A constant contribution in meson correlators at finite temperature

Takashi Umeda (BNL)

This talk is based on the hep-lat/0701005.

Riken Lunch Seminar, BNL, Jan. 25, 2007

Contents

Introduction

- J/ ψ suppression and charmonium states
- constant contribution in meson correlators

Free quark calculations

- meson-like correlators
- analyses to avoid the constant contribution
- Quenched QCD calculations at finite temperature
 - lattice setup
 - Numerical results
- Discussion & summary

Introduction

Charmonium properties at T>0 play the key role

for understanding the QGP formation in Heavy Ion Collis. exp.

Potential model analysis

Mass shift near Tc T. Hashimoto et al., PRL57, 2123 (1986). J/ ψ suppression T. Matsui & H. Satz, PLB178, 416 (1986). Spectral function in lattice QCD

> *T. Umeda et al., EPJC39S1, 9, (2005). S. Datta et al., PRD69, 094507, (2004). T. Hatsuda & M. Asakawa, PRL92, 012001, (2004). A. Jakovac et al., hep-lat/0611017. G. Aarts et al., hep-lat/0610065.*

In the studies of SPFs on the lattice, all studies indicate survival of J/ψ state above T_c (1.5 T_c ?)

Introduction

Recently "indirect J/ ψ suppression" is discussed.

total yield of J/ ψ =

direct production of J/ ψ (60%)

+ decay from higher states, ψ ' & $\chi_{\rm c}$ (40%)

L. Antoniazzi et al. (E705 Collab.), PRL70, 383, (1993).

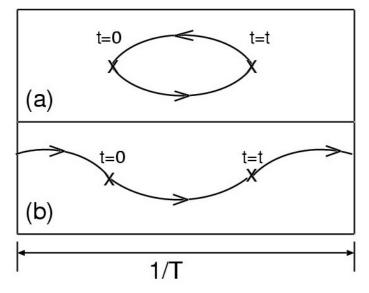
ightarrow If the higher states dissociate at lower temp.

a part of the J/ ψ suppression may be observed in exp. at a lower temp. than that of J/ ψ

Dissociation temperatures of these states (not only J/ ψ but also ψ ' & χ_c) are important for QGP phenomenology.

Constant contribution

Now we consider the meson correlator with $p=0 \& m_{q1}=m_{q2}$



Pentaquark (KN state): two pion state: → Dirichlet b.c. c.f. T.T.Takahashi et al., PRD71, 114509 (2005). $exp(-m_qt) x exp(-m_qt)$ $= exp(-2m_qt) m_q \text{ is quark mass} or single quark energy$ $exp(-m_qt) x exp(-m_q(L_t-t))$ $= exp(-m_qL_t) L_t \text{ is } 1/T$

- in imaginary time formalism gauge field : periodic b.c. quark field : anti-periodic b.c.
 in confined phase: mq is infinite
 - → the effect appears only in deconfined phase

Free quark calculations

$$C(t) = \sum_{\vec{x}} \langle O_{\Gamma}(\vec{x},t) O_{\Gamma}^{\dagger}(\vec{0},0) \rangle,$$

$$O_{\Gamma}(\vec{x},t) = \bar{q}(\vec{x},t) \Gamma q(\vec{x},t),$$

$$\Gamma = \gamma_5, \gamma_i, 1 \text{ and } \gamma_i \gamma_5 \text{ for Ps, V, S and Av channels}$$

$$\int_{10^{-1}}^{10^{-1}} \int_{0^{-1}}^{0^{-1}} \int_{0^{-1}}^{$$

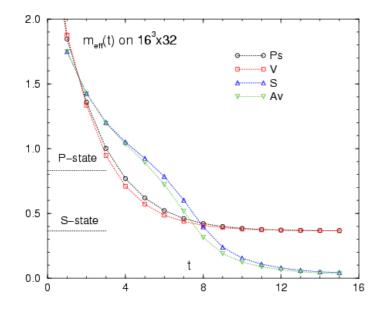
Riken Lunch Seminar

Definition of effective mass

Effective mass (local mass)

 $C(t) = Ae^{-m_{eff}t}$ $\bigcup_{C(t+1)} \frac{C(t)}{C(t+1)} = e^{-m_{eff}t}$

$$\frac{C(t)}{C(t+1)} = \frac{\cosh[m_{eff}(t)(N_t/2 - t)]}{\cosh[m_{eff}(t)(N_t/2 - t - 1)]}$$



