Muon $g-2$:
 Reclaiming the theoretical calculation of the leading QCD contribution

Christopher Aubin
Columbia University
New York, NY
working with Tom Blum

Stupid Question: Why?

- Currently:
- Experiment: Very precise - 0.5ppm (BNL)
- "Theory":
- Low compared with experiment
- Relates $g-2$ to

1. $e^{+} e^{-} \rightarrow$ hadrons cross section and
2. τ decay cross section

- Discrepancy with experiment: $0.7 \sigma \rightarrow 2.7 \sigma$
- Lattice: method to extract hadronic contributions without experimental input

Theory vs. Experiment

$$
a_{\mu}^{\exp }=\left(\frac{g-2}{2}\right)^{\exp }=11659208(6) \times 10^{-10}
$$

Outline

- Muon $g-2$ and current theoretical predictions
- Calculating $g-2$ on the lattice, with Lattice Gauge Theory and Chiral Perturbation Theory
- $O\left(\alpha^{2}\right)$ Contribution: Vacuum Polarization
- Lattice results for vacuum polarization
- Fits and preliminary results for $g-2$

Muon $g-2$

Full muon-photon vertex:

$$
\Gamma^{\mu}=\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\mu}}{2 m_{\mu}} F_{2}\left(q^{2}\right) \quad a_{\mu}=\frac{g-2}{2}=F_{2}(0)
$$

Hadronic Contributions

$O\left(\alpha^{2}\right)$, Hadronic contribution to the photon vacuum polarization:

$O\left(\alpha^{3}\right)$, Light-by-light scattering:

- Hadronic contributions are 7×10^{-5} times smaller than leading corrections

Leading Hadronic Contribution

The $O\left(\alpha^{2}\right)$ hadronic contribution, $a_{\mu}^{H L O}$, cannot be calculated in perturbation theory

Using the Optical Theorem, one can evaluate it using the cross section for $e^{+} e^{-} \rightarrow$ hadrons:

$$
a_{\mu}^{H L O}=\frac{\alpha^{2}}{3 \pi^{2}} \int_{4 m_{\pi}^{2}}^{\infty} \frac{d s}{s} K(s) R(s)
$$

The kernel, $K(s)$ is known (dominated by small s), and $R(s)$ can be measured experimentally.

Not a theoretical problem since 1961!
$R(s)$

The precision of the Standard Model prediction is limited by the experimental measurement of $R(s)$.

Using τ decay

- Introduced by Alemany et al (hep-ph/9607319)
- In isospin limit, relate τ spectral data to isovector part of $\sigma\left(e^{+} e^{-}\right)$using Conserved Vector Current (CVC) relations
- Result for $g-2$ is higher than "standard method"
- Contraversial: Studies have conflicting results on validity of CVC relations
- Either way, still is an experimental calculation, and we want a theoretical one

(Davier et al, hep-ph/0208177)

Field Theory

Path Integral: $Z[J]=\int_{\phi\left(x_{a}\right)}^{\phi\left(x_{b}\right)} \mathcal{D} \phi \exp \left\{i \int d^{4} x[\mathcal{L}[\phi(x)]+J(x) \phi(x)]\right\}$
($\mathcal{D}=$ Sum over all paths)

- There are an infinite number of paths!
- Use PT if coupling constant is small (high- E QCD, QED)

Field theory on a lattice 1

To calculate Z (and physical quantities) on the lattice:

- Continue to Euclidean space: $t \rightarrow-i t_{E}$
- Discretize space and time (with a lattice spacing a) and put system in a finite volume V

- Now a finite dimensional path integral

Field theory on a lattice 2

- This is still non-trivial: Finite, but large dimensional integral
- Use Monte Carlo techniques to evaluate Z and whatever matrix element you want (within reason)
- In the end, take $a \rightarrow 0$ and $V \rightarrow \infty$ (the "continuum limit") and continue back to Minkowski space
- A few comments:
- We can vary external (valence) and internal (sea) quark masses separately
- Often $m_{\text {sea }} \rightarrow \infty$ (Quenched approx) due to limited computational power
- Finite volume \Rightarrow discrete momenta.
- $p_{\min }=2 \pi / T$, where T is the size of the largest direction
- Quarks on the lattice are a problem...

