

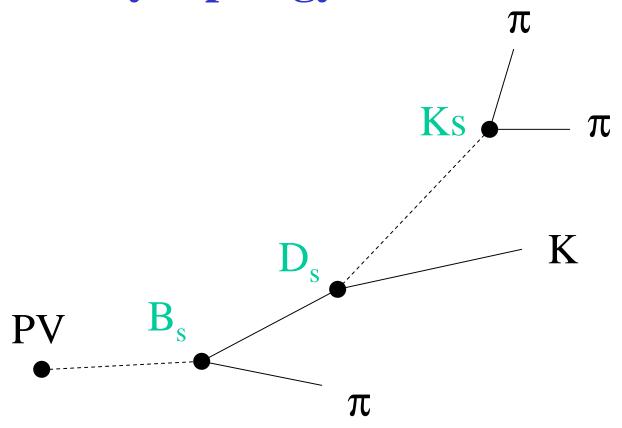
Study of $B_s \rightarrow D_s \pi$ reconstruction with $D_s \rightarrow KsK$

Juan Pablo Fernandez, Kim Giolo, Daniela Bortoletto, *Purdue University*

- Motivations
- MC studies
- •Ks Dedicated Alg. vs Default
- •Results from data
- Conclusions/Future plans

Motivations:

- Clean channel
- •BR($D_s \rightarrow KsK$) = 1.8%
- •ISL now works
- •Join the effort to collect statistic in $B_s \rightarrow D_s \pi$


Drawbacks:

- •Three vertices decay
- •Lower luminosity due to ISL problem

3

Decay topology

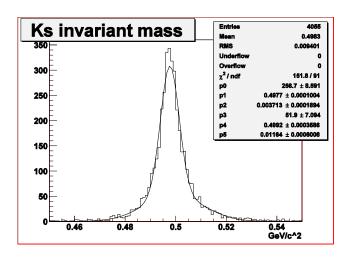
 π (from B_s) and K trigger in 95.7% of cases (MC scenario A): good handle to beat combinatorial background

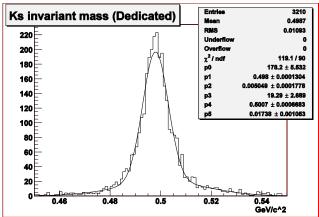
Reference channel $B^0 \to D^-\pi^+$, $D^- \to Ks\pi^-$: very similar topology and kinematics

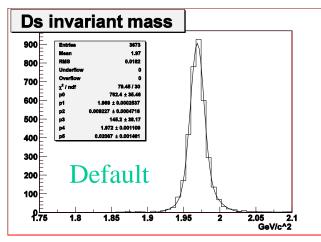
Tools

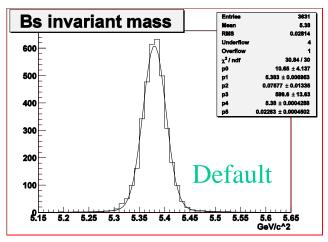
- CharmMods 4.9.1
- •VertexFit (fixed to handle two 1-track vertices decays)
- •KsRecModule (modified)

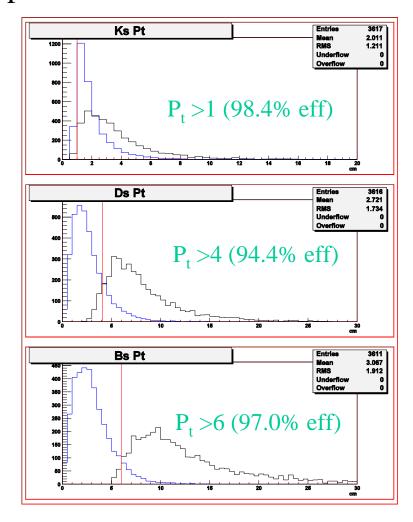
Generated 2M events with Full MC (BGen+QQ+ CdfSim + TrigSim +SVTFilter) according to Alex recipe