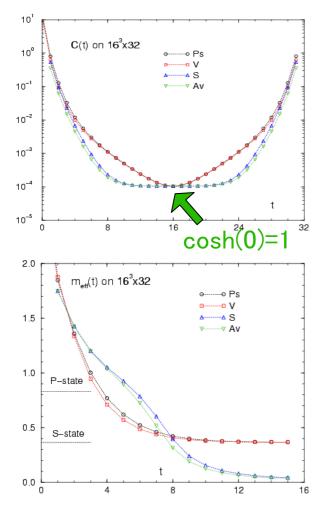
for S-wave states:

 lowest state energy is 2E_q(p=0) where E_q(p=0) = ln(m_q+1)

 for P-wave states:

 lowest state energy is 2E_q(p=p_{min}) where p_{min}=2 π / L_s
 free Wilson quark dispersion relation

Free quark calculations



Continuum form of the correlators $calculated by \ S. \ Sasaki$ $C(t) = \sum_{\vec{p}} \frac{16}{\cosh^2 E_p N_t} \times \left(\frac{E_p^2 \cosh\left[2E_p(t - N_t/2)\right]}{\left(E_p^2 - p_i^2\right) \cosh\left[2E_p(t - N_t/2)\right] + p_i^2} \text{ for } \Gamma = \gamma_i$

 $-\left(p^{2} \cosh\left[2E_{p}(t-N_{t}/2)\right]+\left(E_{p}^{2}-p^{2}\right)\right) \text{ for } \Gamma=1$ $-\left(\left(p^{2}-p_{i}^{2}\right) \cosh\left[2E_{p}(t-N_{t}/2)\right]+\left(E_{p}^{2}-p^{2}+p_{i}^{2}\right)\right) \text{ for } \Gamma=\gamma_{i}\gamma_{5}$

where

 E_p : single quark energy with relative mom. p

$$p^2 = \sum_i p_i^2$$

Riken Lunch Seminar

Spectral representation

Spectral function of the correlator

$$C(t) = \int_0^\infty d\omega \rho_{\Gamma}(\omega) K(\omega, t),$$

$$K(\omega, t) = \frac{\cosh(\omega(N_t/2 - t))}{\sinh(\omega N_t/2)}$$

F. Karsch et al., PRD68, 014504 (2003). G. Aarts et al., NPB726, 93 (2005).

$$\rho_{\Gamma}(\omega) = \Theta(\omega^{2} - 4m_{q}^{2}) \frac{N_{c}}{8\pi\omega} \sqrt{\omega^{2} - 4m_{q}^{2}} [1 - 2n_{F}(\omega/2)] \qquad I_{1} = -2 \int_{\vec{k}} n'_{F}(\omega_{\vec{k}}) \times [\omega^{2}(a_{H}^{(1)} - a_{H}^{(2)}) + 4m^{2}(a_{H}^{(2)} - a_{H}^{(3)})] \qquad \text{with} \qquad I_{2} = -2 \int_{\vec{k}} \frac{k^{2}}{\omega_{\vec{k}}^{2}} n'_{F}(\omega_{\vec{k}}) \times [n_{F}^{2}(\omega_{\vec{k}}) + 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})I_{1} + (a_{H}^{(2)} - a_{H}^{(3)})I_{2}] \qquad I_{2} = -2 \int_{\vec{k}} \frac{k^{2}}{\omega_{\vec{k}}^{2}} n'_{F}(\omega_{\vec{k}}) \times [n_{F}^{2}(\omega_{\vec{k}}) + 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})I_{1} + (a_{H}^{(2)} - a_{H}^{(3)})I_{2}] \qquad I_{2} = -2 \int_{\vec{k}} \frac{k^{2}}{\omega_{\vec{k}}^{2}} n'_{F}(\omega_{\vec{k}}) \times [n_{F}^{2}(\omega_{\vec{k}}) + 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})I_{1} + (a_{H}^{(2)} - a_{H}^{(3)})I_{2}] \qquad I_{2} = -2 \int_{\vec{k}} \frac{k^{2}}{\omega_{\vec{k}}^{2}} n'_{F}(\omega_{\vec{k}}) \times [n_{F}^{2}(\omega_{\vec{k}}) + 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})I_{1} + (a_{H}^{(2)} - a_{H}^{(3)})I_{2}] \qquad I_{2} = -2 \int_{\vec{k}} \frac{k^{2}}{\omega_{\vec{k}}^{2}} n'_{F}(\omega_{\vec{k}}) \times [n_{F}^{2}(\omega_{\vec{k}}) + 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})I_{1} + (a_{H}^{(2)} - a_{H}^{(3)})I_{2}] \qquad I_{2} = -2 \int_{\vec{k}} \frac{k^{2}}{\omega_{\vec{k}}^{2}} n'_{F}(\omega_{\vec{k}}) \times [n_{F}^{2}(\omega_{\vec{k}}) + 2\pi\omega\delta(\omega)N_{c}[(a_{H}^{(1)} + a_{H}^{(2)})I_{1} + a_{H}^{(2)} + a_{H}^{(2)}I_{1} + a_{H}$$

