CMD.LINE = $GETG(’CMDL’)
 %FIRST.PARM =
 $SUBSTR(%CMD.LINE,1,$INDEX(%CMD.LINE,’ ’)-1)

would assign the contents of the command line used to enter the
subsystem to %CMD.LINE and the first parameter of the line to
%FIRST.PARM.

Transferring control to another subsystem

The contents of command line global variables are not deleted when control is
transferred from one subsystem to another. A request can set the contents of
the command line global variable of the destination subsystem before
transferring control to that subsystem. The effect is the same as if the
parameters were entered on the user’s terminal.

Impact of the UTABLE command

The contents of the command line global variable are not deleted by UTABLE
commands which normally delete the contents of GTBL, as long as the
UTABLE command is issued from within a subsystem.
User Language Manual 23-5

Communication global variable

Transferring control

A communication global variable lets you transfer control at two levels:

Transferring control between procedures

Subsystem procedures pass control from one to another through the use of the
communication global variable. The communication global variable name for a
subsystem is specified in the subsystem definition. Each subsystem procedure
must set the value of the communication global variable to the name of the next
procedure to be executed.

Example For example, the subsystem AUTOS has procedures PRE-MAIN.MENU and
PRE-RPT.PGM and the communication global variable NEXT.
PRE-MAIN.MENU is currently executing and wants to pass control to
PRE-RPT.PGM. Before PRE-MAIN.MENU finishes, the function $SETG is
used to store procedure name PRE-RPT.PGM in NEXT:

IF $SETG(’NEXT’,’PRE-RPT.PGM’) THEN …

After PRE-MAIN.MENU ends, Model 204 examines NEXT and begins
executing PRE-RPT.PGM.

Subsystem exit value

A subsystem is exited by setting the value of the communication global variable
to the subsystem exit value. The exit value for the communication global
variable is also specified in the subsystem definition.

For the AUTOS subsystem used in the preceding example, the exit value of the
communication global variable is defined as EXIT. To disconnect the user from
the AUTOS subsystem after procedure PRE-RPT.PGM is finished executing,
PRE-RPT.PGM assigns the exit value, EXIT, to the communication global
variable, NEXT.

IF $SETG(’NEXT’,’EXIT’) THEN
 .
 .
 .

From… Control is transferred by a…

One procedure to another User-designated global variable.

One subsystem to another Reserved global variable named XFER.
23-6 Model 204

Transferring control between subsystems

One subsystem can invoke another subsystem by transferring control from
itself to another subsystem. To accomplish this, you must perform these steps:

1. Set the communication global variable to the value XFER.

2. Set the global variable XFER to the name of the subsystem to which con-
trol is being passed.

When the current procedure finishes executing, Model 204 disconnects the
user from the old subsystem, transfers control to the new subsystem, and
invokes the login procedure for the new subsystem.

Design considerations

You should consider the following factors when coding logic for transferring
control between two subsystems:

• The transfer always invokes the login procedure of the subsystem receiving
control. For more information on the login procedure, refer to the discussion
“Subsystem processing flow” on page 23-27.

• The destination subsystem must be active. The $SUBSYS function should
be used to determine if the subsystem to which control is being transferred
is active; refer to the discussion on “Subsystem procedure control
functions” on page 23-38. If the destination subsystem does not use the
automatic start option, (see “Operating options” on page 23-23), the
subsystem must be started before control is passed.

• The destination subsystem should not reset LGTBL if any parameters are
passed in global variables.

• To return to the original subsystem, a global variable must be set to the
name of the original subsystem. The communication global variable and the
XFER global variable can then be used with the global variable that stores
the subsystem name to return control to the original subsystem.

• The destination subsystem can return control to the procedure that the user
was in when the user transferred. To do this, the subsystem must save the
name of the procedure in a global variable. In addition, the login procedure
must contain logic to return control to the procedure that the user was in.

• If the transferring subsystem is in test mode (see “Security options” on
page 23-20), the transferring subsystem stops after it passes control. The
destination subsystem is not placed in test mode.

Example The following request in procedure PRE-SUB.MENU provides an example of
subsystem transfer code. CREDIT and AUTOS are two defined subsystems
with the automatic start option. (See “Automatic start” on page 23-23.)
Subsystem CREDIT transfers control to AUTOS by setting NEXT (the
communication global variable) to XFER and the global variable XFER to
User Language Manual 23-7

AUTOS. After the PRE-SUB.MENU procedure ends, the user is connected to
AUTOS.

BEGIN
.
.
.
*SELECTION = 4 INDICATES CHOICE OF AUTOS SUBSYSTEM
*
SEL.AUTOS: IF %CREDITMENU:SELECTION = 4 AND -
 $SUBSYS(’AUTOS’) =1 THEN
 IF $SETG(’XFER’,’AUTOS’) OR -
 $SETG(’NEXT’,’XFER’) OR -
 $SETG(’SUBFROM’,’CREDIT’) OR -
 $SETG(’PROCFROM’,’PRE-SUB.MENU’)
THEN
 PRINT ’GLOBAL TABLE FULL’
 END IF
 JUMP TO GET.NEXT
 .
 .
 .

Coding considerations

• Procedures to which control is passed via the communication global
variable must be stored in a designated procedure file. The procedure file
is the default file for a subsystem application unless the default file is
explicitly changed by a DEFAULT command or overridden by an IN clause.

• Each procedure must set the communication global variable to indicate the
next procedure to be included. If this variable is not set, an error or loop
occurs.

• To exit the subsystem, the communication global variable must be set to
the exit value. Server table sizes and other parameters should be reset to
the values existing prior to entering the subsystem so that the user is
returned to his/her normal operating environment. Parameter values are
restored automatically when the automatic login option is used.
23-8 Model 204

Error global variable
The name of the error global variable must be specified in the subsystem
definition. Whenever an error is detected that is not trapped by an ON unit,
Model 204 automatically sets the subsystem’s error global variable to a value
which indicates the type of error that occurred.

Error code values

Table 23-1 lists the error global variable values and their corresponding
causes. Correct the cause of the error and/or change your error procedure as
discussed in “Error procedures” on page 23-10.

Table 23-1. Error global variable values and reasons

Error code Reason

ATN User pressed attention

BUG Evaluation errors

CAN Request cancellation following BUMP or inactive thread
timeout

CNT Counting errors

FIL - BROKEN Referenced file is not initialized, full, or physically
inconsistent. Check the audit trail to determine the
condition of the file.

FIL - NOT OPEN Referenced file not open

GRP - FTBL FTBL too small

GRP - NOT OPEN Group not open

GRP - TEMP FIELD TEMP group field has wrong type (see “Restrictions for
temporary and ad hoc groups in precompiled
procedures” on page 23-12)

GRP - TEMP MISMATCH TEMP group has wrong type

INCLUDE MAX Maximum iterations value has been exceeded.

HNG Phone hung up, connection lost

HRD Hard restart

REC Record locking table filled up during the load of a
precompiled request

SFT Soft restart

TBL - FSCB FSCB too small

TBL - NTBL NTBL too small

TBL - QTBL QTBL too small
User Language Manual 23-9

Error procedures

An error procedure must test for different error conditions. The resulting value
stored in the error global variable helps the application programmer determine
the type of error that occurred.

• For all error codes except ATN, the error procedure should avoid re-
executing the procedure that caused the error; otherwise, the error recurs.

• In most cases, the error procedure should display an informational
message and set the global communication variable to the exit value.

• If a HNG error code is indicated, all terminal I/O (such as PRINT, READ) is
ignored.

• If a HNG, HRD, or SFT error code is indicated, no terminal I/O (such as
PRINT or READ) should be attempted. Instead, send a message to the
audit trail in an AUDIT statement that indicates the error code encountered.

Considerations for the communications global variable

The communications global variable is ignored and disconnect processing
completed when one of the following conditions occurs:

• Error is a soft restart, a hard restart, or a phone hang-up condition.

If you attempt to set the communications global variable to the name of
another procedure, the procedure is not executed.

• No error procedure is specified in the subsystem definition.

An example illustrating how a subsystem error procedure can test for different
error conditions is provided in “Error procedure” on page 23-18.

TBL - STBL STBL too small

TBL - VTBL VTBL too small

Table 23-1. Error global variable values and reasons (continued)

Error code Reason
23-10 Model 204

Precompiled and non-precompiled procedures
You can use two types of procedures in a subsystem:

• Precompiled procedure—The first time a precompilable procedure is
invoked after a subsystem starts, it is compiled and stored for re-use.
Because the compiler phase is bypassed each subsequent time the
procedure is invoked (except as noted below), precompilation saves both
CPU and elapsed time. Exceptions include the following:

– The procedure is recompiled the first time it is invoked for each
SCLASS. The new compilation is evaluated, then discarded. It does not
replace the original stored compilation.

– Further recompilations might be required due to temporary group differ-
ences. See “Recompiling precompiled procedures” on page 23-13 for
more on this.

• Non-precompiled procedure—A non-precompiled procedure is compiled
each time it is invoked.

All procedures, whether precompiled or not, are invoked using the
communication global variable.

Defining prefixes

During subsystem definition, two prefixes must be defined. The first prefix
identifies precompiled procedures; the second identifies non-precompiled
procedures. All procedures that are included for the subsystem through the use
of the communication global variable (such as the login and main processing
procedures) must have names that begin with one of these prefixes.

Contents of subsystem procedures

Subsystem procedures can contain Model 204 commands, a request, multiple
requests, continued requests, sections of User Language code (for example,
subroutines), or any combination thereof. However, the form of the procedure
affects whether the procedure can be precompiled and should be taken into
account when the subsystem is designed. Restrictions for precompiled
procedures are discussed in detail below.

Shared versions of precompiled procedures

Server I/O can be reduced by allowing users executing shared precompiled
procedures to use a shared version of QTBL. See the Model 204 System
Manager’s Guide for more information.
User Language Manual 23-11

Restrictions for precompiled procedures

Model 204 must ensure that all of the code compiled and saved for a request
with the precompiled prefix is consistent for all loading users. To achieve
consistency, Model 204 restricts the way in which certain features are used.

Note the following restrictions for precompiled procedures when designing
subsystem procedures:

• Procedures must contain exactly one request. Procedures must not contain
any commands other than BEGIN. The last statement must be END or END
MORE.

• Requests cannot start with MORE.

• Requests must not refer to files or permanent groups that are not
mentioned in the subsystem definition.

• Precompiled procedures can contain the User Language INCLUDE
statement. The included procedures must be from a subsystem file. Any
code inserted as a result of an INCLUDE statement is subject to all the
restrictions for precompiled procedures.

• Compiler table sizes must be the same each time a precompiled procedure
is invoked. The UTABLE command should be used carefully.

• Dummy strings (??, ?$, ?&) in precompiled procedures are resolved only
during compilation for the first user.

• If a subsystem file is referenced by a precompiled procedure, no user can
RESTORE or INITIALIZE the file, or RENAME, DELETE, or REDEFINE a
field while the subsystem is active.

• Procedures in UNLOCKed members of a PROCFILE GROUP are not
precompiled.

Restrictions for temporary and ad hoc groups in precompiled procedures

Precompiled requests can refer to temporary or ad hoc groups as long as the
files making up the group are specified in the subsystem definition. A temporary
group of the same name must have the same composition characteristics for
all loading users, as described below. If this condition is not met, Model 204
sets the error global variable to GRP-TEMP MISMATCH (see “Error global
variable” on page 23-9).

• The temporary group for all loading users must be the same type.
Model 204 assigns a type, based on the following file conditions:

– Some files have record security.

– All files are sorted or all are hashed.

– The sort or hash key has the same name in all files.
23-12 Model 204

• Fields of the same name in the temporary group must be of the same type.
Each field referenced in a temporary group each time a precompiled
procedure is invoked must be found in a file. If this condition is not met,
Model 204 sets the error global variable to GRP-TEMP FIELD (see “Error
global variable” on page 23-9).

Field definition attributes can change for fields in temporary groups
between compile and loading time. The following changes are allowed:

– If the field is NON-CODED in any file at compile time, it can be CODED
in all files at loading time.

– If the field is BINARY or FLOAT in any file at compile time, it can be
STRING in all files at loading time.

– If the field is non-NUMERIC RANGE in any file at compile time, the field
can be NUMERIC RANGE in all of the files at loading time.

Recompiling precompiled procedures

When designing applications which use precompiled procedures and
temporary groups, be aware that temporary groups can cause Model 204 to
recompile precompiled procedures under certain conditions.

Precompiled procedures are recompiled when the request references a
temporary group and the:

• Compiling user’s temporary group consists of files which are smaller than
one or more of the files in the loading user’s temporary group of the same
name.

• Compiling user’s temporary group has fewer files than the loading user’s
temporary group of the same name.

• Update and retrieve privileges do not match those of the compiling user’s
temporary group (of the same name).

If one user’s temporary group contains one large file, and another user’s
temporary group contains a number of smaller files, it is possible that a
precompiled procedure is recompiled every time it is invoked. To prevent
constant recompiling when files are of different sizes, compile temporary
groups originally with the largest files and the greatest number files you expect
to be included in the temporary group.

If, despite precautions, Model 204 must discard and recompile a precompiled
procedure, the loading user must have exclusive access to that procedure—no
other user can be executing the procedure within the same subsystem. If
another user is executing the procedure, the loading user recompiles a private
copy of the procedure. Model 204 discards the private copy when execution
has completed.
User Language Manual 23-13

Procedure compilation and Parallel Query Option/204

When a non-precompiled procedure that references remote files is invoked,
one or more remote nodes participate in the compilation and evaluation. When
a precompiled procedure is invoked, Model 204 loads the procedure on each
of the nodes that participated in the original compilation.

When a subsystem member becomes unavailable during evaluation, the
appropriate ON unit is activated.

Errors which occur while loading a remote procedure produce error messages
which have the prefix RMT in the global error variable.

Saving compilations

As part of the compilation process, a list of remote nodes referenced in the
request is generated with the compiled code. When compilation is complete,
the compilation is saved along with the list of nodes. Each remote node
referenced in the request is sent a signal to save the compilation.

If for any reason a compilation cannot be saved by a server node, the entire
save operation fails.

Loading saved compilations

At the client node, the saved remote node reference list is checked to see which
nodes are loading the request. When the request is loaded on the client, a
signal is transmitted to each referenced server node to load the compilation.

New and missing nodes

A temporary group can be changed so that a node is new (not previously
referenced) or missing (referenced but no longer available). Table 23-2 shows
how new and missing nodes affect recompilations and saves.

Recompiling saved requests

Saved requests are always recompiled if a new node is introduced into a
temporary group. Recompilation can cause a noticeable delay in response
time.

Table 23-2. Temporary groups with new and missing nodes

If there are
missing nodes...

If there are no
missing nodes....

And there are new nodes... Recompile the
procedure, do not save

Recompile and save
again

And there are no new nodes... Just load and evaluate Just load and evaluate
23-14 Model 204

In addition, the following changes in the composition of a subgroup also force
recompilation of a request. A subgroup is the group of files at a server node
referenced as a part of a group.

Model 204 recompiles saved requests when:

• The number of files in the subgroup has increased (for example, if a user’s
request includes a file that was unavailable to the previous user)

• The maximum number of segments in a subgroup has increased
User Language Manual 23-15

Subsystem procedures

Types of subsystem procedures

Subsystem development involves writing the collection of procedures that
make up a subsystem. Subsystem procedures can be categorized as one of
four types:

Guidelines and restrictions

• Procedures should be small and modular.

• Included procedures normally are included by using the INCLUDE
command. Included procedures cannot be precompiled.

• Non-subsystem files can be opened and referenced only by non
precompiled procedures.

• If a subsystem file is referenced by a precompiled procedure, no user can
RESTORE or INITIALIZE the file, or RENAME, DELETE, or REDEFINE a
field while the subsystem is active.

• A subsystem procedure cannot issue the CREATE command for a
subsystem file.

• LXTBL and LFTBL cannot be reset from within a subsystem procedure.

• All DO YOU REALLY WANT TO messages are suppressed and the default
action is assumed. The default action for each type of message is listed in
the Model 204 Messages Manual.

If you do not wish the default action to be executed, statements to handle
a situation that would invoke the message should be added to the
procedure.

Initialization procedure

The initialization procedure stores instructions for tasks you need to perform
each time the subsystem is initialized. An example of such a task is the
initialization of a particular work file.

Procedure category Performs…

Initialization Specified operations each time the subsystem is
initialized.

Login As the entry point for each user of the subsystem.

Main processing Specific tasks of the subsystem.

Error Error handling.
23-16 Model 204

The initialization procedure is optional. If a subsystem uses an initialization
procedure, the procedure name must be specified in the subsystem definition.

Login procedure

The login procedure performs the start up for each user of an application. Every
time a user invokes the subsystem, Model 204 automatically includes the
subsystem login procedure.

The login procedure name must be specified in the subsystem definition.

Typically, the login procedure is used to store current server table sizes in the
global variable table for later reference, issue UTABLE commands to set
compiler table sizes for the subsystem, and set the communication global
variable to the name of the procedure that displays an initial menu.

Example Here is a sample login procedure:

CLEARG
BEGIN
IF $SETG(’NTBL’,$VIEW(’LNTBL’)) OR -
 $SETG(’VTBL’,$VIEW(’LVTBL’)) OR -
 $SETG(’QTBL’,$VIEW(’LQTBL’)) OR -
 $SETG(’STBL’,$VIEW(’LSTBL’)) OR -
 $SETG(’FSCB’,$VIEW(’LFSCB’)) OR -
 $SETG(’LECHO’,$VIEW(’LECHO’)) OR -
 $SETG(’NEXT’,’PRE-MAIN.MENU’) THEN
 PRINT ’GTBL FULL’
END IF
END
UTABLE LNTBL=450,LQTBL=2300,LVTBL=600,LSTBL=3300
UTABLE LFSCB=5000
RESET LECHO 0

Main processing procedures

Main processing procedures perform the specific tasks of the subsystem.
There can be as few or as many main processing procedures as necessary for
the subsystem to perform its tasks. Main processing procedures are not
specified in the subsystem definition. However, each procedure must follow the
procedure naming conventions and subsystem coding rules discussed in this
chapter.

Example Here is a sample procedure:

BEGIN
MENU MAINMENU
 TITLE ’AUTO INSURANCE SYSTEM (MAIN MENU)’ AT 10
BRIGHT
 MAX PFKEY 12
 SKIP 5 LINES
User Language Manual 23-17

 PROMPT ’MAINTENANCE’ AT 10 BRIGHT
 SKIP 2 LINES
 PROMPT ’REPORTING’ AT 10 BRIGHT
 SKIP 2 LINES
 PROMPT ’EXIT’ AT 10 BRIGHT
END MENU
 %NEXT = ’X’
 REPEAT WHILE %NEXT = ’X’
 READ MAINMENU
 IF %MAINMENU:SELECTION = ’1’ THEN
 %NEXT = ’PRE-MAINT.PGM’
 ELSEIF %MAINMENU:SELECTION = ’2’ THEN
 %NEXT = ’PRE-RPT.PGM’
 ELSE %NEXT = ’NON-FINISH’
 END IF
 END REPEAT
CHK.GTAB: IF $SETG(’NEXT’,%NEXT)THEN
 AUDIT ’GLOBAL TABLE FULL - "NEXT"’
 END IF
END

Error procedure

An error procedure, which is optional, performs error handling. This procedure
is invoked when a condition occurs that cannot be trapped by the executing
procedure (for example, a compiler error or an attention with no ON
ATTENTION unit coded). An error procedure tests for different error conditions
and determines the next procedure to execute, based on the error code value
stored in the error global variable. Terminal I/O in a subsystem error procedure
following a BUMP or inactive thread timeout results in cancellation of the
procedure.

Example The following error procedure assumes that the error global variable name is
ERRCLASS, the communication global variable name is NEXT, and the exit
value of the communication global variable is EXIT.

PROCEDURE SYS-ERROR
BEGIN
*
* GET THE VALUE OF THE ERROR CLASS GLOBAL VARIABLE
*
GET.VALUE: %ERRORCODE = $GETG(’ERRCLASS’)
*
* IF THE USER HIT ATTENTION, INCLUDE THE MAIN MENU
SCREEN
*
IF.ERROR: IF %ERRORCODE = ’ATN’ THEN
 %NEXT = ’SYS-MAIN-MENU’
*
* IF PHONE WAS HUNG UP, OR ANY KIND OF RESTART, THEN
AUDIT
* MESSAGE AND EXIT. DO NOT ATTEMPT ANY TERMINAL I/O
23-18 Model 204

* SINCE USER IS NO LONGER CONNECTED.
*
 ELSEIF %ERRORCODE = ’HNG’ OR -
 %ERRORCODE = ’SFT’ OR -
 %ERRORCODE = ’HRD’ THEN
 AUDIT ’SUBSYSTEM ERROR CODE: ’ -
 WITH %ERRORCODE
 %NEXT = ’EXIT’
*
* CHECK FOR BROKEN FILE
*
 ELSEIF %ERRORCODE = ’FIL - BROKEN’ THEN
 PRINT ’ SUBSYSTEM FILE IS BROKEN’
 PRINT ’ CONTACT YOUR FILE MANAGER
’
 %NEXT = ’EXIT’
*
* SOME UNACCOUNTABLE ERROR HAS OCCURRED, SET EXIT
* ROUTINE, AND EXIT WITHOUT DOING ANY TERMINAL I/O.
*
 ELSE
 AUDIT ’NOT ACCOUNTED FOR SUBSYSTEM
ERROR CODE: ’ -
 WITH %ERRORCODE
 %NEXT = ’EXIT’
 END IF IF.ERROR
*
* SET COMMUNICATIONS VARIABLE TO EXIT VALUE
*
COMM.VAR: IF $SETG(’NEXT’,%NEXT) THEN PRINT ’GTBL
FULL’
 END IF
END.REQUEST:
END
User Language Manual 23-19

Security options
During subsystem definition, various options are specified for a subsystem.
Security options determine subsystem command and file and group privileges
assigned to a user.

You can also specify system operation options during subsystem definition.
System operation options are discussed in the section titled “Operating
options” on page 23-23. For a detailed discussion of subsystem definition
options, refer to the Model 204 System Manager’s Guide.

Status of subsystem

The status of the subsystem affects the type of subsystem security that is
implemented. The subsystem can have one of three status settings:

User class

The set of privileges assigned to a user is based on the user’s subsystem user
class or SCLASS. The SCLASS is used by Model 204 to determine the
privileges assigned for each file and group in the subsystem when files are
opened for the user. File and group privileges must be specified in the
subsystem definition because Model 204 bypasses OPENCTL parameter
settings and file passwords when opening subsystem files and groups for each
user. Whenever the user invokes the subsystem, he/she is assigned the file
and group privileges of that subsystem user class.

The SCLASS also determines whether or not the user can issue any of the
subsystem control commands listed below. If Model 204 discovers that the user

Status setting Allows access to…

Public All users. All users who enter a public subsystem are assigned to
the single subsystem user class and have the same set of
privileges.

Semipublic All users but permits different privileges to be assigned for each
user. In a semipublic subsystem, one subsystem user class can
be defined as the default class for all users not specifically
assigned to another subsystem user class.

Private Only to specified users. Using a private subsystem prevents any
unauthorized entry into the subsystem. All users who are allowed
access must be assigned to one of the defined user classes.
Unlike a semipublic subsystem, a private subsystem has no
default user class.
23-20 Model 204

does not have the correct privileges to issue a command, an error message is
displayed.

Note: Several aspects of START SUBSYSTEM and STOP SUBSYSTEM
processing are unique to distributed applications. For a discussion, see the
Parallel Query Option/204 User’s Guide.

Processing of security violations

The application subsystem traps security violations that occur while a user is
running in a subsystem. File read and update security violations, procedure
security violations, and field level security violations are interpreted as
compilation or evaluation errors in the error global variable. The audit trail
messages produced when the error occurred can be examined in order to
identify a compilation or evaluation error as a security violation.

Compiling procedures with a different SCLASS

In the following situation, Model 204 saves User 1’s compilation:

1. There are multiple SCLASSes for a subsystem.

2. User 1 saves a procedure under SCLASS 1.

3. User 2, under SCLASS 2, recompiles the procedure.

Subsystem
control commands Directs Model 204 to…

DEBUG
SUBSYSTEM

Establish a test environment for a multiuser version of the
TEST command extension. The subsystem does not have
to be stopped to issue the DEBUG command.

When a user enters a subsystem in TEST or DEBUG
mode, the user’s MSGCTL parameter setting is not
changed. All error and informational messages that are
not suppressed by the user’s MSGCTL setting are
displayed on the user’s terminal.

START SUBSYSTEM Activate the subsystem and make it available for use. If the
subsystem is inactive when the START command is
issued, Model 204 opens all the subsystem files and
includes the subsystem initialization procedure.

STOP SUBSYSTEM Stop the subsystem and make it unavailable for use. Once
a subsystem is stopped and all users have exited, then all
locking and storage resources held by the subsystem are
released and all the subsystem files and groups are
closed.

TEST Establish a single user test environment. The TEST
command is extended to TEST DEBUG SUBSYSTEM.
The subsystem must be stopped to enter TEST mode.
User Language Manual 23-21

4. User 2’s global variables contain different information from User 1’s so
User 2 tries to open different files or groups than User 1.

However, User 2’s compilation is not saved: User 2 receives an error message:

M204.0468: COMPILATION NOT SAVED - reason
23-22 Model 204

Operating options
Operating options affect certain aspects of the overall behavior of a subsystem.
Operating options are distinct from security options, which are discussed on
“Security options” on page 23-20. Subsystem options are also discussed in the
Model 204 System Manager’s Guide.

The following table lists the operating options and what they determine.

Automatic start

If the automatic start option is selected, Model 204 invokes subsystem
initialization when the first user attempts to enter the subsystem. The
subsystem can be used without a privileged user first issuing the START
SUBSYSTEM command.

If the automatic start option is not selected, subsystem initialization occurs only
when the START SUBSYSTEM command is issued. The subsystem is then
available for use.

Locking files and groups for subsystem use

If the locking files and groups option is selected, Model 204 prevents users that
are not running in the subsystem from opening any of the subsystem files or
groups while the subsystem is active.

Operating option Determines whether…

Automatic start Subsystem automatically starts for the first user entering the
subsystem.

Locking files and
groups for
subsystem use

Users from outside the subsystem can open and update
subsystem files while the subsystem is active.

Automatic login Users are automatically logged into Model 204 upon
entering a subsystem.

Automatic logout Users are automatically logged out of Model 204 upon
exiting a subsystem.

Automatic COMMIT Any outstanding updates are committed automatically
whenever a subsystem procedure ends and transfers
control using the communications global variable.

Message displays Disconnect, informational, and error messages are
displayed for subsystem users.

File usage Subsystem can run when one or more files used by the
subsystem are unavailable for use.
User Language Manual 23-23

If the locking files and groups option is not selected, users from outside the
subsystem can retrieve, modify, or delete records in a subsystem file while the
subsystem is active.

Automatic login

If the automatic login option is selected, Model 204 logs on the user when the
user enters a subsystem. The user is logged in using the subsystem name as
the Model 204 user ID. If the user already has logged into Model 204 before
entering the subsystem, Model 204 first closes all the user’s files and logs out
the user.

The LOGOUT operations that occur as a result of Automatic Login (both at
subsystem Login and Disconnect) ignore the SYSOPT=8 (DISCONNECT on
LOGOUT) option.

If the login option is not selected, the user’s Model 204 user ID is used during
subsystem processing.

Automatic logout

If the automatic logout option is selected, the user is logged out of Model 204
upon exiting the subsystem. This option is particularly useful when combined
with the automatic disconnect feature of Model 204.

The START SUBSYSTEM command ignores the SYSOPT=8 option for the
Automatic Logout subsystem.

If the automatic logout option is not selected, Model 204 logs the user out of the
subsystem in one of three ways:

• If the user was previously logged into Model 204, Model 204 restores the
user’s original user ID and returns the user to the Model 204 command
environment.

• If the user was not previously logged into Model 204, the user is logged out
of Model 204.

• The SYSOPT=8 option causes the user to be disconnected from
Model 204.

Automatic COMMIT

If the automatic COMMIT option is selected, Model 204 automatically issues a
COMMIT statement for any outstanding updates whenever a subsystem
procedure terminates and transfers control using the communication global
variable. If the COMMIT option is not selected, the application must issue the
COMMIT statement to commit any pending updates.
23-24 Model 204

Message displays

Model 204 provides these message display options for subsystem users:

• Disconnect message display

• Model 204 informational message display

• Model 204 error message display

When a message display option is selected, messages of that type are
displayed on the user’s terminal. If a message display option is not selected, all
messages of that type are not displayed on the user’s terminal. Note that if the
display of any Model 204 type message is suppressed, messages for the
corresponding type are not displayed on the user’s terminal, but are written to
the audit trail file (CCAAUDIT).

Typically, subsystem applications are written so that all messages displayed on
the user’s terminal are produced by the subsystem and Model 204 messages
are suppressed.

File usage

Mandatory vs. optional members

Files and permanent groups contained within the subsystem definition can be
designated as mandatory (the default) or optional members of the
subsystem:

• Mandatory members—Mandatory files or groups are automatically
opened by Model 204 when a user logs into a subsystem and automatically
closed when the user leaves the subsystem. Subsystem requests can
assume that all mandatory files are open and that they are physically
consistent. The user’s file privileges are those defined in the subsystem
definition for the current user’s SCLASS. The opening of a mandatory
member cannot be prevented by the subsystem administrator with the
STOP FILE command when the subsystem is active. A mandatory member
cannot be accessed by another copy of Model 204 until the entire
subsystem is stopped.

If a subsystem procedure issues an OPEN or CLOSE command for a
mandatory member, the command is ignored by Model 204 and the user’s
current privileges are not changed.

• Optional members—Optional files or groups provide the ability for a file or
group to be stopped by a subsystem administrator (using the STOP FILE
command) without stopping the entire subsystem. If a member is defined
as optional, it is not automatically opened during the subsystem login. It
must be opened by the application by using an OPEN/OPENC statement
or command. The file privileges assigned are those specified in the
subsystem definition for the current user’s SCLASS. The member is closed
User Language Manual 23-25

(for that user only) when the user leaves the subsystem if a CLOSE
command has not been issued.

When an optional member is not in use, it can be processed by another
copy of Model 204.

Requests that reference mandatory or optional members can be precompiled.
Files not contained in the subsystem definition can be opened and referenced
within a subsystem application, but the requests that reference those files
cannot be precompiled.

Automatic vs. manual members

Subsystem files and permanent group members can also be designated
automatic or manual:

• An automatic member is a subsystem group or file that is opened
automatically when the subsystem is started or when a user enters the
subsystem.

• A manual member is a group or file that must be opened explicitly by the
OPEN or OPENC command.

Mandatory files cannot be designated manual. Optional files can be designated
either automatic or manual.

Permanent vs. temporary groups in subsystem definitions

The GROUP parameter of the subsystem definition applies ONLY to
permanent groups. Temporary group names cannot be used. To include
temporary group members in a subsystem definition, and thus to enable their
use in precompiled code, the members of the temporary group should be
individually specified in the subsystem definition.

Summary of file definition options

Table 23-3 summarizes the subsystem file definition options.

Table 23-3. Subsystem file definition options

Subsystem
definition
option

Automatic
open and
close?

Pre-compiled
code?

Start/stop file
command
allowed?

File privileges
assigned

Mandatory Must be
automatic

Yes No SCLASS

Optional Can be
automatic
or manual

Yes Yes SCLASS

None Cannot be
automatic

No Yes File Password
23-26 Model 204

Subsystem processing flow
To design a subsystem, you must be familiar with the flow of control that occurs
during subsystem processing. Subsystem processing typically involves the
following phases:

Initialization processing

Initialization processing is invoked when the subsystem is started. A subsystem
is started by the START SUBSYSTEM command, or, if the start option is
indicated in the subsystem definition, when the first user enters the subsystem.

During subsystem initialization, Model 204 finds the subsystem definition and
opens only required subsystem files and groups. If a required file or group
cannot be opened, the subsystem initialization procedure terminates and the
user is returned to command level.

One of the subsystem components opened during initialization is the procedure
file (or group, if a multiple-procedure group has been specified). The procedure
file or group must contain all of the subsystem procedures that are included by
the subsystem through the communication global variable. Model 204 scans
the subsystem procedure file or group for all procedures whose names begin
with either of the subsystem procedure prefixes.

The subsystem initialization procedure is included at this time. This is the only
time during subsystem processing that the initialization procedure is executed.

If no error occurs, Model 204 adds the subsystem name to the list of active
subsystems. At this point, the subsystem is initialized and ready for use.

Type of
processing During this processing…

Initialization Subsystem is started and an optional initialization procedure is
included.

Login User is logged into the subsystem; the user’s privileges are
determined by the subsystem definition. The appropriate required
files and groups are opened for access.

Driver Procedures that make up the main body of the application are
included.

Disconnect All files and groups are closed for the user, who is then logged out
of the subsystem.

Error An optional error procedure is included. The type of error that
occurred is available to the error procedure. For many types of
errors, the error procedure can resume normal driver processing.
User Language Manual 23-27

Login processing

Login processing is invoked when a user enters a subsystem. If the automatic
login option is indicated in the subsystem definition, Model 204 logs on the user
using the subsystem name as the user ID. If the automatic login option is not
indicated, the user’s Model 204 user ID remains in use.

Model 204 next finds the user’s subsystem user class definition in CCASYS
and opens only the required subsystem files and groups with the privileges that
are found for that user class. The MSGCTL parameter automatically is set for
the user according to the subsystem definition.

Model 204 sets the communication global variable to the name of subsystem
login procedure and proceeds into driver processing.

Driver processing

Model 204 determines which procedure to include next by examining the value
of the communication global variable. The procedure name must be one of the
names located by the scan of the procedure file during subsystem initialization.

If either the global variable or the procedure name cannot be found, the
subsystem’s error procedure is included. If an error procedure is not specified
in the subsystem definition, the user is disconnected from the subsystem.

If the procedure name is found, Model 204 determines which prefix begins the
procedure name. Processing then occurs as follows:

• If the procedure name begins with the non-precompiled prefix, Model 204
includes the procedure for compilation and evaluation.

• If the procedure name begins with the precompiled prefix, Model 204
verifies whether the procedure was compiled previously with the set of
privileges defined by the user’s subsystem user class.

Once the compilation status of the procedure is determined, processing is
as follows:

– If the procedure was not previously compiled successfully for the set of
privileges defined by the user’s subsystem user class, Model 204
includes the procedure for compilation and evaluation. If compilation is
successful and no previous compilation was saved for the procedure,
the contents of the compiler tables are saved in the system file
CCATEMP.

– If the procedure was previously compiled successfully for the user’s
privilege set, Model 204 loads the contents of the compiler tables from
CCATEMP and evaluates the request.

Model 204 repeats driver processing until the value of the communication
global variable is set to the exit value specified in the subsystem definition.
When the communication global variable is set to the exit value, Model 204
proceeds into disconnect processing.
23-28 Model 204

Disconnect processing

Disconnect processing is invoked when the subsystem application sets the
communication variable to the exit value, when an error occurs with no
subsystem error procedure, or when a subsystem user is restarted by
Model 204. During disconnect processing, Model 204 closes all required
subsystem files and groups for the user, as well as any optional files and groups
that have not been closed by the application.

Depending upon whether the automatic logout option is indicated, the user is
then either logged out of Model 204 or returned to the Model 204 command
environment.

Error processing

Error processing is invoked whenever a Model 204 error occurs that cannot be
handled by the procedure being executed at the time. When an error is
detected, Model 204 sets the value of the error global variable.

If the subsystem has a defined error procedure, the error procedure is included
at this time. If the subsystem does not have a defined error procedure,
Model 204 proceeds into disconnect processing.

If the error trapped by the subsystem is a soft restart, a hard restart, or a
terminal disconnect condition, the error procedure is invoked. The
communication global variable is ignored when the error procedure completes
and Model 204 proceeds with subsystem disconnect processing.
User Language Manual 23-29

Parallel Query Option/204 considerations
This section introduces several terms and concepts which are unique to
subsystems that reference remote files and scattered groups. These concepts,
and related design considerations, are discussed in greater detail in the Parallel
Query Option/204 User’s Guide.

Remote file access

Parallel Query Option/204 provides access to remote files under the
Subsystem Management facility by allowing the system manager to define
client and service subsystems:

• A client subsystem is the subsystem a user is running in when requesting
access to remote data.

• A service subsystem is the subsystem on a server node that a client
user’s service thread is logged into.

A service subsystem definition is stored in the CCASYS file on each node that
the client subsystem accesses. The name of a subsystem must be the same at
each node. The location of the client node is included in the subsystem name
to uniquely identify it to the server node.

Node availability

A server node can be available or unavailable to a client subsystem.

• A node is available if the service subsystem has been successfully started.

• If the service subsystem has not been started, it does not have a subsystem
definition structure accessible to the client and is therefore unavailable.

A node can only be marked unavailable during start processing if there are
mandatory members on a server node and the service subsystem cannot be
started. If this happens, start processing also fails on the client node.

Client subsystems attempting to access service subsystems that are not
started receive an error message from the server node.

A previously available node can become unavailable when:

• Resumption of communication fails after recovering from a system failure.

• A user attempts to log into the service subsystem by logging into the client
subsystem, the service subsystem definition is not found, and at least one
mandatory member resides on that node.

• A user attempts to open a file on a node where the user was not previously
logged in.
23-30 Model 204

The user is automatically logged into all associated service subsystems when
entering a subsystem that contains remote files. If the service subsystem is
unavailable on a node, the user cannot be logged in.

File and group availability

The members of a subsystem are files and permanent groups. With Parallel
Query Option/204, members can be either automatic or manual:

• An automatic member is a subsystem group or file that is opened
automatically when the subsystem is started or when a user enters the
subsystem.

• A manual member is a group or file that must be opened explicitly by the
OPEN or OPENC command.

Members can also be either mandatory or optional:

• A mandatory member must be open in order to access a subsystem.
Mandatory members cannot be manual.

• An optional member is not required for subsystem access (start and login
processing can succeed without it).

At any given time a member can be open or closed to a subsystem or to a user
within a subsystem. The following sections explain the conditions under which
the different kinds of members are accessible to APSY subsystems and their
users.

Member availability to subsystems

Automatic members of subsystems are always opened by the START
SUBSYSTEM command or by SUBSYSTEM LOGIN. At the end of START
processing, each automatic member is open unless either the START or OPEN
failed.

Manual members of subsystems are in the closed state at the completion of
START SUBSYSTEM processing and must be explicitly opened by the user.
Manual members become open to the subsystem if an OPEN operation
succeeds. If OPEN fails due to node unavailability or for user-specific reasons
(for example, if the user’s line goes down) the member remains closed to the
subsystem.

If a node becomes unavailable to a subsystem, all automatic subsystem
members and all open manual subsystem members residing on the
unavailable node are marked disabled.

If a STOP FILE/GROUP command is issued for a manual member on the client
subsystem’s node, the member is closed to the client subsystem when the last
user closes it. If the member is located on the service subsystem node, the file
is closed to the service subsystem when the STOP is complete or the last user
closes the file.
User Language Manual 23-31

Member availability to subsystem users

When a user enters a subsystem, automatic subsystem members are opened.

If a user LOGIN or OPEN operation fails for an optional member, the member
is left closed for the user but remains available to the subsystem. If a mandatory
member cannot be opened, the user is denied access to the subsystem.

If a user LOGIN or OPEN operation fails for an already open member, the
member is left disabled for the user but remains open to the subsystem.

If an automatic mandatory member is closed to the subsystem, new users are
not allowed to enter the subsystem.

Manual members of subsystems are closed for a user within a subsystem until
the user issues an OPEN command or statement. In this case it does not matter
whether the member is open or closed to the subsystem.

If compilation and/or loading of a request fails due to a communications failure,
previously opened members on the failing node become disabled to the user.

A user can close optional members at any time by issuing the CLOSE
command.

Enabling disabled subsystem files

In the event that a subsystem file or group is marked disabled, you can enable
it (after correcting the problem) without having to bring the subsystem down. To
do this, use the ENABLE SUBSYSTEM command:

Syntax ENABLE SUBSYSTEM subsysname

 [FILE name AT location | GROUP name]

Where • subsysname is the name of the client subsystem

• location is the name of the remote node where the file is stored. Note that
the location must be explicitly specified; you cannot reference local files
with the ENABLE SUBSYSTEM command.

Intentionally disabling a subsystem file

You can make a subsystem file or group (or an entire subsystem, if a file is
mandatory) temporarily inaccessible without having to bring the subsystem
down, using the DISABLE SUBSYSTEM command:

DISABLE SUBSYSTEM sybsysname

 [FILE name AT location | GROUP name]

When a file or group is intentionally disabled with the DISABLE SUBSYSTEM
command, subsystem behavior is exactly the same as when a communications
23-32 Model 204

failure causes the disabling. This behavior is described on “Member availability
to subsystem users” on page 23-32.

Trust

As an alternative to the privilege settings normally available through the
Subsystem Management facility, the system manager at a service node can
control client subsystem access by creating a trust definition for the client
subsystem. If a client subsystem is fully or partially trusted, the trust definition
is sufficient for maintaining the relationship with the client; the system manager
at the service node does not have to create and maintain a separate set of file
and SCLASS definitions for the client subsystem.

For example, suppose a subsystem located on a node named DETROIT (the
client node) includes in its definition files located on a node named
CLEVELAND (the service node). Further, suppose the subsystem is fully or
partially trusted by CLEVELAND. In this case, the file and SCLASS definitions
are maintained only on the client node (DETROIT), and the service node
(CLEVELAND) needs only to maintain the trust definition.

The four levels of trust available with Parallel Query Option/204 are:

• Full trust—Only the subsystem name and location appear on the service
node’s definition, which you create on the Subsystem Trust screen.

• Partial trust—Along with the subsystem name and location, you can
specify maximum file privileges. In this case, the client subsystem is
trusted, but the maximum file privileges and field level security levels
specified on the Subsystem Trust screen cannot be exceeded.

– If a user requests file privileges that would exceed the maximum, the
service node does not open the file to that user.

– If a user requests a field level security status that would exceed the
maximum, Model 204 automatically resets the request to the allowed
level (that is, the maximum) and opens the file to that user.

• Restricted trust—For a subsystem that has a restricted trust definition,
you make no entries on the Subsystem Trust screen. A restricted trust
definition is based solely on entries you make on these five screens:

– Subsystem Activity

– Subsystem File Use

– Operational Parameters

– Subsystem Classes

– Subsystem Class Users

The accessibility of service node files to a client subsystem is determined
by the SCLASS, user, and file privileges that you specify on these screens.

• No trust—no subsystem service definition exists for the subsystem. The
client subsystem cannot access any files on the service node as subsystem
User Language Manual 23-33

files. The files on the service node can, however, be accessed from within
a client subsystem as individual, non-subsystem files if the following criteria
are met:

– Parallel Query Option/204 is installed at both sites.

– Horizon is installed at both sites, and there are link, processgroup, and
process definitions connecting the client node to the service node.

– For any given file, the value of the OPENCTL parameter allows remote
access (X'02', X'04', or X'08'). See the Model 204 Command Reference
Manual for detailed information on the OPENCTL parameter.

See the Parallel Query Option/204 User’s Guide for detailed information on
creating and managing trust definitions.
23-34 Model 204

Subsystem design considerations
This section presents coding considerations for subsystem procedures. Some
of the guidelines listed below also appear in earlier sections. They are
consolidated here for the convenience of the application developer.

Coding considerations

• Procedures should be small and modular.

• Procedures to which control is passed via the communication global
variable must be stored in a designated procedure file. The procedure file
is the default file for a subsystem application unless the default file is
explicitly changed by a DEFAULT command or overridden by an IN clause.

• Each procedure must set the communication global variable to indicate the
next procedure to be included. If this variable is not set, an error or loop
occurs.

• The communication global variable must be set to the exit value in order to
exit the subsystem. Server table sizes and other parameters should be
reset to the values existing prior to entering the subsystem so that the user
is returned to his/her normal operating environment. Parameter values are
restored automatically when the automatic login option is used.

• Included procedures normally are included by using the INCLUDE
command. Included procedures cannot be precompiled.

• Non-subsystem files can be opened and referenced only by non-
precompiled procedures.

• Precompiled procedures cannot reference PERM groups that are not
members of the same subsystem.

• Compiler table sizes must be the same each time a precompiled procedure
is invoked. The UTABLE command should be used carefully.

• The contents of the command line global variable are not deleted by
UTABLE commands which normally delete the contents of GTBL, as long
as the UTABLE command is issued from within a subsystem.

• Distinct group numbers are assigned to optional groups at START
SUBSYSTEM time. Those numbers cannot be used by non-subsystem
members opened within the subsystem. Thus the NGROUP limit used for
earlier releases might be exceeded during either START or OPEN
processing inside the subsystem.

• To prevent you from having the wrong file or group privileges in a
subsystem, Model 204 closes optional files and groups before entering a
subsystem. In earlier releases, optional files and groups were only closed
when you left the subsystem.
User Language Manual 23-35

Users should be aware of the following conditions when coding applications to
run under the Subsystem Management facility:

• Dummy strings (??, ?$, ?&) in precompiled procedures are resolved only
during compilation for the first user.

• If a subsystem file is referenced by a precompiled procedure, no user can
RESTORE or INITIALIZE the file, or RENAME, DELETE, or REDEFINE a
field while the subsystem is active.

• A subsystem procedure cannot issue the CREATE command for a
subsystem file.

• LXTBL and LFTBL cannot be reset from within a subsystem procedure.

• All DO YOU REALLY WANT TO messages are suppressed and the default
action is assumed.

The default action for each type of message is listed in the Model 204
Messages Manual.

If you do not wish the default action to be executed, you need to add a
message handler routine to the procedure containing the statement that
invokes the message.
23-36 Model 204

Record locking considerations
Depending upon the subsystem definition, Model 204 might place a share lock
on one or more subsystem procedure names or group names.

If the subsystem is defined with permanent groups, Model 204 locks the group
names to ensure that the group definitions do not change while the subsystem
is running. A share lock is maintained for each group while the subsystem is
active.

If subsystem files are defined as unlocked

If the subsystem definition specifies that subsystem files are unlocked,
Model 204 locks in share mode each of the subsystem procedures to ensure
that the procedures do not change or move. This prevents any user from:

• Issuing the DELETE PROCEDURE command

• Issuing the RENAME PROCEDURE command

• Updating the procedure while the subsystem is active.
User Language Manual 23-37

Subsystem procedure control functions
The User Language functions, “$SCLASS” on page 27-96 and “$SUBSYS” on
page 27-104 can be useful in determining subsystem program control.

$SCLASS function

The $SCLASS function returns the SCLASS name of the current user.
$SCLASS is useful when the transfer of control is dependent upon a user’s
privileges. For example:

 BRANCH: JUMP TO (ADD.REC, VIEW.REC, UPD.REC) -
 %MAIN.MENU:SELECTION
 .
 .
 .
 UPD.REC: IF $SCLASS = ’READ’ THEN
 IF $SETG(’NEXT’,’PRE-RPT.PGM’) THEN
 PRINT ’GLOBAL TABLE FULL’
 END IF
 ELSEIF $SCLASS = ’UPDATE’ THEN
 IF $SETG(’NEXT’,’PRE-MAINT.PGM’) THEN
 PRINT ’GLOBAL TABLE FULL’
 END IF
 .
 .
 .

$SUBSYS function

The $SUBSYS function returns a numeric value indicating the status of a
subsystem, or the name of the current subsystem (if no argument is specified).
$SUBSYS often is used to determine whether a subsystem is active before a
transfer is attempted.
23-38 Model 204

Subsystem development tools
This section describes three Model 204 features that are useful in developing,
testing and debugging subsystem procedures:

• The DEBUG and TEST commands, which assist subsystem debugging by
allowing you to display the global communications variable and specify the
next procedure to be INCLUDEd.

• Multiple procedure file groups, which allow users to change procedures
without stopping the subsystem or interfering with other users.

• The Cross-Reference facility, which produces reports on the variable
names, global dummy strings, and other language elements used in a
specified set of User Language procedures.

Debugging and testing facilities

The Model 204 DEBUG and TEST SUBSYSTEM commands assist you in
debugging subsystem code while it is being developed. Both commands
display the value of the communication global variable, prompt you for
changes, and display since-last statistics.

DEBUG differs from TEST SUBSYSTEM in the following ways:

• DEBUG can be executed by more than one user in the same subsystem at
the same time; TEST SUBSYSTEM can only be executed by a single user.

• To execute TEST SUBSYSTEM, the user must stop the subsystem, which
will be restarted in single user mode as a result of issuing the TEST
command. To execute DEBUG, the user does not have to stop the
subsystem. The DEBUG command can be issued for any subsystem that
has been started, or for any subsystem that has the AUTOSTART feature.

• Since-last statistics are provided automatically with DEBUG; they are
optional with TEST.

In general, the DEBUG command is more convenient for subsystem
developers in a multiuser environment.

To execute the DEBUG command, the user must be named to an SCLASS
which has been granted either the TEST or DEBUG privilege. The DEBUG
privilege does not entitle the user to execute the TEST command.

Syntax The format of the DEBUG command is:

DEBUG SUBSYSTEM subsystemname [parameters]

The extended format of the TEST command is:

TEST [DEBUG] [STATS] [SUBSYSTEM] subsystemname
parameters
User Language Manual 23-39

Where • DEBUG specifies that the communication global variable is displayed on
the user’s terminal before the next procedure is included. The user then has
the option of specifying a different procedure to be included next. If the user
presses ENTER without specifying a different procedure, the procedure
whose name is currently displayed is included next.

• STATS specifies that since-last statistics are displayed on the user’s
terminal after each procedure is evaluated. Since-last statistics are
described in the Model 204 System Manager’s Guide.

• SUBSYSTEM specifies that the word following the keyword is the name of
a subsystem and that parameters follow the subsystem name. This
keyword can be used to eliminate confusion when DEBUG or STATS is the
name of a subsystem or subsystem parameter.

• parameters specifies the parameters to be stored in the command line
global variable. The parameter information can be as many as 255
characters in length.

For more information on the DEBUG and TEST commands, refer to the
Model 204 Command Reference Manual.

Multiple procedure files

If “PROCFILE = *” is specified when a group is created, then several files in a
group can contain procedures. When the INCLUDE command is executed in
the context of a multiple procedure file group, files are searched in a fixed order
determined by the original CREATE GROUP command.

Multiple procedure file groups make it possible to change subsystem
procedures without having to stop the subsystem. This is accomplished by
setting GROUP=Y for the subsystem PROCFILE and by specifying NUMLK=n
(where n is less than the number of files in the group). The application
subsystem only locks procedures in the last n files in the search order
determined by CREATE GROUP.

The multiple procedure file option also allows different users to make changes
to procedures in the same subsystem without interfering with each other. The
PROCFILE GROUP specified in the subsystem definition must correspond to
a PERM GROUP. However, any individual user can create or open a TEMP
GROUP with the same name as the subsystem’s PROCFILE GROUP. If a user
has such a TEMP GROUP open and enters a subsystem, then the application
subsystem uses the TEMP GROUP instead of the subsystem’s PERM
GROUP.