Reconstruction in MC

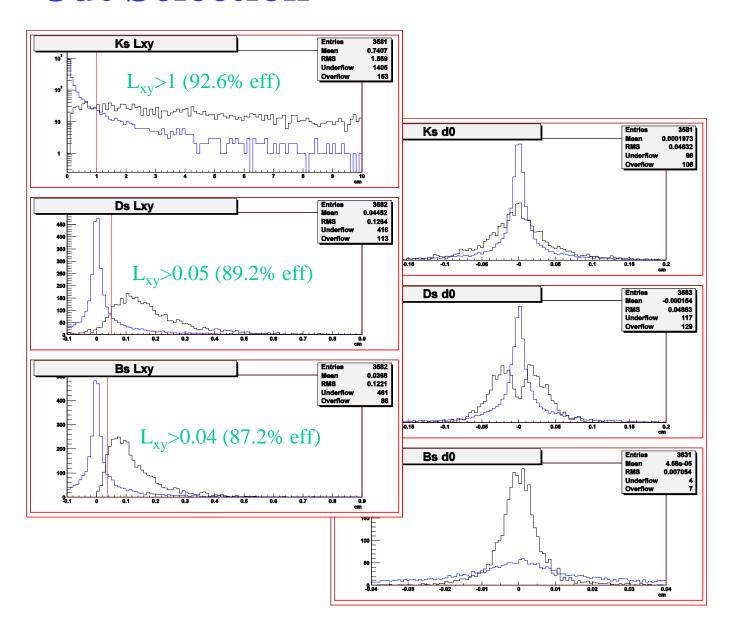

- •25 Ax and 25 St COT hits each track
- •3 r- ϕ Si hits for $\pi(B_s)$ and K
- •Track Pt >0.4 GeV and $|\eta|$ < 2 each track


	Events	Efficiency
Generated	2,000,000	-
Passed L1+L2 trigger	16,502	0.82%
D _s Reconstruction (Def.)	3,673	22.3%
B _s Reconstruction (Def.)	3,631	98.3%


Mass resolutions



- •No Mass constrain (not supported yet)
- •Tracks with different # of Si hits: mass fit with two gaussians
- •Ded. Alg. Requires only 20 Ax and St COT hits: slightly worse Ks Mass resolution
- •B_s Mass resolution strangely worse then in other studies


Cut Selection

- •Used generic bbar MC sample (from Saverio) as background (blue)
- •Signal (**black**) normalized to the number of entries
- •No meant to be an optimization, but a resonable starting point

Cut Selection

- Cuts agree with other studies
- •Total cut efficiency $\varepsilon_{ana}=70\%$

Common Reconstruction requirements

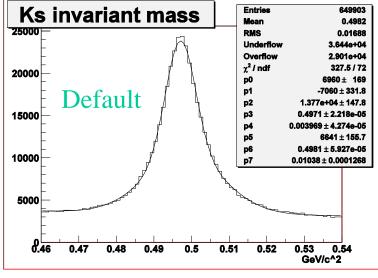
Retrack

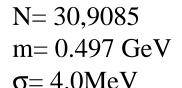
- •KAL method
- •Drop L00, Keep ISL
- •Rescale COT Cov:

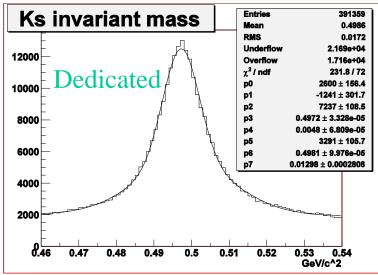
cur=5.33, d0=3.01,
$$\phi_0$$
=3.7, Z_0 =6.53, λ =0.58

•Alignment: ofotl_prd_read 100024 24 TEST (ISL internal alignment)

Quality Cuts

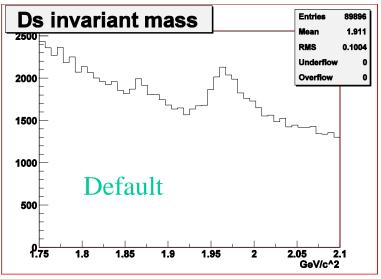

- •25 Ax and 25 St COT hits each track
- •3 r- ϕ Si hits for $\pi(B_s)$ and K
- •Track Pt >0.4 GeV and $|\eta|$ < 2 each track


Data


- •Used 2335 files on CAF hbot0h (prereq B_CHARM) run #>149355(ISL)
- •Eliminated bad runs (Stefano recipe)
- •Luminosity <53 pb⁻¹

