Muon g-2:

Reclaiming the theoretical calculation of the leading QCD contribution

Christopher Aubin

Columbia University

New York, NY

working with Tom Blum

Stupid Question: Why?

- Currently:
 - Experiment: Very precise 0.5ppm (BNL)
 - "Theory":
 - Low compared with experiment
 - Relates g-2 to
 - 1. $e^+e^- \rightarrow$ hadrons cross section and
 - 2. τ decay cross section
 - Discrepancy with experiment: $0.7\sigma \rightarrow 2.7\sigma$
- Lattice: method to extract hadronic contributions without experimental input

Theory vs. Experiment

Outline

- Muon g-2 and current theoretical predictions
- Calculating g-2 on the lattice, with Lattice Gauge Theory and Chiral Perturbation Theory
- $O(\alpha^2)$ Contribution: Vacuum Polarization
- Lattice results for vacuum polarization
- Fits and preliminary results for g-2

Muon g-2

Full muon-photon vertex:

Hadronic Contributions

Hadronic contributions are 7×10^{-5} times smaller than leading corrections

Leading Hadronic Contribution

The $O(\alpha^2)$ hadronic contribution, a_{μ}^{HLO} , cannot be calculated in perturbation theory

Using the Optical Theorem, one can evaluate it using the cross section for $e^+e^- \rightarrow$ hadrons:

$$a_{\mu}^{HLO} = \frac{\alpha^2}{3\pi^2} \int_{4m_{\pi}^2}^{\infty} \frac{ds}{s} K(s) R(s)$$

The kernel, K(s) is known (dominated by small s), and R(s) can be measured experimentally.

Not a theoretical problem since 1961!

R(s)

The precision of the Standard Model prediction is limited by the experimental measurement of R(s).

Using τ decay

- Introduced by Alemany et al (hep-ph/9607319)
- In isospin limit, relate τ spectral data to isovector part of $\sigma(e^+e^-)$ using Conserved Vector Current (CVC) relations
- **P** Result for g-2 is higher than "standard method"
- Contraversial: Studies have conflicting results on validity of CVC relations
- Either way, still is an experimental calculation, and we want a theoretical one

(Davier et al, hep-ph/0208177)

Field Theory

Path Integral: $Z[J] = \int_{\phi(x_a)}^{\phi(x_b)} \mathcal{D}\phi \exp\left\{i\int d^4x \left[\mathcal{L}[\phi(x)] + J(x)\phi(x)\right]\right\}$ (\mathcal{D} =Sum over all paths)

- There are an infinite number of paths!
- Use PT if coupling constant is small (high-E QCD, QED)

Field theory on a lattice 1

To calculate Z (and physical quantities) on the lattice:

- Continue to Euclidean space: $t
 ightarrow -it_E$
- Discretize space and time (with a lattice spacing a) and put system in a finite volume V

Now a finite dimensional path integral

Field theory on a lattice 2

- This is still non-trivial: Finite, but large dimensional integral
- Use Monte Carlo techniques to evaluate Z and whatever matrix element you want (within reason)
- In the end, take $a \to 0$ and $V \to \infty$ (the "continuum limit") and continue back to Minkowski space

A few comments:

- We can vary external (valence) and internal (sea) quark masses separately
- Often $m_{sea} \rightarrow \infty$ (Quenched approx) due to limited computational power
- **•** Finite volume \Rightarrow discrete momenta.
- $p_{\min} = 2\pi/T$, where T is the size of the largest direction
- Quarks on the lattice are a problem...

Simulating Quarks

Quarks are anti-commuting fields \rightarrow Must integrate over them first in the path integral:

$$Z = \int_{A_{\mu},\psi,\bar{\psi}} e^{-S_{QCD}} = \int_{A_{\mu}} \det K[A] e^{-S_{\text{gluons}}}$$

- I = K[A] is the Dirac operator for a given set of gauge fields
- det K is slow to simulate (very non-local), quenched approximation sets this to 1
- For example, pion propagator:

$$\langle \pi^+ \pi^- \rangle = \frac{1}{Z} \int_{A_\mu, \psi, \bar{\psi}} (\bar{u}\gamma_5 d) (\bar{d}\gamma_5 u) e^{-S_{QCD}}$$

