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A review of chiral perturbation theory for lattice QCD at non-zero lattice spacing is given.

1. Introduction

In spite of constant progress in computer tech-
nology, numerical lattice simulations with quark
masses as light as realized in nature are out of
reach. The smallest values for the ratio Mπ/Mρ

reported by various collaborations during this
conference [1] range from 0.35 to 0.66 for Wil-
son fermions with 2 flavors to 0.62 for those with
2+1 flavors. Simulations with staggered fermions
reached a value of 0.3, and 2 flavor domain-wall
fermions were performed at a value of 0.53. All
these numbers are still far away from the physical
value 0.18. Consequently, numerical lattice simu-
lations still require a rather long extrapolation in
the light quark masses to their physical values.

The necessary guidance to perform the extrap-
olation is usually provided by chiral perturbation
theory (χPT) [2,3]. This low-energy effective the-
ory for QCD predicts the quark mass dependence
of various physical quantities. A well-known ex-
ample is the one-loop expression for the pion mass
(Nf = 2 and mu = md = m),

M2
π

2Bm
= 1 +

2Bm

32π2f2
ln

2Bm

Λ2
+ analytic. (1)

In order to use this expression one must make
sure that one is in the chiral regime where χPT
holds. It is widely believed that a non-trivial
check for this is provided by the logarithmic quark
mass dependence in eq. (1): Once the lattice data
shows the characteristic curvature of the chiral
logarithm one can apply eq. (1) with confidence
for the chiral extrapolation [4].

There is a potential problem with this argu-
ment. The derivation of χPT is essentially based
on symmetry properties of continuum QCD.

Hence the continuum limit has to be taken first
before χPT can be employed to perform the chiral
extrapolation.

There are various reasons why one may like to
reverse this order. Obviously, as long as data for
only one lattice spacing is available the contin-
uum limit cannot be taken. Performing the chiral
extrapolation first is also simpler in practice.

Whatever the reasons might be, performing the
chiral extrapolation before taking the continuum
limit raises the question whether it is legitimate
to use expressions derived in continuum χPT. Op-
timistically one may hope to commit just a small
error, assuming the lattice spacing is small. How-
ever, it is a priori not clear whether the functional
form in eq. (1) is valid at all at non-zero lat-
tice spacing. This concern is even more justified
taking into account that each of the traditional
lattice fermions (Wilson and staggered) compro-
mises chiral symmetry in some respects. In case
eq. (1) is not appropriate at non-zero a, the ques-
tion is which expression should be used instead?
χPT can be formulated for lattice QCD at non-

zero lattice spacing. The main idea goes back to
two papers [5, 6] published about five years ago.
Since then we have learned a lot about the chi-
ral limit at non-zero lattice spacing. Moreover,
formulae for masses, decay constants etc. were
derived that include explicitly the contributions
due to a non-vanishing lattice spacing. These for-
mulae are the proper expressions one should use
when the chiral extrapolation is performed before
the continuum limit is taken.

In this review I give an overview of χPT at
non-zero lattice spacing. I focus on the method-
ology, point out important differences compared
to continuum χPT and cover the main theoretical
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results.
Some of these results entered already the anal-

ysis of numerical lattice data. I briefly com-
ment on these analyses with the question in mind
whether the simulations are carried out in the chi-
ral regime so that χPT can be applied. I do not
discuss the physical results of these simulations
for the hadron spectrum, quark masses and heavy
quark physics. For these I refer to the plenary
talks given by K-I. Ishikawa, P. Rakow and M.
Wingate at this conference [7].

2. χPT for lattice theories

The basic strategy for constructing χPT for
lattice theories at non-zero lattice spacing is a
two-step matching to effective theories [5, 6]. We
first write down Symanzik’s effective theory [8,9],
an effective continuum theory which describes the
lattice theory close to the continuum limit. The
cut-off effects appear in terms of higher dimen-
sional operators in the effective action and the
effective operators, multiplied by powers of the
lattice spacing a. In the second step one derives
the chiral Lagrangian for this effective theory us-
ing the standard arguments of χPT. This results
in a chiral expansion in which the dependence on
the lattice spacing is made explicit.

The main rôle of Symanzik’s effective theory in
this two-step procedure is that it provides a sys-
tematic expansion of the lattice theory around
continuum limit. It organizes the non-zero lat-
tice spacing effects in powers of a and therefore
according to their importance when the contin-
uum limit is approached. The structure of the
higher dimensional operators in the Symanzik
action determines if and how the cut-off effects
break the symmetries of the corresponding con-
tinuum theory. In particular, the way chiral sym-
metry is broken by the lattice spacing effects is
made transparent, which is crucial for construct-
ing the chiral Lagrangian. Finally, Symanzik’s
effective theory is a continuum theory, and the
well-established derivation of χPT from contin-
uum QCD can be readily extended to this effec-
tive theory with additional symmetry breaking
parameters.

2.1. χPT for Wilson fermions

Consider lattice QCD with Wilson fermions.
Based on locality and the symmetries of the lat-
tice theory, Symanzik’s effective action is of the
form [10,11]

SSym = S0 + aS1 + a2S2 + . . . , (2)

Sk =
∑

i

c
(k+4)
i O

(k+4)
i , (3)

where the O
(n)
i are local operators of dimension n

constructed from the gauge and quark fields and

their derivatives. The constants c
(n)
i are unknown

coefficients. The first term S0 is the usual contin-
uum QCD action. Note that the quark mass in
the fermion part of S0 includes the additive mass
renormalization proportional to 1/a, otherwise a
term S−1 would be present in eq. (2).

Using equations of motion there is essentially
only the Pauli term in S1,

S1 = c1

∫

d4xψiσµνGµνψ. (4)

This term breaks chiral symmetry, and its pres-
ence is a consequence of the explicit chiral sym-
metry breaking by the Wilson term in Wilson’s
fermion action. The complete list of dimension
six operators in S2 can be found in Ref. [10].
Among the terms with fermions (bilinears and 4-
quark-operators) are operators which break chiral
symmetry and ones which preserve it. It is also at
this order in the Symanzik action that the lattice
structure of the underlying theory shows up in
form of quark bilinears that break O(4) rotation
symmetry.