Simulating Quarks

Quarks are anti-commuting fields \rightarrow Must integrate over them first in the path integral:

$$
Z=\int_{A_{\mu}, \psi, \bar{\psi}} e^{-S_{Q C D}}=\int_{A_{\mu}} \operatorname{det} K[A] e^{-S_{\text {gluons }}}
$$

- $K[A]$ is the Dirac operator for a given set of gauge fields
- $\operatorname{det} K$ is slow to simulate (very non-local), quenched approximation sets this to 1
- For example, pion propagator:

$$
\left\langle\pi^{+} \pi^{-}\right\rangle=\frac{1}{Z} \int_{A_{\mu}, \psi, \bar{\psi}}\left(\bar{u} \gamma_{5} d\right)\left(\bar{d} \gamma_{5} u\right) e^{-S_{Q C D}}
$$

Wick contract the quarks to give us quark propagators, which we can evaluate on a given gauge background

Lattice Quarks

Discrete version of the theory has the 15 "doubling symmetries"

$$
\psi_{x} \rightarrow e^{i \pi x \cdot p} \Gamma_{p} \psi_{x} \quad \bar{\psi}_{x} \rightarrow e^{i \pi x \cdot p} \bar{\psi}_{x} \Gamma_{p}^{\dagger}
$$

$$
\begin{aligned}
a p \in & \{(1,0,0,0),(0,1,0,0), \ldots, \\
& (1,1,0,0), \ldots,(1,1,1,1)\} \\
\Gamma_{p}= & \prod_{\mu}\left(i \gamma_{5} \gamma_{\mu}\right)^{a p_{\mu}}
\end{aligned}
$$

$$
\Rightarrow 16 \text { species ("tastes") when } a \rightarrow 0
$$

If ψ_{x}^{0} satisfies the lattice Dirac equation, we have 15 other solutions, ψ_{x}^{p}, which are degenerate in mass in the continuum limit

Lattice Quarks

- Many solutions to the doubling problem:
- Wilson quarks: Slow, breaks chiral symmetry at finite a, difficult to renormalize, but gets rid of all doublers
- Staggered quarks: Fast, has a remnant chiral symmetry at finite a, still has four species as $a \rightarrow 0$
- Domain-Wall quarks: Slow, has controlled and small chiral symmetry breaking at finite a, no doubling remnants
- Overlap quarks: VERY slow, but perfect chiral symmetry
- For now we'll choose staggered:
- Dynamical simulations with Full QCD with very light quark masses
- Lightest quark masses \Rightarrow easier to take chiral limit
- Largest volumes
- These lattices already exist (MILC Collaboration)

Staggered Quarks

- On the lattice, the usual continuum $S O(4)$ rotation symmetry is broken to allow only hypercubic rotations
- A unitary transformation on ψ can diagonalize the γ matrices
- This decouples the four spinor components of the fermion \Rightarrow we can keep only one component per species
- We have 16 one-component fields, staggered on separate sites of a hypercube $\Rightarrow 4$ four-component Dirac tastes, degenerate as $a \rightarrow 0$

Aside: $4 \rightarrow 1$ tastes

- Evaluate the staggered quark path integral $\Rightarrow \operatorname{det} K$
- det K describes four degenerate tastes in the continuum limit
- $\Rightarrow(\operatorname{det} K)^{1 / 4}$ describes 1 taste
- Can we do this before taking the continuum limit?
- At finite a, we have violations of the taste symmetry (ie the four quark species are not degenerate in mass for $a \neq 0$)
- Won't worry about this now:
- There is evidence that this isn't a problem
- Lots of people trying to figure out if it is/isn't a problem
- "Fourth-root" can be taken into account in chiral perturbation theory with staggered quarks.