The following restrictions apply to the use of TEMP GROUPs to store
application subsystem procedure files:

• The user’s SCLASS must have the TEST or DEBUG privilege.

• The last n files of the PERM GROUP (where n is set by the NUMLK
parameter) must correspond exactly to the last n files of the TEMP GROUP.
23-40 Model 204

For more information on procedure locking and the NUMLK parameter, refer to
the Model 204 System Manager’s Guide.

Cross-Reference facility

The Cross-Reference facility is a Dictionary facility that can be invoked from
both the Dictionary Main Menu and Model 204 command level. It produces
reports for users who develop and maintain Model 204 User Language
procedures.

The output reports show the line numbers where language elements such as
labels, functions, images and variable names occur in a specified set of
procedures. Elements within subroutines and nested INCLUDEs can also be
cross-referenced.

The Cross-Reference Report is produced in batch mode (by a batch job in OS
and DOS, by a service machine in CMS). Prior to submitting a cross-reference
job, the user can specify:

• A set of procedures in a procedure file or group

• A set of language elements to be cross referenced

• Substitute values for User Language global dummy strings

• Job-related parameters such as output destination and lines per page

The Cross-Reference facility also includes Preview and Browse functions,
which inform the user about the procedures selected for processing.

For a complete description of the Cross-Reference facility, refer to the
Model 204 Dictionary and Data Administration Guide.
User Language Manual 23-41

23-42 Model 204

Part V
Data Integrity

Part V provides information on:

• How Model 204 resolves conflicts between concurrently
running User Language requests

• Methods for recovering from hardware or software failures

24
Record Level Locking and
Concurrency Control

In this chapter

• Overview

• Record level locking

• FIND WITHOUT LOCKS statement

• Locking conflicts

• Record locking and release statements

• Lock pending updates

• COMMIT statement
User Language Manual 24-1

Overview
This chapter discusses aspects of request design related to concurrency
control in a multi-user environment and presents statements and Model 204
options that can be used to ensure logical consistency.

Concurrent updates

A user executing a User Language request expects that records retrieved will
not be modified by another user’s concurrent request until the user’s own
request has been completed. For example, consider these requests being run
concurrently by two users:

User 1

BEGIN
BLUE.CARS: FIND ALL RECORDS FOR WHICH
 COLOR = BLUE
 END FIND
 FOR EACH RECORD IN BLUE.CARS
 PRINT MAKE AND COLOR
 END FOR
END

User 2

BEGIN
BLUE.BUICKS: FIND ALL RECORDS FOR WHICH
 MAKE = BUICK AND COLOR = BLUE
 END FIND
 FOR EACH RECORD IN BLUE.BUICKS
 CHANGE COLOR TO RED
 END FOR
 END

User 1 expects only the make and the color BLUE to be printed. User 2’s
request must be prevented from changing User 1’s records before they are
printed.

Record locking

The technique used by Model 204 to prevent overlapping updates is called
record level locking. Conflicts arise when one or more users are reading a file
and another user attempts to update the file or when two or more users attempt
to perform file maintenance on the same records retrieved from that file.
24-2 Model 204

Record level locking

Record locking modes

Model 204 performs record level locking in two modes:

Request compilation and evaluation

Record-level locking is performed in the following manner. User Language
requests are processed in two phases: compilation and evaluation. All requests
can be compiled regardless of the operations to be performed or of other
requests being compiled or evaluated at the same time. All requests are
allowed to begin the evaluation stage.

Evaluation rules

When the evaluation involves records or sets of records, Model 204
automatically ensures that operations achieves the expected results by
adhering to the following set of rules.

FIND statement

The FIND statement immediately locks the set of records it has retrieved in
share mode. If the locking is successful, none of the records in that set can be
updated by another user until the entire request (including request
continuations) has been completed, or the records have been released by the
RELEASE statement.

A FIND statement executed in a loop releases the old found set as soon as the
statement is re-executed. The final set selected by the FIND remains locked
until the end of the request. An unlabeled FIND statement, such as a FIND AND
PRINT COUNT statement, does not lock records at all.

FIND WITHOUT LOCKS statement

The FIND WITHOUT LOCKS statement executes a FIND statement without
obtaining any record locks. The found set of records is indistinguishable from a
list (except that it is referenced with “IN label” syntax). The FIND WITHOUT
LOCKS statement should be used with caution; logical inconsistencies might
occur. See “FIND WITHOUT LOCKS statement” on page 24-6 for more
information.

Lock mode Allows…

Share One or more users to read a file. Any number of users can have
shared control of a record or record set concurrently.

Exclusive Single user to update the file. An exclusive lock is not compatible
with other exclusive locks nor with any shared locks.
User Language Manual 24-3

FOR EACH RECORD

The FOR EACH RECORD statement is handled as follows:

• If the FOR EACH RECORD statement refers to a found set (has the IN label
clause), it retains the lock of the found set in share mode.

• If the FOR EACH RECORD statement refers to a list (has the ON LIST
listname clause), no records are locked.

• If the FOR EACH RECORD statement does not refer to a previous found
set or a list, all records in the current file or group are locked in share mode.
After all the records are processed by the loop, the lock is dropped.

If the WHERE or WITH clause is used on the FOR EACH RECORD statement,
only those records that satisfy the retrieval specifications are locked in share
mode. After all the records are processed by the loop, the lock is dropped for
all the processed records.

If the FOR EACH RECORD statement has the IN ORDER BY EACH clause,
the lock is not released until all loop processing ends.

The lock on records retrieved as part of a FOR EACH RECORD statement is
released as soon as the records are processed unless the record is changed
and the file is a transaction backout file. For more information about transaction
backout files, refer to “Transaction backout” on page 25-3.”

FOR RECORD NUMBER

The FOR RECORD NUMBER statement locks the specified record in share
mode.

DELETE ALL RECORDS IN

The DELETE ALL RECORDS IN statement temporarily locks the set of records
to be deleted in exclusive mode before deletion occurs. The locking does not
succeed if another user has access to any of the records through a FIND or file
maintenance statement. Once a record has been deleted, the exclusive lock on
the record is released because the record no longer exists in the file.

ADD/CHANGE/DELETE, DELETE RECORD, and INSERT

The ADD, CHANGE, DELETE fieldname, DELETE RECORD, and INSERT
statements all lock the current record in exclusive mode before updating it.
Each of these statements must occur within a FOR EACH RECORD loop. The
current record remains locked until it passes through the loop unless it has
been deleted. If the record has been deleted, the exclusive lock on the record
is released because the record no longer exists in the file.
24-4 Model 204

STORE RECORD

The STORE RECORD statement tries to lock the newly created record in
exclusive mode.

END MORE

If a request ends with END MORE, records found by that request remain locked
and cannot be modified by other users. If the request ends with END, all
records are released as soon as execution is completed.

Locking conflicts

If Model 204 cannot lock a record, a locking conflict occurs, which are
discussed in detail in “Locking conflicts” on page 24-8.
User Language Manual 24-5

FIND WITHOUT LOCKS statement
The FIND WITHOUT LOCKS statement executes a FIND statement without
obtaining any record locks. The resulting found set is indistinguishable from a
list (except it is referenced with IN label syntax).

Note: The FIND WITHOUT LOCKS feature should be used only to solve
specific performance problems. Before using the FIND WITHOUT LOCKS
statement, please take into account the “Usage notes” following “Syntax”.

Syntax The format of the FIND WITHOUT LOCKS statement is:

{FIND WITHOUT LOCKS | FDWOL} [ALL] RECORDS

 [IN label | ON [LIST] listname]

 [FOR WHICH | WITH] retrieval conditions

Usage notes Issues involved with using FIND WITHOUT LOCKS include:

• Logical integrity of data is at risk when another user:

– Is in the midst of changing values which are related

– Changes or deletes the field which caused the record to be found

• Physical integrity error messages or snaps are generated, including:

– SICK RECORD messages are sent when extension records get
deleted (the record isn’t really sick; it just temporarily appears that way
to Model 204)

– SICK RECORD messages being sent from FOR EACH
OCCURRENCE (FEO) statements when the record is modified by
another user (again, the record isn’t really sick)

– NONEXISTENT RECORD messages are sent when entire records get
deleted

Examples of appropriate use of the FIND WITHOUT LOCKS statement
include:

• When there is one user at a time per record (for example, scratch records
or bank teller applications where an account is usually modified by one
teller at a time)

• Report programs in a heavy update environment

Examples of inappropriate uses of the FIND WITHOUT LOCKS, which can
result in snaps, include:

• Report program in a heavy delete environment (results in many
NONEXISTENT RECORD messages)

• Retrievals in which the selection criteria can be changed by other users
24-6 Model 204

• Reuse Record Number files (except possibly scratch files keyed on the
user ID)
User Language Manual 24-7

Locking conflicts
A typical locking situation is as follows. The first user FINDs a large set of
records and starts to print a long report. The second user FINDs some of the
same records and tries to update them with a CHANGE statement.

Responses to locking conflicts

Under these circumstances, the second user must decide whether to cancel
the request or try again. The user receives a message noting that the locking
failed and then is queried: '2�<28�5($//<�:$17�72�75<�$*$,1" The user
can respond in one of three ways:

• Reply 1, thereby cancelling the request.

• Reply < and try to lock again immediately.

• Wait a minute or two and reply <.

ENQRETRY parameter

The number of times a request automatically attempts to lock a record or set of
records before notifying the user of a conflict is determined by the ENQRETRY
parameter. Between attempts, Model 204 waits until the record or records that
were held by another user are released or until three seconds pass. For more
information on the ENQRETRY parameter, refer to the Model 204 Command
Reference Manual.

ON RECORD LOCKING CONFLICT and ON FIND CONFLICT statements

In Model 204 you can specify the action to take if, after a record locking
attempt, an effort to lock a set of records is still unsuccessful. The following
statements specify the action to take in detail.

Syntax The format for these ON units is:

[label] ON {RECORD LOCKING CONFLICT | FIND CON-
FLICTS}

Statement Can be used for…

ON RECORD LOCKING CONFLICT Any type of conflict (including a retrieval
statement conflict) that arises during a
record locking attempt.

ON FIND CONFLICT Only a conflict that arises during the
evaluation of a FIND statement or a FOR
EACH RECORD statement used for
retrieval.
24-8 Model 204

If both types of ON units are active

ON RECORD LOCKING CONFLICT and ON FIND CONFLICT follow the same
rules as other ON units (see “ON units” on page 12-21). If both ON RECORD
LOCKING CONFLICT and ON FIND CONFLICT are active within a request
when a conflict occurs, the conflict is handled in the following manner:

• If the conflict results from a FIND statement or FOR EACH RECORD
statement used for retrieval, the ON FIND CONFLICT unit is invoked.

• If the conflict results from a condition other than the FIND or FOR EACH
RECORD statement used for retrieval, the ON RECORD LOCKING
CONFLICT unit is invoked.

CLEAR ON statement

The definition of an ON RECORD LOCKING CONFLICT or ON FIND
CONFLICT unit is cleared by the following statement:

CLEAR ON {RECORD LOCKING CONFLICT | FIND CON-
FLICTS}

After a CLEAR ON RECORD LOCKING CONFLICT or CLEAR ON FIND
CONFLICT statement, a record locking conflict does not invoke the
corresponding ON unit.

PAUSE statement

You can use the PAUSE statement to cause the request to wait a specified
number of seconds and then to retry the statement that caused the evaluation
of the ON unit. The PAUSE statement is a bumpable wait.

Syntax The format of the PAUSE statement is:

PAUSE [n | %variable]

Where • The value of n must be in the range 0-600, allowing a maximum pause of
10 minutes. If n is not specified or is specified as zero, processing stops and
does not continue until the user enters a carriage return. If n is specified,
processing continues automatically after n seconds.

• The %variable is interpreted as a numeric value representing the number
of seconds to wait. A 600 second limit still applies to the hard coded number
value. However, the %variable does not have a limit.

An invalid %variable, for example, %a=’xxx’, is treated as if zero was
specified and a read is issued.

Note: You should generally specify small values for n and issue a PAUSE only
when no records are held by the request. If n is large, the request can seem to
be hung.
User Language Manual 24-9

Handling Parallel Query Option/204 record locking conflicts

If a client request cannot complete because of a record locking conflict on the
server system, the server automatically tries again to lock the record or set of
records. The server tries again until it succeeds or until it has tried as many
times as the value of the client thread ENQRETRY parameter. The value of the
ENQRETRY parameter that is specified on the server thread has no effect on
the number of retries.

If ENQRETRY attempts to lock a record or set of records do not succeed, the
server notifies the client about the conflict. If an ON RECORD LOCKING or ON
FIND CONFLICT unit is active, the unit is invoked. Otherwise, the client
receives a message that the locking failed, followed by a prompt asking if the
client wants to try again.

If the client enters 1, the request is canceled. If the client enters <, the server
repeats the locking attempt cycle, making as many as ENQRETRY attempts
before prompting again.
24-10 Model 204

Record locking and release statements
The following statements can place a lock on a set of records or remove the
lock placed on records.

Note: To remove the lock placed on records, you can also use the “COMMIT
statement” on page 24-15.

FIND AND RESERVE statement

A User Language request can lock records in exclusive mode by using the
FIND AND RESERVE statement. However, because records are exclusively
locked, concurrency is reduced.

Syntax The basic format of the FIND AND RESERVE statement is:

FIND AND RESERVE [ALL] RECORDS FOR WHICH

Example

BEGIN
ON RECORD LOCKING CONFLICT
 PRINT ’RECORD LOCKING CONFLICT OCCURRED WITH ’ -
 WITH $RLCUSR
 PRINT ’FILE ’ WITH $RLCFILE
 PRINT ’RECORD ’ WITH $RLCREC
END ON

POL.HLDR: IN CLIENTS FIND AND RESERVE ALL RECORDS -
 FOR WHICH POLICY NO = 100015
 RECTYPE = POLICYHOLDER
 END FIND
OWNER.POL: IN VEHICLES FIND AND RESERVE ALL RECORDS -
 FOR WHICH OWNER POLICY = 100015
 END FIND
 FOR EACH RECORD IN OWNER.POL
 %NEW.PREMIUM = VEHICLE PREMIUM + 100
 CHANGE VEHICLE PREMIUM TO %NEW.PREMIUM
 %TOTAL.PREMIUM = %TOTAL.PREMIUM + %NEW.PREMIUM
 END FOR
 FOR EACH RECORD IN POL.HLDR
 CHANGE TOTAL PREMIUM TO %TOTAL.PREMIUM
 END FOR
END

In the preceding example, the first FIND AND RESERVE statement prevents
access to TOTAL PREMIUM while its corresponding VEHICLE PREMIUMs are
being changed.
User Language Manual 24-11

RELEASE RECORDS statement

Records found using the FIND AND RESERVE statement are held in exclusive
status until the end of the request or until they are released explicitly by the user
with the RELEASE RECORDS statement. The RELEASE RECORDS
statement also can be used to release records from SORT statements or
records obtained in share status by FIND statements issued in the regular form.
Records released in this manner are no longer available to the request and
might have to be found again. The original FIND set or list from which the sorted
set was built is not affected.

Note: To avoid confusing results, CCA recommends that you issue RELEASE
RECORDS at the end of a loop and not in the middle of one, since the
statement relinquishes control of a found set.

Syntax The format of the RELEASE RECORDS statement is:

RELEASE RECORDS {IN label | ON [LIST] listname}

where label is the statement label of the FIND statement that locked the
records.

The RELEASE RECORDS statement is supported in remote file and scattered
group contexts.

Processing

The RELEASE RECORDS statement releases the lock and empties the found
set. When the RELEASE statement refers to a SORT statement, the space
occupied by the temporary sorted record copies is released.

RELEASE RECORDS ON is equivalent to the CLEAR LIST statement.

RELEASE ALL RECORDS statement

Description A RELEASE ALL RECORDS statement terminates the lock in share mode
placed on records by the FIND statement. RELEASE ALL RECORDS
statement also clears all lists and the results of all SORT statements, and sets
the current record number to -1.

After a RELEASE ALL RECORDS statement is processed in a FOR EACH
RECORD loop, subsequent references to the current record in the loop cannot
find a current record. If processing returns to the top of the loop, no new record
is available, and the first statement after the end of the loop is executed.

Syntax The format of this release statement is:

RELEASE ALL RECORDS
24-12 Model 204

The RELEASE ALL RECORDS statement is supported in remote file and
scattered group contexts.

RELEASE and COMMIT RELEASE statements with global foundsets and lists

The RELEASE statements and the COMMIT RELEASE statements empty the
contents of a global found set, global sort set, or global list. The label and
positions associated with a found set, sort set, or the list is still considered
global, but it is empty. Global positions are not cleared by RELEASE or
COMMIT RELEASE statements, however, without records there is nothing to
process.
User Language Manual 24-13

Lock pending updates
Model 204 provides a special facility, lock pending updates, that prevents
updated records in one transaction (a sequence of file updating operations)
from being used by other applications until the transaction ends. Lock pending
updates ensures logical consistency without requiring the use of the FIND AND
RESERVE statement.

Processing

If the lock pending updates option is specified, records are locked in share
mode by a FIND statement. The first update to a record locks the record in
exclusive mode and adds it to a set of updated locked records called the
pending update pool. The record is not released from this exclusive lock at the
end of the FOR EACH RECORD loop. Instead, the record is locked until the
end of the transaction when the entire pending update pool is released.

Set with the FOPT parameter

Lock pending updates is an option of the FOPT parameter that is enabled or
disabled on a file-by-file basis. Refer to the Model 204 Command Reference
Manual for more information on the FOPT parameter.
24-14 Model 204

COMMIT statement
The COMMIT statement ends the current transaction, dequeues checkpoints,
and, for files with lock pending updates, releases the exclusive lock on updated
records. The exclusive lock on the current record from a file with the REUSE
RECORD NUMBER option disabled can be released only at the end of the
FOR EACH RECORD loop.

The COMMIT statement is supported in remote context. If records on any
remote nodes are updated, the COMMIT statement saves all remote updates
on all remote nodes. Also, remote updates are committed automatically by the
system when appropriate.

Syntax The format of the COMMIT statement is:

COMMIT [RELEASE]

Example BEGIN
GET.REC: FIND ALL RECORDS FOR WHICH
 LNAME = NELSON
 END FIND
 FOR EACH RECORD IN GET.REC
 ADD MONTH = NOV
 COMMIT
 PRINT FNAME AND LNAME AND EACH MONTH
 END FOR
NAME.CT: COUNT RECORDS IN GET.REC
 PRINT COUNT IN NAME.CT WITH ’ RECORDS
UPDATED’
END

The COMMIT statement inside the FOR EACH RECORD loop ends the current
update unit each time the loop is processed. This results in several short
update units instead of one long update unit. Record locking conflicts can be
minimized by the use of frequent COMMIT statements.

RELEASE option

The RELEASE option of the COMMIT statement performs all the operations of
the COMMIT and RELEASE ALL RECORDS statements. :

After processing a
COMMIT RELEASE
statement … Any subsequent reference to the current…

FOR EACH RECORD loop Record in the loop cannot find a current record. If
processing returns to the top of the loop, no new
record is available; the first statement after the end of
each loop is executed.
User Language Manual 24-15

Usage To avoid confusing results, it is recommended that COMMIT RELEASE be
issued at the end of a loop and not in the middle of one.

RELEASE and COMMIT RELEASE statements with global foundsets and lists

The RELEASE statements and the COMMIT RELEASE statements empty the
contents of a global found set, global sort set, or global list. The label and
positions associated with a found set, sort set, or the list is still considered
global, but it is empty. Global positions are not cleared by RELEASE or
COMMIT RELEASE statements, however, without records there is nothing to
process.

FOR EACH VALUE loop Value still obtains the last value processed.

After processing a
COMMIT RELEASE
statement … Any subsequent reference to the current…
24-16 Model 204

25
Data Recovery

In this chapter

• Overview

• Transaction backout

• Update units

• Using backout

• Design considerations for transaction backout files

User Language Manual 25-1

Overview
If hardware or software failures occur during the process of updating Model 204
files, database integrity problems can arise. These problems result from the
fact that updates to a file can require coordinated changes, and a failure can
interrupt the process of writing to storage a complete set of these changes.

Normally in a Model 204 installation, the system manager is responsible for the
coordination of recovery activity for the installation, and the file manager
determines which recovery features are applied to each of the files.

For a complete description of the Model 204 recovery process, refer to the
Model 204 File Manager’s Guide.

Transaction backout

One of the recovery features that can be selected by the file manager is an
integrity facility called transaction backout. This facility can reverse the effects
of an incomplete transaction (a sequence of file updating operations).

Application considerations

Although the file manager determines whether the transaction backout facility
is defined for a file, the application designer must understand the facility’s
capabilities and requirements in order to ensure file integrity for an application.

This chapter explains those capabilities and requirements and describes how
applications can be designed to ensure file integrity. In particular, see the last
section in this chapter for application design considerations.
25-2 Model 204

Transaction backout
The transaction backout facility allows Model 204 to logically reverse the
effects of an incomplete update to a file.

A backout can be initiated only on incomplete update units; completed update
units cannot be backed out. A backout can be automatically performed by
Model 204 or initiated by the user.

FOPT and FRCVOPT parameters

Transaction backout is an option of the FOPT and FRCVOPT parameters and
is enabled or disabled on a file-by-file basis. Refer to the Model 204 Command
Reference Manual for more information on these parameters.

Types of backout

You can use the transaction backout facility to specify two types of files:

Backout
file types File options set to… Discussion

Transaction
backout

Enable both lock pending
updates and backout.

A transaction can be backed out
automatically by Model 204 or
manually by the application.

A transaction backout file ensures:
• Logical consistency

• Data and file integrity,

• High degree of data sharing.

Non-
transaction
backout

Disable transaction
backout.

Incomplete updates cannot be
automatically reversed.

Non-transaction backout files cannot
be accessed remotely. Attempts to
open a non-transaction backout file in
remote context fails and generates
the following error message:

M204.1973: NON-TBO REMOTE
FILE
User Language Manual 25-3

Update units
An update unit is any sequence of operations that updates the database and
that has a beginning and ending point. One update unit must end before
another update unit can begin.

A request or procedure can have two types of update units:

Backoutable units

Beginning a backoutable unit

A backoutable unit begins at the execution of the first User Language
statement that performs an update operation on a transaction backout file. The
statements that perform update operations are:

• ADD fieldname = value

• CHANGE fieldname TO value

• DELETE EACH fieldname

• DELETE fieldname [= value]

• DELETE RECORD

• DELETE RECORDS

• FILE RECORDS

• INSERT fieldname = value

• STORE RECORD

Ending a backoutable unit

A backoutable unit ends when the unit is committed by using the COMMIT
statement or is backed out. Other conditions (such as an END statement in a
request or the BACKOUT statement discussed later in this chapter) also can
end an active update unit. Refer to the Model 204 File Manager’s Guide for a
complete list of conditions that end an active update unit.

Update unit type Discussion

Backoutable A backoutable unit consists of updates to transaction
backout files using file updating statements (such as
STORE RECORD). The unit can either be completed so
that it persists in the file, or backed out so that the update is
logically reversed in the file.

Non-backoutable A non-backoutable unit consists of updates to non-
transaction backout files.
25-4 Model 204

Non-backoutable units

Beginning a non-backoutable unit

A non-backoutable unit begins with the first User Language statement that
performs an update operation on a non-transaction backout file.

Ending a non-backoutable unit

A non-backoutable unit ends when the unit is committed by using the COMMIT
statement. Other conditions (such as an END statement in a request or the
BACKOUT statement discussed later in this chapter) also can end an active
update unit. Refer to the Model 204 File Manager’s Guide for a complete list of
conditions that start or end an active update unit.
User Language Manual 25-5

Using backout
The transaction backout facility performs two types of backouts:

Automatic backout

Model 204 automatically backs out the current update unit for a transaction
backout file under any of the following conditions:

• If a request is cancelled by Model 204

• If there is a file integrity problem

• If Model 204 is restarting a user who has an active update unit

When a request accessing a transaction backout file is cancelled, the following
events occur:

• The user receives a message that explains why the request was cancelled.

• The current update unit is backed out automatically.

• Model 204 returns to the terminal command level unless an ON ERROR or
ON ATTENTION unit is invoked.

Remote updates are backed out automatically when appropriate.

Manual backout

You can back out an incomplete update unit by using the BACKOUT statement.
This statement is valid only for updates to transaction backout files.

The BACKOUT statement releases the exclusive lock on updated records and
backs out the current update unit. No found sets are released and the current
record does not change.

After the BACKOUT statement is processed, evaluation continues with the next
statement. A message is displayed to the user upon the successful completion
of a backout operation.

The BACKOUT statement is supported in remote context. If records on any
remote nodes have been updated, the BACKOUT statement causes all remote
updates on all remote nodes to be backed out, in addition to any local updates.

Backout type Invoked…

Automatic • Automatically by a request cancellation

• An attention or *CANCEL command without an ON ATTENTION
unit

• File full condition

• User restart.

Manual Using the BACKOUT statement within a request.
25-6 Model 204

Example The BACKOUT statement is typically used in data entry applications where a
transaction might have to be backed out after it has updated a file (for example,
a sales or airline reservations application).

An example of a request that uses the BACKOUT statement is provided below.

BEGIN
*
* DECREMENT INVENTORY BEFORE MAKING SALE TO CUSTOMER
*
DECLARE %INPUT STRING LEN 70
DECLARE %VINTNER STRING LEN 30
DECLARE %SELECTION STRING LEN 40
*
* ENTER PURCHASER’S SELECTION
*
GETVAL: %INPUT=$READ(’ENTER VINTNER/SELECTION:’)
 IF %INPUT EQ ’QUIT’ THEN
 STOP
 END IF
 %VINTNER=$SUBSTR(%INPUT,1,$INDEX(%INPUT,’/’)-1)
 %SELECTION=$SUBSTR(%INPUT,$INDEX(%INPUT,’/’)+1)
FDVINTNER: FD REC=VINTNER AND NAME=%VINTNER
CTVINTNER: COUNT RECORDS IN FDVINTNER
 IF COUNT IN CTVINTNER EQ ’0’ THEN
 PRINT ’VINTNER DOES NOT EXIST TRY AGAIN’
 JUMP TO GETVAL
 END IF
*
* IF SELECTION EXISTS THEN UPDATE RECORD BY DECREASING
* THE AMOUNT ON HAND
*
CTSELECTION: FOR EACH RECORD IN FDVINTNER
FEOSELECT: FOR EACH OCCURRENCE OF SELECTION
 IF SELECTION(OCCURRENCE IN FEOSELECT) EQ -
 %SELECTION THEN
 %ONHAND=ONHAND(OCCURRENCE IN FEOSELECT)
 %DECREMENT=%ONHAND-1
 CHANGE ONHAND(OCCURRENCE IN FEOSELECT)-
 TO %DECREMENT
 JUMP TO GETCASH
 END IF
 END FOR
 PRINT ’SELECTION DOES NOT EXIST TRY AGAIN’
 JUMP TO GETVAL
 END FOR

*
* IF CUSTOMER IS READY TO PROCEED WITH THE SALE, THEN
* COMMIT THE TRANSACTION. IF NOT, THEN BACKOUT RECORD
* UPDATED
*
GETCASH: %CASH=$READ(’DID YOU GET CASH/CREDIT CARD FROM -
 CUSTOMER Y/N:’)
User Language Manual 25-7

 IF %CASH EQ ’Y’ THEN
 COMMIT
 JUMP TO FINISH
 ELSE
 BACKOUT
 PRINT ’INVENTORY WAS NOT UPDATED ’
 PRINT ’PURCHASE STOPPED’
 JUMP TO DONE
 END IF
FINISH: PRINT ’TRANSACTION COMPLETED’
 PRINT ’THANK YOU’
DONE: *COMMENT
END *
25-8 Model 204

Design considerations for transaction backout files
This section identifies the factors to consider when designing an application
that uses transaction backout files.

Transaction backout provides increased file logical consistency over the FIND
share lock and FOR loop exclusive lock, and provides increased data sharing
over the FIND AND RESERVE exclusive lock. However, effective use of the
transaction backout facility depends on careful design and implementation.

Update requests

Requests that update transaction backout files cannot access non-transaction
backout files in any way. This restriction ensures that all update units for a
transaction backout file are logged correctly, can be backed out, and do not
overlap with any update units that cannot be backed out.

Non-updating requests can access any type of file, and requests that update
non-transaction backout files can read transaction backout files.

ON ATTENTION units

ON ATTENTION units should be used within requests to avoid inadvertently
backing out an active update unit. If an ON ATTENTION unit is not specified
and the user presses one of the ATTENTION identifier (AID) keys at the
terminal or enters &$1&(/ at a terminal I/O point, then the request is cancelled.
The cancellation causes an automatic backout of the current update unit if the
request updates transaction backout files.

CCATEMP space

The backout facility must have the necessary information to back out each
active update unit in the Model 204 run. A log of compensating updates is built
for each active unit on the system file, CCATEMP. When the unit ends or is
backed out, the log for that particular unit is discarded.

To minimize the amount of CCATEMP space used, update units should be
designed to contain only a few file updates. Units of a sizable amount can
greatly increase the amount of CCATEMP space used by Model 204.
Therefore, update units should be committed frequently to minimize the size of
the backout log.

Logical inconsistency

Although transaction backout does increase the logical consistency of a file
through the lock pending updates option, logical inconsistency can occur when
an update unit is backed out. For example, logical inconsistency can arise
when a unit involving DELETE RECORD is backed out because deleted
records are not locked by the lock pending updates option.
User Language Manual 25-9

Example The following requests illustrate such a logical inconsistency:

User 1 User 2

BEGIN

SMH: FIND ALL RECORDS FOR WHICH

 NAME = SMITH

 END FIND

 FOR EACH RECORD IN SMH

 DELETE RECORD

 END FOR

JNS: FIND ALL RECORD FOR WHICH BEGIN

 NAME = JONES FD.RECS: FIND ALL RECORDS FOR
WHICH

 END FIND NAME = SOLOBY OR -

 FOR EACH RECORD IN JNS NAME = SMITH OR -

 ADD TYPE = SPECIAL NAME = SAUNDERS

 . END FIND

 . FOR EACH RECORD IN FD.RECS

 . ADD TYPE = SPECIAL

 . END FOR

 . FD.SPEC: FIND ALL RECORDS FOR
WHICH

 . TYPE = SPECIAL

 . END FIND

 . PRT: FOR EACH RECORD IN FD.SPEC

 . PRINT NAME AND TYPE

 . END FOR

DEL: BACKOUT END

ALL: FIND ALL RECORDS

 END FIND

 FOR EACH RECORD IN ALL

 PRINT NAME AND TYPE

 END FOR

END
25-10 Model 204

User 1 deletes the set of records with NAME = SMITH. Although the update unit
is not complete, the deleted set of records is not locked. Before user 1’s unit
completes, user 2 finds the set of records with NAME = either SOLOBY,
SMITH, or SAUNDERS. There is no locking conflict because the deleted
records are not locked. User 2 adds a field to the found set, prints a report, and
ends.

User 1 then decides to back out the unit in progress. The deletion of the SMITH
records is in the backed out unit and the SMITH records reappear on the file.
However, because the SMITH records do not have the TYPE = SPECIAL field
added by user 2, there is a logical inconsistency. The chances of this type of
inconsistency can be reduced by keeping units short, especially when the units
involve record deletion. If user 1 had a COMMIT statement after the DELETE
RECORD loop, no inconsistency would arise unless the backout was
automatically activated during that short piece of the user request. It also is
likely that the records deleted by an application are meant to be deleted, and a
logical inconsistency in a set of records intended for deletion is unimportant.

FILE RECORDS statement

Similar logical inconsistency can occur using the FILE RECORDS statement
because FILE RECORDS does not lock any records. For the FILE RECORDS
statement, a FIND statement can be used to lock the records to be updated in
share mode, or FIND AND RESERVE can be used to lock the records in
exclusive mode. If the FIND set is locked exclusively and not released until after
the update unit containing the FILE RECORDS statement has ended, then
logical inconsistency is prevented.

Terminal I/O points

Terminal I/O points should not be placed between the start of an update unit
and the unit’s end or backout. This precaution stems from the exclusive lock
placed on updated records. If a response is required from a terminal operator
either to complete or back out an update unit, there is a possibility that a set of
records could be locked for an extended period of time.
User Language Manual 25-11

25-12 Model 204

Part VI
Reference and
Appendix

Part VI includes reference chapters and an appendix covering:

• Commands and statements

• Functions

• Abbreviations

• Reserved words and characters

• Conversion, rounding, and precision rules

• Field attributes

• Obsolete features

26
Command and Statement Syntax

In this chapter

• Overview

• Notation conventions used in this chapter

• Value specification syntax

• Retrieval condition syntax

• Print specification syntax

• Expression syntax

• IN clause syntax

• Subscript syntax

• Terminal display attributes

• Type syntax for the DECLARE SUBROUTINE statement
User Language Manual 26-1

Overview
This chapter summarizes User Language syntax and conventions, many of
which are also discussed throughout this manual.

The statements are listed in alphabetical order. Later sections in this chapter
provide other User Language syntax information.

All of the User Language statements listed can be used between a BEGIN (or
MORE) command and an END (or END MORE) statement.

All system control commands are presented in the Model 204 Command
Reference Manual.
26-2 Model 204

Notation conventions used in this chapter
In addition to the standard notation conventions listed in the Preface of this
manual, this chapter uses the following syntax notation conventions:

• A field name (%%) variable can be used anywhere fieldname appears. The
%%variable can contain its own subscript, separate from the field name
subscript.

Note: The subscript of an array element must be specified before a field
name subscript.

• The lower case constructs—retrieval-conditions, print-specifications,
expression, subscript, attribute, and type—are discussed separately
following the syntax summaries, beginning with “Value specification syntax”
on page 26-21.

Syntax notation Indicates that…

Single asterisk (*) Statements can be preceded by an IN clause, if there is no
reference to a previous set (label or list). See “IN clause
syntax” on page 26-26 for more discussion.

Two asterisks (**) Construct can appear only within a record loop.

Plus sign (+) Construct requires the optional Horizon feature.

Two plus signs (++) Construct requires the optional User Language to Database
2 feature.

C The syntax applies to a Model 204 command as well as a
User Language statement, except any %variable options or
clauses.

Model 204 commands are listed alphabetically and
documented in Model 204 Command Reference Manual.

Lower case italic Constructs are replaced with variable information.
User Language Manual 26-3

User Language statements

__

** ADD fieldname = value

ARRAY [arrayname] OCCURS {n | UNKNOWN}

 DEPENDING ON {itemname | %variable}

 [AFTER {itemname | arrayname}

 | AT {position | itemname | imagename1 | arrayname}]

AUDIT print-specifications

C BACKOUT
__

BYPASS [PENDING STATEMENT]

__

CALL {label | subname

 [([expression | %variable | [LIST] listname] [,…])]}

__

** CHANGE fieldname [(subscript)] = value1 TO value2

__

CLEAR

 {[[ALL | TEMP | LISTFDST | POSITION] [GLOBAL]]

 OBJECTS

 | GLOBALS

 | GLOBAL {IMAGE | SCREEN | MENU | LIST | FOUNDSET

 | POSITION [PERM | TEMP]}

 {’objectname’ | %variable}}

__
26-4 Model 204

* CLEAR LIST listname

__

CLEAR ON

 {ATTENTION | ERROR | FIELD CONSTRAINT CONFLICT

 | FIND CONFLICT | RECORD LOCKING CONFLICT

 | MISSING FILE | MISSING MEMBER}

__

CLEAR TAG {screenname | %screenname:inputname}

__

CLOSE

 {DATASET {ext-filename | %variable}

 | [EXTERNAL] {ext-filename | TERMINAL | %variable}}

__

+ C CLOSE PROCESS

 {cid | processname | %variable}

 [SYNCLEVEL | FLUSH | %variable]

__

CLOSE PROCESS

 {cid | processname | %variable}

 [SYNCLEVEL | CONFIRM | FLUSH | ERROR | %variable]

__

COMMIT [RELEASE]

__

+ CONFIRM {cid | processname | %variable}

 REQSEND %variable

__

+ CONFIRMED {cid | processname | %variable}

__

CONTINUE
User Language Manual 26-5

__

** COUNT OCCURRENCES OF fieldname

__

COUNT RECORDS {IN label | ON [LIST] listname}

__

[DECLARE] declaration

where declaration is one of the following:

 LABEL labelname [GLOBAL | COMMON]

 LIST listname [IN [FILE | [PERM | TEMP]

 GROUP]] name] [GLOBAL | COMMON]

 IMAGE imagename [AT {itemname | imagename1

 | arrayname}

 | GLOBAL [PERMANENT | TEMPORARY]

 | [PERMANENT | TEMPORARY] GLOBAL

 | COMMON]

 MENU menuname [GLOBAL [PERMANENT | TEMPORARY]

 | [PERMANENT | TEMPORARY] GLOBAL

 | COMMON]

 SCREEN screenname [GLOBAL [PERMANENT | TEMPORARY]

 | [PERMANENT | TEMPORARY] GLOBAL

 | COMMON]

 %variable [IS] {FIXED [DP n] | FLOAT}

 [ARRAY (d1 [,d2 [,d3]])]

 [COMMON] [INITIAL] [STATIC]

 %variable [IS] STRING [LEN n] [DP {n | *}]

 [ARRAY (d1 [,d2[,d3]])]

 [NO FIELD SAVE] [COMMON]

 [INITIAL] [STATIC]

 SUBROUTINE subname
26-6 Model 204

 [(type [INPUT | OUTPUT | INPUT OUTPUT] [,…])]

type is one of the following:

– Scalar %variable of the following format:

{STRING [LEN] n [DP {n | *}] | [FIXED [DP n]

| FLOAT]}

– Array %variable of the following format:

{STRING [LEN n] [DP [n | *}] [ARRAY (* [,*[,*]])

 [NO FIELD SAVE]]

 | [FIXED [DP n] | FLOAT] [ARRAY (* [,*[,*]])]}

– A list of records of the following format:

[LIST] [IN {FILE | [PERM | TEMP] GROUP} name]

__

DEFAULT CURSOR [READ | REREAD | PRINT]

 {ITEMID n | itemname | ROW n COLUMN m}

__

DEFAULT {TITLE

 | PROMPT

 | INPUT [DEBLANK | NODEBLANK] [PAD WITH ’c’]

 [LEN m [DP [k | *}]] [UPCASE | NOCASE]

 | [TAG [attributes] [WITH ’c’]}

 [[READ] attributes]

 [REREAD attributes]

 [PRINT attributes]

__

DEFAULT SKIP n POSITIONS[S]

 [INITIAL {NULL | character | BLANK}]

__

DEFAULT [TYPE]

 {STRING | BINARY | PACKED | ZONED | FLOAT | EFORMAT}

 {LEN {n | UNKNOWN} | BITS n | DIGITS n}

 [DP {k | *}] [BP n]

 [SIGNED | UNSIGNED] [PAD {BLANK | character | NULL}]
User Language Manual 26-7

 [STRIP | NOSTRIP] [JUSTIFY {LEFT | RIGHT}]

 [INITIAL {BLANK | ZERO | NULL | literal}]

__

** DELETE fieldname [(subscript)] [= value]

__

** DELETE EACH fieldname

__

** DELETE RECORD

__

DELETE [ALL] RECORDS {IN label | ON [LIST] listname}

__

END BLOCK label

__

END {FIND | IF | FOR | ON | REPEAT | STORE

 | SUBROUTINE} [label]

__

END {ARRAY | IMAGE | MENU | SCREEN}

__

END [MORE | NORUN | USE]…

__

END UPDATE

__

FILE RECORDS {IN label | ON [LIST] listname}

 UNDER fieldname = value

__

* FIND [AND RESERVE] [ALL] RECORDS

 [IN label | ON [LIST] listname]

 [FOR WHICH | WITH] retrieval conditions
26-8 Model 204

__

 * FIND [ALL] VALUES OF fieldname

 [FROM value1] [TO value2]

 [[NOT] LIKE ’pattern’]

__

 * FIND AND PRINT COUNT [retrieval-conditions]

__

* {FIND WITHOUT LOCKS | FDWOL}

 [ALL] RECORDS [IN label | ON [LIST] listname]

 [FOR WHICH | WITH] retrieval-conditions

__

FLUSH PROCESS {cid | processname | %variable}

__

** FOR {EACH | k} {OCCURRENCE | OCCURRENCES} OF field-
name

__

* FOR {EACH | k} {RECORD | RECORDS}

 [IN label | ON [LIST] listname]

 IN [ASCENDING | DESCENDING]

 [SORTKEY] ORDER [BY [EACH] fieldname]

 [FROM value1] [TO value2] [BY {%variable | literal}]

 [OPTIMIZING FNV]

 [{WHERE | WITH} retrieval-conditions]

__

* FOR {EACH | k} {VALUE | VALUES} OF fieldname

 [FROM value1] [TO value2] [[NOT] LIKE pattern]

 [IN [ASCENDING | DESCENDING] [CHARACTER | NUMERICAL]

 [RIGHT-ADJUSTED] ORDER]
User Language Manual 26-9

__

FOR {EACH | k} {VALUE | VALUES} IN label

__

 * FOR RECORD NUMBER value

__

FOR RECORD NUMBER {value | IN label} [OPTIMIZING FNV]

__

FOR %variable FROM expression1

 {TO expression2 [BY expression3]

 | [BY expression3] TO expression2}

Note: The BY clause, when omitted, defaults to a value of 1.

__

IDENTIFY

 {[IMAGE] imagename

 | %imagename:itemname LEN {n | %variable}

 | %imagename:arrayname OCCURS {n | %variable}}

__

C IF expression THEN statements

 [ELSE statements | ELSEIF expression THEN state-
ments]

__

[DECLARE] IMAGE imagename

 [GLOBAL [PERMANENT | TEMPORARY]

 | [PERMANENT | TEMPORARY] GLOBAL

 | COMMON [AT [itemname | imagename1 |arrayname}]]

__

 * INCLUDE procedurename

__

INPUT inputname [AT [COLUMN] n]
26-10 Model 204

 [TO [COLUMN] m | [LEN m] DP {k | *}]]

 [UPCASE | NOCASE] [DEFAULT ’value’]

 [DEBLANK | NODEBLANK] [PAD WITH ’c’]

 [REQUIRED | ALPHA | ALPHANUM | MUSTFILL

 | ONEOF literal [,literal]…

 | [NUMERIC] [RANGE lo [TO] hi [AND lo [TO] hi] …]

 | VERIFY ’characters’]…

 [[READ] attributes] [REREAD attributes]

 [PRINT attributes]

 {TAG [attributes] [WITH ’c’]] [ITEMID n]

__

INSERT fieldname [(subscript)] = value

__

+ INVITE {cid | processname | %variable}

 [SYNCLEVEL | FLUSH | CONFIRM]

__

itemname IS [TYPE]

 {STRING | BINARY | PACKED | ZONED | FLOAT | EFORMAT}

 {LEN {n | UNKNOWN} | BITS n | DIGITS n

 | TO position}

 [DP {k | *}] [BP n] [SIGNED | UNSIGNED]

 [PAD {BLANK | character | NULL}] [STRIP | NOSTRIP]

 [ALIGN]

 [JUSTIFY {LEFT | RIGHT}]

 [INITIAL {BLANK | ZERO | NULL | value}]

 [AFTER {itemname | arrayname}

 | AT {position | itemname | imagename1 | arrayname}]

 [OCCURS {n [DEPENDING ON {itemname | %variable}]

 | UNKNOWN}]
User Language Manual 26-11

__

JUMP TO label

__

JUMP TO (label1 [,label2] …) expression

__

LOOP END

__

MAX PFKEY n

__

[DECLARE] MENU menuname

 [GLOBAL [PERMANENT | TEMPORARY]

 | [PERMANENT | TEMPORARY] GLOBAL

 | COMMON]

__

MODIFY {%menuname:itemname | %screenname:itemname}

 [TO] attributes [[FOR] {ALL | READ | REREAD | TAB

 | PRINT}]

__

C NEW PAGE

__

** NOTE {fieldname [(subscript)]}

__

NOTE ’string’

__

ON {ATTENTION | ERROR | FIELD CONSTRAINT CONFLICT

 | FIND CONFLICT | MISSING FILE | MISSING MEMBER

 | RECORD LOCKING CONFLICT} statements

__

OPEN {[DATASET | EXTERNAL] {ext-filename
26-12 Model 204

 | %variable}

 | [EXTERNAL] {TERMINAL | %variable}}

 FOR {INPUT [OUTPUT] | OUTPUT [INPUT] | INOUT}

 [PASSWORD {value | %variable}]

__

C OPEN [C] [[PERM | TEMP] GROUP | FILE]

 {name [AT {location | %variable | =}] |%variable}

 [PASSWORD {value | %variable}]

__

OPEN PROCESS {processname | %variable}

 [CID {name | %variable}]

__

+ OPEN PROCESS {processname | %variable}

 [CID {name | %variable}]

 {outbound options | inbound options}

where outbound options are:

 [AT DESTINATION] [WITH] [USERID {%variable

 | ’string’}]

 [PASSWORD {%variable | ’string’}]

 [{ACCOUNT | PROFILE {%variable | ’string’}]

 [INITIAL {DATA ’string’ | DATA %variable

 | IMAGE imagename] …]

and inbound options are:

 ACCEPT [INITIAL {DATA %variable | IMAGE image} …]

__

PAUSE [n | %variable]

__

** PLACE RECORD ON [LIST] listname

__
User Language Manual 26-13

PLACE RECORDS {IN label | ON [LIST] listname1}

 ON [LIST] listname2

__

POSITION {FOUNDSET foundsortset_name | LIST
list_name}

 [AT] position_name

Note: Use this form of the POSITION statement with FOR loop processing; see
“POSITION statement” on page 20-20.

__

POSITION {ext-filename | %variable}

 AT KEY operator {value | %variable}

Note: Use this form of the POSITION statement with external file processing
using images; see “POSITION statement” on page 17-42.

__

PREPARE

 {[IMAGE] imagename | [MENU] menuname

 | [SCREEN] screenname}

__

PRINT print specifications

__

** {PAI | PRINT ALL INFORMATION}

 INTO array1, array2 [FROM start] [COUNT ct]

__

PRINT [MENU] menuname [ALERT]

 [TITLE {’text’ | %variable} [AT [COLUMN] n]

 [TO [COLUMN] m | LEN m] [attributes]]

__

PRINT SCREEN screenname [ALERT] [[WITH] CURSOR]

 [TITLE {’text’ | %variable} [AT [COLUMN] n]

 [TO [COLUMN] m | LEN m] [attributes]]
26-14 Model 204

__

PROMPT {’text’ | promptname} [AT [COLUMN] n]

 [TO [COLUMN] m | LEN m] [DP {k | *}]] [DEFAULT
’value’]

 [[READ] attributes] [REREAD attributes]

 [PRINT attributes] [ITEMID n]

__

+ QUERY PROCESS {cid | processname | %variable} options

where options must be one or more of the following:

 STATE %variable

 PROCESSGROUP %variable

 REMOTEID %variable

 SYNCLEVEL %variable

 MODENAME %variable

__

READ [IMAGE] imagename

 FROM {ext-filename | TERMINAL | %variable}

 [PROMPT {’text’ | %variable}]

 [NEXT | KEY operator {value | %variable}]

__

READ [MENU] menuname [ALERT]

 [TITLE [’text’ | %variable} [AT [COLUMN] n]

 [TO [COLUMN] m | LEN m] [attributes]]

__

READ [SCREEN] screenname [ALERT] [NO REREAD] [[WITH]

 CURSOR]

 [TITLE {’text’ | %variable} [AT [COLUMN] n]

 [TO [COLUMN] m | LEN m] [attributes]]

__

RECEIVE {IMAGE imagename | %variable}
User Language Manual 26-15

 FROM {cid | processname | %variable} [RESULT %vari-
able]

__

+ RECEIVE {IMAGE imagename | %variable}

 FROM {cid | processname | %variable}

 RESULT %variable

__

RELEASE ALL RECORDS

__

RELEASE POSITION {ext-filename | %variable}

__

RELEASE RECORDS {IN label | ON [LIST] listname}

__

** REMEMBER [GLOBAL] position_name

 [IN foundsortset_name | ON list_name]

__

** REMOVE RECORD FROM [LIST] listname

__

REMOVE RECORDS {IN label | ON [LIST] listname}

 FROM [LIST] listname2

__

REPEAT [FOREVER | n TIMES | WHILE expression]

__

REREAD [SCREEN] screenname [ALERT] [[WITH] CURSOR]

 [TITLE {’text’ | %variable} [AT [COLUMN] n]

 [TO [COLUMN] m | LEN m] [attributes]]

__

RESET {HEADER | TRAILER} m

__
26-16 Model 204

RETRY [PENDING STATEMENT]

__

RETURN

__

[DECLARE] SCREEN screenname

 [GLOBAL [PERMANENT | TEMPORARY]

 | [PERMANENT | TEMPORARY] GLOBAL

 | COMMON]

__

SEND {IMAGE imagename | ’string’ | %variable}

 TO {cid | processname | %variable}

 [REQSEND %variable]

 [FLUSH]

__

+ SEND {IMAGE imagename | ’string’ | %variable}

 TO {cid | processname | %variable}

 [FLUSH | CONFIRM]

 [REQSEND %variable]

__

+ SEND ERROR TO {cid | processname | %variable}

 REQSEND %variable

__

SET {HEADER | TRAILER} m print-specifications

__

SIGNAL PROCESS

 {cid | [processname | %variable} {nnn | %variable}

+ SIGNAL PROCESS
User Language Manual 26-17

 {cid | [processname | %variable}

__

SKIP n LINE[S]

__

[itemname IS] SKIP n POSITION[S]

 [INITIAL {NULL | character | BLANK}]

__

SORT [k] RECORDS {IN label | ON [LIST] listname}

 BY key [AND key] …

where:

 key = fieldname

 [VALUE {[ASCENDING | DESCENDING]

 [CHARACTER | NUMERICAL] | RIGHT-ADJUSTED]} …]

__

SORT [k] RECORD KEYS

 {IN label | ON [LIST] listname}

 BY key [AND key] …

where:

 key = fieldname

 [VALUE {[ASCENDING | DESCENDING]

 [CHARACTER | NUMERICAL] | [RIGHT-ADJUSTED]} …]

__

SORT VALUE IN label [IN [ASCENDING | DESCENDING]

 [CHARACTER | NUMERICAL] | [RIGHT-ADJUSTED] ORDER]

__

STOP [IF COUNT IN label EXCEEDS n]

__

*

STORE RECORD [sort or hash key value]

 [fieldname = value]
26-18 Model 204

 •

 •

__

SUBROUTINE

__

SUBROUTINE subname

 [(formal-parameter [INPUT | OUTPUT | INPUT OUTPUT]

 [,…])]

where formal parameter is one of the following:

 %variable [IS STRING [LEN n] [DP {n | *}]

 [ARRAY (*[,*[,*]]) [NO FS]]

 | IS {FIXED [DP n] | FLOAT}

 [ARRAY (*[,*[,*]])]]

 LIST listname [IN [FILE | [PERM | TEMP] GROUP] name]

__

TAG %screenname:inputname [attributes] [WITH ’c’]

__

+ TEST [FOR]

 {ANY RECEIPT RETURN %variable

 | RECEIPT {cid | processname | %variable}}

__

TITLE {’text’ | promptname}

 [AT [COLUMN] n] [TO [COLUMN] m | [LEN m]

 [DP {k | *}]]

 [DEFAULT ’value’]

 [[READ] attributes] [REREAD attributes]

 [PRINT attributes]

__

TRANSFER [CONTROL] TO PROCESS {processname
User Language Manual 26-19

 | %variable}

 [WITH] [USERID {%variable | ’string’}]

 [PASSWORD {variable | ’string’}]

 [ACCOUNT {%variable | ’string’}]

 [PASSING {IMAGE imagename | ’string’ | %variable}]

__

UPDATE RECORD

__

VARIABLES ARE

 {FIXED [DP n] | FLOAT

 | STRING [LEN n] [DP {n | *}]

 | UNDEFINED}

__

[DECLARE] %variable [IS]

 {FIXED [DP n] | FLOAT} [ARRAY (d1[,d2[,d3]])]

 [COMMON]

__

[DECLARE] %variable [IS]

 STRING [LEN n] [DP {n | *}] [ARRAY (d1[,d2[d3]])]

 [NO FIELD SAVE] [COMMON]

 %variable [(subscript)] = expression

__

+ WAIT [{n | %variable} SEC[S]] [FOR]

 {ANY RECEIPT RETURN %variable

 | RECEIPT {cid | processname | %variable}}

__

WRITE [IMAGE] imagename

 ON {sep-filename | TERMINAL | %variable}

__
26-20 Model 204

Value specification syntax
For all User Language statements and retrieval conditions, wherever the term
value appears in the syntax, it can be:

• Literal number or string

• VALUE IN clause of the form:

VALUE [IN] label

• %variable
User Language Manual 26-21

Retrieval condition syntax
A FIND statement can be followed by any number of retrieval conditions
separated by an end of line or LINEND parameter character.