It should be mentioned that not all a depen-

dence is explicit in eq. (2). The coefficients c
(n)
i

are functions of the gauge coupling g2 and are
therefore expected to show a presumably weak,
logarithmic a dependence.

Since the leading term in eq. (2) is the contin-
uum QCD action we expect the lattice theory to
exhibit the same spontaneous symmetry breaking
pattern as in the continuum, provided bothm and
a are small. In that case the low-energy physics
is dominated by pseudo Goldstone bosons, which
acquire a non-zero mass due to the explicit chiral
symmetry breaking by the quark mass and by the
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additional chiral symmetry breaking terms in S1

and S2.
The low-energy chiral effective theory for these

bosons, often called Wilson χPT, is defined by a
chiral effective Lagrangian. In order to construct
this Lagrangian one writes down the most gen-
eral Lagrangian that is invariant under the sym-
metries of the underlying Symanzik theory. Sym-
metry breaking terms are consistently included
performing a spurion analysis. This procedure is
analogous to the way the quark mass is included
in continuum χPT. Here, however, one has to per-
form a spurion analysis for each symmetry break-
ing term in eq. (2), also those stemming from the
discretization effects.

The Pauli term (4) is a particularly simple ex-
ample for this procedure because it breaks chiral
symmetry exactly like a mass term. As usual,
the chiral Lagrangian is parameterized in terms
of Σ = exp(2iΠ/f) with Π being the matrix of
Goldstone boson fields, which transforms under
chiral transformations as Σ → LΣR†. The L2-
Lagrangian, containing the terms of O(p2,m, a),
is found to be given by [12]

L2 =
f2

4

〈

∂µΣ∂µΣ†
〉

− f2B

2

〈

mΣ† + Σm†
〉

−f
2W̃0

2
c1a

〈

Σ† + Σ
〉

. (5)

The angled brackets denote traces over the fla-
vor indices. The first line contains the familiar
terms from continuum χPT, the kinetic and the
mass term (here m stands for the quark mass
matrix), multiplied by unknown low-energy con-
stants f and B. These two terms stem from the
leading part S0 in eq. (2). The third term has
its origin in the Pauli term, and it has, as ex-
pected, the structure of a degenerate mass term
(degenerate because the Pauli term is diagonal in
flavor space). The coefficient W̃0 is another low-
energy constant not determined by symmetries.
In contrast to B the mass dimension of W̃0 is
three instead of one.

Since both W̃0 and c1 are unknown parameters
it is customary to combine them in form of one
coefficientW0. In this parameterization, however,
the coefficient W0 inherits the weak a dependence
of c1 and is no longer a true constant. Further-

more, W0 vanishes if the underlying lattice theory
is non-perturbatively O(a) improved, because c1
is zero in this case.

The L4-Lagrangian comprises all terms of
O(p4, p2m,m2, p2a,ma, a2) and it is of the form

L4 = LGL
4 (p4, p2m,m2) + La

4(p2a,ma, a2). (6)

The first term on the r.h.s. is the well-known
Gasser-Leutwyler Lagrangian [2, 3] stemming
from the continuum part in Symanzik’s effective
action. The second term parameterizes the ad-
ditional chiral symmetry breaking effects com-
ing from S1 and S2 [12, 13]. It turns out that
the operators in La

4 are easily obtained from the
Gasser-Leutwyler Lagrangian: Take any opera-
tor containing the mass matrix m and replace it
by a, this gives all terms in La

4 . This simple fi-
nal result is not obvious. Some 4-quark operators
in S2 break chiral symmetry in a different way
than a mass term and rotational O(4) symmetry
is broken at O(a2). However, the spurion anal-
ysis shows that all these effects do not enter the
L4-Lagrangian, but only appear at higher orders
in the chiral expansion [13].

The total number of unknown low-energy con-
stants in L4 is eighteen. Ten of those are Gasser-
Leutwyler coefficients in the Gasser-Leutwyler
Lagrangian, while the lattice spacing effects con-
tribute eight additional unknown coefficients.
This number is reduced to three for fully O(a)
improved Wilson fermions, since all am terms in
La

4 vanish in this case.
The main motivation for constructing a chiral

effective Lagrangian for lattice QCD is to com-
pute the explicit a dependence of observables and
to guide the chiral extrapolation of numerical lat-
tice data. Obviously, too many unknown low-
energy constants limit the predictability of the
chiral extrapolation. However, the situation is
not as bad as the number eighteen may suggest.
The number of free parameters in the chiral ex-
pressions for mπ and fπ is much smaller because
many low-energy constants appear in particular
linear combinations and can therefore be com-
bined in form of a few unknown parameters. Still,
an increased number of free parameters is the
price one has to pay when one wants to perform
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the chiral extrapolation before taking the contin-
uum limit.

Having constructed the chiral effective La-
grangian we can compute expressions for the
pseudo scalar masses, decay constants, scatter-
ing lengths etc. However, in order to correctly
describe the underlying lattice theory we need to
properly match the parameters in both theories,
which is not entirely straightforward.

Starting from eq. (5) one easily derives the tree-
level expression (mu = md = m for simplicity)

M2
π = 2Bm+ 2W0a (7)

for the pion mass. Hence, the leading O(a) effect
is a shift in the pion mass. Consequently, the pion
mass does not vanish for m = 0.

The mass m, however, is not the one that is
usually used in the lattice theory [5, 14]. Due to
the explicit chiral symmetry breaking, the quark
mass receives an additive mass renormalization
proportional to 1/a. A common definition for the
renormalized quark mass is in terms of a van-
ishing pion mass. By definition, M2

π = 0 for
m′ = Zm(m0−mcr)/a = 0, where m0 is the bare
lattice mass. So defined, the critical quark mass
mcr accounts not only for the divergent additive
mass shift, but also for finite shifts proportional
to powers of a. Therefore, at leading order in the
effective theory, the appropriate mass parameter
is given by

m′ = m+ aW0/B. (8)

Eq. (7) now reads M2
π = 2Bm′ and the pion mass

vanishes for m′ = 0, as required. Note that the
proper parameter matching needs to be adjusted
when we work beyond LO: The terms of O(a2) in
La

4 cause an additional shift in the critical mass
and the r.h.s. of eq. (8) receives an additional con-
tribution of O(a2).