Vertex Correction

- Apply Feynman rules, take external $q^{2} \rightarrow 0$, go to Euclidean space, and performing angular rotations, we get

$$
a_{\mu}^{(1)}=\frac{\alpha}{\pi} \int_{0}^{\infty} d K^{2} f\left(K^{2}\right)
$$

- $f\left(K^{2}\right)$ is a known function of K^{2} and m_{μ}^{2}
- Integral is finite and gives precisely

$$
a_{\mu}^{(1)}=\frac{\alpha}{2 \pi}
$$

- Lot of work for something we already know...

Leading Hadronic Contribution

We want to insert the quark loop into the vacuum polarization:

- We can apply this procedure to the $O\left(\alpha^{2}\right)$ hadronic contribution to a_{μ} to get (Blum, 2003)

$$
\begin{gathered}
a_{\mu}^{(2) \mathrm{had}, \mathrm{LO}}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d K^{2} f\left(K^{2}\right) \hat{\Pi}\left(K^{2}\right) \\
\hat{\Pi}\left(K^{2}\right)=4 \pi^{2} \sum_{i} Q_{i}^{2}\left[\Pi_{i}\left(K^{2}\right)-\Pi_{i}(0)\right]
\end{gathered}
$$

Leading Hadronic Contribution

So now we just need to evaluate $\Pi\left(q^{2}\right)$ on the lattice, and plug it into our expression for a_{μ}

First some comments about $f\left(K^{2}\right)$:

- $f\left(K^{2}\right) \sim 1 /\left(2 m_{\mu} \sqrt{K^{2}}\right)$ for small K^{2}
- diverges as $K^{2} \rightarrow 0 \Longrightarrow$ dominated by low momentum region
- Need large lattices to reach these low momenta

Lattice Calculation of $\Pi^{\mu \nu}$

- Calculate the vacuum polarization using the conserved current

$$
\Pi^{\mu \nu}(q)=\int d^{4} x e^{i q \cdot(x-y)}\left\langle J^{\mu}(x) J^{\nu}(y)\right\rangle=\left(q^{2} g^{\mu \nu}-q^{\mu} q^{\nu}\right) \Pi\left(q^{2}\right)
$$

- Continuum J^{μ} satisfies $\partial_{\mu} J^{\mu}=0$:

$$
J^{\mu}=\bar{\psi} \gamma^{\mu} \psi
$$

- On the lattice this is a point-split current:

$$
J_{\mu}(x)=\frac{1}{2}\left[\bar{\psi}(x+a \hat{\mu}) U_{\mu}^{\dagger}(x)\left(1+\gamma^{\mu}\right) \psi(x)-\bar{\psi}(x) U_{\mu}(x)\left(1-\gamma^{\mu}\right) \psi(x+a \hat{\mu})\right]
$$

- Satisfies

$$
\sum_{\mu} \frac{J_{\mu}(x)-J_{\mu}(x-a \mu)}{a}=0
$$

Lattice Calculation of $\Pi^{\mu \nu}$

- Discrete version satisfies a discrete Ward Identity, so

$$
\Pi^{\mu \nu}(q)=\left(\hat{q}^{2} \delta^{\mu \nu}-\hat{q}^{\mu} \hat{q}^{\nu}\right) \Pi\left(\hat{q}^{2}\right)
$$

with

$$
\hat{q}^{\mu}=\frac{2}{a} \sin \left(\frac{a q^{\mu}}{2}\right)
$$

and

$$
q^{\mu}=\frac{2 \pi n^{\mu}}{a L_{\mu}}
$$

- WI provides strong check on the calculation!