Conditions can be constructed as follows:

Syntax [NOT] phrase [{AND | OR | NOR} [NOT] phrase] …

Where phrase can be constructed as follows:

fieldname = [NOT] value

fieldname LIKE pattern

fieldname IS [NOT] {PRESENT | LIKE ’pattern’}

fieldname IS [NOT]

 {[NUMERICALLY | ALPHABETICALLY]

 [EQ | = | NE | ¬= | GREATER THAN | GT | >

 | LESS THAN | LT < | <= | GE | >= | BEFORE | AFTER]

 value}

fieldname IS [NOT]

 {[NUMERICALLY | ALPHABETICALLY]

 {IN RANGE [FROM | AFTER] value1 {TO | [AND] BEFORE}

 value2 | BETWEEN value1 AND value2}

FILES filename

FIND$ label

LISTS$ listname

LOCATION {location | =}

POINT$ value
SFGE$ value
SFL$ value

where value can be:

Literal number or string

VALUE [IN] label

%variable
26-22 Model 204

Omitting repeated first words

Moreover, if a sequence of phrases in a particular retrieval condition all have
the same first word, that word can be omitted from the latter phrases. For
example:

LIST$ A AND NOT LIST$ B

can be written:

LIST$ A AND NOT B

And:

X IS 13 OR X IS LESS THAN 7

can be written:

X IS 13 OR IS LESS THAN 7

Omitting duplicated equal signs

Duplicated equal signs can be omitted. For example, the expression:

A = 3 OR A = 5 OR A = 40

is equivalent to:

A = 3 OR 5 OR 40

Use of parentheses

Parentheses can be placed around any sequence of phrases to clarify the
condition or force the evaluation to occur in a particular order. For example:

NOT (A = 2 OR LIST$ Y)
A = 1 AND (B = 2 OR C = 3)
User Language Manual 26-23

Print specification syntax
A PRINT, SET or AUDIT statement contains print specifications of the
following form:

Syntax [term] {AND | TAB | WITH]…[[term]

 [AND | TAB | WITH] …] … […]

Where term can be constructed as follows:

{’string’ | %variable | COUNT IN label

 | OCCURRENCE IN label

 | VALUE IN label | function}

 [AT [COLUMN] m] [TO [COLUMN] n]

or, if the statement is within a record loop:

{{EACH | n} fieldname | *RECORD | *ID}

 [AT [COLUMN] m] [TO [COLUMN] n}
26-24 Model 204

Expression syntax
The following syntax can be used in:

• Assignment statements

• Conditional IF statements and ELSEIF clauses

• Computed JUMP TO statements

• Subscripts

• Function arguments

Syntax {operand |(expression)} [operator {operand

| (expression)}] …

Where operand can be constructed as follows:

[+ | - | NOT]

 {’string’ | %variable | number

 | fieldname [(subscript)] IS [NOT] PRESENT

 | COUNT IN label | OCCURRENCE IN label

 | VALUE IN label

 | function}

and operator may be one of the following:

+ = EQ AND

- ¬= NE OR

* > GT WITH

/ < LT IS PRESENT

>= GE IS NOT PRESENT

<= LE IS LIKE

IS NOT LIKE
User Language Manual 26-25

IN clause syntax
Statements preceded by an asterisk (*), beginning with “User Language
statements” on page 26-4, support the IN clause.

The three basic forms of the IN clause are:

Syntax • IN [PERMANENT | TEMPORARY] GROUP groupname
MEMBER [%member | [filename [AT {location | =}]]

• IN file1 [,file2] •••

• IN {$CURFILE | $UPDATE}

The form IN $CURFILE can be used only within a record loop.

IN GROUP MEMBER limitations

In addition to the three basic forms of the IN clause shown above the IN
GROUP MEMBER clause restricts the following statements to one member file
in a group context:

• CLEAR LIST

• FIND ALL RECORDS (and its variants)

• FIND ALL VALUES

• FOR RECORD NUMBER (or FRN)

• STORE RECORD

You cannot use an IN GROUP MEMBER clause with a FOR EACH RECORD
statement or with an ADD, CHANGE, or DELETE RECORD statement. Only
the previously listed statements call accept an IN GROUP MEMBER clause.

Using an IN clause in a BEGIN…END block

The file name in the IN clause used within a BEGIN…END block is resolved by
the compiler. You can either hard code a file name or use some type of dummy
string for the file name. The use of a %variable for the file name is not allowed.
26-26 Model 204

Subscript syntax
A subscript has the format:

Syntax (subscript1 [,subscript2 [,subscript3]])

Where subscript1, subscript2, and subscript3 can be any expression.
User Language Manual 26-27

Terminal display attributes
One or more of the following terminal display attributes can replace the term
attribute in a full-screen formatting statement, if the display attribute is
supported by the installation:

List of attributes

BLINK

BLUE

BRIGHT

DIM

GREEN

INV[IS[BLE]]

NOBLINK

NOREV[ERSE]

NOU[NDER]SCORE

PINK

PROT[ECTED]

RED

REV[ERSE]

TURQUOISE

[UNDER]SCORE

UNPROT[ECTED]

VIS[IBLE]

WHITE

YELLOW
26-28 Model 204

Type syntax for the DECLARE SUBROUTINE statement
The type specification for the DECLARE SUBROUTINE statement has one of
the following formats:

{STRING [LEN n] [DP {n | *}] [ARRAY (*[,*[,*]])

 [NO FILE SAVE]]

 | FIXED [DP n] [ARRAY (*[,*[,*]])]

 | FLOAT}

or

[LIST] [IN [FILE | [PERM | TEMP] GROUP] name]
User Language Manual 26-29

26-30 Model 204

27
User Language Functions

In this chapter

• Standard functions

• Mathematical functions
User Language Manual 27-1

Standard functions

Changes required to user-written $functions

In Version 5.1, $function operations were optimized to create CPU, QTBL and
VTBL savings. Unfortunately, these optimizations break the open-coded
setting of $function output using the RESULT macro.

The RESULT macro does not work in Model 204 Version 5.1. Change any use
of the RESULT macro in $functions to use the standard LEAVENUM,
LEAVEF0 and LEAVESTR macros.

$ACCOUNT

The $ACCOUNT function returns a variable-length character string equal to the
account under which the user is logged into Model 204. If the login feature is
not in use, $ACCOUNT returns the string ‘NO ACCOUNT'. This function takes
no arguments. The ACCOUNT parameter returns the same value as the
$ACCOUNT function. See the Model 204 Command Reference Manual.

Example

BEGIN
SET HEADER 1 ’MORTON CORPORATION’ -
 AT COLUMN 10
SET HEADER 2
SET HEADER 3 ’ACCOUNT: ’ AT COLUMN 10 -
 WITH $ACCOUNT
 .
 .
 .

$ACCT

$ACCT returns a variable-length character string equal to the user ID under
which the user is logged into Model 204. If the login feature is not in use,
$ACCT returns ‘NO ACCOUNT'. The $ACCT function takes no arguments.

$ALPHA

The $ALPHA function verifies whether a string is composed only of characters
which are valid in the specified (or default) language. A 1 is returned if the
condition is true; otherwise, a 0 is returned (for a false condition). A 0 is
returned if there are any spaces or punctuation marks in the string, or if the
string is null.

Syntax

The format of the $ALPHA function is:
27-2 Model 204

$ALPHA(string [, language-name])

where:

• string represents the string to be verified. string must be one of:

– Quoted literal

– %variable

– Unquoted field name, in which case the current value of the field is ver-
ified. In this case, the function call must be embedded in a FOR EACH
RECORD loop.

• language-name (optional) specifies the language to use. Options are:

– Omitting this argument, which instructs Model 204 to perform the vali-
dation for U.S. English, even if the value of the LANGUSER parameter
is not NLANG.

– A quoted asterisk (‘*'), which instructs Model 204 to use the value of the
LANGUSER parameter to determine which language to use.

– The quoted literal name of a valid language, for example: NLANGFR1
for French Canadian, Version 1. The request is cancelled with an error
message, if the name is not present in NLANG$.

 For example:

$ALPHA (’JOHN’) returns 1
$ALPHA (’JOHN SMITH’) returns 0
$ALPHA (’12A’) returns 0

Example

This request sorts and prints the names of agents whose name contains
nonalphabetic characters. The quoted asterisk in the $ALPHA call causes
Model 204 to verify the contents of the field AGENT against whatever language
is indicated by the value of the LANGUSER parameter:

BEGIN
POL.HOLDERS: FIND ALL RECORDS FOR WHICH
 RECTYPE = POLICYHOLDER
 END FIND
 FOR EACH RECORD IN POL.HOLDERS
 IF NOT $ALPHA (AGENT, ’*’) THEN
 PLACE RECORD ON LIST BADNAME
 END IF
 END FOR
ORDERED.LIST: SORT RECORDS ON LIST BADNAME BY AGENT
 FOR EACH RECORD IN ORDERED.LIST
 PRINT AGENT
 END FOR
END
User Language Manual 27-3

Note: For upward compatibility reasons, $ALPHA and $ALPHNUM do not
recognize lowercase English letters as alphabetic characters unless a non-null
language parameter is specified.

$ALPHNUM

The $ALPHNUM function verifies whether a string is composed only of
characters which are valid in the specified (or default) language, and digits 0
through 9. A 1 is returned if the condition is true; otherwise, a 0 is returned (for
a false condition). A 0 is returned if there are any spaces or punctuation marks
in the string, or if the string is null.

Syntax

The format of the $ALPHNUM function is:

$ALPHNUM(string [, language-name])

where:

• string represents the string to be verified. string must be one of:

– Quoted literal

– %variable

– Unquoted field name, in which case the current value of the field is ver-
ified. In this case, the function call must be embedded in a FOR EACH
RECORD loop.

• language-name is optional and can be used to specify the language to use.
Options are:

– Omitting this argument, which instructs Model 204 to perform the vali-
dation U.S. English, even if the value of the LANGUSER parameter is
not NLANG.

– A quoted asterisk (‘*'), which instructs Model 204 to use the value of the
LANGUSER parameter to determine which language to use.

– The quoted literal name of a valid language, for example: NLANGFR1,
Version1, for French Canadian. The request is cancelled with an error
message, if the name is not present in NLANG$.

For example:

$ALPHNUM (’JOHN’) returns 1
$ALPHNUM (’JOHN SMITH’) returns 0
$ALPHNUM (’12A’) returns 1

Example

This request sorts by name and processes records whose designated field
value does not meet the $ALPHNUM criteria. The second argument in the
27-4 Model 204

$ALPHNUM call causes Model 204 to use U.S. English to perform the
validation:

BEGIN
 %SEARCH = $READ (’ENTER FIELD NAME’)
FIND.RECS: FIND ALL RECORDS FOR WHICH
 RECTYPE = POLICYHOLDER
 END FIND
 PLACE RECORDS IN FIND.RECS ON LIST BAD
 FOR EACH RECORD IN FIND.RECS
 IF $ALPHNUM (%%SEARCH, ’NLANG’) THEN
 REMOVE RECORD FROM LIST BAD
 END IF
 END FOR
SORT.RECS: SORT RECORDS ON LIST BAD BY FULLNAME
 FOR EACH RECORD IN SORT.RECS
 .
 .
 .
END

Note: For upward compatibility reasons, $ALPHA and $ALPHNUM do not
recognize lowercase English letters as alphabetic characters unless a non-null
language parameter is specified.

$ARRSIZE

The $ARRSIZE function returns the number of elements in a particular
dimension of a named array. This function is useful for users who pass entire
arrays as parameters to a subroutine and then must know the size of the array
supplied as the actual argument. For more information about passing arrays to
a subroutine, refer to “Index loops” on page 11-19.

Syntax

The format of the $ARRSIZE function is:

$ARRSIZE (name, dimension)

where:

• name is a string that specifies the name of an array.

• dimension is a number that indicates the dimension of the named array for
which the number of elements should be returned. Dimension can contain
an expression whose value is 1, 2, or 3.

Example

FOR %I FROM 1 TO $ARRSIZE (’%COMM.ARRAY’,1)
User Language Manual 27-5

causes %I to iterate from 1 to the number of elements in dimension 1 of the
array %COMM.ARRAY.

$ASCII

The $ASCII function converts an input string, assumed to be EBCDIC, into
ASCII. For example:

%X = $ASCII(%X)

The translation table can be modified when necessary at customer sites. The
source code is delivered in the FUNU module.

Not all strings are for display. There is no function to convert ASCII characters
to EBCDIC characters. Question marks are usually the results of trying to print
ASCII characters on an EBCDIC machine.

$BINARY

The $BINARY function converts the character string representation of a
number into its equivalent fixed-point binary representation.

Syntax

The format of the $BINARY function is:

$BINARY (string [, precision [, scale]])

where:

• string is the character string to be converted.

• precision (optional) indicates the number of binary digits (bits) desired in the
result of the function. Precision must be between 1 and 31. If the precision
argument is greater than 15, a default value of 31 is used. If the precision
argument is omitted, a default value of 15 (halfword) is used.

• scale (optional) indicates the number of fractional binary digits assumed in
the result of the function. If the scale argument is omitted, a default value of
0 (integer) is used.

$BINARY returns a value of binary -1 if the string argument does not represent
a valid number, if an invalid precision or scale value is specified, or if an
overflow occurs.

$BLDPROC

The $BLDPROC function enables a request or series of requests to build a
temporary procedure. $BLDPROC is similar to the PROCEDURE system
control command.
27-6 Model 204

The procedure built by $BLDPROC can contain arbitrary commands or User
Language statements or other text. You can execute this procedure after the
building request has ended, or you can edit the temporary procedure into a
permanent procedure. For more information on temporary procedures, see
“Working with temporary procedures” on page 13-20.

You can build only one procedure at a time. To add text to more than one
procedure in rotation, you must close one procedure and reopen the next
procedure.

Syntax

The format of the $BLDPROC function is:

$BLDPROC (proc number,text,action)

where:

• proc number is a temporary procedure number. The number of procedures
or requests saved for a user is controlled by the NORQS parameter, which
has a default value of 5. Procedure number 0 is the request currently being
entered. Procedure -1 refers to the request entered before the most recent
one, -2 to the one before that, and so on. Therefore, proc number must
have a value between 0 and -NORQS+1.

• text is usually a single line to be appended to the temporary procedure. A
single call to $BLDPROC can add more than one line of text by imbedding
LINEND parameter characters (usually semicolons) in the text argument. If
the text argument is null, the procedure is not changed.

• action must be one of the options listed in the following table. Building a
temporary procedure is similar to building a sequential file in that the
procedure must be opened before any text can be added to it. When all of
the desired text has been added, the procedure should be closed.

Choose from these options:

Option Result

APPEND Adds the text to the end of an already opened procedure.

CLOSE Closes the temporary procedure, disallowing further APPENDs.
Model 204 automatically closes any procedure left open at the
end of execution of the request. Text specified in a CLOSE call is
added before the close.

OPEN Creates a new temporary procedure. If the procedure already
exists, the old text is automatically deleted. Text specified in the
same
$BLDPROC call as OPEN is added after the procedure is
opened.
User Language Manual 27-7

A null or omitted action argument is the same as APPEND.

How $BLDPROC works

$BLDPROC returns a 0 for success and a 1 for any of the following errors:

• The proc number argument is not numeric or is not in the range of valid
temporary procedure numbers.

• The specified temporary procedure is being included.

• Where a previous USE PROC command is also directing output to the
same temporary procedure.

• The action argument is not one of the valid choices.

• The action argument is OPEN or REOPEN and there is already an open
temporary procedure.

• The action argument is APPEND or CLOSE and there is no open
procedure.

• The action argument is APPEND or CLOSE and the proc number argument
does not match the currently opened procedure.

Temporary procedures are stored in CCATEMP. If an additional CCAPTEMP
page is required to process a $BLDPROC call, but CCATEMP is full, then the
request is cancelled and the entire temporary procedure is deleted. After the
request is cancelled, the procedure does not contain everything up to the point
of failure. In the event of CCATEMP filling while processing $BLDPROC, the
following message is issued:

*** CANCELLING REQUEST: M204.0441: CCATEMP FULL:
$BLDPROC

Example

This sample request saves the size of the global variable table (GTBL) before
the table is reset with the UTABLE command. (See “User Language internal
work areas” on page 21-3 for information on the UTABLE command and
GTBL.) By saving the LGTBL value, the table can be returned to its original size
at a later time. This is particularly useful in a subsystem where the LGTBL
parameter is normally reset. (To learn about subsystems, see Chapter 23.)

BEGIN

REOPEN Prepares an existing procedure for the addition of text. REOPEN
locates the end of the old text so that new text is appended.
OPEN and REOPEN are identical for a new procedure. Text
specified in the same $BLDPROC call as REOPEN is added after
the procedure is opened.

Option Result
27-8 Model 204

%X = $BLDPROC(-1,’BEGIN’,’OPEN’)
%X = $BLDPROC(-1,’%A = $SETG(’’GTBL’’,’ WITH -
 $VIEW(’LGTBL’) WITH ’)’)
IF %A THEN
 PRINT ’GLOBAL TABLE FULL’
END IF
%X = $BLDPROC(-1,’END’,’CLOSE’)
IF %X THEN
 PRINT ’BLDPROC ERROR’
END IF
END
UTABLE LGTBL 15000

After the preceding request executes, procedure -1 contains the following
statements:

BEGIN
%A = $SETG(’GTBL’,704)
END

$CENQCT

The $CENQCT function reports the number of unused entries within the
resource enqueuing table. The number must be more than the number of
noncritical resources needed by the next statement(s) in the request. All
resources except the following are noncritical:

DIRECT
EXISTENCE
INDEX
RECORD ENQUEUE

The function has no input and returns a single number. For example, ’PRINT
$CENQCT’ displays the number of unused entries.

$CHKMOD

Use the $CHKMOD function after a READ SCREEN or REREAD SCREEN
statement to determine whether the terminal operator entered data for any full-
screen input fields or for a specific input field. See a discussion of the full-
screen feature in “Full-screen processing” on page 22-6.

Syntax

The format of the $CHKMOD function is:

$CHKMOD (screenname [, inputname])

• Both the screenname and inputname arguments are expected to be string
expressions and can include quoted strings, %variables, field names, or
functions.
User Language Manual 27-9

If screenname and/or inputname are quoted strings, the name must be
enclosed in single quotation marks:

$CHKMOD (’EMPSCRN’, ’NAME’)

• If inputname (representing an input field on the specified screen) is not
included in the function call, $CHKMOD returns the number of input fields
for which the terminal operator entered data.

If inputname is specified, $CHKMOD returns a value of 0 if the input field
was not modified. $CHKMOD returns a value of 1 if the field was modified.

$CHKPAT

The $CHKPAT function verifies the syntax of a pattern. $CHKPAT returns a null
string if the pattern is syntactically correct, and an error message if it is not.

Without $CHKPAT, pattern syntax errors caused cancellation of the request or
required the coding of sometimes awkward ON units.

$CHKPAT supports language-sensitive specification of patterns through an
optional second parameter (such as “$ALPHA” on page 27-2 and
“$ALPHNUM” on page 27-4).

All characters X’00’ through X’FF’ are valid in a pattern presented to the User
Language pattern matcher. The $CHKPAT function no longer invokes either of
the following messages when it encounters these characters.

M204.1688: errortype IN PATTERN ’pattern’ AT
CHARACTER char

M204.1689: errortype IN PATTERN ’pattern’ AT
CHARACTER char

Example

%X = CHKPAT(%PAT)
IF %X NE '' THEN
 PRINT %X
 JUMP TO ERROR.RETURN
END IF

$CHKPINF

Function

Returns information about checkpoints. It takes one argument, which specifies
what information to return.

Syntax

$CHKPINF(request-code)
27-10 Model 204

Where:

request-
code Asking to return… $CHKPINF returns…

Meaning that
checkpointing is…

0 Checkpoint status 0 Not active

1 Currently being taken (by
CPTIME or by
CHECKPOINT command)

2 Active, but no auto
checkpoints; CPTIME=0

3 Active and CPTIME does not
equal 0

1 Date-time for the next
checkpoint attempt,
scheduled by the CPTIME
argument

9999/99/99 99:99:99.99 Not active

9999/99/99 99:99:99.99 CPTIME=0

Current date-time In progress

yyyy/mm/dd hh:mm:ss.hh Scheduled date/time

2 Seconds till the next
checkpoint attempt,
scheduled by the CPTIME
parameter

999999999 Not active

999999999 CPTIME=0

0 In progress

sss:hh Scheduled in this many
seconds

3 Time of last successful
checkpoint

Date-time of last checkpoint
as yyyy/mm/dd hh:mm:ss.hh

Due to CPTIME parameter
or CHECKPOINT command

0000/00/00 00:00:00.00 Not active

4 Seconds since the last
successful checkpoint

Time in seconds of
checkpoint as sss:hh

Due to CPTIME parameter
or the CHECKPOINT
command

999999999 Not active

5 Total number of records
currently in CHKPOINT
stream, which includes
checkpoints and preimages

Number of records

6 Number of checkpoints
currently in CHKPOINT
stream

Number of checkpoints

7 Extended quiesce status 0 Extended quiesce inactive
for this run

1 Extended quiesce unset: will
not be entered
User Language Manual 27-11

Example

The following procedure illustrates using the $CHKPINF function.

 * * * TOP OF PROCEDURE * * *
BEGIN
PRINT $CHKPINF(0) WITH ’ CURRENT CHECKPOINTING STATUS’ AT 25
PRINT $CHKPINF(1) WITH ’ NEXT SCHEDULED CHECKPOINT’ AT 25
PRINT $CHKPINF(2) WITH ’ SECONDS UNTIL NEXT SCHEDULED CHECKPOINT’
AT 25
PRINT $CHKPINF(3) WITH ’ LAST SUCCESSFUL CHECKPOINT TAKEN’ AT 25
PRINT $CHKPINF(4) WITH ’ SECONDS SINCE LAST SUCCESSFUL CHECK-
POINT’ AT 25
PRINT $CHKPINF(5) WITH ’ # RECORDS CURRENTLY IN CHKPOINT STREAM’
AT 25
PRINT $CHKPINF(6) WITH ’ # CHECKPOINTS IN CHKPOINT STREATM’ AT 25
PRINT $CHKPINF(7) WITH ’ EXTENDED QUIESCE STATUS’ AT 25
END
 * * * BOTTOM OF PROCEDURE * * *

Model 204 displays the following output:

3 CURRENT CHECKPOINTING STATUS
2001/11/19 12:40:00.75 NEXT SCHEDULED CHECKPOINT
249.68 SECONDS UNTIL NEXT SCHEDULED CHECKPOINT
2001/11/19 12:20:00.66 LAST SUCCESSFUL CHECKPOINT TAKEN
950.42 SECONDS SINCE LAST SUCCESSFUL CHECKPOINT
7083 # RECORDS CURRENTLY IN CHKPOINT STREAM
1 # CHECKPOINTS IN CHKPOINT STREAM
1 EXTENDED QUIESCE STATUS

$CHKSFLD

Use the $CHKSFLD function to determine whether a display attribute is applied
to a screen item for a specified type of screen processing.

2 Extended quiesce set; at
end of next successful
checkpoint extended
quiesce state will be
reentered

3 Currently in extended
quiesce

4 Extended quiesce facility
non-functional: in EOJ

request-
code Asking to return… $CHKPINF returns…

Meaning that
checkpointing is…
27-12 Model 204

Syntax

$CHKSFLD(screen-name,item-name,display-attribute,

 [process-type])

Where

• Both the screen-name and item-name arguments are expected to be string
expressions and can include quoted strings, %variables, field names, or
functions.

• display-attribute value can be one of the following:

• process-type can be one of the following:

– ‘PRINT'

– ‘READ' (the default)

– ‘REREAD'

– ‘TAG'

Value Meaning

‘ASK' Auto-skip

‘BLI' Blink

‘BLU' Blue color

‘BRI' Bright

‘DEF' Default color

‘GRE' Green color

‘INV' Invisible

‘NUM' Numeric field

‘PIN' Pink color

‘PRO' Protected

‘RED' Red color

‘REV' Reverse image

‘TUR' Turquoise color

‘USC' Underscore

‘WHI' White color

‘YEL' Yellow color
User Language Manual 27-13

Returns

• 1 if the attribute is ON for the type specified.

• 0 if the attribute is OFF for the type specified.

Usage

For example, if you want to check whether the POLNO (policy number) field in
the screen MAIN is displayed in blue in reread processing, enter the following
command:

BEGIN
SCREEN MAIN
INPUT POLNO AT 10 LEN 20 RED
END SCREEN
MODIFY %MAIN:POLNO TO BLUE FOR REREAD
PRINT $CHKSFLD(’MAIN’,’POLNO’,’BLU’,’REREAD’)
END

Produces the following output:

1

Nonfatal errors

If you do not specify colors within the Model 204 screen definition, the color
displayed on your terminal is the default color display. For example, you might
be looking at a pink display, but when you invoke the $CHKSFLD function,
checking for ‘PIN' does not return a ‘1' because pink was not assigned by the
Model 204 screen definition.

The following messages might be issued:

M204.2462: INVALID ATTRIBUTE SPECIFIED: attribute

M204.2462: INVALID ATTR.TYPE SPECIFIED: attr.TYPE

M204.0329: SCREEN OR IMAGE ITEM NAME NOT FOUND: name

M204.0324: SCREEN, MENU, OR IMAGE NAME NOT DEFINED:
name

M204.0247: SCREEN, MENU, OR IMAGE NAME NOT SPECIFIED

$CHKTAG

Use the $CHKTAG function to determine whether any full-screen input fields
that resulted in error conditions were entered by the terminal operator. The full-
screen input fields either did not pass the automatic validation tests specified
for the fields, or contained errors detected by the request.
27-14 Model 204

Syntax

The format of the $CHKTAG function is:

$CHKTAG (screenname [, inputname])

• Both the screenname and inputname arguments are expected to be string
expressions and can include quoted strings, %variables, field names, or
functions.

If screenname and/or inputname are quoted strings, the name must be
enclosed in single quotation marks, as shown below:

$CHKTAG (%SCRNAME, ’ACCNTNO’)

• If inputname (representing an input field on the specified screen) is not
included in the function call, $CHKTAG returns the number of input items
with tags on. If inputname is included, $CHKTAG returns a value of 0 if the
specified input item’s tag is not on. $CHKTAG returns a value of 1 if the
item’s tag is on.

Example

IF $CHKTAG(’ACCTG’) GT 0
 THEN REREAD SCREEN ACCTG

$CODE

The $CODE function, along with $DECODE, provides an encoding/decoding
facility in User Language. $CODE and $DECODE operate on code tables that
are defined, created, and controlled by the system manager. These tables can
be searched but not changed by User Language functions.

$CODE and $DECODE search tables that are external to a Model 204 file.
These tables are independent of a field’s CODED/NON-CODED attribute,
which affects how the field is stored internally in the Model 204 file.

The $CODE function takes two arguments:

• The first argument contains the name of the table to be searched.

• $CODE returns the code for the character string value contained in the
second argument. A null value is returned if the string is not contained
within the table or if the table does not exist. A nonexistent table also
causes the nonfatal message:

INVALID CODE TABLE IDENTIFIER=X.

Example

This request prompts the user for the full name of a state but performs the
record search on the coded value for that state.
User Language Manual 27-15

BEGIN
 %STCD = $CODE (’STATE’, $READ (’ENTER STATE
NAME’))
GET.RECS: FIND ALL RECORDS FOR WHICH
 STATE = %STCD
 END FIND
 FOR EACH RECORD IN GET.RECS
 .
 .
 .

$CURFILE

The $CURFILE function returns the name of the file from which the current
record has been selected. If the file is remote, $CURFILE also returns the
location of the file (in the form filename AT location). $CURFILE takes no
arguments.

You can use $CURFILE in two places:

• In arithmetic and PRINT specifications within a record loop

• In an IN clause to override a default file or group in a STORE RECORD
statement

See “$CURFILE and $UPDATE functions” on page 16-29 for a discussion of
default files and for examples of requests using $CURFILE.

You cannot use an IN clause that includes both MEMBER and $CURFILE. See
“IN GROUP MEMBER clause” on page 16-27 for more information about the
IN GROUP MEMBER clause.

$CURREC

The $CURREC function returns an integer equal to the internal number of the
current record.

At the beginning of a request, $CURREC is set to minus one, an invalid record
number. The STORE RECORD statement sets $CURREC to the record
number of the new record.

At the beginning of each pass through a FOR loop, $CURREC is set to the
record number of the record to be processed in that pass. When the FOR loop
is exited, because all records have been processed or because a LOOP END
or JUMP statement has been encountered, $CURREC is restored to its value
prior to the FOR statement. $CURREC takes no arguments.

You should be aware of these facts when using $CURREC:

• In a record loop on the records of a SORT statement, $CURREC is set to
the record number of the record from which the temporary sort copy was
made.
27-16 Model 204

• Record numbers are not unique within a file group. The number returned by
$CURREC is valid only in reference to the file from which the record came.

Example

This request prints the record number of a new record:

BEGIN
GET.RECS: FIND ALL RECORDS
 END FIND
 FOR 5 RECORDS IN GET.RECS
 PRINT ’THE INTERNAL RECORD NO IS ’ -
 WITH $CURREC
 END FOR
END

$C2X

The $C2X function translates each byte within a character string into two-byte
hexadecimal-equivalent characters. $C2X returns a character string that is
twice as long as the original string. The maximum input length is 126 bytes. If
the input length is more than 126 bytes, a null string is returned.

Syntax

The format for the $C2X function is:

$C2X(charstr)

where charstr is the input character string (either a %variable or a quoted literal)

Example

PRINT $C2X(’YES’)

results in this output:

E8C5E2

Overview of $DATE functions

All $DATE functions—$DATE, $DATEJ, $DATEP—accept two input
arguments.

Syntax $DATE(year-format,fill-character)
User Language Manual 27-17

Where • The year-format argument controls the format of the year based on the
following input values:

CYY represents the century-year format. The first digit represents the
century since 1900. The CYY format can be manipulated using the
CUSTOM parameter. Please consult the Model 204 Command Reference
Manual for a discussion of the CUSTOM parameter.

• The fill-character argument indicates a 1-byte fill character to place
between the date components, as in the following examples:.

Usage $DATECHG, $DATECHK, $DATECNV, and $DATEDIF recognize a format of
CYY as representing the century-year format as returned from the $DATE
function. Conversion to and from the CYY format is fully supported.

In addition, if CUSTOM=1 is added to the User 0 CCAIN stream or set later
using the RESET command, the following occurs: If a CYY date format is
specified for conversion and only a YY input is supplied, the conversion is
successfully completed by using the CENTSPLT and BASECENT parameters.
For further details see Model 204 Command Reference Manual for details
regarding the BASECENT, CENTSPLT, and CUSTOM parameters.

Examples • IF CUSTOM=1, BASECENT=19, and CENTSPLT=95, then:

Year-format
input

Return
format

Example:
Year 2013 displayed as…

0 YY 13

1 YYYY 2013

2 CYY 113 (The first digit represents the century since
1900)

Code example Return format Example: July 11, 2013

$DATE(2,’ ’) ’CYY MM DD’ 113 07 11

$DATE(0,’Z’) ’YYzMMzDD’ 13z07z11

$DATEJ(1,’-’) ’YYYY-DDD’ 2013-192

$DATEJ(1,’’) ’YYYYDDD’ 2013192

Print command Results

PRINT
$DATECNV('CYYDDD’,'YYYYMMDD','96001')

19960101

PRINT
$DATECNV('CYYDDD','YYYYMMDD','196001')

20960101

PRINT
$DATECNV('CYYDDD','YYYYMMDD','95001')

19950101
27-18 Model 204

• If CUSTOM=1 is omitted, BASECENT=19, and CENTSPLT=95, then:

• If CUSTOM=2 is added to the User 0 CCAIN stream or set later using the
RESET command, the following occurs: If a CYY-format is specified for
output conversion and the C indicator is zero, then C is eliminated. This is
true for all $DATE function calls. For example:

If CUSTOM=2 then: PRINT $DATEJ(2) prints 97.001.

But if CUSTOM =2 is omitted, then PRINT $DATEJ(2) prints 097.001.

Julian dates

The Julian date is a 4-byte, packed decimal formatted as follows:

0CYYDDDF

where:

• 0 is a reserved filler

• C represents the century since 1900. For example:

– C=0 represents years 1900-1999

– C=1 represents years 2000-2099

• YY is 2-byte year

• DDD is 3-byte day

• F is positive sign nibble for packed decimal

Routines available for user-written date $functions

CCALL entry points have been added: DATE, DATE3, and DATE4. All routines
must be called with T1 pointing to a 26-byte answer area. CCA recommends
that you allocate the answer area using the VARS=(name, len) pushdown list

PRINT
$DATECNV(’CYYDDD’,’YYYYMMDD’,’095001’)

19950101

Print command Results

Print command Results

PRINT
$DATECNV(’CYYDDD’,’YYYYMMDD’,’96001’)

PRINT
$DATECNV(’CYYDDD’,’YYYYMMDD’,’196001’)

20960101

PRINT
$DATECNV(’CYYDDD’,’YYYYMMDD’,’95001’)

PRINT
$DATECNV(’CYYDDD’,’YYYYMMDD’,’095001’)

19950101
User Language Manual 27-19

variable of the ENTER macro. (See the Model 204 System Manager’s Guide
chapter on customizing function and translation tables for more information on
the ENTER macro.)

The current date and time are stored in the area with this format:

All registers are returned intact with the exception of the DATE call. The DATE
call changes only the T4 register, returning the number representing the current
month (1-12).

$DATE

The $DATE function returns an 8- or 10-character string equal to the current
date in yy-mm-dd format (for example, 90-09-20) or yyyy-mm-dd format (for
example, 1990-09-20). The default is 8 characters. If $DATE is stored as a field
value, you can use this form to sort records chronologically.

Usage

When using $DATE in field values, make sure that all values of $DATE are in
the same format. You will get incorrect results when sorting records if you mix
yyyy and yy formats.

Syntax

The format for $DATE is:

$DATE(year-format,fill-character)

See “Overview of $DATE functions” on page 27-17 for syntax details.

If Model 204 encounters an error, the function returns all asterisks (*).

Example

The following request prompts a user for data values and automatically stores
the current date with each new record (using the 8-character format).

BEGIN
%DATE = $DATE
GET.FIRST: %A = $READ(’ENTER FIELD A’)
 %B = $READ ’ENTER FIELD B’)
 STORE RECORD
 FLD A = %A

Code entry point Format used for storing…

DATE ’YY.DDD MON DD HH.MM.SS’

DATE3 ’CYY.DDD MON DD HH.MM.SS’

DATE4 ’YYYY.DDD MON DD HH.MM.SS’
27-20 Model 204

 FLD B = %B
 .
 .
 .
 DATE STORED = %DATE
 END STORE
 IF $READ(’NEXT RECORD: Y OR CR’) EQ -
 ’Y’ THEN JUMP TO GET.FIRST
 END IF
END

$DATECHG

The $DATECHG function adds or subtracts a specified number of days from a
given date. The result is returned in the format of the input date.

Syntax

The format of the $DATECHG function is:

$DATECHG(format, date, number of days)

where:

• format specifies the format of the input date. The format can be a
combination of these elements:

Valid formats are:

– A format that has a month, day, and year element

– A Julian date format that has a year element and a day element in the
format DDD

Any EBCDIC characters except single quotes are allowed within the format.
The format can be as many as 32 characters in length.

• date specifies a date in the format indicated by the format argument. The
date can be as many as 36 characters in length.

DD Gregorian numeric day

DDD Julian numeric date

MM Numeric month

MON Abbreviated month name

MONTH Full month name

YY Last two digits of numeric year (assumes that the year prefix is 19)

YYYY Full numeric year

CYY The century, plus the year. Century (C) is a single digit, where 0
represents 1900, 1 represents 2000, and so on.
User Language Manual 27-21

• number of days indicates the number of days to be added or deducted from
the date. The number must be an integer.

Separators and leading zeros

• The separators in the format argument must match the separators in the
date argument. For example:

$DATECHG(’MONTH - DD - YYYY’,’JANUARY - 05 -
1986’, 20)

• When necessary, you must pad the month or date in the date argument with
leading zeros to match the length of the format. For example:

$DATECHG(’YY DDD’,’86 023’,22)

How $DATECHG works

• If the number of days is a positive integer, the number is added to the date.

• If number of days is a negative integer, the number is deducted from the
date.

• If an error occurs, all asterisks (*) are returned.

Example

PRINT $DATECHG(’MON. DD, YYYY’,’JAN. 10, 1999’, 15)

prints this value:

JAN. 25, 1999

$DATECHK

The $DATECHK function determines whether a given date is valid.
$DATECHK returns a 1 if the date is valid. A 0 is returned if either the date is
invalid or if the date does not match a format you specify.

Syntax

The format of the $DATECHK function is:

$DATECHK(format, date)

where:

• format specifies the format of the date, which can be a combination of the
following elements:

DD Gregorian numeric day
27-22 Model 204

Valid formats are:

– A format that has a month, day, and year element

– A Julian date format that has a year element and a day element in the
format DDD

Any EBCDIC characters except single quotes are allowed within the format.
The format can be as many as 32 characters in length.

• date specifies a date in the format indicated by the format argument. The
date can be as many as 36 characters in length.

Example

PRINT $DATECHK(’MON. DD, YYYY’,’FEB. 30, 1999’)

prints the value 0 because the month of February does not have 30 days.

$DATECNV

The $DATECNV function converts an input date from its current format to a
format you specify and, also, determines whether the input date is valid. If a
format error occurs or the input date is not valid, the function returns all
asterisks (*). $DATECNV supports both a 2- and a 4-digit year format; the year
prefix can come from one of four places.

Syntax

The format of the $DATECNV function is:

$DATECNV(input format,output format,input date,

 defcent, centsplt)

where:

DDD Julian numeric date

MM Numeric month

MON Abbreviated month name

MONTH Full month name

YY Last two digits of numeric year (assumes that the year prefix is 19)

YYYY Full numeric year

CYY The century, plus the year. Century (C) is a single digit, where 0
represents 1900, 1 represents 2000, and so on.
User Language Manual 27-23

• input format specifies the format of the input date. The format can be a
combination of these elements:

Valid formats are:

– A format that has a month, day, and year element

– A Julian date format that has a year element and a day element in the
format DDD

Any EBCDIC characters except single quotes are allowed within the input
format and appear unchanged in the output date. The input format can be
as many as 32 characters in length.

When you use a 2-digit year, for example, YY is 98) in the input format and
a 4-digit year (YYYY) in the output format, Model 204 assumes that the
century is 19-, for example, 1998.

• output format specifies the format of the output date. The format
requirements are the same as those for the input format argument. Using a
2-digit year (YY) in the output format leaves you with no way to distinguish
between centuries. For example:

$DATECNV(’MON DD, YYYY’, ’YY DDD’, ’JAN 10, 2005’)

produces the following output:

05 010

However, the output is exactly the same if the input date is January 10,
1905 or January 10, 2105.

• input date specifies the input date in the format indicated by the input format
argument. The input date can be as many as 36 characters in length.

• defcent argument (optional) specifies the DEFCENT value to use; it
overrides all other DEFCENT and CENTSPLT parameter values. This
argument cannot be specified with the centsplt argument, unless one of the
values is NULL.

DD Gregorian numeric day

DDD Julian numeric date

MM Numeric month

MON Abbreviated month name

MONTH Full month name

YY Last two digits of numeric year (assumes that the year prefix is 19)

YYYY Full numeric year

CYY The century, plus the year. Century (C) is a single digit, where 0
represents 1900, 1 represents 2000, and so on.
27-24 Model 204

• centsplt argument (optional) specifies the CENTSPLT value to use; it
overrides all other DEFCENT and CENTSPLT parameter values. This
argument cannot be specified with the defcent argument, unless one of the
values is NULL.

The following example illustrates the use of the $DATECNV converting dates
in various centuries.

PROCEDURE CENTSPLT
BEGIN
%INPUT_FORMAT = ’YYDDD’
%OUTPUT_FORMAT = ’YYYY MM DD’
%INPUT_VALUE = ’9633’
%CENTSPLT = 97
%DEFCENT = ’ ’
CALL PIT
%CENTSPLT = ’ ’
%DEFCENT = 19
CALL PIT
%INPUT_FORMAT = ’YYYYDDD’
%INPUT_VALUE = ’2006333’
CALL PIT
PIT: SUBROUTINE
PRINT %INPUT_FORMAT ’ ’ %OUTPUT_FORMAT ’ ’
%INPUT_VALUE -
 ’ ’ %DEFCENT ’ ’ %CENTSPLT
PRINT $DATECNV(%INPUT_FORMAT,
%OUTPUT_FORMAT,%INPUT_VALUE, -
 %DEFCENT, %CENTSPLT)
RETURN
END SUBROUTINE
END
END PROCEDURE

For an explanation of the DEFCENT and CENTSPLT parameters processing
see Model 204 Command Reference Manual in the chapter on parameters.

Separators and leading zeros

Use separators and leading zeros as specified here:

• Separators in the input format argument must match the separators in the
input date argument. For example:

$DATECNV(’MONTH - DD - YYYY’,’MON DD, YYYY’, -
 ’JANUARY - 05 - 1990’)

• When necessary, you must pad the month or date in the input date
argument with leading zeros to match the length of input format. For
example:

$DATECNV(’YY DDD’,’MON DD, YYYY’,’90 023’)
User Language Manual 27-25

Example

PRINT $DATECNV(’DDMMYY’,’MON DD, YYYY’,’010790’)

prints this value:

JUL 01, 1990

$DATEDIF

The $DATEDIF function returns the difference in days between the two dates.

Syntax

The format of the $DATEDIF function is:

$DATEDIF date-1-format,date-1,date-2-format,date-2,

 defcent,centsplt)

where:

• Date-1-format specifies the format of the first date. The format can be a
combination of these elements:

Valid formats are:

– A format that has a month, day, and year element

– A Julian date format that has a year element and a day element in the
format DDD

Any EBCDIC characters except single quotes are allowed within the input
format and appear unchanged in the output date. The input format can be
as many as 32 characters in length.

• Date-1 specifies the first date in the format specified by the date-1-format
argument. The date can be as many as 36 characters in length.

DD Gregorian numeric day

DDD Julian numeric date

MM Numeric month

MON Abbreviated month name

MONTH Full month name

YY Last two digits of numeric year (assumes that the year prefix is 19)

YYYY Full numeric year

CYY The century, plus the year. Century (C) is a single digit, where 0
represents 1900, 1 represents 2000, and so on.
27-26 Model 204

• Date-2-format specifies the format of the second date. The format
requirements are the same as those for the date-1-format argument. This
argument can be omitted but the comma after it is required. If this argument
is omitted, $DATEDIF assumes that date-2 is in the same format as date-1.

• Date-2 specifies the second date. The date must be either in the format
specified in the date-2-format argument, or in the format specified in date-
1-format if date-2-format is not specified. The date can be as many as 36
characters in length.

• The defcent argument (optional) specifies the DEFCENT value to use; it
overrides all other DEFCENT and CENTSPLT parameter values. This
argument cannot be specified with the centsplt argument, unless one of the
values is NULL.

• The centsplt argument (optional) specifies the CENTSPLIT value to use; it
overrides all other DEFCENT and CENTSPLT parameter values. This
argument cannot be specified with the defcent argument, unless one of the
values is NULL.

Dates in differing centuries

In the following procedure Date_Difference, the $DATEDIF function calculates
the difference between dates twice. Before the first PRINT command, the
CUSTOM parameter is set to 1, so the century defaults to the current century.
Before the second PRINT command, the DEFCENT parameter is set to 20.

PROCEDURE DATE_DIFFERENCE
RESET CUSTOM =(1

BEGIN
PRINT $DATEDIF(’CYYDDD’,’96333’,’YY MM DD’,’97 06 22’,-
 %DEFCENT,%CENTSPLT)
%DEFCENT = 20
PRINT $DATEDIF(’CYYDDD’,’096333’,’YY MM DD’,’97 06 22’,-
 %DEFCENT,%CENTSPLT)
END

END PROCEDURE

For an explanation of the DEFCENT and CENTSPLT parameters processing
see Model 204 Command Reference Manual in the chapter on parameters.

Separators and leading zeros

• The separators in each format must match the separators in the
corresponding date. For example:

$DATEDIF(’MON DD, YYYY’,’JAN 08, 1990’, -
 ’YY:DDD’, ’88:210’)

• When necessary, pad the month or date in the date argument with leading
zeros to match the length of corresponding format argument. For example:
User Language Manual 27-27

$DATEDIF(’YY DDD’,’90 034’,,’90 007’)

How $DATEDIF works

• If date1 is the same as date2, 0 is returned.

• If date1 is earlier than date2, a negative integer is returned.

• If date1 is later than date2, a positive integer is returned.

• If an error occurs, 999999999 is returned.

Example

PRINT $DATEDIF(’MMDDYY’,’010790’,,’040891’)

prints this value:

-456

$DATEJ

The $DATEJ function returns the current Julian date as a 5- to 7-character
string in yy-ddd, format, for example, 97-342; or cyy-ddd format, for example,
097-342; or yyyy-ddd format, for example, 1997-342. The default is 5
characters. If $DATEJ is stored as a field value, you can use this form to sort
records chronologically.

Usage

When using $DATEJ in field values, make sure that all values of $DATEJ are
in the same format. You get incorrect results when sorting records if you mix
yyyy, cyy, and yy formats.

Syntax

The format for $DATEJ is:

$DATEJ(year-format,fill-character)

For further syntax details see “Overview of $DATE functions” on page 27-17.

If Model 204 encounters an error, the function returns all asterisks (*).

$DATEP

The $DATEP function returns a 9-character or 11-character string equal to the
current date in either “dd mon yy” format (for example, 04 AUG 91) or “dd mon
yyyy” format (for example, 04 AUG 1991). The default is 9 characters.
27-28 Model 204

Syntax

The format for $DATEP is:

$DATEP[(year-format)]

where year-format is optional and can be:

If Model 204 encounters an error, the function returns all asterisks (*).

See also “Overview of $DATE functions” on page 27-17.

Example

BEGIN
SET HEADER 1 ’TRIAL BALANCE’ WITH $DATEP AT COLUMN 30
NEW PAGE
 .
 .
 .

$DAY

The $DAY function takes an input day number and returns a 3-byte string
containing the name of the day in ascending order beginning with Sunday. The
return values are: SUN, MON, TUE, WED, THR, FRI, and SAT.

Syntax

$DAY(day-number)

Where:

Day-number is the number for the day of the week

Usage

For example, if you enter the following command:

PRINT $DAY(5)

The Model 204 displays:

’THR’

If CUSTOM=3 is selected, $DAY function takes an input day number from 2
through 8 representing in ascending order, Monday through Sunday. A string

0 The default; indicates that $DATEP returns a 9-character string equal to the
current date in the dd mon yy format.

1 Indicates that $DATEP returns an 11-character string equal to the current date
in the dd mon yyyy format.
User Language Manual 27-29

containing the full name of the day is returned, for example, if you enter the
following command:

PRINT $DAY(5)

The Model 204 displays:

’FRIDAY’

Also, 9 represents the string ‘MON-FRI'.

$DAYI

The $DAYI function takes an input day number and the century-split and
resolves the date. The value returned is a number reflecting the day of the week
for the given date.

Syntax

$DAYI(input-date,century-split)

Where:

• input-date is a string in the format CYYDDD. (C is the century; YY is the
year, and DDD is the julian day.)

• century-split is the 2-digit number representing the lowest year in the
current century. (Valid values are 00 to 99.)

Usage

If the century (C) value is omitted, the century is determined by one of the
following

• The supplied century split value

• The system defined century split value (CENTSPLT)

• The system default century (DEFCENT)

If the year is omitted, the current Model 204 defined year is used. The Julian
day is required.

The default operation is CUSTOM=0, where the week days are numbered from
1 through 7, representing Sunday through Saturday. If CUSTOM=3 is selected,
the week consists of 2 through 8, representing Monday through Sunday.
27-30 Model 204

Examples

If the default century is 1900, then:

$DEBLANK

The $DEBLANK function is equivalent to the $SUBSTR function, except that
the resulting string is stripped of leading and trailing blanks. Refer to the
discussion on $SUBSTR on page 27-103 for more information.

$DECODE

The $DECODE function performs a table lookup and returns a decoded
character string value. $DECODE is useful for printing descriptive information
on reports when the records themselves contain only coded values.

$DECODE conserves space and minimizes the keystrokes required for
requests by retaining only codes for fields. $DECODE takes two arguments:

$DECODE(’table_name’,resolve)

where

• table_name is the name of a table.

• resolve contains the code that is to be decoded.

Example

The state field contains a 2-character code. Full state names are printed.