Having found the proper parameter matching
(8), one can replace m by m′ in the effective La-
grangian. After the replacement the O(a) term
in L2 has disappeared, but the terms linear in a
in La

4 are still present.
There are other definitions for the renormalized

quark mass on the lattice. For example, one can
define it in terms of the quark mass that enters
the PCAC relation. All these definitions differ

by O(an) terms in the critical quark mass. De-
pending on the definition in the lattice theory the
parameter matching might be different from eq.
(8) and needs to be done accordingly.

Another subtlety in Wilson χPT has its origin
in the presence of two expansion parameters, m
and a, or, to be more precise

2Bm′

(4πf)2
,

2W0a

(4πf)2
. (9)

Both parameters must be smaller than one for
the chiral expansion to make sense. But even if
this requirement is satisfied, the relative size of
these parameters is crucial for the proper power
counting. In order to discuss this let us consider
the following two terms which appear in the chiral
Lagrangian:

O1 = c1m
′ 〈Σ + Σ†〉, (10)

O2 = c2a
2〈Σ + Σ†〉2. (11)

O1 is just the mass term in L2, parameterized
in terms of m′ and using the short-hand notation
c1 = f2B/4. O2 appears in La

4 and the coefficient
c2 denotes a particular combination of low-energy
constants in La

4 .
As long as c1m

′ � c2a
2 the term O2 is much

smaller than O1 and can safely be considered a
next-to-leading order (NLO) contribution. How-
ever, decreasing the quark mass at fixed lattice
spacing (this is approximately done in numerical
lattice simulations at fixed β) one will eventually
enter a regime where both terms are of compara-
ble size. In this regime both contributions should
be taken to be of leading order (LO).

The regime c1m
′ � c2a

2 is considered in Ref.
[13], and the pseudo-scalar mass was calculated
to one loop as an example. The resulting ex-
pression is essentially the one-loop continuum ex-
pression, containing the non-analytic continuum
chiral logarithms, plus additional analytic terms
proportional to am′ and a2.

Qualitative changes start to occur in the regime
c1m

′ ≈ c2a
2. To be more concrete let us consider

the leading terms in the potential energy for two
degenerate flavors [5],

V = −c1
4
m′ 〈Σ + Σ†〉 +

c2
16
a2〈Σ + Σ†〉2, (12)
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which is essentially the sum of the terms in eqs.
(10) and (11) (the relative sign is convention).1

For c1m
′ ≈ c2a

2 the two terms in the potential are
of comparable size, and the competition between
them can result in a non-trivial ground state.

It turns out that there are only two different
scenarios possible, and the sign of c2 determines
which of those is realized [5]. If c2 is positive, the
ground state configuration Σ0 is no longer propor-
tional to the identity for m′ < 2c2a

2/c1. Parity
and flavor are spontaneously broken and mass-
less pions exist even at non-zero lattice spacing.
In other words, the effective theory predicts the
properties of the Aoki phase, which was proposed
a long time ago [15]. The alternative scenario
with negative c2 exhibits a first order phase tran-
sition where Σ0 = 1 changes sign. Parity and
flavor are unbroken irrespective of the size of m′

and no massless pions exist at non-zero a.
The same analysis for quenched Lattice QCD is

more subtle due to the ghost fields and the graded
symmetry group. Nevertheless, the conclusion is
that the phase structure is the same as in the
unquenched theory [16].

The chiral effective theory cannot predict
whether c2 is positive or negative. After all, c2 is
a combination of unknown low-energy constants
whose values are essentially determined by the
action of the underlying lattice theory. In partic-
ular, magnitude and sign of c2 can be different
for improved Wilson fermions.

Numerical data to date support the existence of
an Aoki phase for quenched simulations [17, 18].
Recent unquenched 2-flavor simulations using the
plaquette gauge action and unimproved Wilson
fermions at β = 5.2 show evidence for a first-order
phase transition [19, 20] (see also Ref. [21]). The
results suggest that the scenario with negative c2
is realized for this particular lattice action, but
more data is needed to draw a definite conclusion.
In the scenario with negative c2 the minimal pion
mass is determined by |c2|. Hence, from the point
of view of numerical simulations, |c2| should be as
small as possible, and it is an open question which
lattice action is most suitable in this respect.

1Note that the definitions for c1 and c2 differ from Ref. [5].
I have pulled out the factors m

′ and a
2.

A second feature of the regime c1m
′ ≈ c2a

2 is
that additional chiral log contributions appear in
the one-loop expressions for observables. This has
been shown for the two flavor case in Ref. [14].
The O(a2) term in (11) and also the O(am′)
contributions are kept at LO in the chiral La-
grangian. These terms give rise to additional ver-
tices proportional to a2 and am′ and therefore to
additional loop diagrams. Explicitly, the one-loop
expression for the pion mass is given by

M2
π

2Bm′
= 1 +

m′(2B + w1a)

32π2f2
ln

2Bm′

Λ2

+
w0a

2

32π2f2
ln

2Bm′

Λ2
+ analytic. (13)

Here w0 and w1 denote some combinations of un-
known low-energy constants and m′ includes the
O(a2) shift coming from the c2a

2 term in the po-
tential (12).

Eq. (13) coincides with the continuum one-loop
expression in eq. (1) in the limit a→ 0. However,
the coefficient of the m′ lnm′ term receives a cor-
rection of O(a). Furthermore, the lattice spacing
effects generate an additional a2 lnm′ contribu-
tion.