Wick contract the quarks to give us quark propagators, which we can evaluate on a given gauge background

Lattice Quarks

Discrete version of the theory has the 15 "doubling symmetries"

$$\psi_x \to e^{i\pi x \cdot p} \Gamma_p \psi_x \qquad \bar{\psi}_x \to e^{i\pi x \cdot p} \bar{\psi}_x \Gamma_p^{\dagger}$$

$$ap \in \{(1,0,0,0), (0,1,0,0), \dots, (1,1,0,0), \dots, (1,1,0,0), \dots, (1,1,1,1)\}$$
$$\Gamma_p = \prod_{\mu} (i\gamma_5\gamma_{\mu})^{ap_{\mu}}$$

 \Rightarrow 16 species ("tastes") when $a \rightarrow 0$

If ψ_x^0 satisfies the lattice Dirac equation, we have 15 other solutions, ψ_x^p , which are degenerate in mass in the continuum limit

Lattice Quarks

- Many solutions to the doubling problem:
 - Wilson quarks: Slow, breaks chiral symmetry at finite a, difficult to renormalize, but gets rid of all doublers
 - Staggered quarks: Fast, has a remnant chiral symmetry at finite a, still has four species as $a \rightarrow 0$
 - Domain-Wall quarks: Slow, has controlled and small chiral symmetry breaking at finite a, no doubling remnants
 - Overlap quarks: VERY slow, but perfect chiral symmetry
- For now we'll choose staggered:
 - Dynamical simulations with Full QCD with very light quark masses
 - Lightest quark masses \Rightarrow easier to take chiral limit
 - Largest volumes
 - These lattices already exist (MILC Collaboration)

Staggered Quarks

- On the lattice, the usual continuum SO(4) rotation symmetry is broken to allow only hypercubic rotations
- A unitary transformation on ψ can diagonalize the γ matrices
- This decouples the four spinor components of the fermion \Rightarrow we can keep only one component per species
- We have 16 one-component fields, *staggered* on separate sites of a hypercube \Rightarrow 4 four-component Dirac *tastes*, degenerate as $a \rightarrow 0$

Aside: $4 \rightarrow 1$ tastes

- **P** Evaluate the staggered quark path integral \Rightarrow det K
- $(\det K)^{1/4} \text{ describes 1 taste}$
- Can we do this *before* taking the continuum limit?
- At finite a, we have violations of the taste symmetry (ie the four quark species are not degenerate in mass for $a \neq 0$)

Won't worry about this now:

- There is evidence that this isn't a problem
- Lots of people trying to figure out if it is/isn't a problem
- Fourth-root" can be taken into account in chiral perturbation theory with staggered quarks.

Vertex Correction

Apply Feynman rules, take external $q^2 \rightarrow 0$, go to Euclidean space, and performing angular rotations, we get

$$a^{(1)}_{\mu} = \frac{\alpha}{\pi} \int_0^\infty dK^2 f(K^2)$$

$${old 9} \quad f(K^2)$$
 is a known function of K^2 and m_μ^2

Integral is finite and gives precisely

$$a_{\mu}^{(1)} = \frac{\alpha}{2\pi}$$

Lot of work for something we already know...

Leading Hadronic Contribution

We want to insert the quark loop into the vacuum polarization:

We can apply this procedure to the $O(\alpha^2)$ hadronic contribution to a_μ to get (Blum, 2003)

i

$$a_{\mu}^{(2)\text{had,LO}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dK^2 f(K^2) \hat{\Pi}(K^2)$$
$$\hat{\Pi}(K^2) = 4\pi^2 \sum Q_i^2 [\Pi_i(K^2) - \Pi_i(0)]$$

Leading Hadronic Contribution

So now we just need to evaluate $\Pi(q^2)$ on the lattice, and plug it into our expression for a_μ

First some comments about $f(K^2)$:

- If M = 0 diverges as $K^2 \rightarrow 0 \Longrightarrow$ dominated by low momentum region
- Need large lattices to reach these low momenta