BEGIN
STATE: FOR EACH VALUE OF STATE IN ORDER
STATE.VAL: FIND ALL RECORDS FOR WHICH
 STATE = VALUE IN STATE
 END FIND
NO.IN.EACH: COUNT RECORDS IN STATE.VAL
 SKIP 1 LINE
 PRINT $DECODE (’STATE’, VALUE IN STATE) -
 WITH COUNT IN NO.IN.EACH AT COLUMN 30
 END FOR
END

Table 27-1. Resolving $DAYI function

Input-date Representing Returns Representing

$DAYI(‘100032') February 1, 2000 3 Tuesday

$DAYI(97001',500) January 1, 1997 4 Wednesday

$DAYI(‘23001',50) January 1, 2023 2 Sunday
User Language Manual 27-31

$DELG

Deletes information stored in the global variable table by a $SETG function in
the same or an earlier request.

The syntax of the $DELG function is:

$DELG(’globalvariable[*]’)

Where:

globalvariable[*] specifies the name of the global variable to delete.

You can specify the optional wildcard suffix, an asterisk (*), to delete all global
variables with the same common prefix. You cannot delete all global variables
by specifying the wildcard suffix only.

$DELG returns a completion code indication success or failure of the operation.
Possible codes are:

Examples

Assuming the global variable table has been populated as follows:

%RC = $SETG(’GVAR’,’DATA’)
%RC = $SETG(’GVAR1’,’DATA1’)
%RC = $SETG(’DELETE’,’TARGET’)
%RC = $SETG(’GVAR2’,’DATA2’)
%RC = $SETG(’REMAINING’,’ENTRY’)
%RC = $SETG(’GVAR3’,’DATA3’)

Then the following $DELG functions return:

Code Meaning

0 Successful. Global variable(s) deleted.

1 Not found. No global variable found that matches the supplied
argument.

2 Unsuccessful.

Function Returns… And…

%RC=$DELG(’’) 1 Does not alter the global variable
table

%RC=$DELG(’DELETE’) 0 Removes the entry DELETE
from the global variable table

%RC=$DELG(’NOTFOUND’) 1 Does not alter the variable table

%RC=$DELG(’GVAR*’) 0 Removes all GVARn entries,
including GVAR, from the global
variable table
27-32 Model 204

The resulting global variable table is:

REMAINING=ENTRY

For a full discussion of global variables refer to Chapter 20.

$DSCR

The functionality of the $DSCR function is superseded by the $LSTFLD and
$FDEF functions. $DSCR is still supported, however. See Appendix A for
detailed information on this function.

$DSN

$DSN is useful with Model 204 files that are comprised of multiple datasets.
You specify the Model 204 file’s DD name and the ordinal number (first,
second, third, and so on) of one of the file’s datasets, and $DSN returns the
dataset’s name.

The $DSN syntax is:

$DSN(’ddname’,dsnnum)

where:

• ddname is a Model 204 file’s DD or file name.

• dsnnum is a positive integer that represents the ordinal number of a
dataset. For example, specify 3 for dsnnum if you want the name of the third
of the multiple datasets that comprise the Model 204 file.

If no file or DD name is specified, if the dataset number is too large, and if
Model 204 cannot find the dataset name, the system returns a counting error
message.

Examples

An example using $DSN follows:

FOR %I FROM 1 TO $DSNNUM(’FU’,%I) BY 1
 PRINT $DSN(’FU’,%I)
END FOR

The next example does a straight $DSN call for a file mapped to one dataset.

%FILENAME IS STRING LEN 8
%FILENAME = ’VEHICLES’
PRINT ’FILE ’ WITH %FILENAME WITH ’ IS CONTAINED IN -

%RC=$DELG(’*’) 1 Does not alter the global variable
table

Function Returns… And…
User Language Manual 27-33

DATASET ’ WITH $DSN(%FILENAME,1)

$DSNNUM

$DSNNUM is useful with Model 204 files that are comprised of multiple
datasets. You specify the Model 204 file’s DD name or file name and
$DSNNUM returns the total number of datasets defined for the file.

The $DSNNUM syntax is:

$DSNNUM(’ddname’)

where:

ddname is a file or dataset’s DD name.

$DSNNUM returns a zero if the file or dataset is not found. It returns a -1 for an
argument syntax error.

For a sequential file, the number of dataset names is always one.

The following example combines the use of $DSNNUM to identify the number
of datasets that a file maps to, and then uses $DSN to print out the dataset
name.

%FILENAME IS STRING LEN 8
%FILENAME = ’MYFILE’
PRINT ’FILE ’ WITH %FILENAME WITH -
 ’IS CONTAINED IN THE FOLLOWING DSNS ’ -
PRINT
FOR %I FROM 1 TO $DSNNUM(%FILENAME)
 PRINT $DSN(%FILENAME,%1)
END

$ECBDGET

Function

Get string data associated with an Event Control Block (ECB)

Syntax

$ECBDGET(ECB-number | ’CPQZ’)

Where:

• ECB-number is a string with a numeric value from one to the NECBS
parameter that identifies the ECB from which to retrieve the text. The ECB-
number can be expressed as a numeric literal, a %variable, or a field name.
27-34 Model 204

• CPQZ is a named ECB used by the NonStop/204 facility to automatically
post an extended quiesce. See the Model 204 System Manager’s Guide for
an explanation of the facility.

To use CPQZ, you need not set the NECBS parameter. CPQZ can be
expressed as a literal, a %variable, or a field name. When CPQZ is
specified, the value of the $ECBDGET function can be non-null (except for
error values) during only extended quiesce. CPQZ is internally cleared to
null when the system exits extended quiesce.

Usage

When the $ECBDGET function is successful, it returns your data as a text
string up to 255 bytes long. If you make a coding mistake, you may receive one
of the following return codes as a string.

The $ECBDGET function retrieves data set by either the $ECBDSET or
$POST functions for the specified ECB.

Example

%X = $ECBDGET(17)

$ECBDSET

Function

Set string data associated with an Event Control Block (ECB)

Syntax

$ECBDSET({ECB-number | ’CPQZ’},{’string’})

Where:

Return code Meaning

2 Bad argument specified

3 NECBS parameter is not specified or is zero

4 The input argument is less than one or greater than the NECBS
parameter

5 NUSERS = 1

8 No argument specified

9 Checkpointing is inactive, if using extended quiesce ECB named
CPQZ

12 Invalid argument CPQZ or invalid argument following QZSIG.
User Language Manual 27-35

• ECB-number is a string with a numeric value from one to the NECBS
parameter that identifies the ECB in which to store the string of data. The
ECB-number can be expressed as a numeric literal, a %variable, or a field
name.

• CPQZ is a named ECB used by the NonStop/204 facility to automatically
post an extended quiesce. See the Model 204 System Manager’s Guide for
an explanation of the facility.

To use CPQZ, you need not set the NECBS parameter. CPQZ can be
expressed as a literal, a %variable, or a field name. When CPQZ is
specified, the value of the $ECBDSET function can be non-null (except for
error values) during only extended quiesce. CPQZ is internally cleared to
null when the system exits extended quiesce.

• string can be up to 255 bytes long. It can be a numeric, a literal, a
%variable, or a field name.

Unless explicitly reset to null, data strings persist whether or not the ECB is
posted. Depending on the sequence, data strings can be changed by either
the $POST or $ECBDSET functions.

Usage

The $ECBDSET function returns the following return codes:

Note: The $ECBDSET function associates a string with an ECB, regardless of
whether the ECB is posted or not. String data set by $ECBDSET is accessible
using the $ECBDGET function.

Return code Meaning

0 Success

2 Bad argument specified

3 NECBS parameter is not specified or is zero

4 The first argument is less than one or greater than the NECBS
parameter

5 NUSERS = 1

7 $ECBDSET missing data argument

8 No argument specified

9 Extended quiesce environment error; issue a $STATUSD function
call for details.

11 Cannot be issued after QZSIG has been posted

12 Invalid argument CPQZ or invalid argument following QZSIG

13 Cannot be issued outside of extended quiesce
27-36 Model 204

Example

%X=$ECBDSET(1,’This is about managing user threads’)

$ECBTEST

Function

Check an Event Control Block (ECB) to see if it is posted

Syntax

$ECBTEST(ECB-number | ’CPQZ’ | ’QZSIG’)

Where:

• ECB-number is a string with a numeric value from one to the NECBS
parameter that identifies which ECB to test for its post status. The ECB-
number can be expressed as a numeric literal, a %variable, or a field name.

• CPQZ is a named ECB used by the NonStop/204 facility to automatically
post an extended quiesce. See the Model 204 System Manager’s Guide for
an explanation of the facility. To use CPQZ, you need not set the NECBS
parameter. CPQZ can be expressed as a literal, a %variable, or a field
name.

• QZSIG is a named ECB used by the NonStop/204 facility to signal when an
external backup is completed. See the Model 204 System Manager’s Guide
for an explanation of the facility. To use QZSIG, you need not set the
NECBS parameter. QZSIG can be expressed as a literal, a %variable, or a
field name.

Usage

Use the $ECBTEST function to obtain ECB status, posted or not, through the
return code. The post code, if set by $POST, is accessible using the
$STATUSD function. The following return codes apply to the $ECBTEST
function:

Return code Meaning

0 Not posted

1 Posted

2 Bad argument specified

3 NECBS parameter is not specified or is zero

4 The first argument is less than one or greater than the NECBS
parameter

5 NUSERS = 1
User Language Manual 27-37

Example

%RC=$ECBTEST(1)

$ECFSTAT

Function Returns the detailed completion code from the previous EXTERNAL statement.

Syntax The $ECFSTAT function returns:

’RC=cccc, COMPLETION CODE=tww, REASON CODE=rrrrrrrr’

Where Arguments can be specified as

Usage If ECF is not active or the user has not executed any EXTERNAL CALL,
EXTERNAL DELETE, or EXTERNAL LOAD statements, a NULL string is
returned.

8 No argument specified

9 Checkpointing inactive, if using extended quiesce named ECBs,
CPQZ or QZSIG

Return code Meaning

Aurgument Represents…

cccc Completion code in decimal format.

t ABEND type, either S for SYSTEM or U for USER.

ww One of the following ABEND values:
• SYSTEM values are three hexadecimal digits followed by a blank

• USER values are four decimal digits

rrrrrrrr Reason code, eight hexadecimal digits
27-38 Model 204

$EDIT

The $EDIT function performs numeric and alphanumeric editing. This function
returns a string modified according to a user-specified edit pattern. $EDIT
enables you to perform the types of editing listed in Table 27-2:

Syntax

The format of the $EDIT function is:

$EDIT(input,mask [,justification] [,edit-type])

where:

• input specifies the input data to be edited. The input can be either numeric
or string.

– If numeric editing is performed, string input is converted to numerics
prior to editing.

– If alphanumeric editing is performed, numeric input is converted to a
string prior to editing.

• mask specifies the edit mask. The mask can be either numeric or
alphanumeric. The characters that can be used to define each type of edit
mask are discussed in detail beginning with Table 27-3 on page 27-40.

• justification specifies the direction in which the input and mask are
processed. Justification options are:

– L for left-justification, the default for alphanumeric editing

– R for right-justification, the default for numeric editing

Table 27-2. Editing types for $EDIT

Type Provides the ability to edit an input string…

Numeric In a manner similar to numeric editing in COBOL. Note the
following differences:

• Exponential notation, the scale position character (P), the sign
character (S), and repetition notation (the use of parentheses to
enclose an integer) are not supported by $EDIT.

• The B character is not supported. However, a blank (a space) in the
mask provides the same functionality as the B character.

• A colon is supported as a simple edit character.

• Overflow (to the left of the decimal point) is handled by returning a
string of # characters.

Alphanumeric By:
• Inserting characters at designated points

• Removing blanks from the input string

• Truncating the output at designated points either conditionally or
unconditionally
User Language Manual 27-39

• edit type specifies the type of editing. Edit type options are N for numeric
editing and A for alphanumeric editing. The default edit type is N.

Alternate syntax

Alternatively, you can invoke $EDIT with this format:

$EDIT{A | N} (input,mask[,justification])

where the arguments are the same as described above, except that the edit
type is specified after $EDIT, rather than after the justification argument.

Numeric edit mask

A numeric edit mask can contain up to 255 characters and have as many as 15
digit positions. Justification of the result defaults to right justification for numeric
editing. Left justification causes all leading and trailing blanks to be removed
from the resulting string. If the result of a numeric edit is all blanks and left
justification has been requested, a null string is returned. A numeric edit mask
consists of one or more of the characters listed in Table 27-3. The use of the
characters within each character type is described after the table.

Table 27-3. $EDIT numeric edit mask characters

Character Type Description

9 Data The position contains a number (0-9).

blank Simple A blank is embedded in the specified position.

0 Simple A numeric zero appears in the specified position.

, Simple A comma appears in the specified position.

/ Simple A slash appears in the specified position.

: Simple A colon appears in the specified position.

. Actual
decimal

A decimal point (period) appears in the position and
specifies decimal alignment. A period can appear only
once in a mask.

CR Fixed CR appears in the output string if the input argument is
negative. If the input argument is positive, two spaces
appear rather than CR. CR can be specified only once
in a mask and must be specified in the right-most
position of the mask.

DB Fixed DB appears in the output string if the input argument is
negative. If the input argument is positive, two spaces
appear rather than DB. DB can be specified only once
in a mask and must be specified in the right-most
position of the mask.
27-40 Model 204

Each character type (data, simple insertion, actual decimal, fixed, float,
suppression, and assumed decimal) is discussed in detail below.

• Data—When a data edit character (9) is used, the numeric value in the
input string replaces the appropriate data character in the mask. If the input
argument has fewer characters than the mask, a 0 is returned in each
unfilled position. For example:

$EDIT(2573,’99999’)

returns the value:

02573.

• Simple insertion—When a simple insertion character (a blank, zero,
comma, slash, or colon) is used, the specified mask positions are reserved
and replaced by the appropriate character in the output string. For example:

$EDIT(2573478977,’9,999,999,999’)

returns the value:

$ Fixed or
float

A dollar sign appears in the specified position in the
output string for a fixed $. For a float $, the position
might contain either a dollar sign, a digit, or a space
depending upon the location of the float character.

+ Fixed or
float

The sign of the output string with a fixed + can be either
positive or negative, depending on the value of the input
argument. A plus or minus sign is placed in the
specified position in the output string. For a float +, a
plus sign, minus sign, digit, or space might be placed in
the output string depending upon the location of the
float character.

- Fixed or
float

A minus sign is placed in the output string for a fixed -
only Float if the value of the input argument is negative.
For a float -, a minus sign, digit, or a space might be
placed, depending upon the location of the float
character. If the input argument is a positive value, a
space replaces a minus sign.

Z Suppress Any leading character position that contains a zero is to
be replaced by a space.

* Suppress Any leading character position that contains a zero is to
be replaced with an asterisk.

V Assumed
decimal

The position of an assumed decimal point. The V
character can appear only once in a character
string.The V does not denote an actual character
position; space is not reserved for it in storage.

Table 27-3. $EDIT numeric edit mask characters (continued)

Character Type Description
User Language Manual 27-41

2,573,478,977.

• Actual decimal—When the actual decimal character (the period) is used,
the specified decimal position is reserved and placed in the output string
and the input string is decimal aligned. For example:

$EDIT(25.734,’99999.99’)

returns the value:

00025.73.

Note: If the mask contains fewer digits to the right of the decimal point than
the input argument, the input argument is scaled by dropping the excess
digits to the right of the decimal point.

• Fixed—When a fixed edit character (CR, DB, $, +, -) is used, the specified
leading or trailing position is reserved and replaced with the appropriate
character in the output string. A fixed edit character can occur only once in
a mask. For example:

$EDIT(-457.22,’$999.99CR’)

returns the value:

$457.22CR.

Consider the following when using fixed edit characters:

– A mask can contain at most one fixed sign character (+, -, CR, or DB).

– If the edit mask contains a trailing fixed sign character and that charac-
ter is set to blanks in the result, right justification causes the trailing
blank to be retained.

– When a + or - is specified, it must be the first or last character in the
mask.

– No more than one $ and one +, -, CR, or DB can be specified within a
mask. The $ must either be specified in the left-most position of the
mask or be preceded only by a + or -.

• Float—When float edit characters ($, +, or -) are used, the specified
positions are reserved in the output string. (A float mask must contain at
least two consecutive float characters of the same type.) Float characters
can be specified in any leading character position to the left of the decimal
point. Float characters also can be specified in any trailing character
position to the right of the decimal point only if all digit positions are
represented by the float character.

The float character is inserted immediately to the left of either the first
significant digit, a digit position specified with a 9, or a decimal point,
whichever is furthest to the left. All positions to the left of the inserted float
character are replaced with blanks. For example:

$EDIT(-8283.56,’$$$$$$999.99CR’)

returns the value:
27-42 Model 204

$8283.56CR.

Note the following considerations when using float edit characters:

– Floating $, +, and - characters are mutually exclusive within the mask.

– The float mask can be interrupted by one or more simple characters or
by an assumed or actual decimal point. Simple insertion characters to
the left of the floating character actually used in the output string are
converted to blanks in the output string. For example:

$EDIT(-123456.789, ’++,+++,999.99’)

returns a value of:

-123,456.78.

– If float characters appear in all the numeric data positions and the value
of the input argument is zero, the output string contains all spaces. For
example:

$EDIT(0000.00, ’$$,$$$,$$$.$$’)

returns a null string.

• Suppression—When a suppression character (Z or *) is used, the
specified position is reserved and replaced with the appropriate character
in the output string. One or more suppression characters can be specified
in a mask; however, Z and * are mutually exclusive.

A suppression character can be specified in any leading character position
to the left of the decimal point. A suppression character also can be
specified in any trailing character position to the right of the decimal point
only if all positions to the right are represented by the suppression
character.

$EDIT returns the value of the suppression character (a blank for each Z or
an asterisk for each *) for each leading position that has a value of 0,
stopping at the left-most position that either contains nonzero data or is an
actual decimal point.

For example:

$EDIT(+84783.56,’$Z,ZZZ,ZZZ.ZZ’)

returns the value $84,783.56. Note that any simple edit characters (a blank,
zero, comma, slash, or colon) to the left of the stopping point are replaced
with the suppression character (blank or *).

In addition, if all data positions in the mask are represented by suppression
characters and the value of the input is zero, all characters in the mask
(including simple insertion characters) are replaced with the suppression
character. For example:

$EDIT(0,’$ZZ,ZZZ’)

returns all blanks.
User Language Manual 27-43

• Assumed decimal—When the assumed decimal character is used, the
input is decimal aligned. However, the decimal does not occupy an output
position. For example:

$EDIT(.12345,’999V 99’)

returns the value:

000 12.

Note these additional considerations when defining a numeric edit mask:

– The mask must contain at least one occurrence of 9, Z, or * or more
than one occurrence of +, -, or $.

– All characters except the assumed decimal character (V) are counted in
the size of the output string.

– The special character (.) and the assumed character (V) are mutually
exclusive within a mask.

– The $ fixed character and the + or - floating characters are mutually
exclusive.

– Floating edit characters and suppression characters are all mutually
exclusive.

– Floating edit characters and suppression characters to the left of an
actual or assumed decimal point cannot be preceded by the data edit
character (9). A suppression character to the left of an actual or
assumed decimal point also cannot be preceded by a float character.

– The mask should be large enough to accommodate the input string or
truncation occurs. If the mask contains fewer digits to the right of the
decimal point than the input argument, the input argument is scaled by
dropping the excess digits to the right of the decimal point.

Alphanumeric edit mask

An alphanumeric edit mask can contain up to 255 characters and as many as
255 edit character positions. Justification of the result defaults to left
justification for alphanumeric editing. If the input string is a null string, the mask
is still processed. If the string is longer than the number of character positions
indicated in the mask, the excess characters in the input string are ignored. An
alphanumeric edit mask can consist of one or more of these character types:

Character Used in alphanumeric edit masks…

Insertion Any character can be an insertion character. However, if the
insertion character is not a letter (A–Z, a–z), a digit (0–9), or a
blank, it must be preceded by an escape character.
27-44 Model 204

Escape (!) The escape character indicates that the next character in the edit
mask is interpreted literally (as an inserted character rather than
as a selection character). The escape character must precede
non-alphanumeric insertion characters.

• If the justification argument is R (processing from right to left), the
escape character must be to the right of the insertion character.

• If the justification argument is L (processing from left to right), the
escape character must be to the left of the insertion character.

• If the escape character is the last character in the mask, it is ignored.

• If the escape character is omitted before a non-alphanumeric
insertion character, the mask is considered invalid, a null result is
returned, and an error message is issued.

Simple
selection

The characters listed in Table 27-4 are considered simple
selection characters:

Special
selection

The characters listed in Table 27-5 are considered special
selection characters.

Character Used in alphanumeric edit masks…

Table 27-4. Simple selection characters

Character The placement of…

+ Single input character. If no input characters remain, a blank is
inserted and processing continues with the next character in the
mask.

* All remaining input characters. If no input characters remain, a blank
is not inserted and processing continues with the next character in
the mask.

¬ Next non-blank character in the input string. If no input characters
remain, a blank is not inserted and processing continues with the
next character in the mask.

Table 27-5. Special selection characters

Character Description

< Whether to continue processing or truncate the result, depending on
processing direction. (See the discussion that follows for details
concerning processing direction.)

) The placement of a single character. If no input characters remain,
a blank is inserted and processing of the mask is terminated.

- The placement of a single character. If no input characters remain,
a blank is inserted and all subsequent insertion characters are
replaced with blanks.
User Language Manual 27-45

When a special selection character is used, truncation is handled in the
following manner:

• The processing direction (in the direction specified by the justification
option) determines how the < or > character is handled:

When a < or > character points in the processing direction, it acts as a
continuation character and is handled as follows:

– The next remaining input character is placed in the result and the next
character in the mask is processed.

– For no remaining input characters, the result is unaffected and the next
character in the mask is processed.

If a < or > points in the direction opposite from the processing direction, it
acts as a truncation character and is handled as follows:

– For several remaining input characters, the next input character is
placed in the result and the next character in the mask is processed.

– For one remaining input character, that character is placed in the result
and the result is truncated after the character.

– For no remaining input characters, the result is truncated after the pre-
vious result character.

• The | character has the following effect:

– For several remaining input characters, the next input character is
placed in the result and the next character in the mask is processed.

– For one remaining input character, that character is placed in the result
and the result is truncated after the character.

– For no remaining input characters, a blank is placed in the result and
the result is truncated after the blank.

• The _ (underscore) character has the following effect:

– If there are several remaining input characters, the next input character
is placed in the result and the next character in the mask is processed.

– If there is only one remaining input character, that character is placed in
the result and all subsequent insertion characters are replaced with
blanks.

– If there are no remaining input characters, a blank is placed in the result
and all subsequent insertion characters are replaced with blanks.

Example 1

This example illustrates the use of a right-justified edit mask to format a phone
number with an area code:

$EDIT(6171234567,’(!+++)! >++-!++++’,’R’,’A’)

results in the following output:
27-46 Model 204

(617) 123-4567

Example 2

If the same edit mask were used for a string that did not contain an area code,
as shown below:

$EDIT(2344567,’(!+++)! >++-!++++’,’R’,’A’)

the following output would result:

234-4567

Example 3

This example illustrates the use of a left-justified edit mask for formatting phone
numbers, some of which have extensions of two, three, or four digits:

$EDIT(%PHONE,’!(+++!) +++!-+++ EXT ++++’,,’A’)

The value of the input argument and the output that would result from using the
preceding example are listed in this table:

Error conditions

Certain errors that can occur when using $EDIT produce the following results:

• A null string is returned if the input argument or edit mask is omitted, or if
the edit mask is invalid, or if data is incompatible with the edit type (for
example, alpha data when the edit mask is numeric).

• The default for the type of editing indicated by the edit mask is used if the
justification option is invalid.

• A string of # characters (with a length equal to the number of output
positions in the edit mask) is returned if a numeric editing overflow occurs
to the left of the decimal point.

Other error conditions for $EDIT generate a Model 204 error message.

$EFORMAT

The $EFORMAT function converts numeric values to exponent notation. For a
detailed discussion of exponent format refer to “Exponent notation” on
page 4-9.

Input Output

61712345671111 (617) 123-4567 EXT 1111

2122344567 (212) 234-4567

516765432134 (516) 765-4321 EXT 34
User Language Manual 27-47

Syntax

The format of the $EFORMAT function is:

$EFORMAT(value,significant digits,fractional digits)

where arguments are:

• value argument must contain the numeric value to be formatted. If this
argument is passed to $EFORMAT with a nonnumeric or invalid value,
$EFORMAT returns a zero.

• significant digits argument must contain a positive integer identifying the
number of significant digits to print. The default is 15. If this argument is
passed to $EFORMAT with an invalid value, $EFORMAT returns a null
string.

• fractional digits argument must contain a positive integer identifying the
number of significant digits to print to the right of the decimal point. The
number of digits specified is always printed to the right of the decimal point,
even if the digits are zero.

If this argument is omitted, all significant digits are printed with one digit
placed to the left of the decimal point in the form hn.nn through nEnn. If this
argument is passed to $EFORMAT with an invalid value, $EFORMAT
returns a null string.

Example

BEGIN
GET.FLOAT: FIND ALL RECORDS FOR WHICH
 FLOATFLD1 = 3444300E15
 END FIND
 FOR EACH RECORD IN GET.FLOAT
 PRINT ’E FORMAT NUMBER IS ’ WITH -
 $EFORMAT(FLOATFLD1,5,2)
 END FOR
END

results in this output:

E FORMAT NUMBER IS 344.43E19

$ENCRYPT

The $ENCRYPT function performs a one-way encryption of a zero to eight-
character string. Longer strings are truncated at eight characters. The result of
this function is an eight-byte encrypted representation of the input string.

Syntax

The format of $ENCRYPT is:
27-48 Model 204

$ENCRYPT(string,parameter)

$ENCRYPT accepts the second argument (parameter) so that the same
source string can be encrypted to different strings in different systems.

Note: You should use a parameter value of less than 1000 for best
performance; numbers significantly larger than 1000 can cause serious
performance degradation.

Example

$ENCRYPT ($READINV (’ENTER PASSWORD’),%PARAM)

returns one encrypted value if %PARAM equals 28 and another value if
%PARAM equals 18. If no parameter is supplied, a default of 15 is used. A null
string is returned and an error message is issued if a parameter of zero or a
negative value is specified.

$ENTER

The $ENTER function provides efficient terminal dialogue with users of data
entry applications.

Syntax

The format of the $ENTER function is:

$ENTER (number of values, prompt string,
 default value, separator, name prefix)

$ENTER prompts the terminal operator with the value entered in the prompt
string argument. If this argument is omitted, this prompt appears:

ENTER DATA

The operator enters a single line of input which is read by Model 204. This line
is parsed into individual values using the value of the separator argument as
the delimiter.

• The separator argument must be a single character. If it is omitted, a
comma is used as the default separator. If an input value is longer than 255
characters, a warning message is issued and the value is truncated. The
input values are assigned in the order of %variables using the value of the
name prefix argument as follows:

%name prefix 01, %name prefix 02, %name prefix
03,…

• If the name prefix argument is omitted, the %variables are named %01,
%02, %03, and so on. All %variable names generated by $ENTER must
appear elsewhere in the request so that the variables can be allocated
during compilation.
User Language Manual 27-49

• The number of values argument is required; it indicates the number of
values assigned by $ENTER. If any values are omitted, the value specified
in the default value argument is assigned to the appropriate %variables. If
the default value argument is omitted, a single blank character is the
default.

If $ENTER completes successfully, it returns a value of 0. If it fails for any of
these reasons, $ENTER returns a value of 1 and prints an explanatory
message:

• Too many values are included on the input line.

• The number of values argument is less than 1 or greater than 99.

• Required %variables were not allocated during compilation (a %variable
used in $ENTER does not appear elsewhere in the request).

Example 1

Suppose a request contains the following function call:

%X = $ENTER(3, ’ENTER 3 VALUES’, ’99999’ ,, ’ZZ’)

The following prompt is displayed at the terminal:

ENTER 3 VALUES

The user enters:

A1,,C3

$ENTER returns a value of 0. This result is equivalent to the following:

%ZZ01 = ’A1’
%ZZ02 = ’99999’
%ZZ03 = ’C3’

Example 2

%Y = $ENTER (4,,,’/’,)

This default prompt is displayed:

ENTER DATA

The user enters:

ONE/TWO/THREE/FOUR

$ENTER returns a value of 0, which is equivalent to:

%01 = ’ONE’
%02 = ’TWO’
%03 = ’THREE’
%04 = ’FOUR’
27-50 Model 204

$ERRCLR

The $ERRCLR function clears the error message text returned by the
$ERRMSG and $FSTERR functions. The $ERRCLR function takes no
argument.

Example

%DUMMY=$ERRCLR

$ERRMSG

The $ERRMSG function returns a variable length string of up to 79 characters
containing the prefix and text of the last counting error message or request
cancellation message received by the user.

A null value is returned if no counting error or request cancellation message
has been received since the beginning of the user’s Model 204 session, or
since the last call to the $ERRCLR function. Refer to the Model 204 Messages
Manual for more information on counting messages. This function takes no
arguments.

Example

A sample $ERRMSG function with an ON ERROR unit follows. To learn about
ON ERROR units, see “ON units” on page 12-21.

BEGIN
ERROR.PROC: ON ERROR
 PRINT ’THE REQUEST IS ENDING’
 PRINT ’THE LAST ERROR MESSAGE RECEIVED
WAS:’
 PRINT $ERRMSG
 END ON
GET.RECS: FIND ALL RECORDS FOR WHICH
 AGENT = CASOLA
 END FIND
 FOR EACH RECORD IN GET.RECS
 .
 .
 .
 END FOR
END

$FDEF

The $FDEF function lets you access the attributes of a field from within a
Model 204 procedure. $FDEF maps the attributes of a field, whose values can
then be read via an image similar to the ZFIELD image described on
page 27-52. Unlike $DSCR, which $FDEF supplants, the attributes are
User Language Manual 27-51

displayed in a readable fashion without parsing. $FDEF works only for files (not
groups).

Syntax

The format for the $FDEF function is:

%image:item = $FDEF([FILE] filename [AT location],
fieldname)

where:

• %image:item is the image item to which $FDEF returns the data.

• filename is a %variable or a literal name of the file. A file synonym name
can also be used. When filename=groupname the $FDEF function
assumes that the name passed is a file name, not a group name.

• location is the name of the remote node where the file is located.

• fieldname is a %variable or a literal name of the field to be described.

If the field specified in the $FDEF argument is not defined in the opened file
specified by filename, $FDEF returns a U (undefined) in the second image item
(DEFER.Y_N). If the file is not open, a U is returned in the second
(DEFER.Y_N) image item and an N is returned in the third (FRV.Y_N) image
item.

The field code, which is returned in the 21st image item, is unique for each field
within a file. However, this value cannot remain constant for any one field over
time, and it cannot be the same for the same field name in different files. Field
names do not always hash to the same field codes because of deleted fields
and hash collisions. The field code which is returned in the ZFIELD image is the
same as that which appears in CCAJRNL RECTYPE=6 entries. This
information is valuable for CCA support in case you need to run REGENERATE
but cannot because you are missing one or more CCAJRNL datasets since
your last DUMP of the file.

The ZFIELD image

An image is required by the $FDEF and $LSTFLD functions. The ZFIELD
image, which can give you complete field attribute information (see the $FDEF
example below), is provided on the Model 204 installation tape by CCA.

Note: When using ZFIELD, be aware that $FDEF output maps to the image of
ZFIELD. Therefore, do not change the order of the image items in ZFIELD.

The location of ZFIELD for your site is listed in this table:

IF your site runs under... THEN the ZFIELD image is stored in...

z/OS The JCL library
27-52 Model 204

Example

In the example on the next page, you provide a field name and Model 204
displays output that indicates if the field is KEY or preallocated. If the field is
preallocated, Model 204 also displays the number of occurrences and the
length of the field. This procedure maps the $FDEF output to the ZFIELD image
(shown on the following page). Therefore, if the field is KEY, then the KEY.Y_N
image item contains a ‘Y’.

PROCEDURE DISPFLD
OPEN DAILY
OPENC VEHICLES
XXXX
BEGIN
%FIELD IS STRING LEN 50
%FIELD = $READ(’ENTER FIELDNAME’)
* *
* include the ZFIELD proc and prepare the ZFIELD
image *
* *
INCLUDE ZFIELD
PREPARE IMAGE ZFIELD
* *
* use the FDEF image item in ZFIELD to check the
fieldname*
* *
%ZFIELD:FDEF = $FDEF(’VEHICLES’,%FIELD)
IF %ZFIELD:KEY.Y_N = ’Y’ THEN
 PRINT %FIELD ’ IS KEY’
ELSE
 PRINT %FIELD ’ IS NOT A KEY FIELD’
END IF
IF %ZFIELD:OCCURS > ’0’ THEN
 PRINT %FIELD ’ IS PREALLOCATED, WITH ’ -
 %ZFIELD:OCCURS ’ VALUES’
 PRINT ’THE LENGTH OF ’ %FIELD ’ IS ’
%ZFIELD:LENGTH
ELSE
 PRINT %FIELD ’ IS NOT PREALLOCATED’
END IF
END

The following is the output produced by the procedure DISPFLD for the field
DEDUCTIBLE:

INCLUDE DISPFLD

VM The 2nd tape file (193) as an EXEC

VSE The JCL library

IF your site runs under... THEN the ZFIELD image is stored in...
User Language Manual 27-53

??ENTER FIELD NAME
DEDUCTIBLE
DEDUCTIBLE IS KEY
DEDUCTIBLE IS PREALLOCATED WITH 1 VALUES
THE LENGTH OF DEDUCTIBLE IS 3

ZFIELD image for $FDEF and $LSTFLD

The following image can be used by the $FDEF and $LSTFLD functions. If you
write your own image, be aware that $FDEF maps to the locations of the image
items, rather than the names.

IMAGE ZFIELD
NAME IS STRING LEN 255
DEFER.Y_N IS STRING LEN 1
FRV.Y_N IS STRING LEN 1
KEY.Y_N IS STRING LEN 1
MANY.VALUED.Y_N IS STRING LEN 1
CODED.Y_N IS STRING LEN 1
STRING.Y_N IS STRING LEN 1
NUMERIC.RANGE.Y_N IS STRING LEN 1
INVISIBLE.Y_N IS STRING LEN 1
SECURED.Y_N IS STRING LEN 1
UPDATE.IN.PLACE.Y_N IS STRING LEN 1
OCCURS.Y_N IS STRING LEN 1
FLOAT.Y_N IS STRING LEN 1
ORD.NUM.Y_N IS STRING LEN 1
ORD.CHAR.Y_N IS STRING LEN 1
PURE.DBCS.Y_N IS STRING LEN 1
MIXED.DBCS.Y_N IS STRING LEN 1
UNIQUE.Y_N IS STRING LEN 1
OCCURS.ONCE.Y_N IS STRING LEN 1
FUTURE.EXPANSION IS STRING LEN 36
FIELD.CODE IS BINARY LEN 4 UNSIGNED
ORDERED.Y_N IS STRING LEN 1
LENGTH IS BINARY LEN 1 UNSIGNED
LEVEL IS BINARY LEN 1 UNSIGNED
LRESERVE IS BINARY LEN 1 UNSIGNED
NRESERVE IS BINARY LEN 1 UNSIGNED
SPLITPCT IS BINARY LEN 1 UNSIGNED
NO.OF.IMMEDIATES IS BINARY LEN 1 UNSIGNED
OCCURS IS BINARY LEN 1 UNSIGNED
PAD.CHAR IS STRING LEN 1
FDEF IS STRING LEN 67 AT DEFER.Y_N
BIN1 IS BINARY LEN 4 UNSIGNED
BIN2 IS BINARY LEN 4 UNSIGNED
BIN3 IS BINARY LEN 4 UNSIGNED
BIN4 IS BINARY LEN 4 UNSIGNED
LOOPVAR IS STRING LEN 16 AT BIN1
END IMAGE
27-54 Model 204

$FLDLEN

The $FLDLEN function interprets its character string argument as a field name.

• In file context, $FLDLEN returns a number representing the LENGTH of the
field if the field has a LENGTH attribute in its description. In file context,
$FLDLEN returns 0 if the specified field does not have the LENGTH
attribute in its description.

• In group context, $FLDLEN returns the minimum LENGTH specification
included for all of the files. In group context, $FLDLEN returns 0 only if the
field is described without a LENGTH attribute in every file in the group.

• If the field specified as the $FLDLEN argument is not defined in the current
file or group, $FLDLEN returns a value of -1.

Example

$FLDLEN (’SOCSECNO’)

equals 9 if the description of SOCSECNO for the file contains LENGTH 9.

$FLOAT

The $FLOAT function assigns a 4-byte floating point number to a 4-byte string,
without any conversion. This function is intended for use in writing a floating
point value to a USE dataset. The $FLOAT function takes one argument
containing a numeric value. If the argument is omitted, a value of 0 is returned.

Model 204 maintains 15 significant decimal digits of precision for 8-byte
floating-point numbers and 6 significant digits of precision for 4-byte floating-
point numbers. For an expanded discussion of rounding numbers, please refer
to the section “Mapping and precision adjustment” on page 31-3.

Note: CCA does not recommend using $FLOAT in new applications, although
this function is supported for compatibility reasons.

$FLOATD

The $FLOATD function assigns an 8-byte floating point number to an 8-byte
string, without any conversion. Like $FLOAT, this function is intended to be
output to a USE dataset. The $FLOATD function takes one argument
containing a numeric value.

Note: CCA does not recommend using $FLOATD in new applications,
although this function is supported for compatibility reasons.
User Language Manual 27-55

$FLSACC

The $FLSACC function, combined with the $FLSCHK function, allows a User
Language request to check for field-level security access violations before they
occur. This reduces evaluation-time errors and request cancellations, and it
helps to ensure that the files being updated are not left in a logically
inconsistent state (“Resolution of field types and levels” on page 10-33”).

$FLSACC can determine a user’s access rights to a particular field or to all
fields in a file or group. The function returns a character string representing the
user’s access rights to the specified field(s). If the field is not defined in the file
or group, a null string is returned. The string normally contains a combination
of the characters listed in this table:

Syntax

The format of the $FLSACC function is:

$FLSACC (fieldname [,name])

where:

• fieldname is a character string that is interpreted as the name of the field
whose access is being checked.

If this argument is omitted or null, every field in the file or group specified in
the name argument is checked. In this case, the output string returned by
$FLSACC contains an access indication (S, R, U, A) only if that level of
access applies to every field in the file or group. This use of $FLSACC is
costly system overhead because all field descriptions must be examined.

• name is optional; use it to control the file or group context of the function.
The format for this argument is:

[[FILE | [PERM | TEMP] GROUP] name [AT location]

 | $CURFILE | $UPDATE]

If access for the current file of a FOR loop is desired, $CURFILE can be
used as the second argument. $UPDATE can be used to indicate the name
of the update file in the current group. $CURFILE and $UPDATE are
described in detail in “$CURFILE and $UPDATE functions” on page 16-29.
For single file context, the field level security access rights are well defined.
If a field name is specified in group context, $FLSACC returns the
maximum access rights for the group. If the name argument is omitted or

Character Meaning

 S SELECT access rights

 R READ access rights

 U UPDATE access rights

 A ADD access rights
27-56 Model 204

null, the context used for the check is the context of the statement that
contains the function.

$FLSCHK

The $FLSCHK function, combined with the $FLSACC function, allows a
request to check for field-level security access violations before they occur.
$FLSCHK is designed for use with the IF statement and can determine whether
a given set of field-level security accesses is valid for a specified field or for all
fields in a file or group. The function returns a 1 if the specified set of accesses
is valid.

Syntax

The format of the $FLSCHK function is:

$FLSCHK (fieldname, access [,filename])

• fieldname is a character string representing the name of the field whose
access is to be checked.

If the field name is omitted or null, every field in the file or group is checked;
the function returns a 1 only if the access is allowed for every field in the file
or group. This use of $FLSHCK can be costly system overhead since all
field descriptions must be examined.

• access is the desired access or set of accesses; the argument can include:

– S (SELECT)

– R (READ)

– U (UPDATE)

– A (ADD)

If the access argument contains an invalid character (not S, R, U, or A), a
warning message is issued and 0 is returned. If a set of accesses is
specified, such as SR, a 1 is returned only if all accesses in the set are
allowed for the indicated field or fields.

• filename is optional and can be used to control the file or group context of
the function. The format for the filename argument is identical to the name
argument described earlier for the $FLSACC function. For single file
context, the field level security access rights are well defined. In group
context, this function returns a 1 if the indicated access would compile
without error. If access for the current file of a FOR loop is desired,
$CURFILE can be used as the third argument. If this argument is omitted
or null, the context used for the check is the context of the statement
containing the function.
User Language Manual 27-57

$FSTERR

The $FSTERR function returns a variable length string of up to 79 characters
that contains the prefix and the first counting error message or request
cancellation message you received since the last time that the count was reset
to zero. If Model 204 has not received a counting error or request cancellation
message since the beginning of your Model 204 session, or since the last call
to the $ERRCLR function, $FSTERR returns a null value.

For more information about counting errors or request cancellation messages,
refer to the Model 204 Messages Manual. To return the most recent error
message, refer to the $ERRMSG function. $FSTERR is not available for Host
Language Interface applications. The $FSTERR function takes no arguments.

The $FSTERR function requires an additional 88 bytes in the fixed portion of
the server.

Example

An example of the $FSTERR function with an ON ERROR unit follows. For
more information, refer to “ON units” on page 12-21.

BEGIN
FSTERR.PROC: ON ERROR
 PRINT ’THE REQUEST IS ENDING’
 PRINT ’THE FIRST ERROR MESSAGE WAS:’
 PRINT $FSTERR
 END ON

GET.RECS: FIND ALL RECORDS FOR WHICH
 AGENT = BLAKE
 END FIND
 FOR EACH RECORD IN GET.RECS
 .
 .
 END FOR
END

$GETG

The $GETG function retrieves information stored by a $SETG function in the
same request or an earlier request.

The $GETG function takes a global variable name as its one argument. The
global variable table is searched for a variable with the name given by the
argument. The value of the function is the value of the global variable if it is
found or a null string (two quotes with no space between them) if it is not found.
$GETG (‘X’) does not distinguish between the following situations:

• There is no variable with the name X in the table.
27-58 Model 204

• There is a variable in the table with the name X whose value is a null string
(a $SETG (‘X’,’’) that had been executed earlier).

Refer to “Using global string variables to tailor a request” on page 20-13 for a
detailed explanation of global variables and examples of the $GETG function
within a request.

$GETL

The $GETL function returns the line number of the current line on the page on
the user’s terminal or on the output dataset specified by a USE command. The
first line on a page is line number 1 and is the line on which header 0 appears.
The current line is the line actually being printed if $GETL is invoked:

• From a PRINT statement

• After a PRINT statement that ends with an ellipsis (…).

Otherwise, the current line is the next line to be printed. The current line
becomes line 1 as soon as the bottom line of a page has been printed. $GETL
takes no arguments.

$GETP

The $GETP function returns the page number currently on the user’s terminal
or on the output dataset specified by a USE command. When the current output
device is the normal device (no USE command is in effect), the value returned
by $GETP matches the current value of the OUTPNO parameter, which
indicates the current output page number. Otherwise, the value returned by
$GETP is the current page number on the USE dataset. $GETP takes no
arguments.

$GRMLOC

The $GRMLOC function returns the location of a missing group member.

See the Parallel Query Option/204 User’s Guide for more information on the
$GRMLOC, $GRMNAME, $GRNLEFT, and $GRNMISS functions.

$GRMNAME

The $GRMNAME function returns the file name of a missing group member.

$GRNLEFT

The $GRNLEFT function returns the number of optional files that might fail
before the value of the MAXFAIL parameter is exceeded.
User Language Manual 27-59

$GRNMISS

The $GRNMISS function returns the number of missing group members.

$GROUPFILES

The $GROUPFILES function returns the number of files in an open group.

Syntax

$GROUPFILES(file-or-group-context)

Where:

file-or-group-context is a character string argument representing a group name.

Example

BEGIN
%GROUP-CONTEXT_STRING=’PERM GROUP MYGROUP’
%X=$GROUPFILES(%GROUP_CONTEXT_STRING)
PRINT ‘THERE ARE' WITH %X WITH ‘ FILES IN THE GROUP'
END

Produces the following output:

THERE ARE 5 FILES IN THE GROUP

Usage

• Called with a character string argument representing a group name.
Supports PERM/TEMP/GROUP/FILE/AT keywords. Supports file
synonyms.

• Returns the number of files in the group, or 0 if error or file context.

$HPAGE

The $HPAGE function returns a string of special characters whose length is
equal to the value specified as the $HPAGE argument. $HPAGE is usually
used in a line replacing header 0 (see “Formatting page headers and trailers”
on page 6-14). When you use $HPAGE in a SET HEADER or SET TRAILER
statement, it is replaced by the current page number when the header or trailer
is printed.

Example

This $HPAGE statement:

SET HEADER 1 ’AUDIT REPORT’ WITH ’PAGE’ TO -
 COLUMN 30 WITH $HPAGE (2) TO COLUMN 33
27-60 Model 204

produces a header in the format:

AUDIT REPORT PAGE 13

The number 13 is generated by Model 204. To set the value of the page
number to 0 or another value, use the $SETP function.

$HSH

The $HSH function lets you convert a string into a hash value, which is a
distinct numeric representation of a given string value. You can use $HSH to
build a memory-resident hash table to be used to join on keys without sorting
and merging.

Syntax

The format for the $HSH function is:

%variable = $HSH(’string’)

where:

• %variable is a %variable within a User Language procedure

• string is an alphanumeric string or a string referenced by a VALUE IN
statement.

Example

This example is continued on the next page:

BEGIN
*
* INPUT CUSTOMER CONTROL DATA IMAGE:
*
IMAGE CUST_REC
 NAME IS STRING LEN 20
 RATE IS STRING LEN 8
 DISCOUNT IS STRING LEN 8
END IMAGE
*
* MEMORY-RESIDENT HASH TABLE ARRAY:
*
IMAGE CUST_ARRAY
 ARRAY OCCURS 500
 NAME IS STRING LEN 20
 RATE IS FLOAT
 DISCOUNT IS FLOAT
 END ARRAY
END IMAGE
*
PREPARE IMAGE CUST_REC
PREPARE IMAGE CUST_ARRAY
User Language Manual 27-61

*
* OPEN INPUT DATASET
*
OPEN DATASET CUSTINFO FOR INPUT
*
READ IMAGE CUST_REC FROM CUSTINFO
REPEAT WHILE $STATUS = 0
*
* INDEX INTO HASH TABLE IS REMAINDER OF HASH OF KEY
/ SIZE OF
* TABLE
*
 %IDX = $MOD($HSH(%CUST_REC:NAME),500)
 IF %CUST_ARRAY:NAME(%IDX) EQ ’’ THEN
 %CUST_ARRAY:NAME(%IDX) = %CUST_REC:NAME
 %CUST_ARRAY:RATE(%IDX) = %CUST_REC:RATE
 %CUST_ARRAY:DISCOUNT(%IDX) = %CUST_REC:DISCOUNT
 ELSE
*
* HAVE A HASH CONFLICT, RETRY A FINITE NUMBER OF
TIMES
*
 FOR %RETRY FROM 1 TO 5
 %IDX = $MOD($HSH(%IDX),500)
IF %CUST_ARRAY:NAME(%IDX) EQ ’’ THEN
 %CUST_ARRAY:NAME(%IDX) = %CUST_REC:NAME
 %CUST_ARRAY:RATE(%IDX) = %CUST_REC:RATE
 %CUST_ARRAY:DISCOUNT(%IDX) =
%CUST_REC:DISCOUNT
 JUMP TO READNEXT
 END IF
 END FOR
 PRINT ’MAKE THE HASH TABLE LARGER TO AVOID
CONFLICTS’
 STOP
 END IF
READNEXT:
 READ IMAGE CUST_REC FROM CUSTINFO
END REPEAT
*
* NOW FIND ORDER RECORDS, NO NEED TO SORT
*
FDORD: IN ORDERS FIND ALL RECORDS WHERE -
 ORD DATE IS NUM IN RANGE FROM 89120
TO 89150
 STATUS = ’SHIPPED’
 END FIND

FORORD: FOR EACH RECORD IN FDORD
 %IDX = $MOD($HSH(CUST NAME))
 IF %CUST_ARRAY:NAME(%IDX) EQ CUST NAME
THEN
 CALL PRINT_INVOICE
 ELSE
27-62 Model 204

*
* HAVE A HASH CONFLICT, RETRY A FINITE NUMBER
OF TIMES
*
 FOR %RETRY FROM 1 TO 5
 %IDX = $MOD($HSH(%IDX),500)
 IF %CUST_ARRAY:NAME(%IDX) EQ CUST NAME
THEN
 CALL PRINT_INVOICE
 JUMP TO NEXTREC
 END IF
 END FOR
 PRINT ’CUSTOMER NAME NOT FOUND =’ AND CUST
NAME
NEXTREC:
 END FOR
END

$INCRG

The $INCRG function performs simple arithmetic on global variables. Global
variables are discussed in Chapter 20.

Syntax

The format of the $INCRG function is:

$INCRG(global name [,increment] [,decimal_places∗)

where:

• global name must be specified as a string.

• increment is an optional numeric value; the default value is 1.

• decimal places is optional and specifies the number of decimal places to be
preserved in the result of the operation. The fractional part of the result is
truncated (not rounded) or padded with zeros as appropriate. If this
argument is omitted, the $INCRG result has the same number of decimal
places as the original global value.

How $INCRG works

$INCRG adds the value specified in the increment argument to the global
variable specified in the global name argument and returns a completion code.
The $INCRG operation preserves up to 15 digits of precision. Both the global
value and the increment are treated as signed quantities. Thus, if the increment
is less than 0, the function performs subtraction.

Model 204 converts the global value set by $INCRG to floating point and then
converts it back to a string. Thus, any leading and trailing zeros, plus signs, and
internal spaces are lost. The decimal point is also lost unless it is followed by a
User Language Manual 27-63

nonzero decimal digit before the 15th digit place. If the global variable does not
exist, $INCRG creates one with a value equal to the increment. If a value is not
specified as the decimal_places argument in the function call, the created
global variable have no decimal places.

$INCRG returns a completion code indicating the success or failure of the
operation, along with an explanatory message. Possible codes are:

IF statements

In an IF statement of the form “IF expression”, the THEN clause is evaluated if
expression has any value other than 0. Thus, IF $INCRG (‘X’) THEN JUMP TO
ERROR.ROUTINE transfers control to the ERROR.ROUTINE statement on
either of the two possible error conditions. If different actions are to be taken for
each distinct condition, this technique is recommended:

JUMP TO (ERROR.TYPE1,ERROR.TYPE2) $INCRG (’X’)

In this case, no jump is taken if $INCRG completes successfully and returns 0.

Example 1

PRINT $INCRG (’GLOBAL’)

prints 0 if the operation is successful and increases the value of GLOBAL by 1.

Example 2

PRINT $INCRG (’X’, -.5)

prints 0 if the operation is successful and decreases the value of global X by.5.