This a2 lnm′ contribution will eventually be-
come dominant when we decrease m′ further.
In fact, the r.h.s. of eq. (13) diverges in the
m′ → 0 limit (M2

π itself, however, remains fi-
nite). Toward the chiral limit terms proportional
to a2(ln 2Bm′)n, n = 2, 3, . . . become more and
more important. Aoki performed a resummation
of these terms and derived a resummed one-loop
formulae for the pion mass:

M2
π

2B̃m′
=

[

1 +
(2B + w1a)m

′

32π2f2
ln

2Bm′

Λ2

]

×
{

ln
2Bm′

Λ̃2

}w̃0a2/32π2f2

+ analytic. (14)

Expanding {. . .}a2... and dropping higher powers
of a2(ln 2Bm′)n one recovers eq. (13).

The derivation of eq. (14) assumes the Aoki sce-
nario for the phase diagram (positive c2) where
the pion becomes massless at a second order
phase transition point. Approaching this point
the correlation length (or the inverse pion mass)



6

diverges with the critical exponent of a four di-
mensional scalar theory. Comparing the general
form for the diverging correlation length with eq.
(13) one can match the parameters and obtains
formula (14). Note that the parameters with a
tilde in eq. (14) may be different from those in
eq. (13). The matching at this order does not
determine the parameters unambiguously [14].

Analogous one-loop calculations for the
pseudo-scalar decay constant and the PCAC
quark mass mAWI were also carried out [14]. The
results exhibit the same qualitative features as in
eqs. (13) and (14). Additional logarithmic contri-
butions proportional to am′ lnm′ and a2 lnm′ are
present and modify the familiar results obtained
in continuum χPT.

These results show that the chiral limit at non-
zero lattice spacing is quite different from the one
in continuum χPT. The differences become more
pronounced the smaller the mass m′ is. This is a
warning that expectations concerning the quark
mass dependence of M2

π , fπ and other quantities
based on continuum χPT might be misleading
when naively applied to lattice QCD. Perform-
ing the chiral extrapolation of lattice data using
the chiral forms of continuum χPT, as is often
done, might not be justified.

From a practical point of view the crucial ques-
tion is what c1m

′ ≈ c2a
2 precisely means. This

question is not easily answered, since nothing is
known about the size of the low-energy constants
that go into c2. A simple dimensional analysis
tells us that c1 and c2 are of mass dimension three
and six, respectively. Hence c1m

′ ≈ c2a
2 can be

translated into m′ ≈ a2Λ3
QCD, assuming that the

size of any dimensionful quantity is determined
by the typical QCD scale. This argument should
be taken with care, since factors of 2 or 3 are
easily amplified by taking powers.

Nevertheless, assuming ΛQCD ≈ 300MeV and
a lattice spacing a ≈ 0.15fm we find a2Λ3

QCD ≈
15MeV. Even though the physical quark masses
simulated in present day numerical simulations
are larger than this value, they are probably not
large enough to conclude m′ � a2Λ3

QCD and to
neglect the effects due to a non-zero a. Ultimately
the fits of the chiral forms to the numerical lattice
data have to decide which power counting is more

appropriate in explaining the data at hand.

2.2. Partially quenched and mixed fermion

theories

The construction of a chiral effective La-
grangian is readily extended to partially quenched
lattice QCD with different masses for the sea and
valence Wilson fermions. The partially quenched
lattice theory is described by a lattice action with
sea, valence and ghost quarks. The Symanzik
action through O(a2) is obtained as in the un-
quenched case, based on locality and the symme-
tries of the lattice theory [13]. The chiral effective
Lagrangian through O(a2) has the same form as
in the unquenched case, with the angled brackets
(cf. eq. (7)) now representing super-traces and the
field Σ reflecting the larger flavor content of par-
tially quenched χPT.

Mixed fermion (or hybrid) theories are a gen-
eralization of partially quenched lattice theories.
In addition to choosing different quark masses,
the lattice Dirac operator is different in the sea
and valence sector. Particularly interesting com-
binations contain a Dirac operator for the sea
quarks that is fast to simulate, i.e. staggered or
(twisted mass) Wilson fermions, and Ginsparg-
Wilson fermions for the valence quarks, real-
ized by domain-wall [22] or overlap fermions
[23, 24]. This type of mixed fermion simula-
tions offers an efficient compromise towards full
unquenched simulations with Ginsparg-Wilson
fermions. Some new results using configurations
generated with staggered sea quarks and domain
wall or overlap valence quarks have been reported
at this conference [25].

The naive argument why mixed fermion theo-
ries are expected to give meaningful physical re-
sults is that the two Dirac operators differ by
terms of O(a) and these should vanish in the con-
tinuum limit. However, there are potential dan-
gers. Unitarity is lost and it is restored in the
continuum limit only. This is in contrast to par-
tially quenched theories with the same Dirac op-
erator, which become unitary when the valence
and sea quarks are chosen equal. Moreover, it is
not at all obvious that a “better” Dirac operator
for the valence quarks (one that has exact chiral
symmetry at non-zero a) automatically implies



7

better results for physical quantities. Analytic
control of the expected O(a) difference is clearly
desirable.

The chiral effective Lagrangian for lattice QCD
with Wilson sea quarks and Ginsparg-Wilson
valence quarks was constructed in [13, 26]. It
turns out that the effective Lagrangian contains
one more operator at O(a2) and consequently
one more unknown low-energy constant than the
Lagrangian for Wilson sea and Wilson valence
quarks. Nevertheless, an explicit calculation
shows that this additional unknown constant does
not enter the one-loop result for the pion mass of
a pion made of two valence quarks. In fact, com-
pared to the case with Wilson sea and Wilson
valence quarks one finds a reduced a dependence.

This example demonstrates that the cut-off de-
pendence of mixed fermion theories can be stud-
ied analytically using the chiral effective field the-
ory. Work on the mixed theory with staggered
sea and Ginsparg-Wilson valence quarks is in
progress [27].

2.3. Twisted mass Lattice QCD

The advantages of the twisted mass formula-
tion of lattice QCD [tmLQCD] [28–30] with Wil-
son fermions have been reviewed by R. Frezzotti
at this conference [31]. A twisted mass term

mtm = m+ iµγ5σ3 (15)

protects the Wilson-Dirac operator against very
small eigenvalues and solves the problem of ex-
ceptional configurations. Recent results indicate
that unquenched simulations also benefit from a
twisted mass, and their “numerical cost” is com-
parable with staggered fermions [32]. Hence, sim-
ulations with smaller physical quark masses seem
possible in tmLQCD and the chiral regime is
probably easier reached than with an untwisted
mass term. In addition, certain physical quan-
tities like hadron masses are automatically O(a)
improved [33, 34].