chiral symmetry in massless limit

Physical interpretation

in the continuum form & infinite volume

The constant term is related to some transport coefficients.

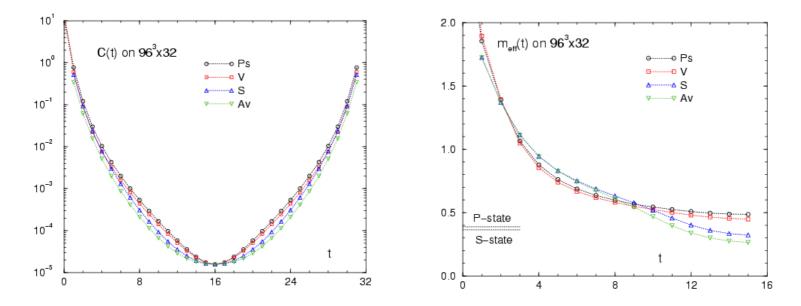
From Kubo-formula, for example, a derivative of the SPF in the V channel is related to the electrical conductivity σ .

$$\sigma = \frac{1}{6} \frac{\partial}{\partial \omega} \rho_V(\omega) \Big|_{\omega = 0}$$

Volume dependence

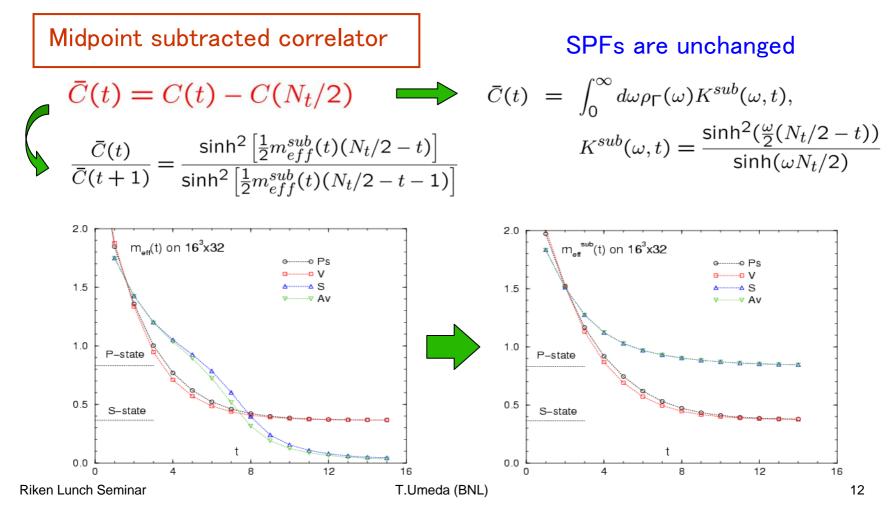
Size of the constant contribution depends on the volume N_s^3 The dependence is negligible at $N_s/N_t \gtrsim 2$

■ Results on 96³ x 32 ($N_s/N_t=3 \leftarrow$ similar to T>0 quench QCD calculation)



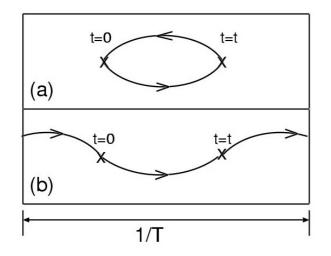
Removing constant contrib. (1)

An analysis to avoid the constant contribution



Removing constant contrib. (2)