$INDEX

$INDEX compares two character strings and returns a number equal to the first
position within the first string at which the second string appears.

Example 1

$INDEX (’OTHER’, ’THE’) equals 2
$INDEX (’SAME’, ’SAME’) equals 1

Code Meaning

0 $INCRG completed normally

1 Global value is not numeric

2 No room for new value of global (size of global can change after
increment)
27-64 Model 204

Example 2

If the second string is not contained in the first or is a null string, zero is
returned:

$INDEX (’SAME’, ’OTHER’) equals 0
$INDEX (’SOME’, ’SOMEMORE’) equals 0
$INDEX (’ABC’, ") equals 0

Example 3

This request uses $INDEX to separate the last name from a field containing a
full name in the form “last name, first name”:

BEGIN
FIND.RECS: FIND ALL RECORDS FOR WHICH
 DATE OF BIRTH IS LESS THAN 660000
 END FIND
 FOR EACH RECORD IN FIND.RECS
 %LASTNAME = -
 $SUBSTR (FULLNAME, 1, -
 $INDEX (FULLNAME,’,’)-1)
 ADD LAST NAME = %LASTNAME
 .
 .
 .

$ITSOPEN

The $ITSOPEN function lets you determine whether a file is open. $ITSOPEN
only checks files, not groups of files. The return codes are:

Syntax

The format for the $ITSOPEN function is:

$ITSOPEN({[FILE] name [AT location]

 | [PERM | TEMP] [GROUP] name})

where name (optional) is a %variable or a literal name of the file or group. You
must enter the filename in uppercase. A file synonym name can also be used.
If you do not enter a location (specifying a null argument), Model 204 uses the
reference context (at compile time) of the statement which calls the function.

Example

BEGIN

0 the file is not open

1 the file is open
User Language Manual 27-65

%FILE IS STRING
%FILE = $READ(’ENTER THE FILENAME’)
IF $ITSOPEN(%FILE) THEN
 PRINT %FILE ’ IS OPEN’
ELSE
 PRINT %FILE ’ IS NOT OPEN’
END

$ITSREMOTE

The $ITSREMOTE function (valid in PQO only) lets you determine whether a
file is remote or whether a group is scattered. The return codes are:

Syntax

The format for the $ITSREMOTE function is:

$ITSREMOTE ({[FILE] name [AT location]

 | [PERM | TEMP] [GROUP] name})

where name is a %variable or a literal name of the file name, file synonym or
group name. You must enter the filename in uppercase. If you specify a null for
name, Model 204 uses the file or group context at the compilation of the
statement containing the $function as the default argument.

Example

BEGIN
%NAME IS STRING
%NAME = $READ(’ENTER THE FILE OR GROUP NAME’)
IF $ITSREMOTE(%NAME) THEN
 PRINT %NAME ’ IS REMOTE’
ELSE
 PRINT %NAME ’ IS NOT REMOTE’
END

$JOBCODE

The $JOBCODE function allows a request that is part of one step of a
Model 204 batch run to communicate with a subsequent step. $JOBCODE can
be used both to examine and to set a completion code by invoking $JOBCODE
with the desired completion code as its one argument.

The completion code must fall within the range 0-4095. If the specified
completion code exceeds 4095, Model 204 forces the completion code to
4095. No message is output.

0 the file is not remote or the group is not scattered

1 the file is remote or the group is scattered
27-66 Model 204

Model 204 returns the current step completion code and sets the completion
code to the specified value if that value is greater. You can examine the step
completion code without changing it by invoking $JOBCODE without an
argument or with a null argument.

Using with Online runs

You can include calls to $JOBCODE in the CCAIN stream. In Online sessions,
Model 204 maintains two return code values for each user:

• Highest batch return code value received

• Highest Online value

When $JOBCODE is used to set the return code for a user, it sets both values.
The value returned from the function, however, is always the batch value. When
$JOBCODE was invoked by an Online user in V4R1.1 and earlier, it always
returned 0 and did not set the return code.

The $JOBCODE return codes set in an Online run are local to the user who
invoked $JOBCODE; they do not affect the return code for other users or for
the Model 204 Online.

Example In the following example the first $JOBCODE value, 9, returns a value of 16
because 9 is less that 16, so batch return code is not reset by $JOBCODE(9).
The second $JOBCODE value, 21, returns a value of 21 because 21 is greater
than 16, so batch return code was reset by $JOBCODE(21).

>MSGCTL M204.1030 RETCODEO=8 RETCODEB=16

>@#$%^

 *** 1 M204.1030: INVALID MODEL 204 COMMAND

>B;PRINT $JOBCODE(9);END

 16

>B;PRINT $JOBCODE(21);END

 21

See “BATCH2 facility” on page 18-64 for syntax details.

Use to avoid completing jobs

You can use $JOBCODE in conjunction with other functions to avoid
completing large jobs that would produce incorrect or unusable results.
Suppose a Model 204 run includes a PRINT ALL INFORMATION (PAI)
statement that causes all of the fields in a record to be output. A PAI statement
sometimes is used to dump the contents of a file before the file is reorganized.
After the PAI, new parameters can be specified and the file can be loaded
again.
User Language Manual 27-67

The file manager often does this with the File Load utility (see the Model 204
File Manager’s Guide for details). If the file being dumped has field level
security, it is possible for the PAI run to omit certain fields without issuing error
messages. The missing fields are those for which the user does not have
READ access. If the output from the PAI run is then reentered to a File Load
run, fields are lost. The following technique can be used to avoid this type of
problem.

OPEN MYFILE
BEGIN
 IF $FLSCHK (,’R’) THEN
 JUMP TO END.PROCESS
 END IF
 PRINT ’INVALID ACCESS TO FILE’
 PRINT ’STEP COMPLETION CODE WAS’ AND -
 $JOBCODE (16)
 PRINT ’IT MAY HAVE BEEN SET TO 16’
 STOP
END.PROCESS: IF $JOBCODE () THEN
 STOP
 END IF
FIND.RECS: FIND ALL RECORDS
 .
 .
 .
END

A File Load step in the same job could be skipped if it were based on a nonzero
step completion code. If it is desirable to trigger an ABEND, $JOBCODE can
be used in conjunction with the SYSOPT parameter. The 64 (X‘40’) option for
the SYSOPT parameter forces an ABEND without a dump at termination, when
the step completion code is nonzero.

$LANGSPEC

$LANGSPC returns a string containing the binary value of the specified
character in the specified language. You can use $LANGSPC to scan user
input for a special character in a language independent manner.

The $LANGSPC syntax is:

$LANGSPC(’charname’[,langname])

where:

• charname is a string containing one of the following values:

AT
BACKSLSH
DOLLAR
DQUOTE
EXCLAMAT
NOT
27-68 Model 204

RBRACE
SHARP
VERTICAL

• langname specifies which language to use to obtain the desired code point
for the specified character. If the name is not found in NLANG$, the request
is cancelled with an error message.

If a langname value of asterisk (*) is specified, the value of the Model 204
LANGUSER parameter determines the language. If no langname value is
specified, the default is US English (even when the LANGUSER parameter
value is not US).

In the following example, the %PATH variable (presumably supplied by the user
from the terminal) is searched for the backslash character, regardless of its
location in the user terminal’s code table:

%BACKSLASH IS STRING LEN 1
%BACKSLASH = $LANGSPC(’BACKSLSH’,’*’)
%DIR = $SUBSTR(%PATH, $INDEX(%PATH,%BACKSLASH)+1)

$LANGSRT

$LANGSRT translates a given string according to the specified language into
a language-neutral binary string against which you can sort.

By determining whether one string is greater or less than another string, you
can use $LANGSRT to compare two strings. First apply $LANGSRT to the
strings and then compare them using the User Language GT and LT operators.

The $LANGSRT syntax is:

$LANGSRT(’string’[,langname])

where:

• string is the original data to be translated into collating sequence.

• langname is the name of one of the defined languages, specifying which
collating sequence to use. The request is cancelled with an error message
if the name is not found in NLANG$.

If a langname value of asterisk (*) is specified, the value of the Model 204
LANGUSER parameter determines the language. If no langname value is
specified, the default is U.S. English (even when the LANGUSER
parameter value is not US).

If the given string contains VARIANT characters, the returned string has
encoding information appended. If the encoding information causes the length
of the string to exceed 255 characters, only complete byte pairs are appended
to the string.

If no complete byte pairs can be appended, nothing is appended (not even the
encoding separator) and resulting string lengths can be 253, 254, or 255 bytes.
User Language Manual 27-69

$LANGUST

$LANGUST translates back to its original form a string previously translated by
$LANGSRT. This is useful for applications that maintain sorted arrays of data
and need to display the values.

$LANGUST(’string’[,langname])

where:

• string is the data in collating sequence to be translated back to its original
form.

• langname is the name of one of the defined languages, specifying which
collating sequence to use. The request is cancelled with an error message
if the name is not found in NLANG$.

If a langname value of asterisk (*) is specified, the value of the Model 204
LANGUSER parameter determines the language. If no langname value is
specified, the default is U.S. English (even when the LANGUSER
parameter value is not US).

If encoding information has been truncated, either during $LANGSRT
processing or during subsequent expression evaluation, then $LANGUST
cannot return the exact string that was originally translated by $LANGSRT.

$LEN

The $LEN function determines the current length of the value of a STRING. The
$LEN function takes a fieldname, character literal, or %variable as its one
argument.

Example 1

$LEN(STATE)

equals 4 if the STATE field of the current record contains OHIO.

Example 2

$LEN (%NAME)

equals 13 if the %NAME variable has a current value of Richard Smith.

$LOWCASE

The $LOWCASE function translates an uppercase or mixed case string into a
lowercase string. The translation affects only the letters A–Z. If the first
character in the string is alphabetic, the character is converted to uppercase.
27-70 Model 204

Syntax

The format of the $LOWCASE function is:

$LOWCASE(string [,language-name])

where:

• string represents the string to be verified. string must be one of:

– A quoted literal.

– A %variable.

– A field name without quotation marks, in which case the current value
of the field is verified. In this case, the function call must be embedded
in a FOR EACH RECORD loop.

• language-name (optional) specifies the language to use. Options are:

– Omitting this argument, which instructs Model 204 to perform the vali-
dation for U.S. English, even if the value of the LANGUSER parameter
is not ‘US.’

– A quoted asterisk (‘*’), which instructs Model 204 to use the value of the
LANGUSER parameter to determine which language to use.

– The quoted literal name of a valid language, for example: NLANGFR1
for French Canadian, Version 1. The request is cancelled with an error
message, if the name is not present in NLANG$.

Example

$LOWCASE(’NAME AND ADDRESS’)

returns this value:

Name and address

$LSTFLD

The $LSTFLD function returns field names in alphabetical order and the field
description for each field in a file into an image. $LSTFLD requires that you
have an image prepared with which Model 204 can create the field description.

Syntax

The format for the $LSTFLD function is:

%variable = $LSTFLD([FILE] filename

 [AT location],imagename,loopvar)

where:
User Language Manual 27-71

• %variable is the %variable in which the return codes are stored. The return
codes are:

• filename (required) is the name of the file that contains the fields. A file
synonym name can also be used. If you do not enter a location, specifying
a null argument, Model 204 uses the reference context (at compile time) of
the statement which calls the function. When filename=groupname the
$LSTDEF function assumes that the name passed is a file name, not a
group name.

• imagename (required) is the name of the image where the information is to
return.

• loopvar (required) is the loop variable of the image. You must initialize the
loop variable (as in the sample image shown with the $FDEF function)
before invoking $LSTFLD. The value returned in loopvar is used the next
time $LSTFLD is invoked to retrieve subsequent field names.

Note: Like $LSTPROC, changing any of the loop control information in the
$LSTFLD loop variable after the image is initialized is not allowed and might
cause the run to snap.

Locating the ZFIELD image

An image is required by the $FDEF and $LSTFLD functions. The ZFIELD
image is provided on the Model 204 installation tape. It can give you complete
field attribute information; see the $FDEF discussion on page 27-51. The size
of the name field for the ZFIELD image is 255 bytes. The location of ZFIELD for
your site is listed in this table:

Setting Meaning

0 Success

1 End of field list reached

2 Requested file not available

3 VTBL full or sort not available

4 Error occurred during function processing

Operating system Storage location of the ZFIELD image

z/OS The JCL library

VM The 2nd tape file (193) as an EXEC

VSE The JCL library
27-72 Model 204

Example

In this example, the procedure DFIELDS displays the name and definition of
each field in the file specified by %FILE.

PROCEDURE DFIELDS
BEGIN
*
* include ZFIELD IMAGE as defined for $FDEF*
*
PRINT ’DFIELDS STARTS’
%FILE = ’??FILE’
NP
PREPARE ZFIELD
%ZFIELD:BIN1 = 0
%ZFIELD:BIN2 = 0
%ZFIELD:BIN3 = 0
%ZFIELD:BIN4 = 0
%X = 0
REPEAT WHILE %X = 0
 %X = $LSTFLD(%FILE,’ZFIELD’,%ZFIELD:LOOPVAR)
 IF %X = 0 THEN
 PRINT %ZFIELD:NAME
 PRINT %ZFIELD:FDEF
 END IF
END REPEAT
PRINT ’-- END OF FIELDS RC=’ %X
END
END PROCEDURE

$LSTPROC

$LSTPROC returns the following procedure information, which is stored in the
procedure dictionary:

• Procedure name

• Date and time of last update

• ID of last user to update the procedure

• Length of the procedure (in bytes)

• Procedure security class (if available)

• Procedure file (if in multiple procedure file group context)

Syntax

The format of the $LSTPROC function is:

$LSTPROC(imagename, [procname] [,loop variable]

 [,alias flag] [,filename] [,pattern])
User Language Manual 27-73

where:

• imagename (required) specifies the name of the image into which the
information should be returned. The items that must be defined in the image
are listed below along with the data type and length of each item. In
addition, the position of each item is provided for use with the AT clause
where applicable.

For example:

IMAGE PROCS
 LOOPVAR IS BINARY LEN 4
 DATE IS PACKED LEN 4
 TIME IS STRING LEN 8
 LENGTH IS BINARY LEN 4
 CLASS IS BINARY LEN 1
 NAME IS STRING LEN 255
 FILE IS STRING LEN 8
 USERID IS STRING LEN 10
END IMAGE

The procedure file name and the user ID are both optional. If they are not
specified, they are not filled in by default values. If the user ID is included,
however, the file name must also be included.

If the image length is not increased, $LSTPROC executes when multiple
procedure files have been specified, but does not return file information for
each procedure or the user ID.

• procname is the procedure for which information should be obtained. The
value of procname must be the name of a permanent procedure. If this
argument is omitted or null, information about the next procedure is
returned. You must specify this argument if the alias flag argument has a
value of 1.

• loop variable is an image item that specifies where to begin the search in
the procedure dictionary. Because each invocation of $LSTPROC returns
information for only one procedure, this variable is used to control repeated

Item Type Length Position

Loop variable BINARY 4 1

Date PACKED 4 5

Time STRING 8 9

Length BINARY 4 17

Security class BINARY 1 21

Procedure name STRING 255 22

Procedure file name STRING 8

User ID STRING 10
27-74 Model 204

$LSTPROC calls. The loop variable must be the first item in the image. The
variable can have one of the following values:

– A null value, if a procedure name is specified.

– 0, for the first iteration of a loop extracting data on all procedures.

– The value of loop variable returned by the previous iteration through the
loop, if data for the next procedure in the procedure dictionary is being
requested.

You must not modify loop variable once it is initially set to 0; modifications
might result in snaps. A loop variable must be specified if one of the
following conditions exist:

– A procname argument is not specified.

– The alias flag argument has a value of 1 (aliases is retrieved).

• flag (optional) specifies that alias names should be obtained for the
specified procedure. The value for the alias flag is 1 to obtain aliases. One
alias is returned for each $LSTPROC execution.

• filename (optional) specifies the name of the file or group that contains the
procedure dictionary. If this argument is omitted, the current file at the time
that the request was compiled is used.

• pattern (optional) lets you retrieve procedures that match the pattern
specified using the standard pattern matching rules beginning on “Pattern
matching” on page 4-20.

Status codes

In addition to storing procedure information in an image, $LSTPROC returns a
status code that has one of these values:

Usage notes

• For files created prior to Release 8.1, only the procedure name and security
class are provided. An image must be defined earlier in the request in order
to receive the information returned by $LSTPROC. For more information on
image definition, refer to “Defining an image” on page 17-6.

• $LSTPROC applies to local files only; it is not valid in remote context.

Status code Meaning

0 $LSTPROC executed successfully.

1 The end of the procedure dictionary has been reached (there are
no more procedure names to process).

2 The specified procedure is not available.

4 An error was encountered during $LSTPROC processing.
User Language Manual 27-75

• For a file with a procedure stored in it that was created using Model V3R2.1
or later, then opened under Model 204 V4R1.0 or later with $SYSDATE set
to January 1, 2000 (or later), and the procedure is changed, the date
returned includes the century--in this example, 100001, in the cyyddd
format.

Example 1

This request retrieves and prints all procedure names in the current file:

BEGIN
 IMAGE PROC
 LOOPVAR IS BINARY LEN 4
 DATE IS PACKED LEN 4
 TIME IS STRING LEN 8
 LENGTH IS BINARY LEN 4
 CLASS IS BINARY LEN 1
 NAME IS STRING LEN 255
 FILE IS STRING LEN 8
 USERID IS STRING LEN 10
 END IMAGE
 PREPARE PROC
 REPEAT WHILE $LSTPROC(’PROC’,,%PROC:LOOPVAR) = 0
 PRINT %PROC:NAME
 END REPEAT
END

Example 2

This request retrieves alias names for a specified procedure:

IMAGE PROCINFO
 LOOPVAR IS BINARY LEN 4
 DATE IS PACKED LEN 4
 TIME IS STRING LEN 8
 LENGTH IS BINARY LEN 4
 CLASS IS BINARY LEN 1
 NAME IS STRING LEN 255
 FILE IS STRING LEN 8
 USERID IS STRING LEN 10
END IMAGE

 .
 .
 .
%PROCINFO:LOOPVAR = 0
GETALIAS: IF
$LSTPROC(’PROCINFO’,’MYPROC’,%PROCINFO:LOOPVAR,1) =
0
 THEN
PRINT %PROCINFO:NAME
 END IF
 .
27-76 Model 204

 .
 .

Example 3

This request retrieves procedures in a multiple procfile group that match a
pattern specified by the user:

BEGIN
IMAGE PROCS
 LOOPVAR IS BINARY LEN 4
 DATE IS PACKED LEN 4
 TIME IS STRING LEN 8
 LENGTH IS BINARY LEN 4
 CLASS IS BINARY LEN 1
 NAME IS STRING LEN 255
 FILE IS STRING LEN 8
 USERID IS STRING LEN 10
END IMAGE
%PAT = ’??PAT’
NEW PAGE
PREPARE PROCS
PRINT ’ PROCEDURE NAME DATE TIME LENGTH
-
 USERID CLASS’ WITH ’ FILE’
REPEAT WHILE $LSTPROC(’PROCS’,,%PROCS:LOOPVAR) = 0
 IF %PROCS:NAME IS LIKE %PAT THEN
 %DATE =
$DATECNV(’YYDDD’,’MM/DD/YY’,%PROCS:DATE)
 PRINT %PROCS:NAME AND %DATE AT 25 AND
%PROCS:TIME -
 AND %PROCS:LENGTH TO 50 AND %PROCS:USERID AT
52 -
 AND %PROCS:CLASS AT 68 -
 AND %PROCS:FILE AT 63
 END IF
END REPEAT
PRINT ’-- END OF LIST FOR PATTERN = ’ %PAT
END
END PROCEDURE

$MISGRUP

The $MISGRUP function is used with the ON units ON MISSING FILE and ON
MISSING MEMBER. It returns the group name if the error occurred in group
context, or null if the error occurred in file context.

Example

The following is an example of an ON MISSING FILE unit that uses the
$MISGRUP, $MISLOC, $MISNAME, and $MISNUM functions:
User Language Manual 27-77

ON MISSING FILE
 %X = $MISGRUP
 IF %X = ’’ THEN
 * THIS IS FILE CONTEXT BECAUSE $MISGRUP
RETURNED NULLS
 PRINT ’MISSING FILE’ AND $MISNAME AND ’AT’ AND
$MISLOC
 ELSE
 PRINT ‘MISSING GROUP' AND %X AND 'FILES
FOLLOW:'
 FOR %I FROM 1 TO $MISNUM BY 1
 PRINT $MISNAME(%I) AT 13 AND 'AT' AND
$MISLOC(%I)
 END FOR
 END IF
END ON

$MISLOC

The $MISLOC function is used with the ON units ON MISSING FILE and ON
MISSING MEMBER. It returns the location of a missing member or file. See the
example given for “$MISGRUP” on page 27-77.

$MISNAME

The $MISNAME function is used use with the ON units ON MISSING FILE and
ON MISSING MEMBER. It returns the file name of a missing member or file.
See the example given for “$MISGRUP” on page 27-77.

$MISNUM

The $MISNUM function is used with the ON units ON MISSING FILE and ON
MISSING MEMBER. It returns the number of files that failed in the group. See
the example given for “$MISGRUP” on page 27-77.

$MISSTMT

The $MISSTMT function is used with the ON units ON MISSING FILE and ON
MISSING MEMBER. It returns the statement that caused the ON unit to be
entered.

The possible return values (statement names) of $MISSTMT are:

ADD
BACKOUT
CHANGE
CLEAR LIST
COMMIT
COUNT
DELETE ALL RECORDS
DELETE EACH
27-78 Model 204

DELETE FIELD
DELETE RECORD
FIND ALL VALUES
FILE
FIND
FOR
FOR EACH VALUE
FOR RECORD NUMBER
INSERT
PLACE RECORD
PLACE RECORDS
RELEASE RECORDS
RELEASE ALL RECORDS
REMOVE RECORD
REMOVE RECORDS
SORT
SORT VALUES

$MOD

The $MOD function returns the remainder that results when the first argument
is divided by the second argument (the first argument modulo the second
argument). Each argument is first rounded to an integer. $MOD (X,0) is defined
to be X.

Example 1

$MOD (5,3)

equals 2.

Example 2

IF $MOD (Z,2) THEN PRINT ’ODD’

prints ODD only if the value of the field Z is odd.

$OCCURS

The $OCCURS function interprets a character string argument as a field name
in the following manner:

• In file context, $OCCURS returns 0 if the field description in the current file
containing the specified field does not include the OCCURS field attribute.
$OCCURS returns a number representing the number of specified
occurrences if the field has OCCURS in its description.

• In group context, $OCCURS returns 0 only when the field is described
without an OCCURS attribute in every file making up the group. Otherwise,
the function returns the minimum OCCURS specification included in all of
the files.
User Language Manual 27-79

• If the field specified as the $OCCURS argument is not defined in the current
file or group, $OCCURS returns a value of -1.

Example

$OCCURS (’AGENT’)

equals 1 if the description of AGENT contains OCCURS 1.

$ONEOF

The $ONEOF function is a table lookup function that can replace a series of IF
conditions.

Syntax

$ONEOF(’item’,’set’,delimiter’)

where:

• item is an element that might be in set.

• set is one or more items

• delimiter is the character used to separate the set items.

Example

$ONEOF(’MALE’, ’FEMALE/MALE’,’/’) equals 1
$ONEOF(’GRAY’,’BLACK*WHITE*GRAY’,’*’) equals 1

• If the third argument is omitted, a semicolon is assumed to be the delimiter
used in the second argument. For example:

$ONEOF(’FEMALE’, ’FEMALE;MALE’) equals 1

• If the second argument is null, or if the first argument is not an element of
the second argument, 0 (false) is returned. For example:

$ONEOF(’BOY’,’FEMALE;MALE’) equals 0
$ONEOF(",’FEMALE;MALE’) equals 0
$ONEOF(’BOY’,") equals 0

• You can enter null values as the following examples show.

$ONEOF(",’;FEMALE;MALE’) equals 1
$ONEOF(",’FEMALE;;MALE’) equals 1
$ONEOF(",’FEMALE;MALE;’) equals 1

• If a long string of values is used frequently, a special record containing
those values can be useful. In the following example, a record is created
with a field consisting of a list of departments. The list is used in the second
27-80 Model 204

request to locate and process records for which the department is not
known.

BEGIN
DECLARE %DEPT STRING LEN 50
 STORE RECORD
 TABLE = VALS
 DEPT VALS = DEPT1/DEPT2/DEPT3/etc.
 END STORE
END
 .
 .
 .
BEGIN
FIND.RECS: FIND ALL RECORDS FOR WHICH
 TABLE = VALS
 END FIND
 FOR EACH RECORD IN FIND.RECS
 %DEPT = DEPT VALS
 END FOR
PAY.RECS: FIND ALL RECORDS FOR WHICH
 TYPE = PAYROLL
 END FIND
 FOR EACH RECORD IN PAY.RECS
 IF NOT $ONEOF(DEPT,%DEPT,’/’) THEN
 .
 .
 .

$PACK

The $PACK function returns the packed decimal representation of the
character string. $PACK is used as an item in an assignment to a %variable
that is written to a sequential USE dataset. $PACK should not be used as an
operand in an arithmetic expression, because the value returned cannot be
correctly interpreted as a number.

Syntax

The format for the $PACK function is:

$PACK(value,precision [,scale] [,’UNSIGNED’])

where:

• value is a character string that can be a field name, a %variable, or any type
of string expression.

• precision is the number of digits required in the number to be returned. You
must specify the precision.
User Language Manual 27-81

• scale specifies the number of digits to be returned to the right of the decimal
point. The scale argument is optional. If the scale argument is omitted, the
returned result is an integer.

• UNSIGNED specifies that the packed decimal data has a sign code of X‘F’
regardless of the sign of the data value. The UNSIGNED argument is
optional. If the UNSIGNED argument is omitted, the data contains the
appropriate code for the sign of the data value.

Model 204 pads the result with leading integer or trailing fractional zeros as
appropriate. If the integer portion of the value string is too long, or if the value
is nonnumeric, $PACK returns binary ones. Model 204 interprets the value
returned by $PACK as a character string.

Example

If the user were to specify these statements:

%X = 123.4
%A = $PACK(%X,8,3,’UNSIGNED’)

the result in %A would be X‘0123400F’. The result would be identical if %X
were assigned a value of -123.4.

$PAD

The $PAD function allows padding to the left with a designated character. The
$PAD function takes three arguments and returns a character string of the
length specified by the value of the third argument. The resulting string contains
the first argument, right-justified, and padded with the character indicated in the
second argument. The length argument is rounded if it is not an integral value.
For example:

$PAD(’55449825’,’0’,9) equals ’055449825’
$PAD(’123.65’,’*’,8) equals ’**123.65’
$PAD(’123.65’,’*’,7.66) equals ’**123.65’

• If the value of the length argument is greater than 255, 255 is used.

• If the value of the length argument is not greater than zero, a null string is
returned.

• If the second argument contains more than one character, the first
character in the string is the one used for padding. For example:

$PAD(’123.65’,’*4’,8) equals ’**123.65’

$PADR

The $PADR function allows padding to the right with a designated character.
$PADR works exactly like $PAD with the exception that $PAD pads to the left,
while $PADR pads to the right. For example:
27-82 Model 204

$PADR(’123.65’,’*’,9) equals ’123.65***’

$POST

Function

Indicates that some event has occurred. The thread(s) waiting on the Event
Control Block (ECB) can resume processing.

Syntax

$POST({ECB-number[,post-code][,string] | ’QZSIG’})

Where:

• ECB-number is a string with a numeric value from one to the NECBS
parameter that identifies the ECB to be posted. The ECB-number can be
expressed as a numeric literal, a %variable, or a field name.

• post-code is a numeric value between zero and 16,777,215. You can use
this optional argument for whatever you wish. If omitted, a default post code
of zero is used.

The post code is accessible using the $ECBTEST function followed by the
$STATUSD function for the specified posted ECB.

Once set, unless explicitly reset to zero, post codes persist whether or not
the ECB is posted.

• string can be up to 255 bytes long. It can be a numeric, a literal enclosed in
quotation marks, a %variable, or a field name.

String data is accessible using the $ECBDGET function for the specified
ECB.

Once set, unless explicitly reset to null, data strings persist whether or not
the ECB is posted. Depending on the sequence, data strings can be
changed by either the $POST or $ECBDSET functions.

• QZSIG is an extended quiesce named ECB. To use it, you need not set the
NECBS parameter. QZSIG can be expressed as a literal, a %variable, or a
field name. Although QZSIG can be posted, it cannot be unposted.
Unposting is handled internally at the end of the extended quiesce. You
cannot specify a post code or a string for QZSIG.

Usage

The $POST function posts a specified ECB with an optional post code and an
optional associated string. Only an unposted ECB may be posted. If an ECB is
already posted, the posted state is indicated by return code 14. The ECB
contents and associated string do not change. Any other thread waiting
($WAIT) on the specified ECB becomes eligible to resume processing.
User Language Manual 27-83

Use the $POST, $UNPOST, and $WAIT functions to coordinate processing
between threads.

The following return codes apply to the $POST function

Example

On Thread A

BEGIN
PRINT $UNPOST(1)
PRINT $WAIT(1)
PRINT $STATUSD
END

On Thread B

BEGIN
PRINT $POST(1,32)
END

In the previous code, the $UNPOST function on Thread A marks the ECB
specified as unposted. Then, Thread A waits at the $WAIT(1) until another
thread issues a $POST(1,nnnn). Thread B posts the ECB number one with
$POST(1,32), at which point Thread A resumes evaluation with PRINT
$STATUSD and prints the post code of 32.

Return code Meaning

0 Success

2 Bad argument specified

3 NECBS parameter is not specified or is zero

4 The first argument is less than one or greater than the NECBS
parameter

5 NUSERS = 1

8 No argument specified

9 Checkpointing inactive

10 Post code out of range, 0 to 16,777,215

11 The QZSIG ECB is already posted

12 Invalid argument CPQZ specified or invalid argument following
QZSIG

13 Cannot be issued outside of extended quiesce

14 An attempt to post an already posted ECB
27-84 Model 204

$RDPROC

The $RDPROC function sequentially retrieves the lines of a User Language
procedure that is stored in a Model 204 file. The lines of the User Language
procedure can reside in a file or in a group. A group can contain a single
procedure file or multiple procedure files. Multiple procedure files are searched
in the order in which they appear in the DEFINE GROUP command.

You can also read temporary procedures by specifying the procedure number,
for example, 0, -1, or -2, in place of the procedure name. An input file is not
required.

$RDPROC applies to local files only; it is not valid in remote context.

Options

The four options for $RDPROC are:

Single request

You must open and read a procedure within one request, without leaving the
request. If the procedure is a permanent procedure, $RDPROC holds a share
lock on the procedure while reading it, which prevents other users from
modifying the procedure. $RDPROC unlocks the procedure automatically
when it reads end-of-procedure.

The $RDPROC function uses 336 bytes of STBL and 8 bytes per $RDPROC
level. You can nest $RDPROC up to the value of the MAXINCL parameter, plus
one.

Syntax for locating and locking a procedure

The format for the $RDPROC function to locate and lock a procedure is:

ctlid = $RDPROC(’OPEN’, fgname, procname)

where:

• ctlid is the integer ID of an internally maintained control field that is passed
into $RDPROC for GET, LINEND, and CLOSE processing.

• fgname is a name of the file or group that contains the procedure. The
format of fgname is:

Option Action

OPEN Locates and locks a procedure

GET Reads a line from a procedure

CLOSE Explicitly unlocks the procedure at any time

LINEND Reads a line end character from a procedure
User Language Manual 27-85

[[[TEMP | PERM] GROUP] | [FILE]] identifier

where identifier is the name of the group or file.

• procname is the name of a procedure.

Note: With $RDPROC, you can open up to six procedures concurrently.

Syntax for reading a line from a procedure

The format for the $RDPROC function to read a line from a procedure is:

text = $RDPROC(’GET’,ctlid)

where:

• text is the next line of the procedure (null if end-of-procedure is reached).

• ctlid is the integer ID of an internally maintained control ID that is assigned
during OPEN processing.

Syntax for closing and unlocking a procedure

The format for the $RDPROC function to close and unlock a procedure is:

text = $RDPROC(’CLOSE’,ctlid)

where:

• text is set to the null string.

• ctlid is the integer ID of an internally maintained control ID that is assigned
during OPEN processing.

Syntax for reading a line end from a procedure

The format for the $RDPROC function to read a line-end character from a
procedure is:

text = $RDPROC(’LINEND’,ctlid)

where:

• text is the value of the line-end character parameter in effect when the
procedure was saved. By default, this is a semicolon (;).

• ctlid is the integer ID of an internally maintained control ID that is assigned
during OPEN processing.
27-86 Model 204

How $RDPROC works

Possible return status settings are summarized in this table:

If the completion status is 2 and indicates that an error occurred or that the EOP
was read, the procedure is automatically closed. A subsequent $RDPROC
CLOSE call is unnecessary and returns this message:

$STATUS=2 / $STATUSD=11 (invalid ctlid value)

$STATUSD setting

The STATUSD setting can be one of the settings summarized in the following
table:

Example

BEGIN
DECLARE %PROC IS STRING LEN 50
* USE LEN 19 BELOW TO ALLOW FOR ’TEMP GROUP XXXXXXXX’
DECLARE %FILE IS STRING LEN 19
DECLARE %TEXT IS STRING LEN 255
DECLARE %CTLID IS FIXED
*

Setting Meaning

0 Normal completion (a procedure line was read; more lines follow)

1 End-of-procedure reached (no more procedure lines exist)

2 Error occurred (see $STATUSD settings)

Setting Meaning

1 Argument 1 is missing or null.

2 Argument 2 is missing or null.

3 Argument 3 is missing or null

4 Argument 1 must be OPEN, GET, CLOSE, or LINEND.

5 Invalid context specification in argument.

6 GROUP has no procedure file.

7 Could not lock on specified procedure.

8 Could not find procedure or access not allowed.

9 (unassigned)

10 Maximum number of procedures (five) are already open.

11 Ctlid contains an invalid value.
User Language Manual 27-87

* FILE MUST BE PREVIOUSLY OPENED
*
 %FILE = $READ(’FILE/GROUP CONTEXT?’)
 %PROC = $READ(’PROCEDURE NAME?’)
*
* OPEN THE PROCEDURE
*
 %CTLID = $RDPROC (’OPEN’, %FILE, %PROC)
 IF $STATUS > 0 THEN
 PRINT ’$RDPROC OPEN ERROR, REASON CODE=’ -
 AND $STATUSD
 STOP
 END IF
*
* DETERMINE THE LINEND CHARACTER
*
 %TEXT = $RDPROC (’LINEND’, %CTLID)
 IF $STATUS > 0 THEN
 PRINT ’$RDPROC LINEND ERROR, REASON CODE=’ -
 AND $STATUSD
 STOP
 END IF
 PRINT ’LINEND CHARACTER = ’ WITH %TEXT
 PRINT
*
* DISPLAY THE PROCEDURE
*
 REPEAT WHILE $STATUS = 0
 %TEXT = $RDPROC (’GET’, %CTLID)
 PRINT %TEXT
 END REPEAT
*
* SEE IF WE ENDED ABNORMALLY
*
 IF $STATUS > 1 THEN
 PRINT ’GET ERROR, REASON CODE=’ AND $STATUSD
 END IF
*
* CLOSE THE PROC (UNNECESSARY SINCE WE READ TO EOP)
*
 %TEXT = $RDPROC (’CLOSE’, %CTLID)
END

Opening an empty temporary procedure

If you attempt to open an empty temporary procedure, $STATUS returns a zero
and issues the following error:

M204.1172 PREVIOUS REQUEST NOT DEFINED

The current request continues as normal.
27-88 Model 204

$RDPROC and temporary procedures

Using $RDPROC, create a temporary procedure named -1 and print procedure
-1 to procedure -2. In this example, the place for the input file name is blank (, ,)
or NULL.

USE PROC -2
MONITOR
BEGIN
 %CTLID = $RDPROC(’OPEN’,,-1)
 IF $STATUS THEN
 JUMP TO BAILOUT
 END IF
 REPEAT WHILE NOT $STATUS
 PRINT $RDPROC(’GET’,%CTLID)
 END REPEAT
BAILOUT:
END

$READ

The $READ function enables the user to enter data from the terminal as a
request is evaluated. $READ is useful when creating generalized requests.
You can also use $READ to read a sequential input file; see “Using the $READ
function to read sequential input” on page 27-92.

Syntax

The format for the $READ function is:

$READ([prompt][,option])

where:

• prompt is the literal to appear on the terminal, prompting for input. This
argument is optional.

• option indicates how the input value is to be returned. The only valid option
is ‘TRANSPARENT’. When this argument is present, $READ does not
translate LINEND characters as the logical end of line nor a hyphen as the
continuation character, remove trailing blanks, or convert lowercase
characters to uppercase. $READ simply returns the input line of up to 255
characters exactly as entered.

Prompting the user for a line of input

Each time $READ is evaluated, Model 204 prompts the user for a line of input.
The response becomes the character string value returned by the function. For
example:

$READ(’HELLO’)
User Language Manual 27-89

causes Model 204 to respond:

$$HELLO

and wait for the user to enter a reply each time the function is evaluated.

If the user keys in:

GOODBYE

in reply, the function returns a value equal to the quoted string ‘GOODBYE’.

If no prompt argument is specified, as $READ (), the prompt is:

$$

The end of the user’s reply is delimited by a carriage return or a semicolon.
However, if the user ends the first line of reply with a hyphen, the carriage
return is ignored, and the reply can be continued on another line.

Including $READ functions and dummy strings in a procedure

If $READ functions are included in a procedure, one or more responses to the
$READs can be specified in the command that invokes the procedure, along
with responses to dummy strings included in the procedure. The following
procedure contains a typical data entry request.

PROCEDURE ENTRY
BEGIN
NAME.AND.AGE: %A = $READ(’NAME’)
 %B = $READ(’AGE’)
 STORE RECORD
 TYPE = ??TYPE
 NAME = %A
 AGE = %B
 END STORE
 IF $READ(’MORE?’) EQ ’YES’ THEN -
 JUMP TO NAME.AND.AGE
 END IF
END
END PROCEDURE

You can include the procedure and specify responses for the $READ functions
and dummy strings included in the procedure by issuing the following:

INCLUDE ENTRY, PERSONNEL, ROBERT, 27, YES, LOUISE,
28, NO

Dummy string responses must appear first, followed by $READ responses. If
any $READ responses are included in the list, it also must include a response
for each dummy string encountered before the first $READ is executed.

As dummy strings and $READs are encountered in the procedure being
executed, entries are retrieved from the list specified in the INCLUDE or IF line.
No prompts are issued for responses taken from the list. If there are more
27-90 Model 204

dummy strings and $READs than responses in the list, Model 204 prompts for
a response as if no list had been specified.

Alternatively, if the user responds to a request with several $READs in a row,
the user can wait for the first prompt and then enter several replies at once,
separating them by semicolons. Model 204 prints the prompts for the next
$READs but does not wait for the user to reply to each one.

Results of $READ prompts

Results of $READ prompts contain leading or intermediate blanks that the user
enters if the TRANSPARENT argument is not specified. However, trailing
blanks are dropped. This occurs when the ENTRY procedure shown earlier is
included. Note the stacking of responses on a single input line.

INCLUDE ENTRY
??TYPE
PERSONNEL
$$NAME
ROBERT
$$AGE
27
$$MORE?
YES
$$NAME
LOUISE 28 28
$$AGE
$$MORE?
YES
$$NAME
DALE 24; YES; RICHARD; 37; YES: THO-
MAS 59; NO
$$AGE
$$MORE?
$$NAME
$$AGE
$$MORE?
$$NAME
$$AGE
$$MORE?

This example illustrates the differences between dummy strings and the
$READ function.

Dummy strings allow the user to fill in pieces of the request text just before
compilation begins. The user’s replies to ?? prompts are substituted before the
text is compiled. ??TYPE is replaced only once, at compilation time, by
PERSONNEL.

$$ prompts and $READ function input not specified at INCLUDE time are
processed when the request is evaluated. Substitutions for these prompts are
accepted as character strings; no text or character evaluation is made.
Consider the following example:
User Language Manual 27-91

BEGIN
PRINT.COUNT: FIND AND PRINT COUNT
 AGE = ??AGE
 END FIND
END

BEGIN
 %AGE = $READ(’ENTER AGE’)
PRINT.COUNT: FIND AND PRINT COUNT
 AGE = %AGE
 END FIND
END

In the first request, if the user replies “10 OR 11” to the ??AGE prompt, the line
AGE = 10 OR 11 is properly compiled and the request searches for records with
AGE either 10 or 11. However, if the user replies 10 OR 11 to the $$ENTER
AGE prompt in the second request, 10 OR 11 is considered a character string
and Model 204 searches for records with AGE fields containing the string
‘10 OR 11’.

If the user presses the attention key (ATTN, BREAK, or PA1, depending on
terminal type) or enters *CANCEL in response to a $READ prompt, Model 204
performs the action specified in the ON ATTENTION unit (see “ON units” on
page 12-21) if one is specified in the request.

If ON ATTENTION is not specified, Model 204 terminates the request and all
nested procedures. Control is returned to the command level at the user’s
terminal.

Using the $READ function to read sequential input

You can use the $READ function to read sequential input:

1. Run Model 204 in batch mode. $READ assumes terminal input in online
mode and sequential input (for example, tape or disk) in batch mode.

2. Concatenate a User Language procedure to the sequential input to be
read. The following JCL is required:

// CCAIN DD DSN=USER.LANG.PROCEDURE,DISP=OLD
 DD DSN=SEQU.INPUT.FILE,DISP=OLD

3. Use the $SUBSTR function to parse the input. For example:

%FIELDA=$SUBSTR(%INPUT,1,10)
%FIELDB=$SUBSTR(%INPUT,11,5)

The input is read into the %variable, for example, INPUT). It cannot exceed 255
characters in length.

$READINV

The $READINV function is identical to the $READ function, except that:
27-92 Model 204

• Input from the terminal is not echoed. It is treated the same as a password
for the device would be treated.

• $READINV cannot take its response from arguments saved from the
INCLUDE line.

The $READINV function takes a field name as its one argument.

$READLC

The $READLC function is identical to $READ, except that it deactivates case
translation, regardless of the current *UPPER/*LOWER setting. $READLC
takes one argument.

$REMOTE

The $REMOTE function returns the SNA Communications Server (formerly
VTAM) network ID (SNA Communications Server applid, or user zero
parameter VTAMNAME) of the Model 204 region from which a user is
transferred by the Transfer Control facility. This SNA Communications Server
applid should be the DEFINE PROCESSGROUP command REMOTEID value
of the Model 204 region to which the user is transferred. $REMOTE simplifies
a return transfer to the region from which the user transferred: the $REMOTE
value is used as the target of the return transfer.

It returns an 8-byte character string consisting of the SNA Communications
Server applid of a remote Model 204 region. If a user transferred into the
Model 204 region from a non-Model 204 region, $REMOTE returns blanks.
$REMOTE can only be issued from an IODEV=7 thread. The $REMOTE
function takes no arguments.

$REVERSE

The $REVERSE function reverses the order of a string.

Syntax

The format of the $REVERSE function is:

$REVERSE(string)

where string is any character string.

For example:

PRINT $REVERSE(’AB CDEF’)

prints the value FEDC BA.

$REVERSE is particularly useful when the file manager defines an ORDERED
field to contain the characters of a frequently retrieved field in reverse order.
User Language Manual 27-93

Thus, when leading wildcard patterns (for example, *SON) are used to retrieve
records or values, the patterns can be reversed to optimize the ordered
retrieval. If the patterns remain in leading wildcard form and the original,
unreversed field is used to retrieve values or records, the entire Ordered Index
is searched to find the values satisfying the pattern.

For example, an ORDERED field named WORD exists and values ending in
LY are to be retrieved frequently. To optimize this retrieval, another ORDERED
field named REVERSE.WORD can be defined to store the reversed values in
the WORD field, and the pattern *LY can be reversed to retrieve values in
REVERSE.WORD LIKE ‘YL*’. The pattern YL* optimizes the Ordered Index
retrieval, providing much faster performance than *LY.

For more information on defining fields to optimize leading wildcard patterns,
refer to the Model 204 File Manager’s Guide.

$RLCFILE

The $RLCFILE function returns the name of the file in which the last record
locking conflict occurred. If the file is remote, $RLCFILE also returns the
location of the file (in the form filename AT location). This function is most
useful when used within an ON FIND CONFLICT or ON RECORD LOCKING
CONFLICT unit.

The $RLCFILE function takes no arguments. At the beginning of a request,
$RLCFILE is set to null values. After a record locking conflict occurs, $RLCFILE
returns the name of the conflicting file.

Example

This request prints the name of the file that invokes the ON RECORD
LOCKING CONFLICT unit:

BEGIN
ON RECORD LOCKING CONFLICT
 PRINT ’UNABLE TO COMPLETE’
 PRINT ’CONFLICT OCCURING IN FILE = ’ WITH
$RLCFILE
END ON

GET.NAME: FOR EACH RECORD WHERE -
 FULLNAME IS LIKE ’JOHNST*’
 CHANGE AGENT TO GOODRICH
 END FOR
END

$RLCREC

The $RLCREC function returns the internal record number for which the last
record locking conflict occurred. This function is most useful when used within
an ON FIND CONFLICT or ON RECORD LOCKING CONFLICT unit.
27-94 Model 204

At the beginning of a request, $RLCREC is set to -1. After a record locking
conflict occurs, $RLCREC returns the internal record number of the record in
conflict. The $RLCREC function takes no arguments.

Example

This request prints the internal record number of the record that invokes the ON
RECORD LOCKING CONFLICT unit:

BEGIN
ON RECORD LOCKING CONFLICT
 PRINT ’UNABLE TO COMPLETE’
 PRINT ’CONFLICTING WITH RECORD # ’ WITH $RLCREC
END ON

GET.NAME: FOR EACH RECORD WHERE -
 (FULLNAME IS GREATER THAN COLLUM
 POLICY NO IS BETWEEN 100340 AND 100492)
 CHANGE STATE TO CALIFORNIA
 END FOR
END

$RLCUID

The $RLCUID function returns the user ID that has caused an ON FIND
CONFLICT or ON RECORD LOCKING CONFLICT to occur. $RLCUID takes
no arguments and returns a variable length character string. If the conflicting
user is on a remote system the return value is in the form:

userid AT location

$RLCUSR

The $RLCUSR function returns the user number of the user with which the
request conflicted when the last record locking conflict occurred. This function
is most useful when used within an ON FIND CONFLICT or ON RECORD
LOCKING CONFLICT unit.

At the beginning of a request, $RLCUSR is set to null values. After a record
locking conflict occurs, $RLCUSR returns the user number of the conflicting
user. The $RLCUSR function takes no arguments.

Example

This request prints the user number of the user that invokes the ON RECORD
LOCKING CONFLICT unit:

BEGIN
ON RECORD LOCKING CONFLICT
 PRINT ’UNABLE TO COMPLETE’
 PRINT ’CONFLICTING WITH USER # ’ WITH $RLCUSR
User Language Manual 27-95

END ON

GET.NAME: FOR EACH RECORD WITH -
 FULLNAME LIKE ’BAKER*,DEROUCHE,TANGO*’
 CHANGE AGENT TO CASOLA
 END FOR
END

$ROUND

This function rounds a number to a specified number of decimal places.

Syntax

The format of the $ROUND function is:

$ROUND(number, places)

where:

• number is the number to be rounded.

• places is the number of significant decimal places to which the number
should be rounded.

$ROUND returns the first argument, rounded to the number of decimal places
specified in the second argument. If the second argument is negative,
$ROUND returns the first argument unaltered and prints an error message.
Omitted arguments are set to zero.

Example

$ROUND(200.565, 2) equals 200.57
$ROUND(200.565, 0) equals 201
$ROUND(200.565) equals 201
$ROUND(-200.565, 1) equals -200.6
$ROUND(-200.565, 2) equals -200.57

$SCAN

$SCAN is an alias for $INDEX.

$SCLASS

$SCLASS returns a variable length character string equal to the current user’s
subsystem user class (SCLASS). $SCLASS returns a null string if the user is
not running in a subsystem. For more information on user classes and
subsystems, refer to Chapter 23.

The $SCLASS function typically is used when designing applications through
the Subsystem Management facility. $SCLASS can be used to determine the
27-96 Model 204

user class of the current user. Control can then be transferred depending upon
the user’s privileges. The $SCLASS function takes no arguments.

Example

GET.OPTION: JUMP TO (ADD.REC,VIEW.REC,UPD.REC) -
 %MAIN.MENU:SELECTION
 .
 .
 .
UPD.REC: IF $SCLASS = ’UPDATE’ THEN
 IF $SETG(’NEXT’,’PRE-MAINT.PGM’) THEN
 PRINT ’GLOBAL TABLE FULL’
 END IF
 .
 .
 .

$SETG

The $SETG function performs two tasks. It attempts to create or change an
entry in the global variable table and also informs the user if the operation was
successful. $SETG returns a 1 (true) if the global variable was not stored due
to lack of space. It returns a 0 (false) if the variable was successfully stored.

$SETG takes two arguments. The first argument contains the name of the
global variable; the second argument contains the value. Previously stored
variables with the same name are deleted first.

Example

The following statement attempts to store a global variable with a name of
GLOB and with a value equal to the character string returned from the $READ.
A message is to be printed if the operation was not successful.

IF $SETG(’GLOB’,$READ(’ENTER GLOBAL VALUE’)) THEN
 PRINT ’HELP’
END IF

Refer to Chapter 20 for a detailed explanation of global variables and examples
of the $SETG function within a request.

$SETL

The $SETL function sets the current line counter for the output device currently
in effect to the value specified as the $SETL argument. Use the $SETL function
only when routing output to an external dataset. You cannot use $SETL with
full-screen devices.

$SETL returns a number representing the maximum physical line length
allowed on the current output device. This line length is determined from the
User Language Manual 27-97

OUTMRL and OUTCCC parameters or, if an alternate output device is being
used, from the LRECL specification on the USE dataset DD statement and the
UDDCCC parameter. All parameters are described in the Model 204
Command Reference Manual.

The $SETL function does not ordinarily reposition the output device or perform
any input/output operations. It simply alters the value of the line counter for the
device. When this counter is compared to the value of OUTLPP or UDDLPP,
the effective size is changed for the current page. If the counter is set to a value
equal to or greater than the effective lines-per-page value (OUTLPP or
UDDLPP), a NEW PAGE action is forced.

$SETP

This function sets the current page number for the output device currently in
effect. The current page number is used by Model 204 in formatting HEADER 0
or filling in a value for the $HPAGE function. The value specified as the $SETP
argument becomes the current page number. Note, however, that the current
page number is incremented before the next page is printed, so if you want the
next page to be page 5, use 4 as the argument to $SETP as shown in the
following example:

%PAGENO = $SETP(4)
SET HEADER1 WITH $HPAGE(%PAGENO)

The first line in the example is sufficient for setting the page number in
HEADER 0. If you want the page number to appear in any other header line,
you must do it indirectly (using the $HPAGE function), as in the second line of
the example. The $SETP function is not valid in a SET HEADER statement.