The construction of the chiral effective theory
for tmLQCD follows the same two-step procedure
that was described before [35, 36]. The form of
Symanzik’s effective action is as in eq. (2), with
the leading term S0 now being the continuum
twisted mass QCD action. Since a twisted mass

term breaks parity and flavor, there are more
terms present in S1 and S2 compared to the un-
twisted case. Nevertheless, after performing the
spurion analysis one finds the same L2- and L4-
Lagrangian as in eq. (5) and (6), with m replaced
by the twisted mass mtm.

The effective Lagrangian was used to analyze
the phase diagram of tmLQCD, generalizing the
analysis for the untwisted theory [35–39]. As be-
fore, there exist two scenarios, depending on the
sign of (the same) coefficient c2, and for a van-
ishing mass µ one recovers the results in the un-
twisted case.

One-loop calculations for M2
π and fπ have been

performed for the regime µ � a2Λ3
QCD, but only

the terms linear in a were kept [40, 41]. It is de-
sirable to repeat these calculations including the
O(a2) terms and with a power counting appro-
priate for µ ≈ a2Λ3

QCD, since numerical simula-
tions with small twisted mass may well be in this
regime.

The masses of the neutral and charged pions
differ due to explicit flavor breaking by a twisted
mass term. The mass splitting is found to be of
O(a2) and proportional to c2 [35, 36, 39],

M2
π3

−M2
π±

=
2c2
f2

a2(1 − cos2 φ), (16)

where the angle φ parameterizes the vacuum state
Σ0 = exp iφτ3 of the effective theory. Hence,
as pointed out in [39], the sign of c2 can be de-
termined, at least in principle, by measuring the
mass difference of the charged and neutral pions.

A proof for automatic O(a) improvement at
maximal twist was presented in Ref. [33]. It was
subsequently shown [42] that a crucial assump-
tion about the critical quark mass does not hold
if c2 is positive. Consequently, O(a) improvement
is lost unless m � a2Λ3

QCD. This restriction on
the quark mass, however, can be avoided with a
different definition for maximal twist, and O(a)
improvement can be guaranteed irrespective of
the size of the quark mass.

The differences between different definitions for
maximal twist was illustrated using the frame-
work of the chiral effective theory. The absence
or presence of the leading O(a) effect in the pion
mass, depending on the definition for maximal
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twist and the size of the quark mass, is explicitly
shown in Ref. [42].

2.4. Nucleon properties

Starting from the Symanzik action in eq. (2),
continuum Baryon χPT has been extended to ac-
commodate the leading linear a dependence due
to the Pauli term S1 [43]. This extension is rather
straightforward. Since the Pauli term breaks chi-
ral symmetry like a mass term, the construction
of the chiral effective Lagrangian involves one ad-
ditional spurion field proportional to a, but is
otherwise analogous to the construction based on
continuum QCD [44].

Assuming a power counting with m ≈ aΛ2
QCD,

a variety of nucleon properties (masses, magnetic
moments, matrix elements of the axial vector cur-
rent etc.) have been computed in the one-loop ap-
proximation. At this order the main effect of the
non-zero lattice spacing is the shift of the pseudo
scalar masses in eq. (7). As discussed before, this
shift might already be absorbed in the definition
of the critical mass. Non-trivial effects, however,
can be expected at O(a2).

Electromagnetic properties of baryons and
mesons (charge radii, magnetic moments etc.)
including the linear lattice spacing contribution
have also been discussed in Ref. [45]. Again,
the main a effect is implicit in the pseudo-scalar
masses, for example for the charge radius of the
φ meson. It would be interesting to extend these
results by including the O(a2) corrections.

2.5. χPT for staggered fermions

Staggered fermions are numerically very fast to
simulate compared with other lattice fermions.
They possess an exact axial U(1) symmetry
at non-zero lattice spacing, which protects the
quark mass from an additive renormalization.
As a result, lattice QCD simulations with stag-
gered fermions reach significantly smaller values
for Mπ/Mρ than those using Wilson fermions.
The numerical performance of the known lattice
fermions in unquenched simulations was reviewed
by A. Kennedy at this conference [32]. The major
disadvantage of staggered fermions is that they
do not solve the fermion doubling problem com-
pletely: Each flavor comes in four different tastes.

In order to reduce the number of tastes one
usually employs the so-called “fourth root trick”:
The fermion determinant of the staggered Dirac
operator is replaced by 4

√
detD in numerical lat-

tice simulations. This trick legitimately raises the
question whether the fourth root theory correctly
describes QCD in the continuum limit. By tak-
ing the fourth root one sacrifices the locality of
the theory and all known universality arguments
no longer hold. This and additional problems are
reviewed in Ref. [46].

Using the fourth root trick also poses a problem
for constructing a chiral effective theory. Since
the lattice theory is no longer local, it is not de-
scribed by a local Symanzik theory close to the
continuum limit. Hence the previously described
two-step procedure cannot be applied directly.

To circumvent this problem the following strat-
egy has been proposed [47]. One first considers
lattice QCD with Nf staggered flavors without
using the fourth root trick. This theory is local
and one can indeed construct Symanzik’s effec-
tive theory. The leading term S0 is the continuum
QCD action with 4Nf fermions (4 tastes for each
flavor). Assuming spontaneous chiral symmetry
breaking one constructs the chiral Lagrangian for
this lattice theory with (4Nf)2 − 1 pseudo Gold-
stone bosons. Starting from this Lagrangian one
calculates pseudo scalar masses, decay constants
etc. to the desired order (one loop in practice).
These results are finally corrected for taking the
fourth root of the determinant. This adjustment
amounts to properly placing factors of 1/4 for
each sea quark loop contribution. This step re-
quires, besides performing a partially quenched
calculation in order to distinguish between sea
and valence quarks, that the meson diagrams in
the effective theory are correctly interpreted in
terms of the underlying quark diagrams [48].