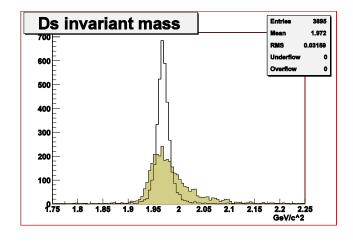
$K_S \rightarrow \pi \pi$

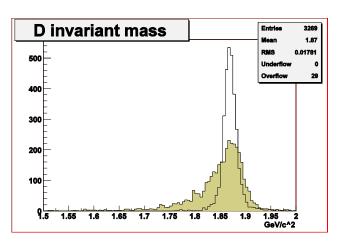

- •Prob >10⁻⁴ •L_{xv} (Ks)>1 cm
- •Pt (Ks)>1 GeV

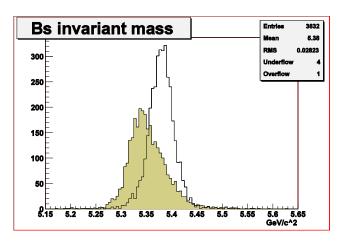

N=19,0537 m=0.497 GeV $\sigma=5.0\text{MeV}$

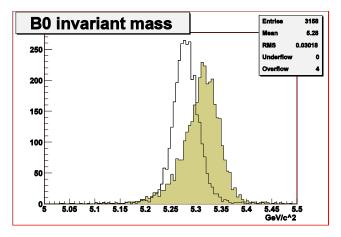
- •Ded. Alg with 10% less statistics (jobs crashed)
- •Ded. Alg. has better S/N (1.75 vs 1.63), but much less efficient
- • N_{def}/N_{ded} ~ 1.45 in fairly agreement with MC value of 1,26
- •Resolutions agree with MC

$D_s \rightarrow KsK$

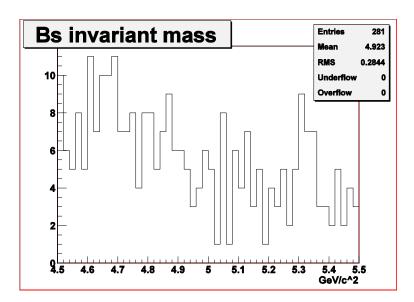



- $\bullet 0.470 < m(Ks) < 0.525$
- $\bullet L_{xy}$ (Ks)>1 cm
- •Pt (Ks)> 1 GeV
- $\bullet L_{xy}(D_s) > 0.05 \text{ cm}$
- $\bullet Pt'(D_s) > 5 \text{ GeV}$
- •Prob $> 10^{-4}$
- •Third track must be a trigger track

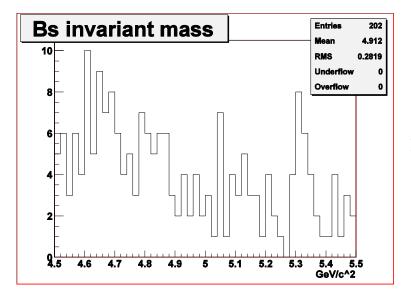

- •Ded. Alg. not competitive yet
- •Small peak on the left is D \rightarrow KsK (BR 3 x 10⁻³)
- •D_s peak broad due to reflection of D \rightarrow Ks π



Signal reflections



- •Generated 2M evts of reference channel (0.76% trigger efficiency)
- •Assigned wrong K or π hypothesis (shaded areas)
- •Reflected signal very close also at B rec. level, but separation can improve with mass constraints
- •A BR measurement will be very difficult!



Department of Physics

All candidates

Best χ^2 candidates only

- $\bullet 0.470 < m(Ks) < 0.525$
- $\bullet L_{xy}$ (Ks)> 1 cm
- •Pt (Ks)> 1 GeV
- •1.93 <m(D_s)<2.00
- $\bullet L_{xy}(D_s) > 0.05 \text{ cm}$
- •Pt $(D_s) > 5 \text{ GeV}$
- $\bullet L_{xy}(B_s) > 0.04 \text{ cm}$
- •Pt $(B_s) > 6 \text{ GeV}$
- •Prob $> 10^{-4}$
- •K and π (B_s) tracks must be trigger tracks

Peak consistent with reflection

Is the number of events we see consistent?

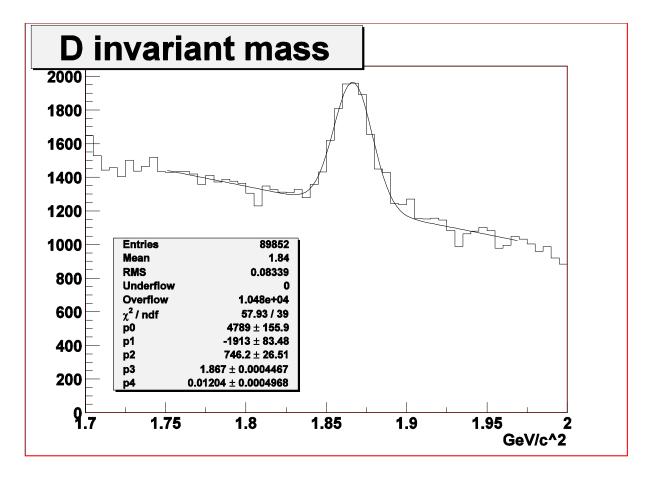
$$\frac{N(Bs)}{N(Bd)} = \ \, \frac{f_s}{f_d} \; x \; \frac{\epsilon_{trig(Bs)}}{\epsilon_{trig(Bd)}} \; x \; \; \frac{\epsilon_{ana(Bs)}}{\epsilon_{ana(Bd)}} \; x$$

$$x \frac{BR(D_s \to KsK) BR(B_s \to D_s \pi)}{BR(D \to Ks\pi) BR(B_d \to D \pi)}$$

$$= \underbrace{0.23}_{} \times \underbrace{\frac{0.82}{0.76}}_{} \times \underbrace{\frac{0.70}{0.76}}_{} \times \underbrace{\frac{2.6}{3.0}}_{} \underbrace{\frac{1.8}{1.4}}_{} = \underbrace{0.20}_{}$$