Although the effect of $SETP is to set the current page number, its return value
is a number representing the current number of output lines per page (the value
of the OUTLPP parameter or, if an alternate output device is being used, the
UDDLPP parameter). This is the value you would see if you printed the value
of %PAGENO in the example (not the current page number).

$SLSTATS

The $SLSTATS function lets you evaluate the relative expense of different
processes in a single request by resetting the recording of since-last statistics
at the point in a request where the function call appears.

Syntax

The format of the $SLSTATS function is:

$SLSTATS([’string’ | %variable])

Model 204 uses the first four characters in the quoted string, or in the current
value of the %variable, as a label to identify the section of the request to which
the corresponding since-last audit trail entry applies.
27-98 Model 204

The default value for the argument is EVAL. Because the recording of since-
last statistics begins automatically with request execution, the first set of since-
last statistics in the audit trail for any request is always be labelled EVAL. This
is true even if the first statement in a request contains a $SLSTATS call.

You can call the $SLSTATS function by embedding it in a PRINT statement or
assigning it to a %variable. For example, the following statement initiates a new
set of since-last statistics (labelled FND1) for the remainder of the request, or
until the next $SLSTATS call appears:

%X = $SLSTATS(’FND1’)

Note that each invocation of $SLSTATS produces a new SMF (System
Monitoring Facility) record. If the identifying label is specified, then it replaces
EVAL in the SMF record, as it does in the audit trail.

In addition to EVAL, there are several other labels generated by Model 204 for
audit trail and SMF records. These include:

CMPL
COPY
DUMP
EDIT
LOAD
REST

You can assume any label not listed above to be generated by an $SLSTATS
call. (Note, however, that there is no prohibition against using the above labels
with $SLSTATS.) For accounting purposes, any label generated by $SLSTATS
should be included as EVAL statistics.

See the Model 204 System Manager’s Guide for detailed information on since-
last statistics.

$SNDX

The $SNDX function returns the SOUNDEX code of an argument. The $SNDX
function is commonly used with files containing unusual or frequently
misspelled names. You can create a field containing the SOUNDEX code for a
name and then use that field for retrievals.

The code is derived in the following manner:

1. All consecutive occurrences of the same letter are reduced to a single
occurrence.

2. The first character of the string becomes the first character of the result.

3. All vowels, special characters, and the letters H, W, and Y are eliminated.
User Language Manual 27-99

The rest of the characters are transformed as follows:

4. SOUNDEX code assigns numbers to the next three consonants of the
word following the number assignments shown in the previous table, but
disregards any remaining consonants. The Model 204 $SNDX function
continues to assign numbers to all consonants.

Example 1

$SNDX(’MURRAY’) equals M6
$SNDX(’MARY’) equals M6
$SNDX(’O"MALLEY’) equals O54

Example 2

BEGIN
 %A = $SNDX($READ(’ENTER NAME’))
FIND.RECS: FIND ALL RECORDS FOR WHICH
 NAME SOUND = %A
 END FIND
.
.
.

$SQUARE

The $SQUARE function multiplies a number by itself. $SQUARE takes the
number to be squared as its one argument. For example:

$SQUARE(8)

equals 64.

$STAT

The $STAT function returns the current value of any user final (LOGOUT) or
partial statistic. This function is useful for determining which resources are used
by various portions of a request.

Character(s) Change to…

B, F, P, V 1

C, G, J, K, Q, S, X, Z 2

D, T 3

L 4

M, N 5

R 6
27-100 Model 204

Syntax

The format of the $STAT function is:

$STAT(statistic,’user’)

where:

• statistic specifies the name of the user statistic to be returned. Refer to the
Model 204 System Manager’s Guide for a complete list of user statistic
names and meanings.

• user specifies the return of a user final or partial statistic.

Example

 .
 .
 .
%X = $STAT(’CPU’,’USER’)
 .
 .
 .

$STATUS

The $STATUS function returns a numeric value that indicates the success or
failure of the last executed OPEN/OPENC statement, external I/O statement or
program communication statement.

• List of $STATUS return values, refer to Table 18-2 on page 18-10. The
$STATUS function takes no arguments.

Example

 .
 .
 .
READ IMAGE ACCT.RECV.REC
 IF $STATUS = 0 THEN
 CALL PROCESS.AR
 ELSE

For a discussion of… See

Error handling with the
OPEN and OPENC
statements

“Error handling” on page 16-16

External I/O statements “Reading external files or terminal input” on
page 17-4

Communication statements Chapter 18
User Language Manual 27-101

 LOOPEND
 END IF
 .
 .
 .

$STATUSD

The $STATUSD function returns a numeric value that indicates a more detailed
description of a condition reported by $STATUS. The $STATUSD function is
valid only for program communication statements. For more information on:

• Communication statements, refer to Chapter 18

• A list of values that $STATUSD returns, refer to Table 18-12 on
page 18-72. $STATUSD takes no arguments.

Example

 .
 .
 .
SEND %CMSPROGRAM TO %CMSRECEIVE
IF $STATUS EQ 4
 IF $STATUSD EQ 1669 THEN
 READ IMAGE EMP.REC FROM VSAMDS1
 ELSE
 .
 .
 .

$STATUSR

Function

Resets the value of $STATUS to zero and returns a value of zero.

Syntax

$STATUSR

Usage

The $STATUSR function accepts no arguments.

Programs that use a DO WHILE $STATUS=0 loop can use $STATUSR within
the loop to process a nonzero $STATUS and continue looping.
27-102 Model 204

$STRIP

The $STRIP function returns the contents of an argument with leading zeros
suppressed. $STRIP, like $PAD, is useful for report formatting.

Example

$STRIP(’055449825’) equals ’55449825’
$STRIP(’00000’) equals ’’

If a character other than zero is in the first position of the argument, zeros within
the string are not removed. For example:

$STRIP(’ 055449825’) equals ’ 055449825’

$SUBSTR

The $SUBSTR function returns a substring of a string. $SUBSTR is identical to
$DEBLANK except that $DEBLANK strips the resulting string of leading and
trailing blanks, and $SUBSTR does not.

Syntax

The format of the $SUBSTR function is:

$SUBSTR(string, position, length)

where:

• string is the string from which the substring is derived.

• position is the position in the string at which the substring is to begin.

• length is the maximum length of the substring. If this argument is omitted,
a default value of 255 is used.

The position and length arguments are rounded to positive integers.

Example 1

$SUBSTR(’KITTREDGE’, 4,3) equals ’TRE’
$SUBSTR(’ANTELOPE’, 7) equals ’PE’
$SUBSTR(’TOO’, 19, 2) equals " (null string)
$SUBSTR(’ACCOUNT’, -3, 5) equals ’ACCOU’

Example 2

This request searches the FIRST NAME field of all the Smiths and creates a
list of names that begin with A, B, C, or D.

BEGIN
FIND.RECS: FIND ALL RECORDS FOR WHICH
User Language Manual 27-103

 LAST NAME = SMITH
 END FIND
 FOR EACH RECORD IN FIND.RECS
 IF $ONEOF($SUBSTR(FIRSTNAME, 1, 1),-
 ’A/B/C/D’,’/’)
 THEN PLACE RECORD ON NAME
 .
 .
 .

$SUBSYS

The $SUBSYS function determines the status of a subsystem. This function
typically is used when designing applications through the Subsystem
Management facility. You can use $SUBSYS to determine whether a
subsystem is active before transferring control from one subsystem to another.
For more information about subsystems, refer to Chapter 23.

Syntax

$SUBSYS(subsystemname)

$SUBSYS takes a subsystem name as an argument and returns a value
indicating the status of that subsystem

The $SUBSYS function without an argument returns the name of the
subsystem you are currently in. For example, the User Language statement:

%CURSYS = $SUBSYS

assigns the name of the current subsystem to %CURSYS, if executed within a
subsystem, or returns null if at command level.

Example

 .
 .
 .
 TRANSFER: IF $SUBSYS(’AUTOS’) = 1 THEN
 .
 *
 * TRANSFER TO INSURANCE SUBSYSTEM

Value The subsystem is…

0 Not active (not started)

1 Active (started)

2 Draining (the STOP command has been issued and users are in the
subsystem).

3 In test mode.
27-104 Model 204

 *
 .
 .
 .

$TCAMFHP

The $TCAMFHP is meaningful only for users of TCAM 3270s (IODEV 21),
which are no longer supported by CCA. See Appendix A for detailed
information.

$TIME

Function

Returns the current time of day in the format specified.

Syntax

$TIME(time-format,’first-delimiter’,
 ’second-delimiter’)

Where

The second-delimiter applies only if time-format is 2. You must enclose the
delimiters with single quotation marks.

You can suppress either the first-delimiter or second-delimiter character by
using a single quoted null string.

Argument Value Specifies Default value

time-format 1 Returns the time of
day as hhdmmdss
(d=delimiter)

1

2 Returns the time of
day as
hhdmmdssdttt
(d=delimiter)

first-delimiter 1 character only Character to place
between time units
HH, MM, and SS

: (colon)

second-delimiter 1 character only,
second-delimiter

Character to place
between time units
SS and TTT

. (period)
User Language Manual 27-105

Examples

$UNBIN

The $UNBIN function converts a value from its fixed-point binary form to the
corresponding character string representation. The $UNBIN function reverses
the effect of the $BINARY function.

Syntax

The format of the $UNBIN function is:

$UNBIN(value [,scale])

where:

• value is a string argument. This argument must be either two or four bytes
long; its value is interpreted as a bit string. If the length of the argument is
not two or four bytes, Model 204 issues a counting error message and
returns a null string.

• scale indicates the number of fractional digits (bits) in the specified value. If
the scale argument is omitted, a default value of 0 (integer) is used.

$UNBLANK

The $UNBLANK function returns the contents of an argument, removing
leading and trailing blanks, and compressing multiple embedded blanks to one
blank character. $UNBLANK is useful in conjunction with $READ. The user can
respond to prompts for retrievals or comparisons in free form, without regard
for leading, trailing, or embedded blanks. See the second example.

Example 1

$UNBLANK(’ JOHN JONES ’) equals ’JOHN JONES’

$TIME(argument) Returns…

$TIME HH:MM:SS

$TIME(1) HH:MM:SS

$TIME(1,’-’) HH-MM-SS

$TIME(1,’ ’) HH MM SS

$TIME(1,’’) HHMMSS

$TIME(2) HH:MM:SS.TTT

$TIME(2,’-’) HH-MM-SS.TTT

$TIME(2,’’,’’) HHMMSSTTT
27-106 Model 204

$UNBLANK(’WASH., D.C.’) equals ’WASH., D.C.’

Example 2

BEGIN
 %A = $UNBLANK($READ(’ENTER VALUE’))
FIND.RECS: FIND ALL RECORDS FOR WHICH
 FIELD = %A
 END FIND
 .
 .
 .

$UNFLOAT

The $UNFLOAT function converts a floating-point number from the standard
IBM floating point format to the corresponding character string representation.
Model 204 maintains 15 significant decimal digits of precision for 8-byte
floating-point numbers and 6 significant digits of precision for 4-byte floating-
point numbers. For an expanded discussion of rounding numbers, please refer
to “Mapping and precision adjustment” on page 31-3.

Syntax

The format of the $UNFLOAT function is:

$UNFLOAT(number)

where number can be either four bytes for a single-precision floating-point
number or eight bytes for a double-precision floating-point number.

$UNFLOAT converts floating-point numbers from the internal form used by
Model 204 for storage efficiency to a printable string. $UNFLOAT also allows
the manipulation of these numbers by User Language.

Example

For example, the result of the expression:

$UNFLOAT($FLOAT(’1.234’))

is the string 1.234. If the string argument is omitted or invalid, a null string is
returned.

$UNPACK

The $UNPACK function converts data in packed decimal format into a string
that can be stored in a Model 204 file and processed by a request.
User Language Manual 27-107

Syntax

The format of the $UNPACK function is:

$UNPACK(value [,scale])

where:

• value is the data to be unpacked. If the data is not a valid packed decimal
string of as many as 18 digits, a null string is returned.

• scale specifies the number of implied decimal places in the packed input. If
scale is greater than 18 or less than 0, a null string is returned. If scale is
omitted, a default value of zero is used, indicating an integer value.

The resulting unpacked string is preceded by a minus sign if the packed
number was negative. If the scale provided is greater than the number of digits
in the value, the value is right-justified by the appropriate number of digits, the
decimal point is inserted in the appropriate location, and a leading zero is
inserted in the units position.

Leading zeros to the left of the decimal point and trailing zeros to the right of
the decimal point are truncated unless the result is zero. If there are no
significant digits to the right of the decimal point, the decimal point is removed
from the result as well.

Examples

These examples assume that %X contains a packed value of X‘001234500C’.

Example 1:

%A = $UNPACK(%X,2)

results in %A having a string value of 12345.

Example 2:

%A = $UNPACK(%X,4)

results in %A having a string value of 123.45.

Example 3:

%A = $UNPACK(%X,10)

results in %A having a string value of 0.00012345.
27-108 Model 204

$UNPOST

Function

Resets a specified Event Control Block (ECB) to an unposted state, meaning
that the event has not yet occurred or has not recurred. Resets the post code
to zero.

Syntax

$UNPOST(ECB-number)

Where:

ECB-number is a numeric value from one to the NECBS parameter that
identifies the ECB to be unposted. The ECB-number can be expressed as a
numeric literal, a literal enclosed in quotation marks, a %variable, or a field
name.

Usage

Use the $UNPOST function to unpost a specified, numbered ECB. An ECB
must be unposted before another post or wait on this ECB takes place. The
$POST and $WAIT functions do not unpost an ECB, so that a subsequent wait
on the same ECB cannot take place, because the ECB is still posted from the
previous posting.

Use the $POST, $UNPOST, and $WAIT functions to coordinate processing
between threads for numbered ECBs. For the extended quiesce ECB, QZSIG,
only the $WAIT and $POST functions are valid.

$UNPOST does not reset the contents of the post code or string data set by the
$POST or $ECBDSET functions for the specified ECB.

Note: Even in a non-multiprocessing environment, the $UNPOST function
should be used with extreme care. Unposting an ECB while users are waiting
on it may keep users in a wait state forever or until the next $POST function is
issued.

The following return codes apply to the $UNPOST function:

Return code Meaning

0 Success

2 Bad argument specified

3 NECBS parameter is not specified or is zero

4 The first argument is less than one or greater than the NECBS
parameter

5 NUSERS = 1
User Language Manual 27-109

$UNQREC

The $UNQREC function is used in conjunction with the ON FIELD
CONSTRAINT CONFLICT unit and the UNIQUE field attribute.

If $UNQREC is invoked from an ON FCC unit following the detection of a
uniqueness violation, it returns the record number of the record already
containing the field name = value pair. At all other times, $UNQREC returns -1.

Use $UNQREC in conjunction with $UPDREC to find the record number of the
unique record already stored ($UNQREC) and the record number of the non-
unique record you are attempting to store ($UPDREC). The $UNQREC
function takes no arguments.

$UPCASE

The $UPCASE function translates a lowercase or mixed-case string into an
uppercase-only string. The translation affects only the uppercase letters of the
specified language.

Syntax

The format of the $UPCASE function is:

$UPCASE(string [, language-name])

where:

• string represents the string to be verified. string must be one of:

– A quoted literal.

– A %variable.

– An unquoted field name, in which case the current value of the field is
verified. In this case, the function call must be embedded in a FOR
EACH RECORD loop.

• language-name (optional) specifies the language to use. Options are:

– Omitting this argument, which instructs Model 204 to perform the vali-
dation for U.S. English, even if the value of the LANGUSER parameter
is not NLANG.

– A quoted asterisk (‘*’), which instructs Model 204 to use the value of the
LANGUSER parameter to determine which language to use.

– The quoted literal name of a valid language, for example, NLANGFR1
for French Canadian, Version 1. The request is cancelled with an error

8 No argument specified

12 Invalid argument CPQZ or invalid argument following QZSIG

Return code Meaning
27-110 Model 204

message if the name is not present in NLANG$.

Example

$UPCASE(’Name and address’)

returns the string NAME AND ADDRESS, using U.S. English.

$UPDATE

The $UPDATE function returns the name of the group update file (in group
context) or the current file (in file context). If the file is remote, $UPDATE also
returns the location of the file (in the form filename AT location). If no group
update file is defined, $UPDATE returns a null (zero-length) string.

Syntax

The format of the $UPDATE function is:

$UPDATE [(name)]

where the name argument overrides the default file or group context for the
function.

The format for this argument is:

$UPDATE can be used to indicate the name of the update file in the current
group, but the name argument must not be specified. In addition to its use in
arithmetic expressions and PRINT specifications, $UPDATE also can be used
as the file name in an IN clause. $CURFILE and $UPDATE are described in
further detail in Chapter 16.

If the file name/group name argument is omitted or null, the default context is
the context of the statement that contains the function.

Note: You cannot use an IN clause that includes both MEMBER and
$UPDATE. See “IN GROUP MEMBER clause” on page 16-27 for information.

Beginning with Model 204 V4R1.0 $UPDATE compresses consecutive spaces
to one space. For example, a pre-V4R1.0 $UPDATE might return:

’OWNERS AT DALL’

V4R1.0 returns:

’OWNERS AT DALLAS’

$UPDFILE

Use the $UPDFILE function in conjunction with the ON FIELD CONSTRAINT
CONFLICT unit.
User Language Manual 27-111

If $UPDFILE is invoked from an ON FCC unit following the detection of a field-
level constraint conflict, it returns the name of the file in which the constraint
violation occurs. If the file is remote, $UPDFILE also returns its location (in the
form filename AT location). At all other times, $UPDFILE returns a blank.
The $UPDFILE function takes no arguments.

$UPDFLD

Use the $UPDFLD function in conjunction with the ON FIELD CONSTRAINT
CONFLICT unit.

If $UPDFLD is invoked from an ON FCC unit following the detection of a field-
level constraint conflict, it returns the name of the field in which the constraint
violation occurs. At all other times, $UPDFLD returns a blank. The $UPDFLD
function takes no arguments.

$UPDLOC

The $UPDLOC function is used with Parallel Query Option/204 to determine
the location name of the current update unit.

$UPDLOC takes no arguments, and returns a string indicating the location of
the update unit as follows:

• If there is no update unit currently in effect, the string is null.

• For a local update, the return string is ‘LOCAL’.

• For a remote update, the return string is the location name of the node
where the update is occurring.

Example

%X = $UPDLOC
IF %X <> ’’ THEN
 PRINT ’UPDATE UNIT IS IN PROGRESS AT LOCATION ’
WITH %X
END IF

$UPDOVAL

The $UPDOVAL function is used in conjunction with the ON FIELD
CONSTRAINT CONFLICT unit.

If $UPDOVAL is invoked from an ON FCC unit following the detection of an AT-
MOST-ONE field-level constraint conflict, it returns the value of the original field
occurrence which is causing the constraint violation. At all other times,
$UPDOVAL returns a blank. The $UPDOVAL function takes no arguments.
27-112 Model 204

$UPDREC

The $UPDREC function is used in conjunction with the ON FIELD
CONSTRAINT CONFLICT unit. Use $UPDREC in conjunction with $UNQREC
to find the record number of the unique record already stored ($UNQREC) and
the record number of the non-unique record you are attempting to store
($UPDREC).

If $UPDREC is invoked from an ON FCC unit following the detection of a field-
level constraint conflict, it returns the file-relative number of the record whose
update causes the conflict. In all other cases, $UPDREC returns a -1. The
$UPDREC function takes no arguments.

$UPDSTAT

The $UPDSTAT function is used in conjunction with the ON FIELD
CONSTRAINT CONFLICT unit and field attributes which have field-level
constraints (UNIQUE and AT-MOST-ONE). You must use $UPDSTAT in the
ON FCC unit when writing procedures for files which have (or might have in the
future) more than one type of field-level constraint defined. The $UPDSTAT
function takes no arguments.

If $UPDSTAT is invoked from an ON FCC unit following the detection of a field-
level constraint conflict, it returns a numeric value denoting the type of conflict
that has occurred:

$UPDSTMT

The $UPDSTMT function is used in conjunction with the ON FIELD
CONSTRAINT CONFLICT unit.

If $UPDSTMT is invoked from an ON FCC unit following the detection of a field-
level constraint conflict, it returns the type of User Language statement causing
the conflict. The possible values $UPDSTMT returns are:

• ADD

• CHANGE

• INSERT

• STORE

In all other cases, $UPDSTMT returns a blank. The $UPDSTMT function takes
no arguments.

Value Meaning

0 No violation occurred

1 A uniqueness violation occurred

2 An AT-MOST-ONE violation has occurred
User Language Manual 27-113

$UPDVAL

The $UPDVAL function is used in conjunction with the ON FIELD
CONSTRAINT CONFLICT unit. If $UPDVAL is invoked from an ON FCC unit
following the detection of a field-level constraint conflict, it returns the field value
which is causing the constraint violation. At all other times, $UPDVAL returns
a blank. The $UPDVAL function takes no arguments.

$USER

The $USER function returns a 5-character string equal to the user’s user
number. In an n-terminal system, User 0 is user number 00000 and the terminal
users are numbered 00001 through n. The value of $USER is always unique to
a user during a terminal session. The value of $USER remains the same from
one session to another only in installations with hard-wired BTAM terminals or
static SNA Communications Server or CMS threads. This function takes no
arguments.

$USERID

The $USERID function returns a variable-length character string equal to the
user ID under which the user is logged into Model 204. If the login feature is not
in use, $USERID returns the string NO USERID.

The USERID parameter returns the same value as the $USERID function. See
the Model 204 Command Reference Manual. The $USERID function takes no
arguments.

Example

BEGIN
SET HEADER 1 ’MONTHLY SALES REPORT’ -
 AT COLUMN 10
SET HEADER 2
SET HEADER 3 ’PREPARED BY: ’ AT COLUMN 10 -
 WITH $USERID
 .
 .
 .

$USRPRIV

The $USRPRIV function is used to test whether a user ID has been granted
specific Model 204 privileges.

Syntax

The format of the $USRPRIV function is:

$USRPRIV(privilege,logging option)
27-114 Model 204

where:

• privilege is the privilege that is to be validated. Privilege can be one of the
following values:

– ANY_ADMINISTRATOR

The ANY_ADMINISTRATOR privilege test verifies that the user is user
zero or a system manager.

– CHANGE_FILE_PASSWORD

– CHANGE_LOGIN_PASSWORD

– OVERRIDE_RECORD_SECURITY

– SUPER_USER

– SYSTEM_ADMINISTRATOR

– SYSTEM_MANAGER

• logging option specifies whether Model 204 should indicate that an error
message should be issued for security violations:

– LOG indicates that any privilege violation is logged.

– NOLOG indicates that the privileges should be determined but any vio-
lation found is not logged.

Currently, the logging option affects only the Security Server (formerly
RACF) or Top Secret interface. The option has no effect on Model 204; the
ACF2 Interface always logs a security violation regardless of the logging
option.

LOG is the default if a logging option is not specified.

$USRPRIV returns a numeric true/false value indicating the result of the
authorization check as follows:

Example

The following statement could be used to test if the current user ID is authorized
as a system manager.

IF $USRPRIV(’SYSTEM_MANAGER’,’NOLOG’) THEN
 .
 .
 .
* PERFORM SYSTEM MANAGER AUTHORIZED CODE
END IF
* ELSE UNAUTHORIZED FOR SYSTEM MANAGER FUNCTIONS

Value User is…

0 Not authorized for the privilege or an unknown privilege name is specified.

1 Authorized for the specified privilege.
User Language Manual 27-115

$VALIDATE_NUMERIC_DATA

Function

Detects invalid numeric data when data is read into an image from an external
source.

Syntax

$VALIDATE_NUMERIC_DATA(’%variable’

 | ’%imagename:itemname’, s1, s2, s3, s4, s5)

Where:

• %variable is a string expression enclosed in single quotation marks that
resolves to the name of an item in an image. The value of this string is the
standard format for referencing an image item: %imagename:itemname,
which is also enclosed in single quotation marks.

• If the argument identifies an array item, up to five subscripts can be used,
s1-s5. If an array is not specified, these arguments are ignored. On an
array, as many of these parameters are used as the number of dimensions
on the array. If any needed subscript parameter is not specified, then a
value of 1 is used.

Example

If %imagename:itemname identifies an array, then you must identify the
particular array element to validate. To do so, note the number of subscripts of
the array, and specify the same number of optional subscript arguments (the
s1–s5 arguments). For example, to validate %IMAGE:ARRAY(1,2), code

%RC=$VALIDATE_NUMERIC_DATA(’%IMAGE:ARRAY’,1,2)

Usage

The image item whose name is passed is looked up in the image definition.

• If the item is a numeric type, the contents of the data area of the image are
checked to see if the data that corresponds to the item is in the correct
format.

• If the item is an array, the element identified by the subscripts is tested.

The numeric return code values have the following meanings:

Return code Means…

0 Return code zero indicates good data. Either item is numeric and
the data is of the correct format, or the item is not numeric (no
validation performed).
27-116 Model 204

$VERIFY

The $VERIFY function returns a 1 (true) if every character contained in the
string is present in the second string. Otherwise, 0 (false) is returned. If the
second argument is a null string, 0 is returned. If the first argument is a null
string but the second argument is not, a 1 is returned.

$VERIFY can be used whenever $ALPHA, $ALPHNUM, and $VNUM do not
provide sufficient flexibility.

Example 1

$VERIFY(’1975’,’0123456789’) equals 1
$VERIFY(’-19.5’,’0123456789+-.’) equals 1
$VERIFY(’12A’,’0123456789’) equals 0

Example 2

$VERIFY(’ABC’,") equals 0
$VERIFY(",") equals 0
$VERIFY(",’1234567890’) equals 1

$VIEW

The $VIEW function returns:

• The value of a parameter to the request. While $VIEW works for all
viewable Model 204 parameters in local context, it does not work for some
file parameters in remote context.

• File specific information

• Statistics fields. All Since Last, User, and System statistics fields can be
viewed by name.

Syntax to view a parameter value

The format of the $VIEW function to view parameter values is:

$VIEW(parameter[,name])

where:

1 Item is numeric and the data is invalid.

2 On an array element, at least one subscript is out-of-bounds.

3 Item named does not exist.

Return code Means…
User Language Manual 27-117

• parameter is a character string that represents the name of a viewable
Model 204 parameter or other information. For example:

$VIEW(’ERASE’)

returns a value of @ if the ERASE parameter is set to the character @. If
the parameter name is invalid or the user is not authorized to display
parameter values for the file, a null string is returned.

• name overrides the default file or group context for the function. The format
for this argument is:

[[FILE | [PERM | TEMP] GROUP] name | $CURFILE

 | $UPDATE] [AT location]

If this argument is omitted or null, the default context is the context of the
statement containing the function. Thus, a default context is required for
this function.

You can specify $CURFILE as the name argument in place of a file/group
name.

Viewing file-specific information

In addition to viewable parameters, the following file-specific information can
also be viewed with $VIEW:

For example:

$VIEW (’FIWHEN’)

returns:

FIWHEN 94.257 SEP 14 16.40.45. DATE AND TIME FISTAT WAS RESET

Name used with $VIEW Description

DTSLBOPR Date and time transaction was backed out during roll
forward (for TBO files)

Date and time partial transaction was applied during
roll forward (for non-TBO files)

DTSLCHKP Date and time of last checkpoint

DTSLRCVY Date and time of last recovery

DTSLUPDT Date and time of last update

DTSLDKWR Date and time of last DKWR

DTSLRFWD Date and time of last roll forward

FIWHEN Date and time FISTAT was reset

FIWHO Terminal ID that reset FISTAT
27-118 Model 204

Syntax for viewing statistics fields

The first argument is the category, SLSTATS, SYSSTATS, or USRSTATS. The
second argument is the name of the Statistic field to return. See the Model 204
System Managers Guide for the name of the statistics fields.

$VIEW(category, field-to-return)

Where the following categories and fields are valid:

Usage

The time related Since Last statistics fields, CNCT, CPU, SCHDCPU, and
STCPU, are not valid during evaluation time.

Specifying an invalid statistics field name returns a null value with the message:

M204.1463: INVALID PARAMETER: fieldname

$VNUM

The $VNUM function returns a 1 if the given argument is in a valid format for a
SORT BY VALUE NUMERICAL statement or for any type of mathematical
operation. To be valid, the argument must be a quoted rational number with
optional sign. Leading or trailing blanks, or blanks between the sign and the
number, are ignored. If the contents of the argument do not have the required
form, 0 is returned. Numeric values with more than 63 significant digits are not
in the correct form; a 0 is returned.

Table 27-6. Valid categories and fields with $VIEW

Category
Statistics field-to-
return Equivalent-to or returns-value-of

‘SLSTATS’ ‘USERID’ $USERID

‘SLSTATS’ ‘ACCOUNT’ $ACCOUNT

‘SLSTATS’ ‘SUBSYSTEM’ $SUBSYS with no argument

‘SLSTATS’ ‘LAST’ LAST=field

‘SLSTATS’ ‘PROC-FILE’ Current procedure file

‘SLSTATS’ ‘PROC’ Current procedure

‘SLSTATS’ ‘sl statistics name’ Statistics field

‘SYSSTATS’ ‘system stat name’ Statistics field

‘SYSSTATS’ ‘DKBM stat name’ Statistics field

‘USRSTATS’ ‘user stat name’ Statistics field

‘USRSTATS’ ‘conflict ctr name’ Statistics field
User Language Manual 27-119

Syntax

$VNUM(numeric-string-value{,’SORT’ | ’SORTKEY’

 | ’FLOAT’ | ’BINARY’})

Where:

• SORTKEY returns 1 if the numeric value is valid as a numeric string
sortkey. See “Proper form required” on page 9-3. A numeric string sortkey
value that is not acceptable to $VNUM as a SORTKEY value is sorted in
character order even if the SORT statement specifies numeric order.

The following compression rules apply to SORTKEY:

– Leading plus (+) or minus (-) sign is compressed.

– Leading blanks before and after the (optional) leading +/- sign are com-
pressed.

– Leading zeros after the (optional) leading +/- sign and blanks are com-
pressed.

– 1–63 integer digits before the (optional) decimal point are allowed.

– Values greater than -1 and less than 1 require leading “0.nnn”.

– Optional decimal point and fractional value are allowed.

– Trailing blanks are compressed.

– 1–253-byte total length is allowed.

• ’FLOAT’ returns 1 if the numeric value is valid as an E-format floating point
numeric string.

• ’BINARY’ returns 1 if the numeric value is valid as a compressible binary
value (to be stored in a BINARY NON-CODED field). See “Storing values
in BINARY fields” on page 15-17. Otherwise returns a 0.

The following compression rules apply to BINARY:

– 1–9 decimal integer values are allowed.

– No leading zeros are compressed.

– Leading plus (+) sign is compressed.

– Leading minus (-) sign is allowed.

Example 1

$VNUM(’ + 256.73 ’) equals 1
$VNUM(’14’) equals 1
$VNUM(’-17.17’) equals 1
$VNUM(’.1794763’) equals 1

Example 2

$VNUM(’ -256.73 AB’) equals 0
27-120 Model 204

$VNUM(’256.73-’) equals 0
$VNUM(’ TWELVE’) equals 0

Example 3

This example averages premium amounts. The amounts are included in the
average only if they meet the $VNUM specifications.

BEGIN
 %CT IS FLOAT
GET.RECS: FIND ALL RECORDS
 END FIND
 FOR EACH RECORD IN GET.RECS
 IF $VNUM(TOTAL PREMIUM) THEN
 %TOT = %TOT + TOTAL PREMIUM
 %CT = %CT + 1
 END IF
 END FOR
 %AVERAGE = %TOT/%CT
 PRINT ’THE AVERAGE PREMIUM IS ’ -
 WITH ’$’ WITH %AVERAGE
END

$WAIT

Function

Suspend a user until an Event Control Block (ECB) is posted

Syntax

$WAIT(ECB-number [,’SWAP’ | ’NOSWAP’]

 [,time-interval] | ’CPQZ’ | ’QZSIG’)

Where:

• ECB-number is a string with a numeric value from one to the NECBS
parameter, which identifies the ECB upon which to wait. ECB-number can
be expressed as a numeric, a literal, a %variable, or a field name. This is a
user defined event. When these users are placed in a wait state, the wait
type is 30.

• SWAP keyword specifies a swappable wait; this is the default. The
NOSWAP keyword specifies a nonswappable wait. If you enter a keyword,
enclose it in single quotation marks.

• time-interval specifies the maximum number of seconds to wait. A wait that
is finished, because the time expired, is indicated by a return code 16.
User Language Manual 27-121

A time-interval may be from zero to 86400 and indicated as a number,
%variable, or a string. A time-interval less than one is treated as no time-
interval supplied with no time-out to happen.

If a time-interval is specified, the second argument, SWAP or NOSWAP, is
activated. You can specify ’SWAP’ or ’NOSWAP’, or accept the default,
SWAP, using the following syntax:

$WAIT(ECB-number,,time-interval)

The time-interval can be used as an argument to $WAIT to determine when
an extended quiesce event starts; at that time the backup can be submitted.
When these users are placed in a wait state, the wait type is 47.

• The CPQZ and QZSIG keywords are the named ECBs for extended
quiesce, which are used by the NonStop/204 facility for independently run
third-party backups. See the Model 204 System Manager’s Guide for an
explanation of the facility.

– CPQZ is posted internally at the beginning of each extended quiesce
and unposted internally at the interval end.

– QZSIG can be posted during the extended quiesce. It is unposted inter-
nally at the end of extended quiesce.

The $WAIT function applied to CPQZ and QZSIG are bumpable,
swappable waits of type 47 for CPQZ and 48 for QZSIG. You cannot
specify the SWAP or NOSWAP keywords or time-interval with the named
ECBs.

Usage

You can use the $WAIT function to suspend a user, meaning: put that user into
a wait state until the ECB is posted by another user with the $POST function.
Users who have issued a $WAIT function call are bumpable and may be
swappable depending on whether SWAP or NOSWAP was used in the $WAIT
call.

Caution: Limit the use of the $WAIT function with the NOSWAP option to
situations where only a small number of threads may use it. This will avoid
having all servers occupied by users in a NOSWAP state and having no
available server for a posting user to swap into.

Using the $WAIT function, you can put a User Language thread into a wait
state. To perform third-party backups, the thread must wait for the extended
quiesce of a checkpoint to start and then submit a backup job.

• For numbered ECBs, you can use the $POST, $UNPOST, and $WAIT
functions to coordinate processing between threads.

• For the QZSIG ECB, you can use the $POST and $WAIT functions to signal
and recognize the end of an extended quiesce for third-party backups.
27-122 Model 204

• For the CPQZ ECB, you can use the $WAIT function to wait on the start of
an extended quiesce.

The following return codes apply to the $WAIT function:

When the ECB specified in the $WAIT call is posted, the waiting user will
resume evaluation and may capture the post code with $STATUSD. See the
following $WAIT example.

Example

The following code illustrates an interaction between User 1 and User 2. User 1
issues the following:

BEGIN
 %X=$ECBDSET(3,’THIS IS ECB 3’)
 PAUSE 60
 %X=$POST(3,5678)
END

User 2 starting after the previous $ECBDSET, but before 60 seconds have
elapsed:

BEGIN
PRINT ’WAITING ON ECB 3’

Return code Meaning

0 Success

2 Bad argument specified

3 NECBS parameter is not specified or is zero

4 The first argument is less than one or greater than the NECBS
parameter

5 NUSERS = 1

6 NOSWAP and NSERVS EQ 1

8 No argument specified

9 Checkpointing inactive, if using extended quiesce ECBs, CPQZ or
QZSIG

11 The CPQZ or QZSIG ECB is already posted

12 Invalid argument CPQZ or invalid argument following QZSIG

13 For QZSIG, the system is not in extended quiesce or already
leaving extended quiesce

15 Time interval is not numeric or greater than 86,400

16 $WAIT finished due to expired time interval

17 Second argument entered is not SWAP or NOSWAP
User Language Manual 27-123

NP
%X=$WAIT(3)
PRINT ’ECB 3 HAS BEEN POSTED WITH POST CODE= ’ WITH -
 $STATUSD
END

User 2 will be suspended (WT=30) when the $WAIT call is evaluated and will
resume processing when ECB number 3 is posted by User 1. $STATUSD will
return the post code value = 5678.

If User 2 starts after 60 seconds have elapsed and the ECB number 3 has been
posted, then User 2 will not wait, but will print the last post code for the ECB
number 3.

$WORD

The $WORD function searches a string from the left for a complete word and
returns the nth word in a specified string, delimited by a blank or optionally
specified character.

Syntax

The format of the $WORD function is:

$WORD('inputstring' , [∋δelimiter'] , [n])

where:

• inputstring is the input from which the specified word is to be extracted.
inputstring can be a quoted literal or a %variable.

• delimiter is an optional quoted character or string to be used as a delimiter
in parsing the input string into words. If delimiter is not specified, it defaults
to a blank space. If delimiter consists of more than one character,
Model 204 uses the first character in the string as the delimiter.

• n is the ordinal number of the word to be extracted. $WORD returns a null
string under any of the following conditions:

– n is not specified

– n is less than 1 (0 or negative)

– n is greater than the number of words in inputstring

The commas which separate the three arguments are required, even if
delimiter is not specified.

Usage

Null values between delimiters are not considered words. For example,

$WORD(’=ABCD==D=XXX’,’=’,2)
27-124 Model 204

returns D as the second word, not a null value.

Examples

The following function returns the third word in the string, "THE", when a single
space delimits a word:

$WORD (’NOW IS THE TIME’,,3)

The following function returns the second word in the string, “S THE T", where
a word is composed of the characters that precede a delimiting I:

$WORD (’NOW IS THE TIME’,’I’,2)

$WORDS

The $WORDS function returns the number of words in a specified string,
delimited by a blank or optionally specified character.

Syntax

The format of the $WORDS function is:

$WORDS(’inputstring’, [∋δelimiter’])

where:

• inputstring is the input from which the specified word is to be extracted.
inputstring can be a quoted literal or a %variable.

• delimiter is an optional character to be used as a delimiter in parsing the
input string into words. If delimiter is not specified, it defaults to a blank
space.

Usage

Null values between delimiters are not considered words. For example,

$WORDS(’ABC==D=XXX’,’=’)

returns a count of three words, not four.

Example

The following function returns 4, the number of words in the string when a blank
delimits a word:

$WORDS (‘NOW IS THE TIME’)
User Language Manual 27-125

$X2C

The $X2C function changes a 2-byte character of input into 1-byte
hexadecimal-equivalent EBCDIC characters. Called with a character string,
$X2C returns a character string that is half as long. The maximum input length
is 255 bytes. If the input length is more than 255 bytes or if input contains invalid
hexadecimal data, a null string is returned. There is no function to translate 2-
byte hexadecimal characters to ASCII characters.

The output is one half the length of the input. Each pair of hexadecimal
characters in the output becomes an EBCDIC character. For example,
C‘01’ = X‘01’ or E8C5E2 = ‘YES.’

Syntax

The format for the $X2C function is:

$X2C(inputchar)

where inputchar is the input character string (either a %variable or a quoted
literal) to be converted to one-byte hexadecimal-equivalent characters.

Input must be an even number of bytes (divisible by 2) and contain only
combinations of the following characters:

0123456789ABCDEF

If the input character string is invalid for any reason and cannot be converted,
then the output string returned by the function is set to a null.

Example 1

BEGIN
 %INPUT_IN_HEX = ’05’
 %PAD_CHAR = $X2C(%INPUT_IN_HEX)
END

Example 2

BEGIN
PRINT $X2C(’C1C2C3’)
END

(output is ABC)

Example 3

BEGIN
PRINT $X2C(’F1’)
END

(output is 1)
27-126 Model 204

Mathematical functions
The mathematical functions are an optional feature of Model 204 that might not
be available at every installation. If the option was not installed, attempts to use
the mathematical functions generate compile-time errors. The notation |x|
indicates the value of the argument x, rounded to the nearest integer.

Using Language Environment mathematics $functions

Beginning with Version 5.1, if you want to use the Model 204 mathematics
$functions, you can install either the FORTRAN runtime libraries or use the IBM
LE runtime libraries. Model 204 now includes an interface to the LE libraries.
As in prior releases of Model 204, you are not required to use the mathematics
$functions. Consult the Model 204 installation guide for your operating system.

CCA recommends that you use the FORTRAN library for applications
depending on mathematical functions performance.

Precision

The Model 204 internal numeric data representation can maintain 15 significant
digits of accuracy. However, some of IBM’s FORTRAN routines use algorithms
that are not accurate to 15 places. You should be aware that some of the low-
order digits returned by these routines might not be meaningful.

Error handling

If invalid numerical values are passed to the mathematical functions (for
example, a negative number to $SQRT), an error message is printed at the
user’s terminal and 0 is returned as the function’s value.

$ABS(x)

The $ABS function returns the absolute value of x. For example:

$ABS(-50) = 50
$ABS(6) = 6

$ARCCOS(x)

The $ARCCOS function returns the value of the arc cosine of x in radians. If the
magnitude of x exceeds 1, an error message is printed and a 0 is returned.

$ARCSIN(x)

The $ARCSIN function returns the value of the arc sine of x in radians. If the
magnitude of x exceeds 1, an error message is printed and a 0 result is
returned.
User Language Manual 27-127

$ARCTAN(x)

The $ARCTAN function returns the value of the arc tangent of x in radians.

$ARCTAN2(x,y)

The $ARCTAN2 function returns the value arctan(x/y) in radians. If the second
argument is 0 (or omitted), an error message is printed and a 0 is returned.

$COS(x)

The $COS function returns the value of the cosine of x in radians. If the
argument exceeds 1015 radians, an error message is printed and a 0 is
returned.

$COSH(x)

The $COSH function returns the value cosh(x) in radians. If the argument
exceeds the value 175.366, an error message is printed and a 0 is returned.

$COTAN(x)

The $COTAN function returns the value cotan(x). If the magnitude of the
argument exceeds 1015 radians, an error message is printed and a 0 is
returned.

$ERF(x)

The $ERF function returns the value:

$ERFC(x)

The $ERFC function returns the value:

2

π
------- e

z2–
zd

0

α

∫

1
2

π
------- e

z2–
zd

0

α

∫–
27-128 Model 204

$EXP(x)

The $EXP function returns the value e. If x exceeds 174.63, an error message
is printed and a 0 is returned.

$GAMMA(x)

The $GAMMA function returns the value:

If x is not within the range 0 < x < 57.5744, an error message is printed and a
0 is returned.

$IXPI(x,y)

In the $IXPI function, both arguments are rounded to the nearest integral
values, and the value |x| is raised to the |y| power. If |x| equals 0 and |y| is less
than or equal to 0, an error message is printed and a 0 is returned. For example:

$IXPI(8,2) = 82 = 64
$IXPI(2.4,.5) = $IXPI(2,1) = 2

$LGAMMA (x)

The $LGAMMA function returns the value:

If x is not in the range 0 < x < 4.2913 * 1073, an error message is printed and a
0 is returned.

$LOG(x)

The $LOG function returns the natural logarithm (the logarithm base e) of a
number x. If x is not greater than 0, an error message is printed and a 0 is
returned.

$LOG10(x)

The $LOG10 function returns the logarithm base 10 of a number x. If x is not
greater than 0, an error message is printed and a 0 is returned.

 ∫
0

∞
 ux-1 e-u du

 ∫
0

∞
 u-x-1 e-u duloge
User Language Manual 27-129

$MAX(X1, X2, X3, X4, X5)

The $MAX function returns the highest value in a list of as many as five
arguments. For example:

$MAX(-6, 5, 0, 4, 3) = 5
$MAX(-6,4) = 4
$MAX(4,-6,70.3) = 70.3
$MAX(-6, ,-5) = -5
$MAX(-6,0,-5) = 0

Omitted arguments to $MAX are ignored.

$MIN(X1, X2, X3, X4, X5)

The $MIN function returns the value of the smallest argument in a list of as
many as five arguments. For example:

$MIN(-6, 5, 0, 4, 3) = -6
$MIN(-4, -7, 2) = -7
$MIN(4, ,2) = 2
$MIN(4, 0, 2) = 0

Omitted arguments to $MIN are ignored.

Arguments to $MAX and $MIN typically are the results of other computations.
For example:

%A = $MAX($ABS(B),$ABS(C))

$PI

The $PI function returns the value of π to 15 significant digits
(3.14159265358979).

$RXPI(x,y)

In the $RXPI function, the second argument (y) is rounded to the nearest
integer and the value of x raised to the |y| power is returned. Omitted arguments
are set to 0. If x = 0 and |y| is less than or equal to 0, an error message is printed
and a 0 is returned. For example:

$RXPI(2, 3) = 23 = 8
$RXPI(.5, 1.4) = $RXPI(.5, 1) = .5
$RXPI(.5, 2) = .25

$RXPR(x,y)

The $RXPR function returns the value x to the y power. If x < 0, or x = 0 and y
is less than or equal to 0, an error message is printed and a 0 is returned. For
example:
27-130 Model 204

$RXPR(10, 2) = 102 = 100
$RXPR(64, .5) = 8
$RXPR(256, .25) = 4

$SIN(x)

The $SIN function returns the value of the sine of x. If the magnitude of x
exceeds the value of 1015 radians, an error message is printed and a 0 is
returned.

$SINH(x)

The $SINH function returns the value sinh(x). If the magnitude of x exceeds
175.366, an error message is printed and a 0 is returned.

$SQRT(x)

The $SQRT function returns the value of the square root of x. If x is negative,
an error message is printed and a 0 is returned. For example:

$SQRT(64) = 8
$SQRT(2) = 1.41421356

$TAN(x)

The $TAN function returns the value of the tangent of x. If x exceeds 1015
radians, an error message is printed and a 0 is returned.

$TANH(x)

The $TANH function returns the value tanh(x).
User Language Manual 27-131

27-132 Model 204

S

28
Abbreviations

In this chapter

• User Language abbreviations

• Command abbreviations
User Language Manual 28-1

User Language abbreviations
Certain User Language statements, phrases, and keywords can be
abbreviated as shown in Table 28-1. These abbreviations can be used
interchangeably with their unabbreviated counterparts.

Table 28-1. User Language abbreviations

Abbreviation Statement, phrase, or keyword

ALPHA ALPHABETICALLY

CH CHANGE

CMMTRL COMMIT RELEASE

CT label COUNT RECORDS IN label

CT ON listname COUNT RECORDS ON LIST listname

CTO fieldname COUNT OCCURRENCES OF fieldname

FD FIND ALL RECORDS

FD FIND ALL RECORDS FOR WHICH

FD IN label FIND ALL RECORDS IN label FOR WHICH

FD ON listname FIND ALL RECORDS ON LIST listname FOR WHICH

FDR FIND AND RESERVE ALL RECORDS

FDR FIND AND RESERVE ALL RECORDS FOR WHICH

FDR IN label FIND AND RESERVE ALL RECORDS IN label FOR WHICH

FDR ON listname FIND AND RESERVE ALL RECORDS ON LIST listname
FOR WHICH

FDV fieldname FIND ALL VALUES OF fieldname

FDWOL
RECORDS

FIND WITHOUT LOCKS RECORDS

FEO fieldname FOR EACH OCCURRENCE OF fieldname

FPC FIND AND PRINT COUNT

FR FOR EACH RECORD

FR label FOR EACH RECORD IN label

FR IN label FOR EACH RECORD IN label

FR ON listname FOR EACH RECORD ON LIST listname

FRN FOR RECORD NUMBER

FRV fieldname FOR EACH VALUE OF fieldname

FRV IN label FOR EACH VALUE IN label
28-2 Model 204

FS FIELD SAVE

I procname INCLUDE procname

INOUT INPUT OUTPUT

NP NEW PAGE

NUM NUMERICALLY

OCC IN OCCURRENCE IN

ON ATTN ON ATTENTION

ON FCC ON FIELD CONSTRAINT CONFLICT

ORD IN ORDER

PAI PRINT ALL INFORMATION

ST STORE RECORD

Table 28-1. User Language abbreviations (continued)

Abbreviation Statement, phrase, or keyword
User Language Manual 28-3

Command abbreviations
In addition, certain Model 204 system control commands can be abbreviated.
Table 28-2 lists the abbreviations for the commands introduced in this manual.
These abbreviations can be used interchangeably with their unabbreviated
counterparts.

Example This first request uses abbreviations.:

 BGIN
 GET.RECS: IN CLIENTS FD
 END FIND
 FR GET.RECS
 PAI
 END FOR
 END

The second request is the same request written in the long form.

BEGIN
GET.RECS: IN CLIENTS FIND ALL RECORDS
 END FIND
 FOR EACH RECORD IN GET.RECS
 PRINT ALL INFORMATION
 END FOR
END

Table 28-2. Model 204 command abbreviations

Abbreviation Command

B BEGIN

D DISPLAY

I INCLUDE

O OPEN

PROC PROCEDURE

U USE

V VIEW
28-4 Model 204

29
Reserved Words and Characters

In this chapter

• Rules for reserved words and characters
User Language Manual 29-1

Rules for reserved words and characters
A number of words and characters have special meaning to Model 204 and
either cannot be used as part of field names or values or can only be used as
part of a quoted string.

The rules for Model 204 reserved words and characters are as follows:

• Any word or character, including the space character, can be used as part
of a field name, except the following:

Note: The delete (@) and flush (#) characters used at an installation are
controlled by the ERASE and FLUSH parameters (described in the
Model 204 Command Reference Manual). If different symbols are chosen,
the restriction on using these characters in field names applies to the new
symbols.

• The following list of reserved words or operators can be part of a string-
without-quotes as long as they are not surrounded by spaces (ANDIRON is
acceptable while AND IRON is not). They can be part of a quoted string as
long as they do not stand alone (‘A OR B’ is acceptable while ‘OR’ is not).
Although field names and values can contain reserved words, requests
which reference those fields might not compile, or might produce
unexpected results.

??

?$

?&

@ (as delete character)

(as flush character)

;

Table 29-1. Reserved words and operators

AFTER EACH NOR RECORDS WITH

ALL EDIT NOT TAB EQ

AND END OCC THEN GE

AT FROM OCCURRENC
E

TO GT

BEFORE IN ON VALUE LE

BY IS OR VALUES LT

COUNT LIKE RECORD WHERE NE
29-2 Model 204

• If any of the following reserved characters is embedded in a field name, the
character must be part of a quoted string. When creating field names, CCA
recommends avoiding the following characters:

How to refer to a field name containing reserved words or characters

As in Table 29-1 and Table 29-2, if a field name does contain a reserved word
or character, you must enclose it in single quotes when referencing it in a
request. For example, the following FIND statement references a field named
NOR SLS:

FIND ALL RECORDS FOR WHICH ’NOR SLS’ > 0

The following DISPLAY command references a procedure called %SAVINGS:

DISPLAY PROCEDURE ’%SAVINGS’

Table 29-2. Reserved characters

$ > +

(< - (minus sign/hyphen)

) * ÿ

= / ,

... : %
User Language Manual 29-3

29-4 Model 204

30
Request Composition Rules

In this chapter

• Statement labels

• Statement block ends

• Statement format

• Field names and values

• Quotation marks
User Language Manual 30-1

Statement labels
This chapter summarizes the rules for composing compilable User Language
requests. The rules for specifying statement labels in User Language
statements are summarized below.