Lattice Calculation of $\Pi^{\mu \nu}$

- To perform lattice calculation: Wick contract the quark fields in $\left\langle J^{\mu}(x) J^{\nu}(y)\right\rangle$, giving two types of contractions:

- Fourier transform to get $\Pi^{\mu \nu}$
- We neglect second contraction (suppressed, also very noisy)
- For more details on the lattice calculation, see
- T. Blum, PRL 91 052001, 2003—Quenched Domain-Wall Quarks
- T. Blum, Confinement 2003 (hep-lat/0310064)—Includes staggered calculations

Simulation parameters

- On the lattice, "Full QCD" $=2+1$ flavors (c, b, t integrated out):
- 1 "heavy" flavor, the strange quark at physical m_{s}
- 2 light flavors: $m_{u}=m_{d} \equiv m_{l} \gtrsim m_{s} / 10$ (can't yet simulate at "real" m_{u} or m_{d})
- These are "Improved staggered" configurations (so we have smaller lattice spacing errors)

MILC 2+1-flavor Configurations

$a(\mathrm{fm})$	Volume	$a m_{l}$	$a m_{s}$	$a m_{\text {val }}$
$0.086(2)$	$28^{3} \times 96$	0.0124	0.031	0.031
$0.086(2)$	$28^{3} \times 96$	0.0124	0.031	0.0124
$0.086(2)$	$28^{3} \times 96$	0.0062	0.031	0.031
$0.086(2)$	$28^{3} \times 96$	0.0062	0.031	0.0062
$0.086(2)$	$40^{3} \times 96$	0.0031	0.031	0.0031
$0.086(2)$	$40^{3} \times 96$	0.0031	0.031	0.031

Simulation Results ($2+1$ Staggered)

Fitting $\Pi\left(q^{2}\right)$

- High- q^{2} easy: Use continuum PT
- Low- q^{2} is tough:
- Simple polynomials? These undershoot the data for lowest q^{2}
- Physics-based models, like Chiral Perturbation Theory ($\chi \mathrm{PT}$)?
- $\chi \mathrm{PT}$ is an expansion in mass/energy of pions
- Since it's good for low-energy processes, could work here, for the low- q^{2} region

χ PT—Chiral Symmetry

As $m_{q} \rightarrow 0(q=u, d, s)$, QCD has an $S U(3)_{L} \times S U(3)_{R}$ chiral symmetry.

$$
q_{L} \rightarrow L q_{L}, \quad q_{R} \rightarrow R q_{R}
$$

$S U(3)_{L} \times S U(3)_{R} \rightarrow S U(3)_{V}$ by a nonvanishing quark condensate

$$
\left\langle\bar{q}_{R} q_{L}\right\rangle \neq 0
$$

$\Rightarrow 8$ massless bosons: $\pi^{ \pm}, \pi^{0}, K^{ \pm}, K^{0}, \bar{K}^{0}, \eta$

Put the pions in the field $\Sigma\left(\Sigma \rightarrow L \Sigma R^{\dagger}\right.$ under the chiral symmetry)
To leading order in the pion momentum

$$
\mathcal{L}_{\text {kin }} \propto \operatorname{Tr}\left[\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right]
$$

Mass in $\chi \mathbf{P T}$

We know the pions are not massless, and neither are the light quarks.

Mass term in QCD looks like

$$
\mathcal{L}_{\mathrm{QCD}, m}=\bar{q}_{L} M q_{R}+\bar{q}_{R} M q_{L}
$$

where M is the 3×3 light quark mass matrix.

Mass term in $\chi \mathrm{PT}$ should transform like the QCD mass term, so we have

$$
\mathcal{L}_{\text {mass }} \propto \operatorname{Tr}\left[M \Sigma+\Sigma^{\dagger} M\right]
$$

Staggered χ PT for 3 light flavors

Lee \& Sharpe, PRD 60, 114503; CA \& Bernard, PRD 68034014 \& 074011

- Light mesons: $\Sigma=\exp (i \Phi / f)$, with

$$
\Phi=\left(\begin{array}{ccc}
U & \pi^{+} & K^{+} \\
\pi^{-} & D & K^{0} \\
K^{-} & \overline{K^{0}} & S
\end{array}\right)
$$