This procedure, staggered χPT for short, is
field theoretically not absolutely rigorous. Po-
tential non-local contributions due to taking the
fourth root of the fermion determinant would not
be captured by it. Consequently, the validity of
the fourth root trick would be seriously ques-
tioned if staggered lattice data cannot be de-
scribed by staggered χPT. Turning this numer-
ical argument around is not so simple. Even if
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no problems are found numerically, some doubts
may still remain. More analytic studies are cer-
tainly desired (see Ref. [49] for a recent example).

Putting these issues aside, the construction of
staggered χPT follows the two-step procedure
outlined before. In one respect staggered χPT
is simpler than Wilson χPT because the quark
mass is not additively renormalized.

The form of Symanzik’s effective action is as in
eq. (2), but the symmetries of the staggered lat-
tice action exclude any terms of dimension 3 and
5, so S1 vanishes [6,50,51]. The leading term S0 is
the continuum QCD action with Nf flavors, each
coming in four different tastes. S0 possesses an
exact SU(4) taste symmetry for each flavor, but
this symmetry is broken at O(a2) by dimension
six operators in S2. In addition, SO(4) rotation
invariance is broken at this order.

The chiral Lagrangian is constructed in the
same way as described for Wilson fermions. The
symmetry breaking terms are consistently in-
cluded by performing a spurion analysis. The
generic form of the L2-Lagrangian is given by [6]

L2 = Lkin + Lmass + a2V . (17)

The kinetic and the mass term are as in eq. (5),
however, the field Σ and the mass matrix are
4Nf ×4Nf matrices, reflecting the larger particle
content due to the taste degree of freedom.

The potential V =
∑

i ciOi comprises eight
taste symmetry breaking operators Oi, each of
which is multiplied by an unknown low-energy
constant ci [6, 47, 52] (two of the operators are
redundant in the one flavor case). However,
the taste symmetry is not completely broken
and V retains an accidental SO(4) taste symme-
try. Moreover, V is SO(4) rotationally invariant,
even though rotation invariance is broken in the
Symanzik action at O(a2).

Expanding eq. (17) to quadratic order in the
pion fields one obtains (m = mu = md)

M2
πi

= 2Bm+ a2∆(ξi) (18)

for the leading order pion mass where the index
i = 5, µ5, µν, µ, I labels the different tastes and
the ξi denote the SU(4) taste generators [6, 52].
The accidental SO(4) taste symmetry of L2 im-
plies that the mass shift ∆(ξi) is the same for all

ξµ, all ξ5µ, and all ξµν . The shift ∆(ξ5) for the
Goldstone pion π5 is of course zero because of the
exact axial U(1) symmetry.

The mass degeneracy is not exact since it is
a consequence of the SO(4) taste symmetry of
L2, and this symmetry is broken by higher order
terms in the effective Lagrangian. Nevertheless,
the approximate degeneracy is clearly observed in
numerical lattice data, both in quenched [53, 54]
and unquenched simulations [55, 56]. In fact, it
was observed long before the analysis in the chiral
effective theory offered a theoretical understand-
ing for it.

The chiral effective theory does not say any-
thing about the mass shifts ∆(ξi), neither the
sign nor the size. A negative shift would imply a
vanishing meson mass before the chiral limit and
the existence of non-trivial phases, similar to the
Aoki phase for Wilson fermions. However, the
mass shifts observed in numerical simulations are
all positive. Moreover, the shifts are fairly large.
The most recent simulations by the MILC col-
laboration [56] still show significant mass shifts,
even though the lattice spacing is fairly small
(amin ≈ 0.09fm) and the highly improved Asqtad
quark action is used. In fact, the lattice spacing
contribution a2∆(ξi) to the pion masses is of the
same order as the quark mass contribution 2Bm.
This justifies, even requires, to consider the con-
tribution a2V in the leading order Lagrangian,
while all the terms of O(p2a2,ma2, a4) enter the
next-to-leading order Lagrangian L4.

The full next-to-leading order Lagrangian has
been constructed just recently [57,58]. The num-
ber of terms is fairly large, more than 200 opera-
tors enter L4. At this order in the chiral expan-
sion the accidental SO(4) taste symmetry of L2

is broken by terms of O(p2a2), and the symmetry
group of the effective theory coincides with the
one of the underlying lattice theory.

Despite the fact that there are so many oper-
ators at NLO, some non-trivial predictions have
been found [57,58]. At NLO the SO(4) taste sym-
metry is essentially only broken by the O(p2a2)
terms, and these terms contribute to both the
pseudo-scalar masses and the matrix elements of
the pseudo scalar density, 〈0|P a|πb〉 = δabfP

πa
. It

turns out that there are sufficiently many inde-
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pendent relations in order to predict relationships
that do not contain any unknown low-energy con-
stants. For example, one finds (k = 1, 2, 3)

fP
πk

− fP
π4

fP
πk

+ fP
π4

=
1

2

M2
πk

−M2
π4

M2
πk

+M2
π4

, (19)

and the same relations involving the taste pairs
πk5, π45 and πlm, πk5, (k, l,m = 1, 2, 3). These
expressions show that the degeneracies among the
tastes with ξµ, ξµ5 and ξµν are removed.

Non-trivial predictions for the pion dispersion
relations have also been established [57, 58], but
eq. (19) seems to be the simplest prediction to
test in numerical simulations. To this end it is
extremely beneficial that the renormalization fac-
tors entering eq. (19) are SO(4) taste invariant.
They are therefore identical for both tastes and
cancel in the ratio, hence permitting eq. (19) to
be tested using bare lattice operators. This is not
true in general. In particular it would not hold if
the l.h.s. in eq. (19) involved the matrix element
〈0|Aa

µ|πa〉 of the axial vector current Aa
µ.

Checking these relationships in numerical sim-
ulations may serve as an additional test for the
fourth root trick. Most of these relations are unaf-
fected by the necessary modifications due to tak-
ing the fourth root of the determinant. The trick
is certainly not justified if the simulations cannot
reproduce these predictions.