• A statement label must begin with a letter (A–Z, a–z) which can be followed
by one or more occurrences of a letter (A–Z, a–z), digit (0–9), period (.), or
underscore (_). The label can be a maximum of 254 characters in length.

• A statement label should not be a User Language keyword. Model 204
interprets a statement label which is a keyword as the keyword itself, not as
a statement label, if that keyword makes syntactic sense where the
statement label is referenced.

• The label must be the first word on a line, must end with a colon, and must
be followed by a space.

• A label can start in any column up to but not including column INCCC.

• Within a request, statement labels should be unique. If not, Model 204
displays the message:

M204.0223: STATEMENT LABEL MULTIPLY DEFINED

This is a warning message only; the request can still be run.

Statements that must be labeled

Any statement can be labeled, but some statements must be labeled.

In particular, a statement must be labeled if:

• It immediately follows a STORE RECORD or a FIND statement and an
END STORE or END FIND statement is not being used to end the
statement. In this case, the statement label indicates the end of the
preceding statement.

• It is referred to by later statements. In most requests, COUNT, FIND, FOR
EACH OCCURRENCE, FOR EACH VALUE, NOTE, and SUBROUTINE,
are referred to later and should therefore be labeled.

Unlabeled statements

The retrieval conditions of a FIND statement, the conditions of an IF statement
and ELSEIF clause, and the fields of a STORE RECORD statement must not
be labeled, even if they begin new lines.

If a statement is not labeled, it is assigned a default level of nesting. The default
level is the same as the level of the previous statement. If there is no previous
statement, the default is the first level. If the previous statement starts a loop or
a THEN clause, or is a SUBROUTINE statement, the default level is one
greater than the level of the previous statement.
30-2 Model 204

Label references

Labels allow statements to refer to other User Language statements. The label
reference must be coded exactly as the label, including upper- and lowercase
lettering. However, the label reference must omit the colon.
User Language Manual 30-3

Statement block ends

Beginning a block

The FIND (except for FIND ALL VALUES), FOR, IF, ON, REPEATE, STORE,
and SUBROUTINE statements begin blocks in User Language and therefore
must be explicitly ended.

Ending a block statement

You can end a block statement in the following ways:

• The appropriate block end statement (END {statement type} [label]) can be
used to end any block.

• A label can be used to end blocks of multiline conditions (blocks begun by
the FIND and STORE statements). A label cannot be used to end blocks of
nested statements (blocks begun by the FOR, IF, ON, REPEAT, or
SUBROUTINE statements).

• The END BLOCK statement can be used to end any block except for blocks
of multiline conditions (blocks begun by the FIND and STORE statements).

• END, END MORE, END NORUN, and END USE can be used to end any
block, because these forms the END statement terminate the request,
thereby ending all statements within the request.
30-4 Model 204

Statement format
The rules for constructing User Language statements are summarized below:

Begin statements on a new line

Each statement must begin on a new line unless it follows a THEN, ELSE, or
ELSEIF clause.

Statement continuation

Use of hyphens

You can continue statements onto another line by using a hyphen after the last
character on the line to be continued, or by using any nonblank character in the
column specified by the INCCC parameter (discussed in the Model 204
Terminal User’s Guide).

Use of parentheses

You can continue statements using parentheses, although CCA recommends
that you use parentheses only to change the order of precedence in retrieval
statements or with FR WHERE statements. See:

• “Interpretation of Boolean operators in retrievals” on page 4-14 for a
discussion of line continuation in FIND statements

• “Specify retrieval criteria on one logical line” on page 5-7 in FR WHERE
statements.

Avoid blank lines between continued lines

You should not use blank lines between continued lines. The following example
illustrates two problems that occur if you use blank lines between continued
lines (for example, if you wanted to double space your code).

B
%A = ’AAA-

BBB’
PRINT %A
IF $SETG(’A’,’B’) OR -

 $SETG(’B’,’C’) THEN
 PRINT ’ERROR’
END

First, when you print %A, you will get “AAA;BBB”; Model 204 inserts a
semicolon to represent the blank line. The second problem is that the second
$SETG statement will be rejected with an “INVALID STATEMENT” message.
User Language Manual 30-5

To correct both problems, simply add a hyphen to each blank line following the
continued line.

The following example illustrates proper coding:

B
%A = ’AAA-
 -
BBB’
PRINT %A
IF $SETG(’A’,’B’) OR -
 -
 $SETG(’B’,’C’) THEN
 PRINT ’ERROR’
END

Compatibility issues

In Model 204 releases prior to Version 2.1, the compiler accepted certain types
of invalid expressions, but returned unpredictable results. The following is an
example of an invalid expression:

IF %X = %Y *
 %Z THEN

Note that the first line (IF %X . . .) needs a continuation hyphen.

Invalid expressions are recognized as syntax errors and produce the following
message:

M204.0298: INVALID OPTION: cccc

where cccc is the program text that was in error.

Also, the following example code lacks continuation hyphen following an “AND”
or an “OR” within a conditional IF statement.

IF FIELD1 = A AND
 FIELD2 = B AND
 FIELD3 = C THEN
 DO X

The above example results in a compiler error. The proper syntax for the above
statement is:

IF FIELD1 = A AND -
 FIELD2 = B AND -
 FIELD3 = C THEN
 DO X

Line length

An input line, together with its continuation lines, constitute one logical line.
Lines continued with a nonblank character in column INCCC cannot exceed
30-6 Model 204

LIBUFF characters. Lines continued with a hyphen before the end of a terminal
line have no length limit.

Blanks between words

At least one blank must separate words in a statement. Extra blanks are
optional.

Where lines can begin

Typing can begin anywhere on the terminal line.

Logical lines

Most statements are entered as one logical line.

The following statements might require the use of multiple logical lines:

• FIND

The first retrieval condition for a FIND statement can appear on the same
line as the FIND clause. Other retrieval conditions which start a new line are
preceded implicitly by a logical AND.

• IF and ELSEIF

The conditional expression in an IF statement or ELSEIF clause can begin
on the same line as IF or ELSEIF on the next line. Each new line in the
expression is preceded implicitly by a logical AND. THEN can appear on
the same line as the expression or on the next line.

• STORE RECORD

Each fieldname = value pair of a record to be stored must be entered on a
new line.

The number of input lines used by FIND, IF, ELSEIF or STORE RECORD is
unlimited.

Use of semicolon to perform a carriage return

Description

The semicolon (;) normally performs a carriage return within a request. For
example:

BEGIN;PRINT.INFO: FIND AND PRINT COUNT;END
User Language Manual 30-7

Do not use a semicolon after the INCLUDE statement

A semicolon should not be used after the INCLUDE statement because
INCLUDE takes the next physical line from the specified procedure. For
example, the procedure GREET consists of a single line:

PRINT ’HELLO’

Therefore, the following request:

BEGIN
INCLUDE GREET
END

causes Model 204 to read the PRINT statement from procedure GREET
immediately after the INCLUDE. If the same request is entered with
semicolons:

BEGIN;INCLUDE GREET;END

Model 204 reads the INCLUDE statement and does what is necessary to read
the next physical line from the GREET procedure. Model 204 then looks for the
next logical line, which comes from the current physical line, and sees the END
statement. This terminates a request which does nothing. The command
handler reads the next physical line from the GREET procedure, getting PRINT
’HELLO’. PRINT is flagged as an invalid command.

The LINEND parameter

The LINEND parameter sets the logical line-end character to something other
than a semicolon. If the LINEND parameter is set to a non-printable character,
you cannot stack multiple logical lines on a single physical line. LINEND should
never be set to X‘00’. The Model 204 Editing Guide discusses the effects of the
LINEND parameter on the editing and including of a procedure.
30-8 Model 204

Field names and values

Rules for field names

The rules for specifying field names in the User Language statements are
summarized below.

1. Any word or character, including space, can be used as part of a field
name except the correction characters @ and #. The choice of symbols to
signify correction characters is parameter controlled and can be changed.
If you chooses different symbols, the restriction regarding the use of @
and # in field names then applies to the new symbols instead. (See the
Model 204 Command Reference Manual.)

2. If any reserved word or character is embedded in a field name, the word or
character must be part of a quoted string (see the discussion on field
attributes in Chapter 32).

3. Field names that contain a colon followed by a space (for example,
COLOR: CAR) cannot be distinguished from labels when used as the first
word on a line. Any field name containing this combination either should
be renamed or must be enclosed in single quotes at the beginning of a
line.

4. When more than one consecutive space appears in a field name, the extra
spaces are ignored.

5. A field name can be subscripted by including a parenthesized expression
after the name. This facilitates references to multiply occurring fields (see
Chapter 19).

6. To refer to a fieldname indirectly, specify it with the format %%name (see
the discussion in “Field name variables” on page 10-31). Field name vari-
ables also can be subscripted.

Examples Some examples of legal field names are:

AGENT
ANNUAL_INTEREST
’TOTAL USE’

Some examples of illegal field names are:

Unacceptable How to correct…

YEAR TO DATE Year-to-date

USE COUNT ’Use count’

STRING@ Use another character, not @, or change the correction
character

AND "AND"
User Language Manual 30-9

Rules for field values

The rules governing the formation of field values are the same as rules 1, 2,
and 4 for field names (see the preceding discussion).

In addition, values cannot contain more than 255 characters.

Use of quotes with field values

Although single quotes are required to enclose a text field value when the value
contains reserved words or characters or when used in expressions, it is good
practice to enclose the text in quotes, even if it contains no reserved words or
characters. To store the field:

PARENTS = MARY AND JOHN SMITH

the value portion of the pair must be quoted because AND is a reserved word.
Used with a STORE RECORD statement, the field should look like this:

PARENTS = ’MARY AND JOHN SMITH’

For more information about the use of quotation marks, refer to “Quotation
marks” on page 30-11.
30-10 Model 204

Quotation marks
You can direct Model 204 to display arbitrary text information by means of the
single quote symbol.

Uses for quotation marks

User Language statement employ quotation marks as follows:

• Following a PRINT statement, any characters enclosed in single quotes are
printed literally when the statement is executed.

• Within a request, quotation marks can be used to provide titles for output or
display messages to the end user.

• Quoted material can be included in a list with other things to be printed (see
PRINT statement).

• Quoted material can be used in expressions.

• Quoted material can be saved by the NOTE statement for later use in a
request.

• Single quotes also are used when a reserved word or symbol is to be
interpreted in other than its standard system sense. Thus when reserved
words or symbols are used in the formation of field names or values, the
entire string must be enclosed in quotation marks.

Rules for using quotation marks

Model 204 handles quotation marks as follows:

1. A pair of single quotation marks, for example ‘TEXT’, delineates a quoted
string.

2. Quoted strings are stored and utilized with quote marks dropped. Thus
3$5(176� �·0$5<�$1'�-2+1�60,7+· is stored as 3$5(176� �0$5<
$1'�-2+1�60,7+, and the statement 35,17�3$5(176 results in the
output 0$5<�$1'�-2+1�60,7+.

3. A pair of consecutive quotation marks inside of a quoted string is replaced
by a single quotation mark when the string is stored or printed. For exam-
ple, PRINT ·)$7+(5�6�1$0(· results in the output)$7+(5·6�1$0(
and 35,17��$1'� yields ·$1'·.

4. A pair of consecutive quotation marks that is not included in a quoted
string converts to a character string of zero length, called a null string.

5. Only pairs of quotation marks are used.

Example The following examples illustrate different ways of referring to a TITLE field with
the value, WHY JOHNNY CAN’T READ:
User Language Manual 30-11

TITLE = ’WHY JOHNNY CAN"T READ’
TITLE = WHY JOHNNY ’CAN"T’ READ
TITLE = WHY JOHNNY CANT""T READ

Quotation marks designating a null string

In a FIND statement, the pair:

BIRTHPLACE = ’’

is the same as:

BIRTHPLACE =

The retrieved records will contain the field BIRTHPLACE and its value will be
null. If the field is printed, it will result in a blank line of output.

Quoting a reserved word

To store the field, A OR B = VALUE, one of the following must be used because
OR and VALUE are reserved words:

A ’OR B’ = ’VALUE’
A ’OR’ B = ’VALUE’

A field name beginning with a quotation mark looks like quoted text to a PRINT
statement. Thus the forms ‘A OR B’ and ‘A OR’ B should not be used.

After Model 204 encounters a closing quote, it does not recognize a reserved
word again until a delimiter such as a space or an operator is encountered. In
the following string:

’TESTDATA’AND

Model 204 regards the AND not as a reserved word but as part of the string
(TESTDATAAND). The quotes do not actually have to surround the string.
30-12 Model 204

31
Floating Point Conversion,
Rounding, and Precision Rules

In this chapter

• Conversion

• Mapping and precision adjustment.
User Language Manual 31-1

Conversion
Values can be stored in floating point fields using any of the file update
statements (for example, STORE RECORD) or can be stored in a %variable.
When the value to be stored is supplied as a string, Model 204 attempts to
convert the string to floating point.

Significant digits past the fifteenth digit are ignored and are treated as zeros
regardless of the precision of the value’s receptacle. This applies to numbers
assigned to fields or %variables or used in arithmetic expressions.
31-2 Model 204

Mapping and precision adjustment
For 8-byte and 16-byte floating point numbers, Model 204 maintains 15
significant decimal digits of precision. For 4-byte floating point numbers,
Model 204 maintains six significant digits of precision.

Floating point format is an approximate numeric representation that cannot
always directly represent decimal values. To provide exact equality in
comparisons, Model 204 maps floating point numbers to the floating point
number closest in value to a 6- or 15-digit decimal number. This mapping
process is, in effect, a decimal rounding process. This mapping occurs in the
following cases:

1. Decimal rounding occurs after addition and subtraction arithmetic opera-
tions involving floating point numbers.

2. If the field is defined as KEY, the value to be indexed is rounded.

3. If the field is defined as ORDERED NUMERIC, the value to be indexed is
rounded.

4. If the field is used in a direct Table B search in a FIND statement, both the
value to be searched for and each field accessed in Table B are rounded.

5. If the field is to be used as a key in a SORT statement, the value is
rounded before being concatenated to the key.

Assigning floating point numbers to floating point numbers of different
lengths

Table 31-1 indicates how precision is adjusted with floating point numbers of
different lengths.

Table 31-1. Floating point precision adjustment

Assignment or
comparison or
conversion Precision adjustment

FLOAT 8 to FLOAT 4 Hexadecimal rounding (that is, if second half of an 8-byte
floating point number has its high order bit on, a bit is
added to the first half of the 8-byte number).

FLOAT 16 to FLOAT 8 Truncated.

FLOAT 4 to FLOAT 8 Decimal rounding (that is, value is converted to the 8-byte
floating point number closest in value to the 6-digit
decimal representation of the FLOAT 4 value).

FLOAT 8 to FLOAT 16 Padded with zeros.
User Language Manual 31-3

31-4 Model 204

32
Field Attributes

In this chapter

• File model feature

• Field attribute descriptions
User Language Manual 32-1

File model feature
The file manager defines fields and assigns attributes to each field. This
procedure is discussed in detail in the Model 204 File Manager’s Guide. The
field attributes listed in this chapter are of interest to the application developer.

You can enforce file-wide constraints on files and fields with two Model 204 file
models:

Use the FILEMODL parameter to set a file model when creating a file.

Refer to the Model 204 File Manager’s Guide for more information about the
file model feature.

File model Action…

Numeric Validation Causes Model 204 to perform numeric data type
validation on fields defined as FLOAT or BINARY.

1NF (First-Normal Form) Ensures that the data within a file conforms to the rules
for First-Normal Form.
32-2 Model 204

Field attribute descriptions

AT-MOST-ONE and REPEATABLE attributes

If a field is defined as having the AT-MOST-ONE attribute, Model 204 prevents
multiple occurrences of that field in any given record. However, unlike fields
with the OCCURS attribute, AT-MOST-ONE fields are not specifically
preallocated.

If a field is not defined as AT-MOST-ONE, then it is REPEATABLE.

REPEATABLE is the default except for First-Normal Form files, where AT-
MOST-ONE is required on all fields.

See the discussion “File model feature” on page 32-2.

AT-MOST-ONE versus UNIQUE attributes

Although the names of the UNIQUE and AT-MOST-ONE attributes sound
similar, they have very different meanings:

• UNIQUE affects the value of the field

• AT-MOST-ONE affects the number of field occurrences per record

For example, if a Social Security field within an EMPLOYEE file is both
UNIQUE and AT-MOST-ONE; the UNIQUE attribute ensures that the social
security number for every employee is different, and AT-MOST-ONE ensures
that each employee has only one social security number.

Both AT-MOST-ONE and UNIQUE are examples of “field level constraints.”

FLOAT attribute

The FLOAT attribute is typically used if the field stores data in floating point
representation. For detailed information about the handling of data for fields
defined with the FLOAT attribute, refer to:

• “Equality retrievals” on page 4-16

• “Storing values in FLOAT or BINARY fields” on page 15-17

FOR EACH VALUE attribute

The FOR EACH VALUE attribute maintains a list of all the unique values
created for a field. This list can be accessed by using a value loop statement,
such as, FOR EACH VALUE, FOR k VALUES, or FIND ALL VALUES.
User Language Manual 32-3

INVISIBLE attribute

The INVISIBLE attribute is required if the field is to be used in FILE RECORDS
statements. It also can be used for other fields that have the KEY, NUMERIC
RANGE, or ORDERED attribute. Such fields can be used for retrievals but
cannot be used where the VISIBLE attribute is required.

An INVISIBLE field cannot be used in an arithmetic expression, as a key in a
SORT statement, or in the AUDIT, COUNT OCCURRENCES, DELETE EACH,
NOTE, PRINT, SET HEADER, and SET TRAILER statements. An INVISIBLE
field also cannot be used in any form of the CHANGE or DELETE statement
that is not followed by a fieldname = value pair.

Refer to the Model 204 File Manager’s Guide for details on the use of
INVISIBLE fields in 1NF (First-Normal Form) files.

KEY attribute

The KEY attribute specifies that if the field is to be used in FIND statement
conditions of the form:

fieldname = value

the Table C index is searched, rather than the data in Table B. Thus, the
selection of records based on KEY fields is substantially more efficient than
selection based on NON-KEY fields.

In addition, either the KEY attribute or the ORDERED attribute is required if the
field is to be used in FILE RECORDS statements.

LENGTH attribute

The LENGTH attribute specifies the preallocated length of a field occurrence in
a record. See the discussion on preallocated fields in “Storing values in
preallocated fields” on page 15-16.

NON-DEFERRABLE attribute

The NON-DEFERRABLE attribute causes a KEY, NUMERIC RANGE, or
ORDERED retrieval field’s index entries to be created immediately when the
file is open in deferred update mode. All index entries are created immediately
when a file is not in deferred update mode. The field cannot be located until its
index entry has been created.

NUMERIC RANGE attribute

The NUMERIC RANGE attribute specifies that if the field is used in a retrieval
statement that performs a numeric retrieval, the Table C index is searched,
rather than the data in Table B. Numeric retrievals based on fields with the
NUMERIC RANGE attribute are more efficient than numeric retrievals based
32-4 Model 204

on NON-RANGE fields. A NUMERIC RANGE field cannot be multiply
occurring.

OCCURS attribute

The OCCURS attribute specifies the number of occurrences of a multiply
occurring field that are preallocated in a record. See the discussion on
preallocated fields in “Storing values in preallocated fields” on page 15-16.

ORDERED attribute

The ORDERED attribute specifies that the Ordered Index can be searched
rather than the data in Table B for most types of retrieval. Thus, the selection of
records based on ORDERED fields is substantially more efficient than selection
based on NON-ORDERED fields.

A field with the ORDERED attribute also produces other efficiencies in User
Language. For example, when the IN ORDER option is used on a FOR EACH
RECORD statement, an internal sort is not required if the field is ORDERED.

The ORDERED attribute also allows a field to be used with any value loop
statement, such as, FIND ALL VALUES, FOR EACH VALUE, and FOR k
VALUES. In addition, either the ORDERED attribute or the KEY attribute is
required if a field is to be used in FILE RECORDS statements.

UNIQUE attribute

The UNIQUE attribute automatically enforces a uniqueness constraint on
fields; it ensures that a given field name = value pair occurs only in one record
in a file.

VISIBLE attribute

The VISIBLE attribute is required if the field is to be used in NOTE, PRINT, or
SORT statements, or in an arithmetic expression.

UPDATE attribute

The UPDATE attribute indicates the type of update method that is used when
a field is changed.

• If UPDATE IN PLACE is specified, changing the value of a field occurrence
does not change its position relative to other occurrences of the same field.
The file manager usually specifies UPDATE IN PLACE.

• If UPDATE AT END is specified, a change in the value of a field occurrence
is accomplished by deleting the existing occurrence and adding a new one
following the others.
User Language Manual 32-5

Refer to “UPDATE field attribute” on page 19-19 for detailed information on the
handling of updates based on the type of update method specified.
32-6 Model 204

33
DML statements in
Parallel Query Option/204

In this chapter

• Parallel Query Option/204 DML

• Restricted commands and $functions
User Language Manual 33-1

Parallel Query Option/204 DML
Parallel Query Option/204 data manipulation language (DML) consists of most,
but not all, User Language statements and conditions. This chapter lists the
statements and conditions that comprise Parallel Query Option/204 DML, and
discusses certain restrictions on the use of some User Language commands,
statements, and functions.

Listed below, in separate sections, are the Parallel Query Option/204 retrieval
statements, retrieval conditions, and update statements. A discussion of IN
clauses and field names in DML statements follows the listings.

DML statements and retrieval conditions

Retrieval statements

CLEAR LIST
COMMIT RELEASE
COUNT OCCURRENCES OF
COUNT RECORDS
DECLARE LIST
FIND RECORDS
FIND ALL RECORDS
FIND ALL VALUES
FIND AND PRINT COUNT
FOR EACH OCCURRENCE
FOR EACH RECORD
FOR EACH VALUE
FOR k RECORDS
FOR k VALUES
FOR RECORD NUMBER
NOTE fieldname
OPEN
OPENC
PLACE RECORD ON LIST
PLACE RECORDS ON LIST
PRINT ALL INFORMATION
RELEASE ALL RECORDS
RELEASE RECORDS
REMOVE RECORD FROM LIST
REMOVE RECORDS FROM LIST
SORT RECORD KEYS
SORT RECORDS
SORT VALUES

Retrieval conditions

FIND$
FILE$
LIST$
LOCATION$
33-2 Model 204

POINT$
SFGE$
SFL$

Update statements

ADD
BACKOUT
CHANGE
COMMIT
DELETE
DELETE EACH
DELETE RECORD
DELETE RECORDS
FILE RECORDS
INSERT
STORE RECORD
UPDATE RECORD

Using IN clauses

A remote file specification (using either the AT clause or a file synonym) is
syntactically valid in the IN FILE clause of supported DML statements in remote
context.

Also, you can use the following IN clause variations to refer to a remote file if
you are in scattered group context:

IN GROUP groupname MEMBER
IN $CURFILE
IN $UPDATE

Using field names in expressions

Fields in remote context can be used in the same ways as fields in local context
including the VALUE IN phrase, which refers to a label on a FOR EACH
RECORD IN ORDER statement.
User Language Manual 33-3

Restricted commands and $functions
The Model 204 commands, User Language statements, and $functions that are
not supported in remote context for Parallel Query Option/204 processing are
listed in this section.

Restricted Model 204 commands

Some of the Model 204 commands that specify a file name, or that operate on
a default file or on a file specified in an IN clause, are not supported in remote
context for Parallel Query Option/204 processing.

The following commands cannot be used in reference to a remote file. See
Table 16-1 on page 16-5 for a description of the commands that can be used
to reference files in remote context:

ASSIGN (specifying a procedure alias)
BROADCAST FILE
CREATE FILE
DEASSIGN
DECREASE
DEFINE FIELD
DELETE FIELD
DELETE PROCEDURE
DESECURE
DESECURE PROCEDURE
DISPLAY FILE
DISPLAY LIST
DISPLAY PROCEDURE
DUMP
EDIT
ENQCTL
FILELOAD
FLOD
INCLUDE
INCREASE
INITIALIZE
PROCEDURE
REDEFINE FIELD
REGENERATE
RENAME FIELD
RENAME PROCEDURE
REORGANIZE
RESET (file parameters)
RESTORE
SECURE
SECURE PROCEDURE
TABLEB
TABLEC
33-4 Model 204

TRANSFORM
Z

Restricted $functions

The following $functions cannot be used in reference to a remote file:

$LSTPROC
$RDPROC

If either of these $functions is used in reference to a remote file, Model 204
displays an error message.
User Language Manual 33-5

33-6 Model 204

A
Obsolete Features

In this appendix

• Statement numbers

• $DSCR function

• $TCAMFHP function
User Language Manual A-1

Statement numbers
This appendix describes certain features of User Language which, while still
supported, are generally considered obsolete. They have been superseded by
other, more efficient features or techniques. CCA does not recommend using
these features in newly written requests and procedures.

CCA strongly recommends that you use statement labels (see “Statement
labels” on page 30-2) rather than statement numbers. Although statement
numbers are still supported, this section is included primarily as documentation
for applications developed using earlier releases of Model 204.

FOPT parameter

The setting of the FOPT (File Options) parameter determines whether
procedures within a file must be labeled or numbered. For more information on
the FOPT parameter, refer to the Model 204 Command Reference Manual.

Rules for using statement numbers

The rules for specifying statement numbers in User Language statements are
summarized below.

• A statement number is made up of the digits 0–9 and an optional period (.).
The number must begin with a digit and cannot contain blanks, although
blanks preceding or following it are optional.

• A statement number can start in any column up to but not including column
INCCC.

• Any statement can be numbered, but some statements must be numbered.
In particular, a statement must be numbered if:

– It immediately follows a STORE RECORD or a FIND statement, in
which case the statement number indicates the end of the preceding
statement.

– It is referred to by later statements. In most requests, COUNT
RECORDS IN n, COUNT RECORD ON LIST m, NOTE, FIND, FOR
EACH VALUE, and FOR EACH OCCURRENCE are referred to later
and should therefore be numbered.

– It is the first statement after a loop, in which case a number is needed
to indicate the end of the loop. An END statement following a loop does
not require a number.

– It is the statement following a THEN or ELSE clause which is to be exe-
cuted if the condition is false.

• The retrieval conditions of a FIND statement, the subexpressions of an IF
statement, and the fields of a STORE RECORD statement must not be
numbered, even if they start new lines.
A-2 Model 204

• A statement number can have any number of parts, which are delimited by
periods. Thus, 2.3 and 0.1 are two part numbers, and 0.05.4 is a three part
number.

• A period (.) following a statement number is optional, but the periods
separating the parts are required.

For example:

1.1

and

1.1.

are both legal and are interpreted as the same number.

This rule also applies when referring to statements by number. Thus:

FOR EACH RECORD IN 1.

and

FOR EACH RECORD IN 1

refer to the same statement.

• Any part of a statement number can be arbitrarily large.

• The number of parts in a statement number must be the same as the level
on which the statement is nested. For example, the following sequence is
illegal because 2.1.1 has three parts but is nested at the second level:

2. FOR EACH RECORD IN 1
 2.1.1 PRINT ALL INFORMATION

• If a statement is not numbered, it is assigned a default level of nesting. The
default level is the same as the level of the previous statement. If there is
no previous statement, the default is the first level. If the previous statement
starts a loop or a THEN, ELSE, or ELSEIF clause, or is a SUBROUTINE
statement, the default level is one greater than the level of the previous
statement.

• Any part of a statement number can have leading zeros. However, a
number with leading zeros is not equivalent to one without. Thus 01 and 1
are both legal but not equivalent; the same is true of 1.1 and 1.01.

• Statements need not be numbered in sequential order. The statement
number is just a label for the statement; its numerical value has no
significance.

The following, for instance, is a legal request:

BEGIN
3. FIND ALL RECORDS FOR WHICH
 COMPANY = CCA
1. FOR EACH RECORD IN 3.
 3.1 PRINT ALL INFORMATION
User Language Manual A-3

2.6. SKIP 1 LINE
END

• Within a request, statement numbers should be unique. If not, Model 204
prints the message:

M204.0223: STATEMENT LABEL MULTIPLY DEFINED

This is a warning message; the request can still be run.

• A statement number followed by a label is allowed with or without a space
between the number and the label. If a statement number is followed by a
label and there is no space between them, User Language separates them
into statement number and label. Although a statement number can be
followed by a label, it is strongly recommended that you avoid placing
statement numbers and labels on the same line.

Examples The following request addresses an automated library card catalogue. Each
record in the file contains information that would normally appear on a single
card in the catalogue, such as AUTHOR, TITLE, SUBJECT, and CATALOGUE
NUMBER.

BEGIN
 1. FIND ALL RECORDS FOR WHICH
 AUTHOR = PAULING
 2. FOR EACH RECORD IN 1
 2.1 NOTE SUBJECT
 2.2 FIND ALL RECORDS FOR WHICH
 SUBJECT = VALUE IN 2.1
 2.3 FOR EACH RECORD IN 2.2
 2.3.1 PRINT TITLE
 3. COUNT RECORDS IN 1
 PRINT COUNT IN 3
END

The following request uses a subroutine to validate full-screen input entries. A
screen named DATA is defined with input areas named ITEM6, ITEM7, etc.
Values entered during the READ SCREEN statement are validated one at a
time by subroutine 900. Each screen item is assigned to the argument variable
%A before the subroutine is called. If the item fails the validation, the subroutine
sets %TAG to a nonzero value before returning. The request sets a tag on the
screen for each incorrect item. The REREAD statement is issued if a screen
item fails the validity tests.

BEGIN
SCREEN DATA
 .
 .
 .
END SCREEN
READ SCREEN DATA NO REREAD
 *VALIDATE DATA ITEMS
1. %A = %DATA:ITEM6
 CALL 900
A-4 Model 204

 IF %TAG THEN TAG %DATA:ITEM6
2. %A = DATA:ITEM7
 CALL 900
 .
 .
 .
50. IF $CHKTAG(’DATA’) THEN
 REREAD SCREEN DATA
 JUMP TO 1
51. *PROCESS DATA
 .
 .
 .
 *SUBROUTINE TO PERFORM VALIDATION BY TABLE
LOOKUP
 * IN: %A VALUE
 * OUT: %TAG NONZERO IF INVALID
900. SUBROUTINE
 .
 .
 .
END
User Language Manual A-5

$DSCR function
The $DSCR function interprets its character string argument as a field name. It
returns a variable-length character string describing the specified field. New
application development should incorporate “$FDEF” on page 27-51 that
supplanted the $DSCR function.

The following discussion is provided to maintain existing code. Each letter in
the returned string represents a particular field attribute. Attributes are listed in
Table A-1.

How $DSCR works

When $DSCR is invoked in file context, the returned string represents the
description of the specified field in the current file.

Each letter that appears in the return value corresponds to an attribute in the
field description. For example, if K is one of the letters in the returned string,
then the field is KEY.

Table A-1. $DSCR field attribute codes (file context)

Character Attribute

A ORDERED CHARACTER

C CODED

D DEFERRABLE

F FRV

I INVISIBLE

K KEY

L LEVEL

M MANY-VALUED

N ORDERED NUMERIC

O OCCURS

P UPDATE IN PLACE

Q UNIQUE

R NUMERIC RANGE

S STRING

T FLOAT

U Undefined

W AT-MOST-ONE
A-6 Model 204

If a particular letter does not appear in the result of a $DSCR call, then either
the corresponding attribute does not apply or the attribute’s opposite is in effect.
For example, if M (many-valued) does not appear, the field is NON-CODED
and NON-FRV, in which case M does not apply, or it is FEW-VALUED. You can
resolve this by looking for C and F in the returned string.

When $DSCR is invoked in group context, the returned string represents a
composite description of the field in all of the files of the current group. Some
of the letters imply that the corresponding field attribute is present in all of the
files in the group; others imply that the attribute is present in some (at least one)
file in the group. If the field specified as the $DSCR argument is not defined in
the current file or group, $DSCR returns the character string “U” (undefined).
Table A-2 lists the individual letters and their meanings in group context.

Example

This request determines the attributes of a field and performs one of three types
of searches, depending on the results of $DSCR.

BEGIN

Table A-2. $DSCR field attribute codes (group context)

Character Attribute

A ORDERED CHARACTER in some

C CODED in all

D DEFERRABLE in some

F FRV in some

I INVISIBLE in all

K KEY in all

L LEVEL in some

M MANY-VALUED in all

N ORDERED NUMERIC in some

O OCCURS in some

P UPDATE IN PLACE in some

Q UNIQUE in some

R NUMERIC RANGE in all

S STRING in all

T FLOAT in some

W AT-MOST-ONE in all

U Undefined
User Language Manual A-7

 %A = $READ (’FIELD NAME’)
 %B = $READ (’FIELD VALUE’)
 %C = $DSCR (%A)
 IF %C EQ ’U’ THEN
 PRINT ’ILLEGAL FIELD’
 JUMP TO STOP
 END IF
 *CHECK FOR NON-KEY
 IF $INDEX (%C, ’K’) EQ 0 THEN
 JUMP TO NUM.RNG.CHK
 END IF
 FIND AND PRINT COUNT
 %%A = %B
 END FIND
 JUMP TO STOP

 *CHECK FOR NUMERIC RANGE
NUM.RNG.CHK: IF $INDEX (%C, ’R’) EQ 0 THEN
 JUMP TO ALL.RECS
 END IF
 FIND AND PRINT COUNT
 %%A IS %B
 END FIND
 JUMP TO STOP
 *NEITHER KEY FOR NUMERIC RANGE
ALL.RECS: FIND ALL RECORDS
 END FIND
 FOR EACH RECORD IN ALL.RECS
 IF %%A = %B THEN
 PLACE RECORD ON LIST OK
 END IF
 END FOR
OKS: COUNT RECORDS ON LIST OK
 PRINT COUNT IN OKS
STOP: END
END
A-8 Model 204

$TCAMFHP function
The $TCAMFHP function returns a string that contains the user’s current
TCAM fixed header prefix (FHP). The FHP returned is not formatted. The user
must use $SUBSTR to extract the desired components of the FHP. $TCAMFHP
takes no arguments. $TCAMFHP is meaningful only for users of TCAM 3270s
(IODEV 21) which are no longer supported by CCA. If FHPs are not in use or
the user does not have an IODEV of 21, a null string is returned.
User Language Manual A-9

A-10 Model 204

Index
Symbols

 32-2
$ABS function 27-127
$ACCOUNT function 27-2, 27-2
$ACCT function 27-2
$ALPHA function 27-2 to 27-3, 27-117
$ALPHNUM function 27-4 to 27-5, 27-117
$ARCCOS function 27-127
$ARCSIN function 27-127
$ARCTAN function 27-128
$ARCTAN2 function 27-128
$ARRSIZE function 27-5
$ASCII function 27-6
$BINARY function 27-6, 27-106
$BLDPROC function 27-6 to 27-9
$C2X function 27-17
$CHKMOD function 22-48, 27-9 to 27-10
$CHKPAT function 27-10
$CHKPINF function 27-10

tracking checkpoints 27-10
$CHKSFLD function 27-12
$CHKTAG function 22-48, 27-14 to 27-15
$CODE function 27-15
$COS function 27-128
$COSH function 27-128
$COTAN function 27-128
$CURFILE function 27-16
$CURREC function 27-16 to 27-17
$DATE function 27-20, 27-28
$DATE functions

century format 27-17
fill characters 27-18
overview 27-17

$DATECHG function 27-21 to 27-22
$DATECHK function 27-22 to 27-23
$DATECNV function 27-23 to 27-26
$DATEDIF function 27-26 to 27-28
$DATEJ function 27-28
$DATEP function 27-29
$DAY function 27-29
$DAY1 function 27-30
$DEBLANK function 27-31, 27-103
$DECODE function 27-31
$DELG

completion codes 27-32
$DELG function 27-32
$DSCR function 27-33, A-6 to A-8
$DSN system function 27-33
$DSNNUM system function 27-34
$ECBDGET function

and NECBS parameter 27-34
syntax for 27-34

$ECBDSET function
and NECBS parameter 27-36
syntax for 27-35

$ECBTEST function
syntax for 27-37

$ECFSTAT function
syntax for 27-38

$EDIT function 27-39 to 27-47
$EDITA function 27-44 to 27-47
$EDITN function 27-40 to 27-44
$EFORMAT function 27-47 to 27-48
$ENCRYPT function 27-48 to 27-49
$ENTER function 27-49 to 27-50
$ERF function 27-128
$ERFC function 27-128
$ERRCLR function

clearing message text 27-51
$ERRMSG function 27-51

coordinating with $ERRCLR 27-51
$EXP function 27-129
$FDEF function 27-51
$FLDLEN function 27-55
$FLOAT function 27-55
$FLOATD function 27-55
$FLSACC function 27-56 to 27-57
$FLSCHK function 27-57
$FSTERR function 27-58

coordinating with $ERRCLR 27-51
$GAMMA function 27-129
$GETG function 20-6, 27-58 to 27-59
$GETL function 27-59
$GETP function 27-59
$GRMLOC function 27-59
$GRMNAME function 27-59
$GRNLEFT function 27-59
$GRNMISS function 27-60
$GROUPFILES function 27-60
User Language Manual: Parts III—VI Index-1

$HPAGE function 27-60 to 27-61
$HSH function 27-61
$INCRG

and $DELG function 20-28
$INCRG function 20-6, 20-6, 21-6, 27-63 to 27-64
$INDEX function 27-64
$ITSOPEN function 27-65
$ITSREMOTE function 27-66
$IXPI function 27-129
$JOBCODE

example 27-67
in V4R1.1 27-67

$JOBCODE function 27-66 to 27-68
$LANGSRT function 27-69
$LANGUST function 27-70
$LEN function 27-70
$LGAMMA function 27-129
$LOG function 27-129
$LOG10 function 27-129
$LOWCASE function 27-70 to 27-71
$LSTFLD function

syntax for 27-71
$LSTPROC function 27-73 to 27-77
$MAX function 27-130
$MIN function 27-130
$MISGRUP function 27-77
$MISLOC function 27-78
$MISNAME function 27-78
$MISNUM function 27-78
$MISSTMT function 27-78
$MOD function 27-79
$OCCURS function 27-79
$ONEOF function 27-80 to 27-81
$PACK function 27-81 to 27-82
$PAD function 27-82
$PADR function 27-82
$PI function 27-130
$POST function

syntax for 27-83
$RDPROC function 27-85
$READ function 27-89 to 27-92

ITBL 21-7
$READINV function 27-92 to 27-93
$READLC function 27-93
$REMOTE function 27-93
$REVERSE function 27-93 to 27-94
$RLCFILE function 27-94
$RLCREC function 27-94 to 27-95
$RLCUID function 27-95
$RLCUSR function 27-95 to 27-96
$ROUND function 27-96
$RXPI function 27-130
$RXPR function 27-130 to 27-131
$SCAN function 27-96

$SCLASS function 23-38, 27-96 to 27-97
$SETG

and $DELG function 20-28, 27-32
$SETG function 20-6, 20-6, 21-6, 27-58, 27-97
$SETL function 27-97 to 27-98
$SETP function

definition of 27-98
$SIN function 27-131
$SINH function 27-131
$SLSTATS function 27-98
$SNDX function 27-99 to 27-100
$SQRT function 27-131
$SQUARE function 27-100
$STAT function 27-100 to 27-101
$STATUS function 27-88, 27-101
$STATUSD function 27-102
$STATUSR function

continuing DO WHILE loops 27-102
syntax 27-102

$STRIP function 27-103
$SUBSTR function 27-103 to 27-104, A-9
$SUBSYS function 23-7, 23-38, 27-104 to 27-105
$TAN function 27-131
$TCAMFHP function A-9
$TIME function 27-105
$UNBIN function 27-106
$UNBLANK function 27-106 to 27-107
$UNFLOAT function 27-107
$UNPACK function 27-108
$UNPOST function

syntax for 27-109
$UNQREC function 27-110
$UPCASE function 27-110 to 27-111
$UPDATE function 27-111
$UPDFILE function 27-112
$UPDFLD function 27-112
$UPDLOC function 27-112
$UPDOVAL function 27-112
$UPDREC function 27-113
$UPDSTAT function 27-113
$UPDSTMT function 27-113
$UPDVAL function 27-114
$USER function 27-114
$USERID function 27-114
$USRPRIV function 27-114 to 27-115
$VALIDATE_NUMERIC_DATA function 27-116

detecting invalid numeric data 27-116
$VERIFY function 27-117
$VIEW function 27-117 to 27-118
$VNUM function 27-117, 27-119 to 27-121
$WAIT function

caution with NOSWAP option 27-122
syntax for 27-121

$WORD function 27-124
Index-2 Model 204

$WORDS function 27-125
$X2C function 27-126
%menuname, SELECTION 22-12, 22-63
%screenname

COLUMN 22-56
ITEMID 22-38, 22-56
ITEMNAME 22-56
PFKEY 22-12, 22-44
ROW 22-56

%variables
as cursor handling variables 22-56
as screen or menu variables 22-11 to 22-13
DECLARE %variable IS statement 26-20
menus and screens 22-11 to 22-13

*CANCEL command
$READ function 27-92

*CLEAR LIST statement
syntax 26-5

:%screen-item-name
screen item name variables 22-12

Numerics

2-digit years
YY date format 27-18

3270 terminals
color and layout 22-8
modifying color mappings 22-10
screen display protocol 22-9

4-digit years
YYYY date format 27-18

A

Abbreviations
commands 28-4
statements 28-1 to 28-3

Absolute value, computation of 27-127
Account identification 27-2
Actual decimal character for $EDIT 27-42
ADD statement

multiply occurring fields 19-9
PQO DML 33-3
record locking 24-4
subscript usage 19-22
syntax of 26-4
transaction backout 25-4

ALERT option
menus 22-24, 22-25
screens 22-51, 22-54

ALPHA option for screens 22-39
Alphabetic and numeric character verification 27-4
Alphabetic character verification 27-2

ALPHANUM option for screens 22-39
Alphanumeric editing 27-39, 27-44 to 27-47
APPEND option for $BLDPROC 27-7
Application subsystem development 23-2 to 23-41,

27-8, 27-96, 27-104
Applications

screen display 22-8
screen layout 22-8

Arc cosine, computation of 27-127
Arc sine, computation of 27-127
Arc tangent, computation of 27-128
Arithmetic operations

global variables 27-63 to 27-64
Array element determination 27-5
ARRAY statement

space requirements 21-5
Assignment statement for %variables

syntax of 26-20
Assumed decimal character for $EDIT 27-41
AT clause

remote file specification 33-3
AT option

menus 22-16 to 22-17, 22-18 to 22-19, 22-24,
22-25

output spacing 19-7, 19-8
screens 22-34 to 22-35, 22-51, 22-54

AT-MOST-ONE field attribute
contrasted to UNIQUE attribute 32-3
description 32-3
using $UPDOVAL 27-112

ATN error global value
attention key pressed 23-9

Attention key
error global code 23-9
line-at-a-time terminals 22-63

Attributes options
fields 32-1 to 32-6
menus 22-24, 22-26
screens 22-49, 22-51, 22-54

Audience
who benefits from using this book xvii

AUDIT statement
receiving error codes 23-10
specifications 26-24
syntax of 26-4

Automatic COMMIT option for subsystems 23-24
Automatic input validation 22-7
Automatic login and logout options for subsystems

23-23, 23-24, 23-28 to 23-29
Automatic member, of a subsystem 23-31
Automatic start option for subsystems 23-23, 23-27
Automatic validation options 22-39 to 22-40
Autoskip

screen display 22-10
User Language Manual: Parts III—VI Index-3

B

BACKOUT statement
PQO DML 33-3
purpose and example 25-6 to 25-8
syntax of 26-4

Backout, transaction. see transaction backout
Backoutable update units 25-4
Backpaging

reviewing previous output 22-8
Base-color mode

color display assignments 22-9
definition of 22-9

Basic display attributes 22-8
BEGIN command

MORE command 21-15 to 21-16
request continuation restrictions 21-18

Blanks, removal of 27-106 to 27-107
BLINK attribute

in screen display 22-9
Block end statement 30-4
Break key

line-at-a-time terminals 22-63
BRIGHT attribute

default TAG attribute 22-37
in screen display 22-8

BRIGHT display attribute
considerations using 22-10

BUG error global value
evaluation error 23-9

Bumpable wait 24-9
BYPASS statement

syntax of 26-4

C

CAN error global value
cancellation 23-9

Case translation 22-35, 27-70, 27-93, 27-111
CCA Customer Support

contacting xvii
CCALL entry points 27-19
CCASYS file 23-3, 23-30
CCATEMP file

compiler table contents 23-28
temporary work page list table (TTBL) 21-11
transaction backout files 25-9

CCY format
changing CUSTOM parameter 27-18

CENTSPLT parameter 27-25
Century-year format 27-18

CYY date format 27-18
CHANGE (CH) statement

multiply occurring fields 19-9
PQO DML 33-3
record locking 24-4
subscript validity for 19-26
syntax of 26-4
transaction backout 25-4

Character string
length 27-70
retrievals 27-65, 27-104
rules for reserved words and characters 29-2
STBL for 21-10
verification 27-117

Checkpointing
verifying 27-10

checkpoints
tracking with $CHKPINF 27-10

CLEAR GLOBAL statement
clearing global found sets 20-30
clearing objects from GTBL 20-32
remembered positions 20-31
syntax of 26-4

CLEAR GLOBALS statement
clearing objects from GTBL 20-29
syntax of 26-4

CLEAR LIST statement
PQO DML 33-2

CLEAR LISTFDST statement 20-30
CLEAR ON statement

FIND CONFLICT 24-9
QTBL 21-8
RECORD LOCKING CONFLICT 24-9
syntax of 26-5

CLEAR statement 20-6
CLEAR TAG statement

purpose 22-55
QTBL 21-10
syntax of 26-5

CLEARG command 20-6
CLEARGO command 20-28, 20-30, 20-31
Clearing error tags on screens 22-55
Clearing positions

set by REMEMBER statement 20-31
Client subsystems 23-30
CLOSE command

request continuation restrictions 21-18
CLOSE option for $BLDPROC 27-7
CLOSE PROCESS statement

QTBL 21-10
syntax for 26-5

CLOSE statement
QTBL 21-9
syntax for 26-5

CNT error global value
counting error 23-9
Index-4 Model 204

Code tables 27-15
CODED field attribute 27-15
Color display

default 27-14
in base-color mode 22-9
in extended-color mode 22-10

Color mappings
modifying 22-10

Column 1
in application screen layout 22-8

Column 80
error indicators 22-8

Columns 2 through 4
menu selection numbers 22-8

Command line global variable 23-4 to 23-5
Commands

abbreviations for 28-4
differentiated from statements 20-10
not supported by Parallel Query Option/204 33-

4
Commit options for subsystems 23-23, 23-24
COMMIT RELEASE statement 24-15, 33-2

emptying found sets, sort sets, lists 20-30, 24-
13, 24-16

COMMIT statement
option for subsystems 23-23, 23-24
PQO DML 33-3
purpose and example 24-15
syntax of 26-5

Communication global variable
coding considerations 23-8
defining, for a subsystem 23-4
driver processing 23-28
exit value 23-4
subsystem exit value 23-6
transferring control 23-6 to 23-8

Communications global variable
subsystems 23-10

compatibility issues
mathematics $functions 27-127

Compilation, request 24-3
Completion code, step 27-67
Conditional INCLUDEs 20-6
CONFIRM statement

syntax for 26-5
CONFIRMED statement

syntax for 26-5
Contacting CCA

Telephone and Web site addresses xvii
CONTINUE statement

syntax for 26-5
Conventions, notation xviii
Converting 2-digit years

using CCY date format 27-18

Converting strings 27-126
Correction characters 29-2, 30-9
Cosine, computation of 27-128
Cotangent, computation of 27-128
COUNT OCCURRENCES (CTO) statement

PQO DML 33-2
purpose and example 19-14 to 19-15
syntax of 26-6

COUNT RECORDS (CT) statement
PQO DML 33-2
QTBL 21-8
syntax for 26-6

Counter, line 27-98
Counting error message 27-51
CPQZ

special ECB 27-35, 27-36
Cross Reference facility 23-41
Current line counter 27-98
Current record

file name of 27-16
internal number of 27-16

Current time of day
with format 27-105
with formatting 27-105

Cursor
positioning on menus 22-24
positioning on screens 22-42, 22-53, 22-

56 to 22-58
CUSTOM parameter

manipulating CCY format 27-18
CYY date format

century-year format 27-18
converting 2-digit years 27-18

CYY format 27-18

D

Data edit character for $EDIT 27-40, 27-41
DATE code entry point

format 27-20
Date formats

CYY 27-18
DATE 27-20
DATE3 27-20
DATE4 27-20
Julian 27-19
YY 27-18
YYYY 27-18

DATE3 code entry point
format 27-20

DATE4 code entry point
format 27-20

DEBLANK option for screens 22-36
User Language Manual: Parts III—VI Index-5

DEBUG command 23-21, 23-39
DEBUG option, TEST command 23-40
DECLARE LIST statement, PQO DML 33-2
DECLARE statement

%variables, syntax of 26-20
global found sets and lists 20-15
syntax for 26-6

DEFAULT CURSOR statement
purpose 22-41
syntax for 26-7

DEFAULT option
menus 22-17, 22-19
screens 22-36

DEFAULT SKIP statement
syntax for 26-7

DEFAULT statement (TITLE, PROMPT, INPUT)
purpose 22-41

DEFCENT parameter 27-24
Deferred update mode

updating indexes immediately 32-4
DELETE ALL RECORDS statement

record locking 24-4
transaction backout 25-4

DELETE EACH statement
multiply occurring fields 19-10, 19-16
PQO DML 33-3
subscript usage 19-22
syntax of 26-8
transaction backout 25-4

DELETE fieldname statement
multiply occurring fields 19-10
record locking 24-4
subscript validity for 19-25 to 19-26
syntax of 26-8
transaction backout 25-4

DELETE PROCEDURE command 23-37
DELETE RECORD statement

PQO DML 33-3
record locking 24-4
syntax of 26-8
transaction backout 25-4

DELETE RECORDS statement
syntax for 26-8

DELETE statement
PQO DML 33-3

DIM attribute
in screen display 22-8

DIM display attribute 22-17, 22-37
considerations using 22-10

DISABLE SUBSYSTEM command 23-32
Disconnect processing for subsystems 23-27, 23-29
Display attributes 22-8 to 22-10

extended 22-8
Displaying a menu 22-24

Displaying a screen 22-52
DO WHILE loops

continuing with $STATUSR 27-102
DP option

menus 22-16 to 22-17, 22-18 to 22-19
screens 22-34 to 22-35

Driver processing for subsystems 23-27, 23-28
Dummy strings

$READ function 27-90

E

EBCDIC collating sequence 27-6
ECBs

check to see if posted 27-37
getting associated data string 27-34
resetting 27-109
set a data string 27-35
special ECB, CPQZ 27-35, 27-36
suspend user until posted 27-121