- Components above are 4×4 matrices
- Under chiral $S U(12)_{L} \times S U(12)_{R}: \Sigma \rightarrow L \Sigma R^{\dagger}$
- \mathcal{L} is an expansion in
- $m_{\pi}^{2} \sim m_{q} ; m_{q}$ is a light quark mass
- a^{2}, the lattice spacing

Staggered $\chi \mathbf{P T}$

$$
\mathcal{L}=\frac{f^{2}}{8} \operatorname{Tr}\left[\partial_{\mu} \Sigma \partial^{\mu} \Sigma\right]+\frac{\mu f^{2}}{4} \operatorname{Tr}\left[\mathcal{M}\left(\Sigma+\Sigma^{\dagger}\right)\right]-a^{2} \mathcal{V}_{\Sigma}
$$

- \mathcal{M} : Light quark mass matrix
- \mathcal{V}_{Σ} : Taste-breaking potential arising from four-quark operators.
- f : tree-level pion decay constant
- For each pion: 16 tastes [in degenerate $S O(4)$ representations: P, A, T, V, S] with masses:

$$
m_{t}^{2}=\mu\left(m_{a}+m_{b}\right)+a^{2} \Delta_{t}, \quad(t=P, A, T, V, S)
$$

- Taste violations at finite lattice spacing $\Rightarrow \Delta_{t} \neq 0$
- Remnant chiral symmetry $\Rightarrow \Delta_{P}=0$
- To include photons:

$$
\partial_{\mu} \Sigma \rightarrow \partial_{\mu} \Sigma+i e A_{\mu}[Q, \Sigma]
$$

One-loop pion contribution

- One-loop pion/kaon contribution:

$$
\begin{gathered}
\Pi_{M}\left(q^{2}\right)=\frac{\alpha}{4 \pi}\left\{\frac{1}{3}\left(1+x_{M}\right)^{3 / 2} \ln \left(\frac{\sqrt{1+x_{M}}+1}{\sqrt{1+x_{M}}-1}\right)-\frac{2 x_{M}}{3}-\frac{8}{9}+\frac{1}{3} \ln \left(\frac{m_{M}^{2}}{\Lambda^{2}}\right)\right\} \\
\Pi\left(q^{2}\right)=\frac{1}{16} \sum_{t}\left[\Pi_{\pi_{t}}\left(q^{2}\right)+\Pi_{K_{t}}\left(q^{2}\right)\right]+\text { c. t. } \\
x=4 m^{2} / q^{2}
\end{gathered}
$$

- Sum over t is a sum over the 16 tastes
- Nice: No free parameters (besides counterterm—this is just a constant)
- Bad: Two orders of magnitude too small!

$\mathbf{S} \chi \mathbf{P T}$ with vectors

- Without sea quarks (quenched), $\Pi\left(q^{2}\right)$ is dominated by effects of the ρ (QCDSF), perhaps they play a role here...
- Use resonance formalism of Ecker, Gasser, and Pich [NPB 321311 (1989)]
- Incorporate vectors into field $V_{\mu \nu}$ so that under chiral $S U(12)_{L} \times S U(12)_{R}$:

$$
V_{\mu \nu} \rightarrow U V_{\mu \nu} U^{\dagger}
$$

where $U \in S U(12)$ is defined as

$$
\sigma \rightarrow L \sigma U^{\dagger}=U \sigma R^{\dagger}
$$

with $\sigma^{2}=\Sigma$

$\mathbf{S} \chi$ PTwith vectors

- So we have the interaction Lagrangian

$$
\begin{gathered}
\mathcal{L}_{\mathrm{vec}}=\frac{f_{V}}{2 \sqrt{2}} \operatorname{Tr}\left[V_{\mu \nu}\left(\sigma F^{\mu \nu} \sigma^{\dagger}+\sigma^{\dagger} F^{\mu \nu} \sigma\right)\right]+\ldots \\
F^{\mu \nu}=e Q\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)
\end{gathered}
$$