$B^0 \rightarrow D \pi MC study$

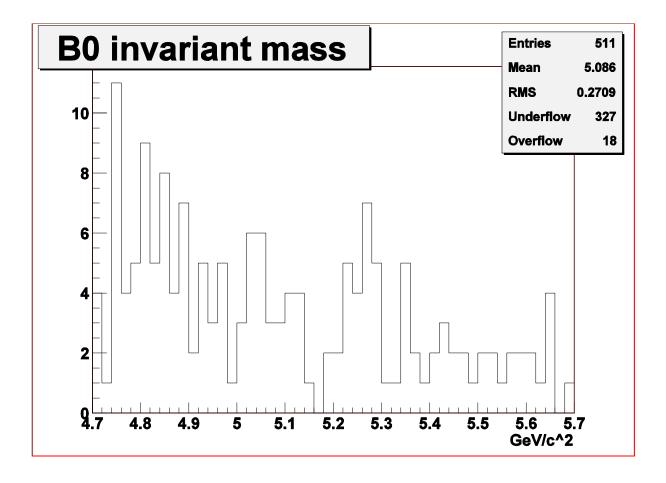
Efficiencies


	Events	Efficiency
Generated	2,000,000	_
Passed L1+L2 trigger	15,242	0.76%
D _s Reconstruction	3,269	21.5%
B _s Reconstruction	3,158	96.6%

Mass resolutions

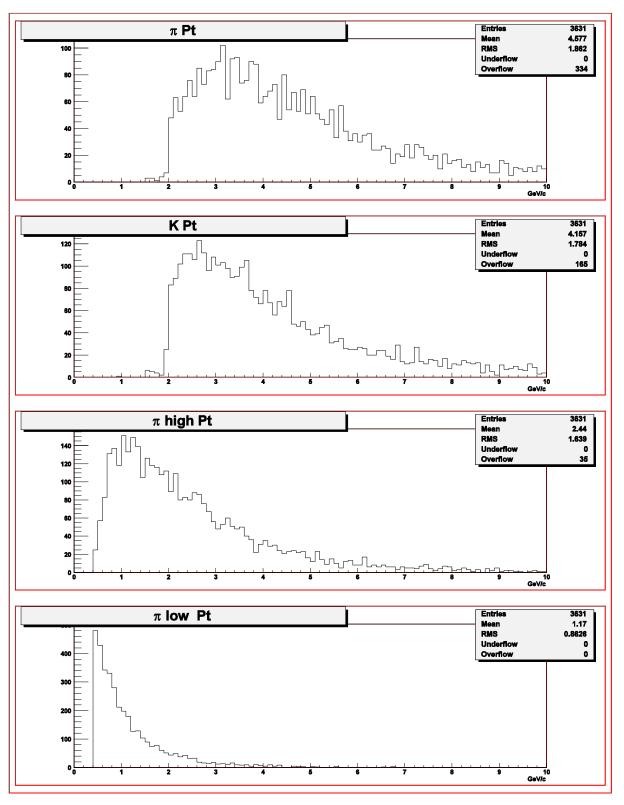
	σ_1 (MeV)	σ_2 (MeV)
D	10.9+/-0.3	31.8+/-3.4
$oxed{B^0}$	22.8+/-0.6	67.4+/-9.9

$D^- \rightarrow Ks \pi^+$



N= 4,665 m= 1.867 GeV σ= 12MeV S/N= 0.298

- •Same cuts used to reconstruct D_s
- •Reflection from $D_s \rightarrow Ks K$ not evident
- •Mass resolution agrees with MC



$$\mathbf{B}^0 \rightarrow \mathbf{D}^- \pi^+$$

- •About 40% less statistics than other plots (jobs still running)
- ulletSame cuts used to reconstruct B_s

Conclusions

- Dedicated algorithm not competitive yet
- •BR measurement difficult due to reflections
- •B_s reconstruction feasible in this channel (cuts optimization and more luminosity)

Future plans

- •Run on full sample
- Optimize cuts
- Understand better peak composition (CDF Note 4239)
- •Use dE/dx and kinematics to disentangle reflection

This document was cre The unregistered version	eated with Win2PDF avo	ailable at http://www.da /aluation or non-comme	neprairie.com. ercial use only.