ENABLE SUBSYSTEM command 23-32
Encoding 27-15
END ARRAY statement

syntax for 26-8
END BLOCK statement

request composition rules 30-4
syntax of 26-8

END FIND statement
syntax for 26-8

END FOR statement
syntax for 26-8

END IF statement
syntax for 26-8

END IMAGE statement
syntax for 26-8

END MENU statement
definition format 22-14
purpose 22-15
syntax for 26-8

END MORE statement
QTBL 21-10
record locking 24-5
syntax for 26-8

END NORUN statement
syntax for 26-8

END ON statement
syntax for 26-8

END REPEAT statement
syntax for 26-8

END SCREEN statement
definition format 22-29
purpose 22-31
syntax for 26-8
Index-6 Model 204

END statement
QTBL 21-10
record locking 24-5
request composition rules 30-4

END STORE statement
syntax for 26-8

END SUBROUTINE statement
syntax for 26-8

END UPDATE statement
syntax 26-8

END USE statement
syntax for 26-8

ENQRETRY parameter 24-8, 24-10
ENTER key, in full screen formatting 22-7
ENTER macro 27-20
ERASE parameter

reserved characters 29-2
Error display

Column 80 22-8
Error global CODES

HRD 23-9
Error global codes

ATN 23-9
BUG 23-9
CAN 23-9
CNT 23-9
FIL - BROKEN 23-9
FIL - NOT OPEN 23-9
GRP - FTBL 23-9
GRP - NOT OPEN 23-9
GRP - TEMP FIELD 23-9
GRP - TEMP MISMATCH 23-9
HNG 23-9
INCLUDE MAX 23-9
REC 23-9
SFT 23-9
TBL - FSCB 23-9
TBL - NTBL 23-9
TBL - QTBL 23-9
TBL - STBL 23-10
TBL - VTBL 23-10

Error global variable
defined 23-4
error codes 23-9
error procedures 23-10
error processing 23-29

Error indicator for screens 22-7, 22-37
Error messages 27-58
Error processing for subsystems 23-18 to 23-19, 23-

27, 23-29
Error tags, clearing 22-55
Escape character

$EDIT 27-45
Evaluation, request 24-3

Exclusive mode 24-3
Exponent, computation of value 27-129, 27-130
Expression

continuation hyphens 30-6
syntax of 26-25
VISIBLE field attribute 32-5

Extended display attributes 22-8 to 22-9
and FSOUTPUT parameter 22-8

Extended-color mode
definition of 22-10
screen display color assignments 22-10

External file access, obtaining the status 27-102

F

FDWOL statement
syntax for 26-9

Field attributes
AT-MOST-ONE 32-3
FLOAT 32-3
FOR EACH VALUE 32-3
FRV (FOR EACH VALUE) 32-3
INVISIBLE 32-4
KEY 32-4
LENGTH 32-4
NUMERIC RANGE 32-4
OCCURS 32-5
ORDERED 32-5
REPEATABLE 32-3
UNIQUE 32-3, 32-5
UPDATE 32-6
VISIBLE 32-5

Field values
specifications 30-10

Fields
attributes of 32-1 to 32-6
displaying attributes 27-51
listing names with $LSTFLD 27-71
name specifications 30-9
preallocated 32-5
subscripted 19-21 to 19-26

fields
subscripted extraction 19-21

FIL - BROKEN error global value
file inaccessible error 23-9

FIL - NOT OPEN error global value
file not open 23-9

File Load utility and $JOBCODE 27-67
FILE RECORDS statement

INVISIBLE field attribute 32-4
KEY field attribute 32-4
PQO DML 33-3
subscript usage 19-22
User Language Manual: Parts III—VI Index-7

syntax for 26-8
transaction backout 25-4, 25-11

FILE$ condition
global variables 20-13
PQO DML 33-2

FILEMODL parameter
setting a file model 32-2

Files
determining whether open 27-65
error global code 23-9
file usage option for subsystems 23-23
locking option for subsystems 23-23
synonyms, for remote file specification 33-3

Fill characters
in date formats 27-18

FIND ALL RECORDS (FD) FOR WHICH statement
syntax of 26-8

FIND ALL RECORDS (FD) IN statement
syntax of 26-8

FIND ALL RECORDS (FD) ON statement
syntax of 26-8

FIND ALL RECORDS (FD) statement
PQO DML 33-2
QTBL 21-8
syntax of 26-8

FIND ALL VALUES (FDV) statement
PQO DML 33-2
QTBL 21-8
syntax of 26-9

FIND AND PRINT COUNT (FPC) statement
PQO DML 33-2
record locking 24-3
syntax of 26-9

FIND AND RESERVE (FDR) statement
syntax of 26-8

FIND statement
labeling requirement 30-2
multiply occurring fields 19-3
PQO DML 33-2
record locking 24-3
subscript usage 19-22
syntax for 26-8

FIND WITHOUT LOCKS (FDWOL) statement
purpose and usage 24-6 to 24-7
record locking 24-3
syntax of 26-9

FIND WITHOUT LOCKS statement
syntax for 26-9

FIND$ condition 33-2
Finding a word in a string 27-124
Finding words in a string 27-125
Fixed edit character for $EDIT 27-42
Fixed header prefix (FHP) A-9
FLOAT attribute

floating point representation 32-3
Float edit character for $EDIT 27-42 to 27-43
FLOAT field attribute

defined 32-3
Floating point fields

conversion 27-48
conversion rules 31-2
mapping 31-3
precision rules 31-2 to 31-3
rounding rules 31-2 to 31-3

FLOD command 21-18
FLUSH parameter

reserved characters 29-2
FLUSH PROCESS statement

syntax for 26-9
FOPT parameter 24-14, A-2
FOR %variable statement

syntax of 26-10
FOR EACH OCCURRANCE statement

against INVISIBLE 19-17
FOR EACH OCCURRENCE (FEO) statement

PQO DML 33-2
purpose and example 19-15 to 19-17
subscript usage 19-22
syntax of 26-9

FOR EACH RECORD (FR) statement
$CURFILE 27-16
$CURREC function 27-16
DELETE EACH statement 19-10
EACH option 19-13
IN clause 27-16
multiply occurring fields 19-13
PQO DML 33-2
QTBL 21-9
record locking 24-4
subscript usage 19-22
syntax of 26-9

FOR EACH VALUE (FRV) statement
$CURREC function 27-16
PQO DML 33-2
QTBL 21-9
simulation of 19-16
subscript usage 19-22
syntax of 26-9, 26-10

FOR EACH VALUE attribute
keeping track of unique values 32-3

FOR k OCCURRENCES statement
syntax of 26-9

FOR k RECORDS statement
PQO DML 33-2
syntax of 26-9

FOR k VALUES statement
PQO DML 33-2
syntax of 26-9
Index-8 Model 204

FOR loops
VALUE IN 19-16
VALUE IN with FEO loops 19-16

FOR RECORD NUMBER (FRN) statement
PQO DML 33-2
record locking 24-4
request continuation 21-18
syntax of 26-10

FORTRAN
mathematics $function runtime libraries 27-127

FORTRAN routines in mathematical functions 27-
127

Found sets
and COMMIT RELEASE statement 20-30, 24-

13, 24-16
FRV (for each value)

field attribute 32-3
FSCB table 21-5

error global code 23-9
FSOUTPUT parameter

extended attribute screen display 22-8
FTBL table 21-6

error global code 23-9
Full screen formatting

display attributes 22-8 to 22-10
line-at-a-time terminals 22-63 to 22-64
overview 22-6 to 22-7
screen positioning 22-8
variables 22-11 to 22-13

Functions
$LSTFLD 27-71
mathematical 27-127 to 27-131
precision of 27-127
restricted with Parallel Query Option/204 33-5
standard 27-2 to 27-126

G

Gamma, computation of value 27-129
Global found sets

RELEASE statement 20-30, 24-13, 24-16
Global found sets and lists

clearing 20-30
reference context 20-16

Global images and screens
clearing GTBL 20-28
consistency checks 20-24
defined 20-21
example 20-26 to 20-27
processing 20-21 to 20-25
system administration issues 20-27
when to use 20-24

Global lists

RELEASE statement 20-30, 24-13, 24-16
Global menus, defining (MENU statement) 22-15
global objects

tracking GTBL rearrangements for 20-4
Global screens, defining (SCREEN statement) 22-

31
Global sort sets

RELEASE statement 20-30, 24-13, 24-16
Global sorted found sets 20-18
global string variables

tracking GTBL rearrangements for 20-4
Global variable (GTBL) table

$GETG function 27-58
$SETG function 27-97
clearing objects from 20-28
defined 20-2
entry types 21-6 to 21-7
found sets and lists 20-15
performance considerations 20-32
REMEMBER statement 20-19
requests 20-8

Global variable table
deleting information 27-32

Global variables 20-6 to 20-13
arithmetic with 27-63
command line 23-4, 23-5
communication 23-4, 23-6 to 23-8
error 23-4
FILE$ condition 20-13

GREEN display attribute
in screens 22-9

Groups
$CURREC function 27-16
error global code 23-9
locking option for subsystems 23-23

GRP - FTBL error global value
FTBL too small 23-9

GRP - NOT OPEN error global value
group closed 23-9

GRP - TEMP FIELD error global value
field wrong type 23-9

GRP - TEMP MISMATCH error global value
TEMP group wrong type 23-9

GTBL
rearranging and tracking 20-4
space required for positions 21-6

GTBLRS statistic
tracking GTBL rearrangement for global objects

20-4
GTBLRU statistic

GTBL rearrangements for global string vari-
ables 20-4
User Language Manual: Parts III—VI Index-9

H

Hard restart
error global code 23-9

Hash field
multiply occurring fields 19-2

Hash values 27-61
HNG error code

terminal I/O 23-10
HNG error global value

phone disconnect 23-9
HRD error code

terminal I/O 23-10
HRD error global value

hard restart 23-9
Hyperbolic cosine, computation of 27-128
Hyperbolic sine, computation of 27-131
Hyphens

in PRINT n outputs 19-7
in statements 30-5

I

IBM
choosing LE runtime libraries 27-127
Screen display protocol 22-9

IDENTIFY statement
QTBL 21-9
syntax of 26-10

IF command
procedure nesting levels 20-12

IF statement
QTBL 21-9
syntax of 26-10

Image items
syntax for definitions 26-11

IMAGE statement
space requirements 21-5
syntax of 26-10

Images
processing 20-21

IN clause
Parallel Query Option/204 33-3, 33-4
syntax of 26-26

IN GROUP MEMBER clause
$UPDATE 27-111
restrictions 26-26
statements used with 26-26
syntax of 26-26

IN ORDER option
FOR EACH OCCURENCE statement 19-16

INCCC parameter 30-5
INCLUDE MAX error global value

iterations overflow 23-9
INCLUDE statement

full-screen feature 22-45
syntax of 26-10

INITIAL option
full-screen buffer 21-5

Initialization processing for subsystems 23-16, 23-
27

INITIALIZE command 21-18
INPUT fields

default base-color 22-9
default extended color 22-10

INPUT statement 22-34 to 22-40
automatic validation options 22-39 to 22-40
DEBLANK option 22-36
DEFAULT option 22-36
ITEMID option 22-38
line-at-a-time terminals 22-63
NOCASE option 22-35
NODEBLANK option 22-36
PAD WITH ’c’ option 22-36
PRINT option 22-37
READ option 22-37
REREAD option 22-37
syntax of 26-11
TAG option 22-37
UPCASE option 22-35

Input validation in full screen formatting 22-7
INSERT statement

PQO DML 33-3
purpose and example 19-24 to 19-25
syntax of 26-11
transaction backout 25-4

Insertion character for $EDIT 27-44
Internal work areas 21-3 to 21-4
INVISIBLE attribute

for screen display 22-8
usage 32-4

INVISIBLE display attribute
considerations using 22-10

INVISIBLE field attribute
defined 32-4
subscript usage 19-23

INVISIBLE fields
FEO processing 19-17

Invisible items and line-at-a-time terminals 22-64
INVITE statement

syntax of 26-11
IODEV 21 A-9
ITBL table 21-7
ITEMID option, screens 22-33, 22-38
Index-10 Model 204

J

Julian date format
syntax for 27-19

JUMP TO statement
$CURREC function 27-16
syntax of 26-12

K

KEY attribute
invoking Table C searches 32-4

KEY field attribute
defined 32-4
non-deferred update 32-4

L

Labels for statements 30-2 to 30-3
Layout

screen display area 22-8
Leading zeros, suppression of 27-103
LEN option

menus 22-16 to 22-17, 22-18 to 22-19, 22-24,
22-25

screens 22-34 to 22-35, 22-51, 22-54
LENGTH attribute

preallocating field length 32-4
LENGTH field attribute

example 27-55
preallocated fields 32-4

LFSCB parameter 21-3, 22-3
LGTBL parameter 23-7
LIBUFF parameter, line continuation 30-7
Line

current line number ($GETL function) 27-59
length 27-98
numbering 27-59

Line 1
screen and menu titles 22-8

LINEND parameter 30-8
LIST$ condition 33-2
Lists

and COMMIT RELEASE statement 20-30, 24-
13, 24-16

LOCATION$ condition 33-2
Lock pending updates 24-14
Logarithm computation

to base 10 27-129
to base e 27-129

LOGIN command 21-18
Login feature 27-2, 27-114
Login processing for subsystems 23-7, 23-17, 23-

27, 23-28
LOGOUT command 21-18
LOOP END statement

$CURREC function 27-16
syntax of 26-12

Loops
labeling of statements in 30-2
value 27-16

LSERVPD parameter 21-4

M

Main processing procedures for subsystems 23-
17 to 23-18

Mandatory member, of a subsystem 23-31
Manual input validation 22-7
Manual member, of a subsystem 23-31
Mapping floating point fields 31-3
Mathematical functions 27-127 to 27-131
mathematics $functions

choosing a runtime library 27-127
MAX PFKEY statement

menus 22-21
screens 22-44
syntax of 26-12

Maxima, computation of 27-130
Members, subsystem 23-31
Menu %variables 22-11 to 22-12
MENU statement

definition format 22-14
purpose 22-15
syntax of 26-12

Menuline 22-14
Menus

defined 22-3
definition example 22-22
definition statements for 22-14
line-at-a-time terminals 22-63
manipulation example 22-28
manipulation statements for 22-23 to 22-28

Message display options for subsystems 23-23, 23-
25

Minima, computation of 27-130
Model 204

electronic documentation library xvii
MODIFY statement

ALL option 22-26, 22-49
menus 22-26
PRINT option 22-26, 22-49
QTBL 21-10
READ option 22-26, 22-49
REREAD option 22-49
screens 22-49
User Language Manual: Parts III—VI Index-11

syntax for 26-12
TAG option 22-49

MONITOR command 21-18
MORE command

description and examples 21-15 to 21-16
NTBL 21-7
STBL 21-11
VTBL 21-13

MSGCTL parameter 23-21, 23-28
Multiple procedure files, in subsystems 23-40
Multiply occurring fields

AT-MOST-ONE attribute 32-3
NUMERIC RANGE attribute 32-5
REPEATABLE attribute 32-3
storing long fields 19-7

MUST FILL option for screens 22-39

N

Names
menu 22-15
screen 22-31
subscripted, field 19-21 to 19-22

NECBS parameter
and $ECBDGET function 27-34
and $ECBDSET function 27-36

NEW PAGE (NP) statement
screens 22-43
syntax of 26-12

NO FIELD SAVE option
STBL 21-11

NO REREAD option
line-at-a-time terminals 22-64
screens 22-52

NOBLINK attribute
in screen display 22-9

NOCASE option, for screens 22-35
Node availability, to client subsystems 23-30
NODEBLANK option for screens 22-36
Non-backoutable update units 25-5
NON-CODED field attribute 27-15
NON-DEFERRABLE field attribute

updating indexes immediately 32-4
Non-precompiled procedures for subsystems

defined 23-11
driver processing 23-28

Non-transaction backout file 25-3
NOREVERSE attribute

in screen display 22-9
NORQS parameter 27-7
NOSWAP option

caution for $WAIT 27-122
Notation conventions xviii

additional, for statement syntax summary 26-3
NOTE statement

multiply occurring fields 19-5
PQO DML 33-2
syntax of 26-12
VISIBLE field attribute 32-5

NOUNDERSCORE attribute
in screen display 22-9

NTBL table 21-7
error global code 23-9

Null string 30-11 to 30-12
Numbers

$USER function 27-114
numeric data

detecting invalid 27-116
Numeric editing 27-39 to 27-44
NUMERIC option for screens 22-39
NUMERIC RANGE attribute

specifying a Table C search 32-4
NUMERIC RANGE field attribute

defined 32-5
multiply occurring fields 19-2
non-deferred update 32-4
QTBL 21-8

Numeric value format validation 27-119
NUMLK parameter 23-40

O

OCCURS clause
full-screen buffer 21-5

OCCURS field attribute
defined 32-5
preallocated fields 19-24
verification 27-79

ON ERROR units, $FSTERR function 27-58
ON FIELD CONSTRAINT CONFLICT unit

$UNQREC function 27-110
$UPDFILE function 27-112
$UPDFLD function 27-112
$UPDSTMT function 27-113
$UPDVAL function 27-114
return codes for conflicts 27-113

ON FIND CONFLICT unit 24-8, 24-10
ON RECORD LOCKING CONFLICT unit 24-8, 24-

10
ON statement

$RLCFILE function 27-94
$RLCREC function 27-94
$RLCUSR function 27-95
ATTENTION 25-9
syntax of 26-12

ON units
Index-12 Model 204

QTBL 21-8
request continuation 21-18

ONEOF option for screens 22-39
OPEN option for $BLDPROC 27-7
OPEN PROCESS statement

QTBL 21-10
syntax of 26-13

OPEN statement for external files and terminals
QTBL 21-9
syntax of 26-13

OPEN statement for MODEL 204 files and groups
syntax of 26-13

OPENC statement
PQO DML 33-2
syntax of 26-13

OPENCTL parameter 23-20, 23-34
Operands

in expressions 26-25
Operating options for subsystems 23-23
Operators

list of 26-25
Optional files for subsystems 23-26
Optional member, of a subsystem 23-31
Order of processing

index order 19-13
ORDERED field attribute

defined 32-5
multiply occurring fields 19-13
non-deferred update 32-4

OUTLPP parameter 27-98
OUTMRL parameter 27-98
OUTPNO parameter 27-59
Overflow screen 22-30

P

Packed decimal
conversion 27-108
representation 27-81

Page numbering 27-59, 27-98
PAI INTO statement

syntax of 26-14
Panels, logical and physical 22-30
Parallel Query Option/204

DML statements 33-2
procedure compilation 23-14
record locking conflicts 24-10
retrieval conditions 33-2
subsystem member availability to subsystems

23-31
subsystem member availability to users 23-32
subsystem trust definitions 23-33
update statements 33-3

Parameters
table size 21-4
viewable 27-117

Parentheses
in retrieval condition syntax 26-23

Partner process
NTBL 21-7

PAUSE statement
ON units 24-9
QTBL 21-8
syntax of 26-13

performance improvements
subscripted field extraction 19-21

Phone disconnect
error global code 23-9

Pi, computation of 27-130
PINK display attribute

in screens 22-9
PLACE RECORD statement

PQO DML 33-2
syntax of 26-13

PLACE RECORDS statement
syntax of 26-14

POINT$ condition
PQO DML 33-3

POSITION statement
FOR processing 20-20
GTBL space required 21-6
QTBL 21-9
syntax of 26-14

Preallocated fields 32-5
Precompiled procedures for subsystems

defined 23-11
driver processing 23-28
restrictions 23-12 to 23-13
shared versions 23-11
temp groups 23-13

Prefix designations for subsystem requests 23-4,
23-11 to 23-13, 23-27

PREPARE statement
images 21-9
menus 22-26
screens 22-31, 22-49
screens and menus, QTBL 21-10
syntax of 26-14

Preventing multiple occurrences of a field
AT-MOST-ONE attribute 32-3

PRINT ALL INFORMATION (PAI) statement
PQO DML 33-2
syntax of 26-14

PRINT EACH statement
purpose and examples 19-6
subscript usage 19-22

PRINT MENU statement
User Language Manual: Parts III—VI Index-13

AT, TO, and LEN options 22-25
line-at-a-time terminals 22-63
QTBL 21-10
syntax of 26-14

PRINT n statement
purpose and example 19-7 to 19-8
subscript usage 19-22

PRINT option
menus 22-17, 22-19
screens 22-37

PRINT SCREEN statement
ALERT option 22-51
AT, TO, and LEN options 22-51
attributes option 22-51
evaluation sequence 22-59
line-at-a-time terminals 22-64
QTBL 21-10
syntax of 26-14
TITLE option 22-51
WITH CURSOR option 22-51

PRINT statement
QTBL 21-9
specifications 26-24
subscript validity for 19-25
syntax of 26-14
VISIBLE field attribute 32-5

Printing a menu 22-25
Printing screens 22-51
Private subsystems 23-20
Procedure compilation, Parallel Query Option/204

23-14
Procedures

compiling with wrong SCLASS 23-21
subsystems, precompiled and non-precompiled

23-11
Processing components for subsystems 23-4
PROCFILE GROUP, for a subsystem 23-40
PROCFILE subsystem 23-40
Program communications facilities

obtaining the status 27-102
PROMPT fields

default base-color 22-9
default extended-color 22-10

PROMPT statement
AT, TO, LEN, and DP options 22-18 to 22-19
DEFAULT option 22-19
ITEMID option 22-33
line-at-a-time terminals 22-63
menus 22-18 to 22-19
PRINT option 22-19
READ option 22-19
REREAD option 22-33
screens 22-32 to 22-33
syntax of 26-15

Prompts, system 27-89
PROTECTED attribute

implied autoskip 22-10
in screen display 22-8

PROTECTED display attribute 22-17
Public subsystems 23-20

Q

QTBL table 21-7 to 21-10
error global code 23-9

QUERY PROCESS statement
syntax of 26-15

Quotation marks 30-11 to 30-12
Quoted string

field names 29-2
request composition rules 30-11 to 30-12

R

Raise to the x power 27-131
RANGE option for screens 22-40
Range retrievals

multiply occurring fields 19-3
READ IMAGE statement

QTBL 21-9
syntax of 26-15

READ MENU statement
ALERT option 22-24, 22-25
AT, TO, LEN, and DP options 22-24
Attributes option 22-25
line-at-a-time terminals 22-63
QTBL 21-10
syntax of 26-15
TITLE option 22-24

READ option
menus 22-17, 22-19
screens 22-37

READ SCREEN statement
$CHKMOD function 27-9
evaluation sequence 22-59
line-at-a-time terminals 22-63
NO REREAD option 22-52
QTBL 21-10
syntax of 26-15
WITH CURSOR option 22-53

Reading a procedure 27-85
REC error global value

record locking table full 23-9
RECEIVE statement

QTBL 21-10
syntax of 26-16

Recompiling precompiled procedures 23-13
Index-14 Model 204

Record locking 24-2 to 24-16
conflicts 24-8 to 24-9
considerations for subsystems 23-37
exclusive lock statement 24-11
release statements 24-12, 24-15 to 24-16

Record locking table
error global code 23-9

Recovery procedures 25-2
RED display attribute

in screens 22-9
Redisplaying a screen 22-54
Reference context

global found sets and lists 20-16
Reinitializing

menus 22-26
screens 22-49

RELEASE ALL RECORDS statement 24-12
PQO DML 33-2
syntax of 26-16

RELEASE option, COMMIT statement 24-15
RELEASE POSITION statement

QTBL 21-9
syntax of 26-16

RELEASE RECORDS statement 24-12
PQO DML 33-2
syntax of 26-16

RELEASE statement 24-3
and global foundsets, sort sets, and lists 20-30,

24-13, 24-16
REMEMBER statement 20-19

clearing positions 20-31
REMOVE RECORD statement

PQO DML 33-2
syntax of 26-16

REMOVE RECORDS statement
syntax of 26-16

RENAME PROCEDURE command 23-37
REOPEN option for $BLDPROC 27-8
REPEAT statement

QTBL 21-10
syntax of 26-16

REPEATABLE field attribute
allow multiply occurring fields 32-3

Requests
cancellation message 27-51
continuation 21-15 to 21-19
continuation, rules for 21-17

Required files for subsystems 23-25
REQUIRED option for screens 22-39, 22-40
REREAD option, screens 22-32, 22-33, 22-37
REREAD SCREEN statement

$CHKMOD function 27-9
ALERT option 22-54
AT, TO, and LEN options 22-54

attributes option 22-54
evaluation sequence 22-59
line-at-a-time terminals 22-64
QTBL 21-10
syntax for 26-16
TITLE option 22-54
WITH CURSOR option 22-54

Reserved communication global variable name 23-7
Reserved rows and columns in full screen format-

ting 22-8
Reserved variables

menus and screens 22-12
Reserved words and characters 29-2 to 29-3, 30-12
RESET statement

syntax of 26-16
RESULT macro

limitations 27-2
Retrieval conditions

numeric 32-5
syntax 26-22 to 26-23

Retrieval optimization
KEY field attribute 32-4
NUMERIC RANGE field attribute 32-5
ORDERED field attribute 32-5

RETRY statement
QTBL 21-8
syntax of 26-17

RETURN statement
syntax of 26-17

S

SCLASS
$SCLASS function 23-38, 27-96
and compiling procedures 23-21
privileges for subsystem users 23-20

Screen %variables 22-11 to 22-12
Screen display

in applications 22-8
layout 22-8
protocol 22-9

Screen display attributes
autoskip considerations 22-10
BLINK 22-9
BRIGHT 22-8
DIM 22-8
GREEN 22-9
INVISIBLE 22-8
NOBLINK 22-9
NOREVERSE 22-9
NOUNDERSCORE 22-9
PINK 22-9
PROTECTED 22-8
User Language Manual: Parts III—VI Index-15

RED 22-9
rules and restrictions 22-10
TURQUOISE 22-9
UNDERSCORE 22-9
UNPROTECTED 22-8
VISIBLE 22-8
WHITE 22-9
YELLOW 22-9

Screen item name variables 22-12 to 22-13
:%screen-item-name 22-12

SCREEN statement
definition format 22-29
purpose 22-31
syntax of 26-17

Screenlines 22-30
Screens

correction 22-7
defined 22-3
definition example 22-46 to 22-47
definition statements for 22-29 to 22-31, 22-47
line-at-a-time terminals 22-63 to 22-64
manipulation example 22-60 to 22-62
manipulation statements for 22-48 to 22-49
positioning 22-8
processing 20-21

Security
field level 27-56 to 27-57
subsystems 23-20 to 23-22

Selection character for $EDIT
simple 27-45
special 27-45 to 27-46

Semicolon, as logical line delimiter 30-7 to 30-8
Semipublic subsystems 23-20
SEND statement

QTBL 21-10
syntax of 26-17

Sequential input, reading 27-92
Service subsystem 23-30
SET HEADER statement, $SETP function invalid

27-98
SET statement

HEADER 27-60
specifications 26-24
syntax of 26-17
TRAILER 27-60

SFGE$ condition 33-3
SFL$ condition 33-3
SFT error code

terminal I/O 23-10
SFT error global value

soft restart 23-9
Share mode 24-3
SIGNAL PROCESS statement

QTBL 21-10

syntax of 26-17
Simple insertion character for $EDIT 27-40, 27-42
Since-last statistics, subsystems 23-39, 23-40
Sine, computation 27-131
SKIP n LINES statement

menus 22-20
screens 22-43
syntax of 26-18

SKIP n POSITIONS statement
syntax of 26-18

Soft restart
error global code 23-9

Sort field
multiply occurring fields 19-2

SORT RECORD KEYS statement
PQO DML 33-2
syntax of 26-18
VISIBLE field attribute 32-5

SORT RECORDS statement
BY EACH option 19-11 to 19-12
continuations 21-18
global sorted found sets 20-18
PQO DML 33-2
subscript usage 19-22
subscript validity for 19-26
syntax of 26-18
VISIBLE field attribute 32-5

Sort sets
and COMMIT RELEASE statement 20-30, 24-

13, 24-16
SORT VALUES statement

PQO DML 33-2
syntax of 26-18
VISIBLE field attribute 32-5

Sorting records by a multiply occurring field 19-
11 to 19-12

SOUNDEX code 27-99
Square root, computation of 27-131
START SUBSYSTEM command 23-21, 23-27, 23-

31
statement

syntax for 26-7
Statement labels

nested statements 30-2
rules 30-2

Statements
abbreviations for 28-1 to 28-3
block ends for 30-4
differentiated from commands 20-10
format of 30-2 to 30-3, 30-5 to 30-8
numbers A-2 to A-5
syntax summary 26-2 to 26-20

statistics
for GTBL hashing 20-4
Index-16 Model 204

STATS option, TEST command 23-40
STBL table 21-10 to 21-11

error global code 23-10
STOP FILE/GROUP command 23-31
STOP IF COUNT statement

syntax of 26-18
STOP SUBSYSTEM command 23-21
STORE RECORD (ST) statement

$CURREC function 27-16
labeling requirement 30-2
PQO DML 33-3
QTBL 21-10
record locking 24-5
subscript usage 19-22
syntax of 26-18
transaction backout 25-4

String, quoted 30-11 to 30-12
Strings, converting 27-126
SUBROUTINE statement

syntax for 26-19
Subscripted fields 19-21 to 19-26

usage restrictions 19-22 to 19-23
validity rules 19-24

subscripted fields
improved value extraction 19-21

Subscripts
syntax of 26-27

Subsystem error procedure
description and example 23-18 to 23-19
driver processing 23-28
error global variable 23-4
facilities 23-2
using the audit trail 23-10

Subsystem exit value 23-6
SUBSYSTEM LOGIN 23-31
Subsystem Management facility 23-2
SUBSYSTEM option, TEST command 23-40
Subsystems

coding considerations 23-35 to 23-37
communications global variable handling 23-10
control transfer 23-6 to 23-8
definition options 23-24
design components 23-4 to 23-13
determining status ($SUBSYS function) 27-

104 to 27-105
development tools 23-39
guidelines for writing procedures 23-16
multiple procedure files 23-40 to 23-41
operating options 23-23 to 23-26
processing components 23-16 to 23-19
processing flow 23-27 to 23-29
record locking considerations 23-37
security 23-20
status settings 23-20

testing and debugging facilities 23-39 to 23-40
trust definitions 23-33
types of procedures 23-16
user class 23-20 to 23-21, 23-28, 23-38, 27-96

Suppression character for $EDIT 27-41 to 27-43,
27-44

Synonym, file, for remote file specification 33-3
Syntax

expressions 26-25
IN clause 26-26
print specifications 26-24
retrieval conditions 26-22 to 26-23
subscripts 26-27
terminal display attributes 26-28
type specification for DECLARE SUBROUTINE

statement 26-29
value specifications 26-21

SYSOPT parameter 27-68

T

Table C
using the KEY attribute 32-4

Table C searches
NUMERIC RANGE attribute 32-4

Tables, code search 27-15
TAG fields

default base-color 22-9
default extended-color 22-10

TAG option, for screens 22-37
TAG statement

purpose 22-55
QTBL 21-10
syntax of 26-19

Tagged screen items 22-55
Tangent, computation of 27-131
TBL - FSCB error global value

FSCB too small 23-9
TBL - NTBL error global value

NTBL too small 23-9
TBL - QTBL error global value

QTBL too small 23-9
TBL - STBL error global value

STBL too small 23-10
TBL - VTBL error global value

VTBL too small 23-10
TCAM 3270 terminals A-9
Temporary groups

error global code 23-9
error global field code 23-9

Temporary procedure creation 27-7
Terminal display attributes

basic 22-8
User Language Manual: Parts III—VI Index-17

color 22-9
highlighting 22-9

Terminal emulators
modifying color mappings 22-10

Terminal I/O
HNG error code 23-10
HRD error code 23-10
SFT error code 23-10

Terminals, line-at-a-time 22-63
TEST command 23-21, 23-39
TEST statement, syntax 26-19
TEST SUBSYSTEM command 23-39
threads

waiting for an ECB 27-83
TITLE fields

default base-color 22-9
default extended-color 22-10

TITLE option
menus 22-24
screens 22-51, 22-54

TITLE statement
AT, TO, LEN, and DP options 22-16 to 22-17
DEFAULT option 22-17
line-at-a-time terminals 22-63
menus 22-16 to 22-17
PRINT option 22-17
READ option 22-17
REREAD option 22-32
syntax details 22-32
syntax of 26-19

TO option
menus 22-16 to 22-17, 22-18 to 22-19, 22-24,

22-25
output spacing 19-7, 19-8
screens 22-34 to 22-35, 22-51, 22-54

Transaction backout
application design considerations 25-9 to 25-11
automatic 25-6
file types 25-3
log 25-9
manual 25-6 to 25-8
types 25-6

Transaction, defined 24-14
TRANSFER CONTROL statement

syntax for 26-19
TRANSFER statement

QTBL 21-10
TRANSPARENT argument for $READ 27-89
Trust levels, defined 23-33 to 23-34
TTBL table 21-11
TURQUOISE display attribute

in screens 22-9
DEFAULT 26-7

U

UDDCCC parameter 27-98
UDDLPP parameter 27-98
UNDERSCORE attribute

in screen display 22-9
UNIQUE field attribute

$UNQREC function 27-110
$UPDSTAT function 27-113
contrasted to AT-MOST-ONE attribute 32-3
defined 32-5
ensuring only one occurrence of a field value

32-5
UNPROTECTED attribute

default TAG attribute 22-37
in screen display 22-8

UNPROTECTED display attribute 22-17, 22-26, 22-
37, 22-49

UNSIGNED argument for $PACK 27-82
UPCASE option, for screens 22-35
UPDATE AT END field attribute 19-9, 19-19

defining type of field update 32-6
UPDATE IN PLACE field attribute 19-9, 19-19, 32-6
UPDATE RECORD statement

PQO DML 33-3
Update units 25-4 to 25-5
Updating indexes immediately

NON-DEFERRABLE attribute 32-4
USE command

PRINT SCREEN statement 22-51
User final and partial statistics, determining 27-100
User ID 27-2
User identification 27-114
user-written $functions

changes required in Version 5.1 27-2
UTABLE command 21-4, 21-18, 22-3

and the command line global variable 23-5

V

Validating input in full screen formatting 22-7
VALUE IN phrase

multiply occurring fields 19-13
Parallel Query Option/204 33-3
syntax of 26-21
with FEO loops 19-16

variables 22-11
VARIABLES ARE statement

syntax of 26-20
VERIFY option for screens 22-40
Video display terminal

standard size 22-8
VISIBLE attribute
Index-18 Model 204

default TAG attribute 22-37
for screen display 22-8

VISIBLE display attribute 22-17, 22-37
VISIBLE field attribute

mandatory usage 32-5
VM

location of ZFIELD image 27-72
VSE

location of ZFIELD image 27-72
VTAM

returning network ID 27-93
VTBL table 21-12 to 21-14

error global code 23-10

W

WAIT statement, syntax 26-20
WHITE display attribute

in screens 22-9
Wildcard pattern character 27-94
Wildcards

$DELG function 27-32
WITH CURSOR option 22-51, 22-53, 22-54
WITH option

screens 22-37
Work area tables 21-3
WRITE IMAGE statement

syntax of 26-20

X

XFER global variable 23-6, 23-7

Y

YELLOW display attribute
in screens 22-9

YY date format
2-digit year 27-18

YYYY date format
4-digit years 27-18

Z

z/OS
location of ZFIELD image 27-72

ZFIELD image
for $FDEF and $LSTFLD functions 27-52, 27-72
locating 27-72
User Language Manual: Parts III—VI Index-19

Index-20 Model 204

	Preface
	Part III Advanced Features and Considerations
	19 Operations on Multiply Occurring Fields
	In this chapter
	Overview
	Special processing for multiply occurring fields

	FIND statement
	Retrieval
	Multi-condition range retrievals
	Use of subscripts

	NOTE statement
	Only first occurrence is noted
	Use of subscripts

	PRINT and PRINT n statements
	PRINT statement output format
	Use of subscripts
	PRINT n statement

	ADD, CHANGE, and DELETE statements
	ADD statement
	CHANGE statement
	DELETE statement

	SORT RECORDS statement
	EACH modifier with one sort field
	EACH modifier with several key fields
	If no occurrences are present

	FOR EACH RECORD statement
	EACH modifier

	Special statements for multiply occurring fields
	COUNT OCCURRENCES OF statement
	FOR EACH OCCURRENCE OF loops
	Deleting occurrences
	VALUE IN with FOR EACH OCCURRENCE loops
	FOR EACH OCCURRENCE OF against INVISIBLE fields

	UPDATE field attribute
	Impact of changing a value
	If the UPDATE IN PLACE option is specified
	If the UPDATE AT END option is specified

	Subscripts
	Subscripted field extraction
	Evaluation of subscript expressions
	Statements and phrases with which you cannot use subscripts
	Unsubscripted field references
	Do not use subscripts with INVISIBLE fields

	Subscript validity rules
	Explanation of the rules
	INSERT statement
	PRINT statement
	DELETE statement
	CHANGE statement
	SORT RECORDS statement

	20 Global Features
	In this chapter
	Overview
	GTBL internal work area
	Global string variables
	Global found sets and lists
	Global positions
	Global images and screens

	Global string variables
	Global string variable names and values
	Clearing global string variables
	Global variable functions and commands
	Using global string variables in application subsystems

	Passing string values from one request to another
	Using global string variables with a conditional INCLUDE command
	Differences between commands and User Language statements
	Conditional and unconditional INCLUDEs
	Keep IF commands at as high a nesting level as possible

	Using global string variables to tailor a request
	Global objects
	General rules for declarations
	Incompatibility
	Clearing global objects from GTBL

	Using global found sets and lists
	Example 1: Referencing a global found set
	Example 2: Maintaining file context

	Using global sorted sets
	Limiting subsequent references
	Keeping all fields accessible for subsequent references

	Saving and recalling a POSITION in a FOR loop
	REMEMBER statement
	POSITION statement

	Global images and screens
	Declaring global images and screens
	How images and screens are processed
	Images and screen processing
	Using PREPARE and IDENTIFY statements
	Performance and efficiency benefits
	When to use global images and screens
	Consistency checks performed

	Using global images and screens
	System administration issues

	Clearing the GTBL work area
	Using the CLEARG and CLEARGO commands
	Using the $DELG function
	Using the CLEAR statement
	Clearing global found sets and lists
	RELEASE and COMMIT RELEASE statements with global foundsets and lists
	Clearing remembered positions
	Timing and placement of a CLEAR statement
	Performance considerations

	21 Large Request Considerations
	In this chapter
	Overview
	User Language internal work areas
	Summary of work areas
	Resetting table sizes
	Pushdown list and QTBL size increase

	Description of tables
	FSCB (full-screen buffer)
	FTBL (file group table)
	GTBL (global variable table)
	ITBL (dummy string and $READ response table)
	NTBL (statement labels/list names/variables table)
	QTBL (internal statement table)
	STBL (character string table)
	TTBL (temporary work page list table)
	VTBL, the compiler variable table

	Request continuation
	MORE command

	Rules for request continuation
	Avoid too many continuations
	Starting and ending requests and continuations
	Multiple continuations
	References in a continuation
	Restrictions applying to request continuations
	ON units
	Interaction with SORT statement

	Part IV Application Development
	22 Full-Screen Feature
	In this chapter
	Overview
	Menus and screens
	LFSCB parameter setting
	Maximum number of screens and menus
	Global screens and menus
	Screen and menu formatting
	Screen and menu items
	Screen and menu definition
	Screen and menu manipulation
	Full-screen variables

	Full-screen processing
	Menu displayed
	Operator interaction with menu
	Screen displayed
	Input validation

	Application display considerations
	Screen display area
	Display attributes
	Extended display attributes
	How display colors are assigned
	Display attribute rules and restrictions

	Full-screen variables
	Types of variables used
	Menu and screen variables
	Reserved variables
	Screen item name variables

	Defining menus
	Summary of menu definition statements

	MENU and END MENU statements
	MENU statement
	END MENU statement

	TITLE statement for menus
	PROMPT statement for menus
	SKIP statement for menus
	MAX PFKEY statement for menus
	Menu definition example
	Menu manipulation
	Menu manipulation statements

	READ MENU statement
	AT, TO, LEN, and attributes options for READ MENU

	PRINT MENU statement
	MODIFY and PREPARE MENU statements
	MODIFY statement
	PREPARE statement

	Menu manipulation example
	Defining screens
	Screen definition format
	Screen definition statements
	Screenlines
	Logical and physical panels

	SCREEN and END SCREEN statements
	SCREEN statement
	END SCREEN statement

	TITLE and PROMPT statements for screens
	TITLE statement
	PROMPT statement

	INPUT statement
	AT, TO, LEN, and DP options
	COLUMN keyword
	UPCASE and NOCASE options
	DEFAULT option
	DEBLANK or NODEBLANK option
	PAD WITH ‘c’ option
	Automatic validation options
	READ option
	REREAD option
	PRINT option
	TAG option
	ITEMID option

	Automatic validation options for INPUT
	Multiple validation criteria

	DEFAULT statements
	Scope of DEFAULT TITLE or PROMPT or INPUT statements

	SKIP and NEW PAGE statements
	SKIP statement
	NEW PAGE statement

	MAX PFKEY statement for screens
	How the pressing of PF keys greater than n is handled

	INCLUDE statement
	Screen definition example
	Screen manipulation
	Screen manipulation statements

	MODIFY and PREPARE statements for screens
	MODIFY statement
	PREPARE statement

	PRINT SCREEN statement
	READ SCREEN statement
	NO REREAD option
	WITH CURSOR option

	REREAD SCREEN statement
	TAG and CLEAR TAG statements
	TAG statement
	CLEAR TAG statement

	Cursor handling
	Reserved cursor variables
	Using cursor setting
	Example of cursor setting
	Using cursor sensing

	READ, REREAD, and PRINT evaluation sequence
	Screen manipulation example
	Line-at-a-time terminal support
	Menus
	Screens

	23 Application Subsystem Development
	In this chapter
	Overview
	Advantages of subsystems
	Subsystem definition

	Subsystem design components
	Command line global variable
	Using the command line global variable
	Transferring control to another subsystem
	Impact of the UTABLE command

	Communication global variable
	Transferring control
	Transferring control between procedures
	Transferring control between subsystems
	Coding considerations

	Error global variable
	Error code values
	Error procedures

	Precompiled and non-precompiled procedures
	Defining prefixes
	Contents of subsystem procedures
	Shared versions of precompiled procedures
	Restrictions for precompiled procedures
	Restrictions for temporary and ad hoc groups in precompiled procedures
	Recompiling precompiled procedures
	Procedure compilation and Parallel Query Option/204

	Subsystem procedures
	Types of subsystem procedures
	Guidelines and restrictions
	Initialization procedure
	Login procedure
	Main processing procedures
	Error procedure

	Security options
	Status of subsystem
	User class
	Processing of security violations
	Compiling procedures with a different SCLASS

	Operating options
	Automatic start
	Locking files and groups for subsystem use
	Automatic login
	Automatic logout
	Automatic COMMIT
	Message displays
	File usage

	Subsystem processing flow
	Initialization processing
	Login processing
	Driver processing
	Disconnect processing
	Error processing

	Parallel Query Option/204 considerations
	Remote file access
	Node availability
	File and group availability
	Trust

	Subsystem design considerations
	Coding considerations

	Record locking considerations
	If subsystem files are defined as unlocked

	Subsystem procedure control functions
	$SCLASS function
	$SUBSYS function

	Subsystem development tools
	Debugging and testing facilities
	Multiple procedure files
	Cross-Reference facility

	Part V Data Integrity
	24 Record Level Locking and Concurrency Control
	In this chapter
	Overview
	Concurrent updates
	Record locking

	Record level locking
	Record locking modes
	Request compilation and evaluation
	Evaluation rules
	Locking conflicts

	FIND WITHOUT LOCKS statement
	Locking conflicts
	Responses to locking conflicts
	ENQRETRY parameter
	ON RECORD LOCKING CONFLICT and ON FIND CONFLICT statements
	CLEAR ON statement
	PAUSE statement
	Handling Parallel Query Option/204 record locking conflicts

	Record locking and release statements
	FIND AND RESERVE statement
	RELEASE RECORDS statement
	RELEASE ALL RECORDS statement
	RELEASE and COMMIT RELEASE statements with global foundsets and lists

	Lock pending updates
	Processing
	Set with the FOPT parameter

	COMMIT statement
	RELEASE option
	RELEASE and COMMIT RELEASE statements with global foundsets and lists

	25 Data Recovery
	In this chapter
	Overview
	Transaction backout
	Application considerations

	Transaction backout
	FOPT and FRCVOPT parameters
	Types of backout

	Update units
	Backoutable units
	Non-backoutable units

	Using backout
	Automatic backout
	Manual backout

	Design considerations for transaction backout files
	Update requests
	ON ATTENTION units
	CCATEMP space
	Logical inconsistency
	Terminal I/O points

	Part VI Reference and Appendix
	26 Command and Statement Syntax
	In this chapter
	Overview
	Notation conventions used in this chapter
	User Language statements
	Value specification syntax
	Retrieval condition syntax
	Omitting repeated first words
	Omitting duplicated equal signs
	Use of parentheses

	Print specification syntax
	Expression syntax
	IN clause syntax
	IN GROUP MEMBER limitations
	Using an IN clause in a BEGIN…END block

	Subscript syntax
	Terminal display attributes
	List of attributes

	Type syntax for the DECLARE SUBROUTINE statement

	27 User Language Functions
	In this chapter
	Standard functions
	Changes required to user-written $functions
	$ACCOUNT
	$ACCT
	$ALPHA
	$ALPHNUM
	$ARRSIZE
	$ASCII
	$BINARY
	$BLDPROC
	$CENQCT
	$CHKMOD
	$CHKPAT
	$CHKPINF
	$CHKSFLD
	$CHKTAG
	$CODE
	$CURFILE
	$CURREC
	$C2X
	Overview of $DATE functions
	$DATE
	$DATECHG
	$DATECHK
	$DATECNV
	$DATEDIF
	$DATEJ
	$DATEP
	$DAY
	$DAYI
	$DEBLANK
	$DECODE
	$DELG
	$DSCR
	$DSN
	$DSNNUM
	$ECBDGET
	$ECBDSET
	$ECBTEST
	$ECFSTAT
	$EDIT
	$EFORMAT
	$ENCRYPT
	$ENTER
	$ERRCLR
	$ERRMSG
	$FDEF
	$FLDLEN
	$FLOAT
	$FLOATD
	$FLSACC
	$FLSCHK
	$FSTERR
	$GETG
	$GETL
	$GETP
	$GRMLOC
	$GRMNAME
	$GRNLEFT
	$GRNMISS
	$GROUPFILES
	$HPAGE
	$HSH
	$INCRG
	$INDEX
	$ITSOPEN
	$ITSREMOTE
	$JOBCODE
	$LANGSPEC
	$LANGSRT
	$LANGUST
	$LEN
	$LOWCASE
	$LSTFLD
	$LSTPROC
	$MISGRUP
	$MISLOC
	$MISNAME
	$MISNUM
	$MISSTMT
	$MOD
	$OCCURS
	$ONEOF
	$PACK
	$PAD
	$PADR
	$POST
	$RDPROC
	$READ
	$READINV
	$READLC
	$REMOTE
	$REVERSE
	$RLCFILE
	$RLCREC
	$RLCUID
	$RLCUSR
	$ROUND
	$SCAN
	$SCLASS
	$SETG
	$SETL
	$SETP
	$SLSTATS
	$SNDX
	$SQUARE
	$STAT
	$STATUS
	$STATUSD
	$STATUSR
	$STRIP
	$SUBSTR
	$SUBSYS
	$TCAMFHP
	$TIME
	$UNBIN
	$UNBLANK
	$UNFLOAT
	$UNPACK
	$UNPOST
	$UNQREC
	$UPCASE
	$UPDATE
	$UPDFILE
	$UPDFLD
	$UPDLOC
	$UPDOVAL
	$UPDREC
	$UPDSTAT
	$UPDSTMT
	$UPDVAL
	$USER
	$USERID
	$USRPRIV
	$VALIDATE_NUMERIC_DATA
	$VERIFY
	$VIEW
	$VNUM
	$WAIT
	$WORD
	$WORDS
	$X2C

	Mathematical functions
	$ABS(x)
	$ARCCOS(x)
	$ARCSIN(x)
	$ARCTAN(x)
	$ARCTAN2(x,y)
	$COS(x)
	$COSH(x)
	$COTAN(x)
	$ERF(x)
	$ERFC(x)
	$EXP(x)
	$GAMMA(x)
	$IXPI(x,y)
	$LGAMMA (x)
	$LOG(x)
	$LOG10(x)
	$MAX(X1, X2, X3, X4, X5)
	$MIN(X1, X2, X3, X4, X5)
	$PI
	$RXPI(x,y)
	$RXPR(x,y)
	$SIN(x)
	$SINH(x)
	$SQRT(x)
	$TAN(x)
	$TANH(x)

	28 Abbreviations
	In this chapter
	User Language abbreviations
	Command abbreviations

	29 Reserved Words and Characters
	In this chapter
	Rules for reserved words and characters
	How to refer to a field name containing reserved words or characters

	30 Request Composition Rules
	In this chapter
	Statement labels
	Statements that must be labeled
	Unlabeled statements
	Label references

	Statement block ends
	Beginning a block
	Ending a block statement

	Statement format
	Begin statements on a new line
	Statement continuation
	Line length
	Blanks between words
	Where lines can begin
	Logical lines
	Use of semicolon to perform a carriage return

	Field names and values
	Rules for field names
	Rules for field values
	Use of quotes with field values

	Quotation marks
	Uses for quotation marks
	Rules for using quotation marks
	Quotation marks designating a null string
	Quoting a reserved word

	31 Floating Point Conversion, Rounding, and Precision Rules
	In this chapter
	Conversion
	Mapping and precision adjustment
	Assigning floating point numbers to floating point numbers of different lengths

	32 Field Attributes
	In this chapter
	File model feature
	Field attribute descriptions
	AT-MOST-ONE and REPEATABLE attributes
	AT-MOST-ONE versus UNIQUE attributes
	FLOAT attribute
	FOR EACH VALUE attribute
	INVISIBLE attribute
	KEY attribute
	LENGTH attribute
	NON-DEFERRABLE attribute
	NUMERIC RANGE attribute
	OCCURS attribute
	ORDERED attribute
	UNIQUE attribute
	VISIBLE attribute
	UPDATE attribute

	33 DML statements in Parallel Query Option/204
	In this chapter
	Parallel Query Option/204 DML
	DML statements and retrieval conditions
	Using IN clauses
	Using field names in expressions

	Restricted commands and $functions
	Restricted Model 204 commands
	Restricted $functions

	A Obsolete Features
	In this appendix
	Statement numbers
	FOPT parameter
	Rules for using statement numbers

	$DSCR function
	$TCAMFHP function
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Index