Lattice Calculation of $\Pi^{\mu\nu}$

Calculate the vacuum polarization using the conserved current

$$\Pi^{\mu\nu}(q) = \int d^4x e^{iq \cdot (x-y)} \langle J^{\mu}(x) J^{\nu}(y) \rangle = (q^2 g^{\mu\nu} - q^{\mu} q^{\nu}) \Pi(q^2)$$

Continuum J^{μ} satisfies $\partial_{\mu}J^{\mu} = 0$:

$$J^{\mu} = \bar{\psi} \gamma^{\mu} \psi$$

On the lattice this is a point-split current:

$$J_{\mu}(x) = \frac{1}{2} \left[\bar{\psi}(x + a\hat{\mu}) U^{\dagger}_{\mu}(x) (1 + \gamma^{\mu}) \psi(x) - \bar{\psi}(x) U_{\mu}(x) (1 - \gamma^{\mu}) \psi(x + a\hat{\mu}) \right]$$

$$\sum_{\mu} \frac{J_{\mu}(x) - J_{\mu}(x - a\mu)}{a} = 0$$

Lattice Calculation of $\Pi^{\mu\nu}$

Discrete version satisfies a discrete Ward Identity, so

 $\Pi^{\mu\nu}(q) = (\hat{q}^2 \delta^{\mu\nu} - \hat{q}^{\mu} \hat{q}^{\nu}) \Pi(\hat{q}^2)$

with

$$\hat{q}^{\mu} = \frac{2}{a} \sin\left(\frac{aq^{\mu}}{2}\right)$$

and

$$q^{\mu} = \frac{2\pi n^{\mu}}{aL_{\mu}}$$

WI provides strong check on the calculation!

Lattice Calculation of $\Pi^{\mu\nu}$

D To perform lattice calculation: Wick contract the quark fields in $\langle J^{\mu}(x)J^{\nu}(y)\rangle$, giving two types of contractions:

- **9** Fourier transform to get $\Pi^{\mu\nu}$
- We neglect second contraction (suppressed, also very noisy)
- For more details on the lattice calculation, see
 - T. Blum, PRL 91 052001, 2003—Quenched Domain-Wall Quarks
 - T. Blum, Confinement 2003 (hep-lat/0310064)—Includes staggered calculations

Simulation parameters

- On the lattice, "Full QCD" = 2+1 flavors (c, b, t integrated out):
 - 1 "heavy" flavor, the strange quark at physical m_s
 - 2 light flavors: $m_u = m_d \equiv m_l \gtrsim m_s / 10$ (can't yet simulate at "real" m_u or m_d)
- These are "Improved staggered" configurations (so we have smaller lattice spacing errors)

a (fm)	Volume	am_l	am_s	$am_{ m val}$
0.086(2)	$28^3 \times 96$	0.0124	0.031	0.031
0.086(2)	$28^3 \times 96$	0.0124	0.031	0.0124
0.086(2)	$28^3 \times 96$	0.0062	0.031	0.031
0.086(2)	$28^3 \times 96$	0.0062	0.031	0.0062
0.086(2)	$40^3 \times 96$	0.0031	0.031	0.0031
0.086(2)	$40^3 \times 96$	0.0031	0.031	0.031

MILC 2+1-flavor Configurations

Simulation Results (2 + 1 Staggered)

Fitting $\Pi(q^2)$

J High- q^2 easy: Use continuum PT

- **J** Low- q^2 is tough:
 - Simple polynomials? These undershoot the data for lowest q^2
 - Physics-based models, like Chiral Perturbation Theory (χ PT)?
 - χ PT is an expansion in mass/energy of pions
 - Since it's good for low-energy processes, could work here, for the low- q^2 region

χ PT—Chiral Symmetry

As $m_q \rightarrow 0$ (q = u, d, s), QCD has an $SU(3)_L \times SU(3)_R$ chiral symmetry.

 $q_L \to L q_L , \quad q_R \to R q_R$

 $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$ by a nonvanishing quark condensate

 $\left<\bar{q}_R q_L\right> \neq 0$

 \Rightarrow 8 massless bosons: $\pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}, \overline{K}^{0}, \eta$

Put the pions in the field $\Sigma (\Sigma \rightarrow L\Sigma R^{\dagger}$ under the chiral symmetry) To leading order in the pion momentum

 $\mathcal{L}_{\rm kin} \propto {\rm Tr}[\partial_{\mu}\Sigma\partial^{\mu}\Sigma^{\dagger}]$

Mass in χ PT

We know the pions are not massless, and neither are the light quarks.