Taking the a2V term in L2 to be of lead-
ing order gives rise to additional interaction ver-
tices and consequently to logarithmic contribu-
tions proportional to a2 in loop calculations for
physical quantities. The masses and decay con-
stants of the pseudo-Goldstone bosons have been
computed to one loop in Refs. [52, 59]. For three
degenerate flavors the mass of the charged Gold-
stone pion reads [52]

M2
π+

5

2Bm
= 1 +

1

48π2f2
M2

πI
ln
M2

πI

Λ2

+
1

12π2f2

[

M2
η′

V

ln
M2

η′
V

Λ2
−M2

πV
ln
M2

πV

Λ2
)

]

+
1

12π2f2

[

M2
η′

A

ln
M2

η′
A

Λ2
−M2

πA
ln
M2

πA

Λ2
)

]

+ analytic terms. (20)

The dependence on the lattice spacing is implicit
and enters in form of the leading order pseudo-
scalar masses given in eq. (18). The first line re-
produces the familiar continuum χPT result for
a → 0, while the second and third line vanish in
this limit (note that all masses M2

πi
become de-

generate in the continuum limit). At non-zero a,
however, this result may differ significantly from
the result in the continuum limit, depending on
the size of the mass shifts for the various pseudo-
scalar mesons. Note that the perhaps naively
expected term proportional to M2

π+

5

ln(M2
π+

5

/Λ2)

does not appear on the r.h.s. of eq. (20).
The one-loop expressions for the decay con-

stants fπ+

5

and fK+

5

show similar qualitative mod-

ifications compared to the continuum χPT results
for these quantities [59]. It should be mentioned
that the expressions for 2+1 partially quenched
flavors, which is the relevant case for the simula-
tions carried out by the MILC collaboration, are
much lengthier than the special example for 3 un-
quenched flavors in eq. (20).

2.6. Staggered χPT for heavy-light mesons

Staggered χPT has been extended to describe
heavy-light mesons [60]. The starting point is
Symanzik’s effective action for staggered light
quarks given in (17). No Symanzik analysis was
done for the heavy quark lattice action. Instead,
the leading order HQET action is assumed to give
a proper description of the heavy quark. This as-
sumption neglects the discretization effects due
to the heavy quark and is only justified for either
a highly improved heavy quark lattice action or
when lattice HQET [61] is used.

Starting from this effective continuum theory
it is straightforward to generalize the arguments
of continuum heavy-light χPT [62] and construct
the chiral Lagrangian. One difference is that we
now have three expansion parameters: the quark
mass m, the lattice spacing a and the residual
momentum k of the heavy-light meson.

Based on the chiral Lagrangian the decay con-
stant fB was calculated to one loop. The addi-
tional vertices proportional to a2 generate extra
chiral logarithms. These terms can again signif-
icantly change the quark mass dependence that
the continuum expressions predict. An illustra-
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Figure 1. Fit result for M2
π/2mAWI using re-

summed Wilson χPT. From Ref. [63].

tive plot showing this can be found in [60].

3. Comparison with numerical data

The main motivation for constructing chiral ef-
fective Lagrangians for lattice theories is to cap-
ture the discretization effects analytically and to
guide the chiral extrapolation of numerical lattice
data without taking the continuum limit first. Of
course, one has to be in the regime where the chi-
ral effective theory provides a valid description of
the lattice data. This can only be checked by try-
ing to fit the chiral fit forms to the lattice data.
In case one obtains fits with a good χ2 and rea-
sonable values for the unknown coefficients one
gains confidence that the chiral effective theory
describes the data.

Both the CP-PACS collaboration [63, 64] and
the qq+q collaboration [65–67] used Wilson χPT
to analyze their unquenched lattice data which
were obtained with Wilson fermions.

The CP-PACS collaboration generated their
data with an RG-improved gauge action and a
meanfield improved clover quark action with 2
flavors. The simulations were performed at one
lattice spacing a ≈ 0.2fm and for eight dif-
ferent quark masses corresponding to the range
Mπ/Mρ = 0.35 − 0.8. Data for four mass val-
ues were generated some time ago [68] and were
combined with new data [63].

Chiral fits for M2
π and mAWI were performed

using the results of continuum χPT as well as the
Wilson χPT expressions in eqn. (13) and (14) for
M2

π and the corresponding expressions for mAWI.
The power counting underlying these formulae
seems appropriate since the bare quark mass am′

is of O(a3Λ3
QCD) in the CP-PACS simulations.

Fig. 1 shows the fit result for M2
π/2mAWI us-

ing the resummed formulae for both quantities.
A good fit is obtained including all data points.
Using the unresummed formulae (cf. eq. (13) for
M2

π) gives similar results. A reasonable fit is
also possible with the 1-loop continuum expres-
sion when the three heaviest data points are ex-
cluded from the fit. However, the lowest five data
points can also be fitted by a straight line within
errors. Hence, even though fits to continuum χPT
are possible there is no clear evidence for the cur-
vature due to the chiral logarithms.

The good fit result over the whole range of
quark masses is quite unexpected since the chiral
expansion is not expected to work at such high
values for Mπ/Mρ. The reason why the formu-
lae of Wilson χPT work so well in figure 1 can
be traced back to the coefficient of the m′ lnm′

term. The result for this coefficient is roughly
80% smaller than the value expected from con-
tinuum χPT. Hence the curvature due to the chi-
ral logarithm is highly suppressed and the fairly
linear data is fitted well.

This strong suppression is slightly surprising.
The coefficient of the m′ lnm′ term is propor-
tional to (2B − ω̃1a) where ω̃1 is the difference
of the ω1 coefficients in the chiral expressions for
M2

π and mAWI. Large linear lattice spacing ef-
fects with ω̃1a = O(2B) are required in order
to achieve the 80% suppression. Since a mean-
field improved quark action was used one would
have expected smaller values for ω̃1.

2 More data
at various lattice spacings is required in order to
confirm these results. In particular, one needs to
check that ω̃1a goes indeed linearly to zero for
a→ 0.