Here we consider the Z_3 transformation



The asymmetry of diag–(b) is coming from a factor of Re[exp(-i2 π n/3)]

$$C^{ave}(t) = \frac{1}{3} \left(C^{p0}(t) + C^{p1}(t) + C^{p2}(t) \right)$$

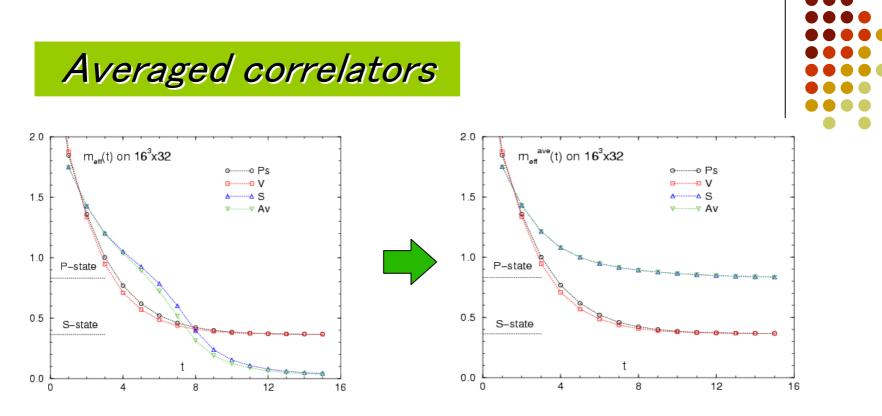
 $Z_{\rm 3}$ asym. terms are removed because

$$\sum_{n=0}^{2} Re(e^{-i2\pi n/3}) = 0$$

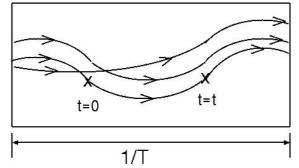
Z₃ symmetric

Z₃ asymmetric

Riken Lunch Seminar



However, this is not an exact method to avoid the constant contribution.



The 3 times wrapping diagram is also Z₃ symmetric.
→ the contribution is not canceled. but, O(exp(-m_qN_t)) ≫ O(exp(-3m_qN_t))

Quenched QCD at T>0

We demonstrate the effects of the constant contribution for charmonium correlators in quenched QCD at T>0

Lattice setup

anisotropic lattices : $20^3 \times N_t$

 $1/a_s = 2.03(1) \text{ GeV}, a_s/a_t = 4$

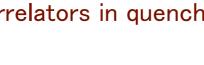
Clover quark action with tadpole imp. on anisotropic lattice *H. Matsufuru et al., PRD64, 114503 (2001).*

r_s=1 to reduce cutoff effects in higher energy states *F. Karsch et al., PRD68, 014504 (2003).*

$N_{ au}$	160	32	26	20
T/T_c	~ 0	0.88	1.04	1.40
# of conf.	60	300	300	300

equilib. is 20K sweeps each config. is separated by 500 sweeps

(% in a_t units, 80³ x N_t \rightarrow N_s/N_t=3-4 at T>T_c)

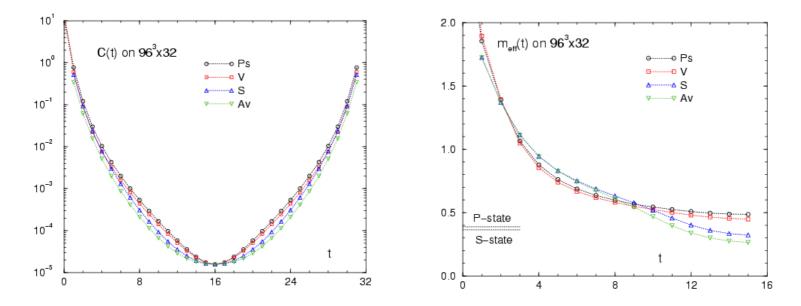


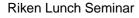
Volume dependence

Size of the constant contribution depends on the volume ${\sf N_s}^3$

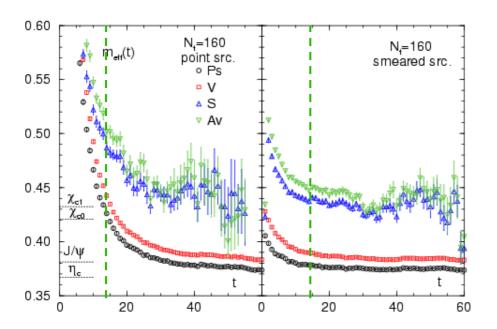
The dependence is negligible at $N_s/N_t\gtrsim 2$