Mass term in QCD looks like

 $\mathcal{L}_{\text{QCD},m} = \bar{q}_L M q_R + \bar{q}_R M q_L$

where M is the 3×3 light quark mass matrix.

Mass term in χ PT should transform like the QCD mass term, so we have

 $\mathcal{L}_{\text{mass}} \propto \text{Tr}[M\Sigma + \Sigma^{\dagger}M]$

Staggered χ **PT for 3 light flavors**

Lee & Sharpe, PRD 60, 114503; CA & Bernard, PRD 68 034014 & 074011

D Light mesons: $\Sigma = \exp(i\Phi/f)$, with

$$\Phi = \begin{pmatrix} U & \pi^+ & K^+ \\ \pi^- & D & K^0 \\ K^- & \bar{K^0} & S \end{pmatrix}$$

- **Solution** Components above are 4×4 matrices
- Under chiral $SU(12)_L \times SU(12)_R$: $\Sigma \to L\Sigma R^{\dagger}$
- \checkmark \mathcal{L} is an expansion in
 - $m_{\pi}^2 \sim m_q$; m_q is a light quark mass
 - a^2 , the lattice spacing

Staggered χ PT

$$\mathcal{L} = \frac{f^2}{8} \operatorname{Tr}[\partial_{\mu} \Sigma \partial^{\mu} \Sigma] + \frac{\mu f^2}{4} \operatorname{Tr}[\mathcal{M}(\Sigma + \Sigma^{\dagger})] - a^2 \mathcal{V}_{\Sigma}$$

- \mathfrak{M} : Light quark mass matrix
- $\mathbf{P} = \mathcal{V}_{\Sigma}$: Taste-breaking potential arising from four-quark operators.
- f: tree-level pion decay constant
- For each pion: 16 tastes [in degenerate SO(4) representations: P, A, T, V, S] with masses:

$$m_t^2 = \mu(m_a + m_b) + a^2 \Delta_t, \ (t = P, A, T, V, S)$$

Taste violations at finite lattice spacing
$$\Rightarrow \Delta_t \neq 0$$

- Remnant chiral symmetry $\Rightarrow \Delta_P = 0$
- To include photons:

$$\partial_{\mu}\Sigma \to \partial_{\mu}\Sigma + ieA_{\mu}[Q,\Sigma]$$

One-loop pion contribution

One-loop pion/kaon contribution:

$$\Pi_M(q^2) = \frac{\alpha}{4\pi} \left\{ \frac{1}{3} \left(1 + x_M \right)^{3/2} \ln\left(\frac{\sqrt{1 + x_M} + 1}{\sqrt{1 + x_M} - 1} \right) - \frac{2x_M}{3} - \frac{8}{9} + \frac{1}{3} \ln\left(\frac{m_M^2}{\Lambda^2} \right) \right\}$$
$$\Pi(q^2) = \frac{1}{16} \sum_t \left[\Pi_{\pi_t}(q^2) + \Pi_{K_t}(q^2) \right] + \mathbf{c. t.}$$
$$x = 4m^2/q^2$$

- Nice: No free parameters (besides counterterm—this is just a constant)
- Bad: Two orders of magnitude too small!

$\mathbf{S} \boldsymbol{\chi} \mathbf{P} \mathbf{T}$ with vectors

- Solution Without sea quarks (quenched), $\Pi(q^2)$ is dominated by effects of the ρ (QCDSF), perhaps they play a role here...
- Use resonance formalism of Ecker, Gasser, and Pich [NPB 321 311 (1989)]
- Incorporate vectors into field $V_{\mu\nu}$ so that under chiral $SU(12)_L \times SU(12)_R$:

 $V_{\mu\nu} \to U V_{\mu\nu} U^{\dagger}$

where $U \in SU(12)$ is defined as

$$\sigma \to L \sigma U^{\dagger} = U \sigma R^{\dagger}$$

with $\sigma^2 = \Sigma$

$\mathbf{S} \boldsymbol{\chi} \mathbf{P} \mathbf{T} \mathbf{w} \mathbf{i} \mathbf{t} \mathbf{h} \mathbf{v} \mathbf{e} \mathbf{c} \mathbf{t} \mathbf{o} \mathbf{r} \mathbf{s}$

So we have the interaction Lagrangian

$$\mathcal{L}_{\rm vec} = \frac{f_V}{2\sqrt{2}} \operatorname{Tr} \left[V_{\mu\nu} (\sigma F^{\mu\nu} \sigma^{\dagger} + \sigma^{\dagger} F^{\mu\nu} \sigma) \right] + \dots$$

$$F^{\mu\nu} = eQ(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu})$$

- I $V_{\mu\nu}$ is a 12×12 matrix with the 8 lightest vector mesons (each with 16 tastes)
- Empirically taste violations among vectors are small–Will ignore them here
- Leading contribution to the photon vacuum polarization is at tree level:

S χ **PT** with ρ

Tree-level result:

$$\Pi_V(q^2) = -\frac{\alpha}{4\pi} \frac{(4\pi)^2 f_V^2}{3} \frac{4}{3} \frac{1}{q^2 + m_\rho^2}$$

- Although the masses are heavy, the numerator has enhancement of $(4\pi)^2 f_V^2$.
- There are no free parameters: The masses and f_V can be measured directly in the simulations (f_V not measured yet)
- One-loop calculation: only tadpole corrections to ρ -photon vertex

$$\Pi_V^{1-\text{loop}}(q^2) = \frac{\alpha}{4\pi} \left(\frac{8f_V^2}{f^2}\right) \frac{1}{q^2 + m_\rho^2} \sum_t \left[m_{\pi_t}^2 \ln m_{\pi_t}^2 + m_{K_t}^2 \ln m_{K_t}^2\right]$$

Fit to χ **PT**+ ρ **result**

Preliminary Results

$$\begin{array}{rcl} a_{\mu}^{\rm had, VP}(\infty) &=& 367(12) \times 10^{-10} \\ a_{\mu}^{\rm had, VP}(0.0124) &=& 431(7) \times 10^{-10} \\ a_{\mu}^{\rm had, VP}(0.0062) &=& 509(14) \times 10^{-10} \\ a_{\mu}^{\rm had, VP}(0.0031) &=& 636(8) \times 10^{-10} \\ a_{\mu}^{\rm had, VP, pert}({\rm phys}) &\lesssim& 10 \times 10^{-10} \\ a_{\mu}^{\rm had, disp}({\rm phys}) &=& 693.4(5.3)(3.5) \times 10^{-10} \end{array}$$

- Statistical errors only
- Possibly large uncertainties:
 - Low- q^2 : Still undershoots at small mass, although not as much as a simple polynomial fit
- Last line is from e^+e^- data and dispersion relation [A. Hocker, ICHEP 2004]

Preliminary Results

How to extrapolate?

- Solution We have f_V , m_V , and pion/kaon masses all as functions of the light quark mass \Rightarrow Could extrapolate these to physical point $am_l \approx 0.001...$
- Extrapolation to physical point: Must go through the 2π threshold (and m_V is not a linear function of m_l for light quark masses)
- The three values for $a_{\mu}^{had,VP}$ show significant curvature as a function of m_l :
 Quadratic fit?

Quadratic fit of $a_{\mu}^{\mathrm{had,VP}}$ vs. m_l gives:

 $a_{\mu}^{\mathrm{had,VP}}(\mathrm{phys}) \approx 726 \times 10^{-10}$

(Errors are not shown on purpose!)

Summary

- Haven't included "disconnected diagrams" in lattice calculation (noisy)
- Functional form from $\chi PT + \rho$ fits well to lattice data with few unknown parameters, but not ideal
- Need to understand why fit undershoots data: Bad fitting form or are we missing something?
- Issues/Future needs:
 - Study possible finite volume problems
 - Starting calculations on coarse MILC lattices \Rightarrow Continuum limit!
 - Twisted BCs to get more low- q^2 points?

Thanks to RIKEN & US DOE for calculations Thanks to MILC for configurations