- $V_{\mu \nu}$ is a 12×12 matrix with the 8 lightest vector mesons (each with 16 tastes)
- Empirically taste violations among vectors are small-Will ignore them here
- Leading contribution to the photon vacuum polarization is at tree level:

mouns \rightarrow arouncor

- Tree-level result:

$$
\Pi_{V}\left(q^{2}\right)=-\frac{\alpha}{4 \pi} \frac{(4 \pi)^{2} f_{V}^{2}}{3} \frac{4}{3} \frac{1}{q^{2}+m_{\rho}^{2}}
$$

- Although the masses are heavy, the numerator has enhancement of $(4 \pi)^{2} f_{V}^{2}$.
- There are no free parameters: The masses and f_{V} can be measured directly in the simulations (f_{V} not measured yet)
- One-loop calculation: only tadpole corrections to ρ-photon vertex

$$
\Pi_{V}^{1-\mathrm{loop}}\left(q^{2}\right)=\frac{\alpha}{4 \pi}\left(\frac{8 f_{V}^{2}}{f^{2}}\right) \frac{1}{q^{2}+m_{\rho}^{2}} \sum_{t}\left[m_{\pi_{t}}^{2} \ln m_{\pi_{t}}^{2}+m_{K_{t}}^{2} \ln m_{K_{t}}^{2}\right]
$$

Fit to $\chi \mathbf{P T}+\rho$ result

Preliminary Results

$$
\begin{aligned}
a_{\mu}^{\text {had, }, \mathrm{VP}}(\infty) & =367(12) \times 10^{-10} \\
a_{\mu}^{\text {had, } \mathrm{VP}}(0.0124) & =431(7) \times 10^{-10} \\
a_{\mu}^{\text {had, } \mathrm{VP}}(0.0062) & =509(14) \times 10^{-10} \\
a_{\mu}^{\text {had,VP }}(0.0031) & =636(8) \times 10^{-10} \\
a_{\mu}^{\text {had,VP, pert }}(\text { phys }) & \lesssim 10 \times 10^{-10} \\
a_{\mu}^{\text {had,disp }}(\text { phys }) & =693.4(5.3)(3.5) \times 10^{-10}
\end{aligned}
$$

- Statistical errors only
- Possibly large uncertainties:
- Low- q^{2} : Still undershoots at small mass, although not as much as a simple polynomial fit
- Last line is from $e^{+} e^{-}$data and dispersion relation [A. Hocker, ICHEP 2004]

Preliminary Results

How to extrapolate?

- We have f_{V}, m_{V}, and pion/kaon masses all as functions of the light quark mass \Rightarrow Could extrapolate these to physical point $a m_{l} \approx 0.001 \ldots$
- Extrapolation to physical point: Must go through the 2π threshold (and m_{V} is not a linear function of m_{l} for light quark masses)
- The three values for $a_{\mu}^{\text {had, VP }}$ show significant curvature as a function of m_{l} : Quadratic fit?

Quadratic fit of $a_{\mu}^{\text {had, VP }}$ vs. m_{l} gives:

$$
a_{\mu}^{\mathrm{had}, \mathrm{VP}}(\mathrm{phys}) \approx 726 \times 10^{-10}
$$

(Errors are not shown on purpose!)

Summary

- Haven't included "disconnected diagrams" in lattice calculation (noisy)
- Functional form from $\chi \mathrm{PT}+\rho$ fits well to lattice data with few unknown parameters, but not ideal
- Need to understand why fit undershoots data: Bad fitting form or are we missing something?
- Issues/Future needs:
- Study possible finite volume problems
- Starting calculations on coarse MILC lattices \Rightarrow Continuum limit!
- Twisted BCs to get more low- q^{2} points?

Thanks to RIKEN \& US DOE for calculations
Thanks to MILC for configurations