The qq+q collaboration employed the plaque-
tte gauge action and the 2-flavor unimproved Wil-
son quark action. Data was generated at β =

2
ω̃1 would be zero for non-perturbatively O(a) improved

Wilson fermions.
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5.1 (a ≈ 0.195fm) with four different sea quark
masses corresponding to the range Mπ/Mρ =
0.47 − 0.76. Partially quenched data has been
accumulated with various valence quark masses
for one sea quark mass. For the smallest two sea
quark masses, however, mVal had to be chosen
equal or larger than mSea in order to avoid prob-
lems with exceptional configurations.

Figure 2 shows the result for the ratio
M2

π/2mAWI, normalized by its value at the heavi-
est quark mass and denoted by Rn, as a function
of σ = mAWI/mAWI,heaviest. Note that the nor-
malization by the values at heaviest quark mass
disguises the fact that there is a fourth data point
at σ = 1. The solid line is the fit result using one-
loop continuum χPT. Similarly to the CP-PACS
data the qq+q data can be fitted by continuum
χPT, but the data for the pion mass shows no
indication for a curvature due to the chiral loga-
rithms. Even though the data for the pion decay
constant shows some curvature [66] more data is
needed to corroborate the interpretation in terms
of chiral logarithms.

The qq+q collaboration also performed fits us-
ing the Wilson χPT expressions including the lin-
ear a dependence which were derived in Ref. [12].
The values for the fit parameters associated with
the a contributions turn out to be very small. It
was therefore concluded that the lattice artifacts
are small.

This conclusion seems premature. The lattice
spacing a ≈ 0.195fm and the range of Mπ/Mρ

is comparable with the values of the CP-PACS
collaboration. As mentioned before, the naive
dimensional analysis suggests m′ ≈ a2Λ3

QCD for
these parameter values. The appropriate fit forms
for M2

π are therefore eqn. (13) or (14). The fit
forms in Ref. [12] were derived under the assump-
tion m′ � a2Λ3

QCD and are most probably not
applicable here. Moreover, mAWI was identified
with m′ (the vector Ward identity mass) in the
chiral fit forms. The relation between mAWI and
m′ is highly non-linear in Wilson χPT with the
power counting m′ ≈ a2Λ3

QCD and involves chi-

ral logarithms proportional to am′ and a2. The
simple identification of mAWI with m′ is therefore
not always justified. It would be interesting to re-
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Figure 2. Data for M2
π/2mAWI as a function of

mAWI, normalized by the values at the heaviest
quark mass (see text). From Ref. [66].

analyze the qq+q data using the proper fit forms
for the m′ ≈ a2Λ3

QCD regime. This needs to be
done before one can draw final conclusions about
the size of the lattice artifacts.

The MILC collaboration has been carrying out
2+1 flavor simulations with staggered fermions,
employing a Symanzik improved gauge action
and the Asqtad quark action [56, 69]. Compu-
tations have been done for two lattice spacings
(a ≈ 0.125fm and a ≈ 0.09fm), and fairly small
meson masses with Mπ/Mρ ≈ 0.3 have been
reached. Very precise partially quenched data for
the Goldstone boson masses and decay constants
have been accumulated with errors of typically
0.1% − 0.7%, and 416 data points are available
in total, 208 each for the masses and the decay
constants.

Fits of the NLO staggered χPT expressions
(the partially quenched analogue of eq. (20) for
2+1 flavors) to the data give poor results, even if
only a subset of 94 data points corresponding to
the lightest masses is taken into account. This is
not unexpected since the statistical error of the
data is much smaller than the estimated uncer-
tainty in the chiral expressions due to neglecting
NNLO terms.
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A full NNLO calculation in staggered χPT has
not been done yet. Meanwhile, only the analytic
NNLO contributions are added to the full NLO
chiral fit forms. The total number of unknown
parameters in these expressions is 40, which is
fairly large. However, only 4 of them are associ-
ated with the non-zero lattice spacing effects. 36
parameters still remain if one sets a to zero in
these expressions.

The details of the fits are rather involved, but
the bottom line is that good fits are possible
with these fit forms (although 176 data points
for heavy masses still need to be excluded). One
might be tempted to attribute the good fit results
to the large number of free parameters. However,
good fits are not possible using the fit forms of
continuum χPT, even though the number of free
parameters is 36. Similarly, no good fits are pos-
sible without the chiral logarithms (38 free pa-
rameters).

The good fits are therefore not a simple con-
sequence of a large number of free parameters.
The very precise data is able to discriminate be-
tween various fit forms, and the results strongly
suggest the presence and importance of the taste
violating effects of O(a2). Nevertheless, in or-
der to perform correct fits it seems mandatory
to use the complete NNLO expressions including
the NNLO chiral logarithms. Recent results in
partially quenched continuum χPT at NNLO [70]
should help to perform the necessary 2-loop cal-
culations.

4. Concluding remarks

The two-step matching procedure to effective
field theories (Lattice → Symanzik → χPT) has
proven to be an appropriate tool for systemati-
cally constructing χPT at non-zero lattice spac-
ing. The resulting expressions for physical quanti-
ties can differ significantly from the corresponding
expressions derived in continuum χPT, depend-
ing on the relative size of the quark mass and the
lattice spacing contributions. Expectations from
continuum χPT, in particular with respect to a
curvature in lattice data caused by chiral loga-
rithms, might be misleading.

Many quantities have been computed to one

loop, both in Wilson and in staggered χPT. Many
more calculations remain to be done. Some cal-
culations need to be extended by using a differ-
ent power counting or by working in the partially
quenched approximation. Including the lattice
spacing effects in χPT for vector mesons [71] has
not been done at all yet. All these calculations
need to be done in order to obtain appropriate ex-
pressions for the chiral extrapolation at non-zero
lattice spacing.

With the formulation of χPT at non-zero lat-
tice spacing we are able analytically to capture
particular lattice artifacts which otherwise would
be an uncontrolled uncertainty. The more uncer-
tainties we control analytically, the better will be
our numerical results for physical quantities.
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