■ Results on 96³ x 32 ($N_s/N_t=3 \leftarrow$ similar to T>0 quench QCD calculation)





Zero Temp. results



(our lattice results) $M_{PS} = 3033(19) \text{ MeV}$ $M_v = 3107(19) \text{ MeV}$

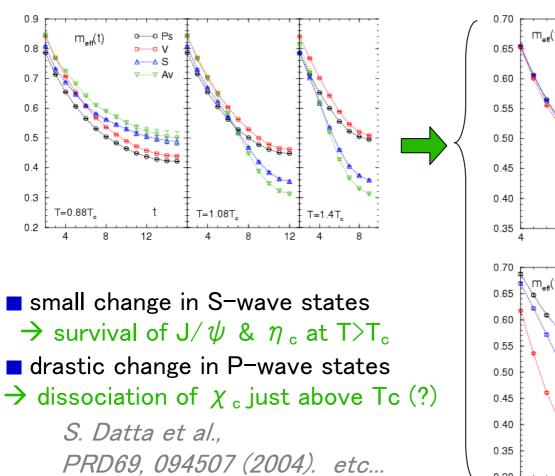
(exp. results from PDG06) $M_{\eta c} = 2980 \text{ MeV}$ $M_{J/\psi} = 3097 \text{ MeV}$ $M_{\chi c0} = 3415 \text{ MeV}$ $M_{\chi c0} = 3511 \text{ MeV}$

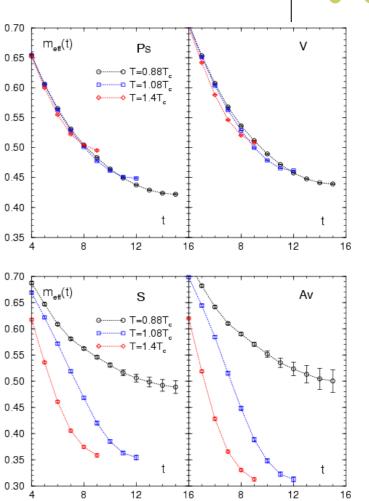
One can expect there is no plateau T>0 with the point op. when the SPF does not change at T>0

 $N_t\simeq 28~at~T_c$

$$t = 1 - 14$$
 is available near T_c

Spatially extended (smeared) op. is discussed later





0.9

0.8

0.7

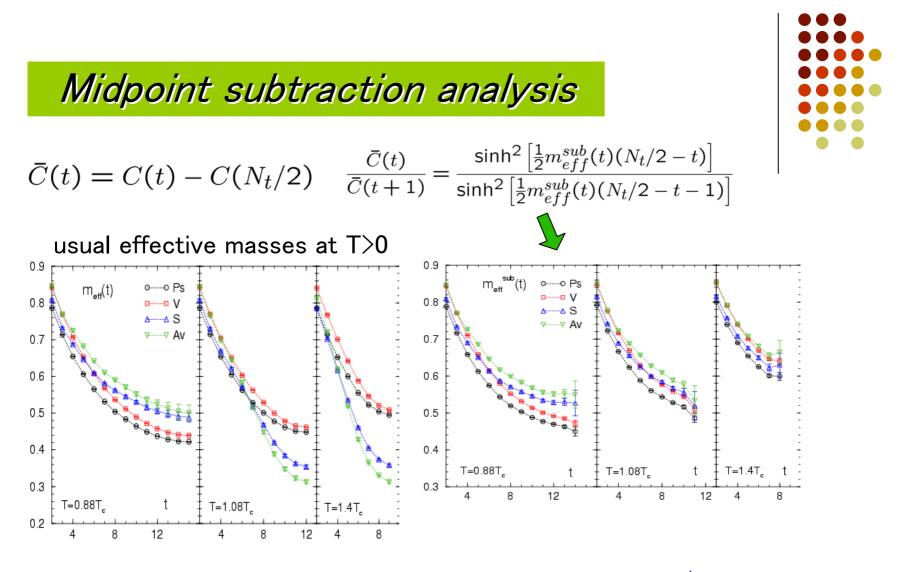
0.6

0.5

0.4

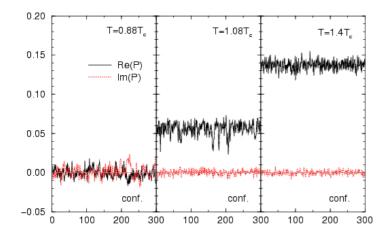
0.3

0.2



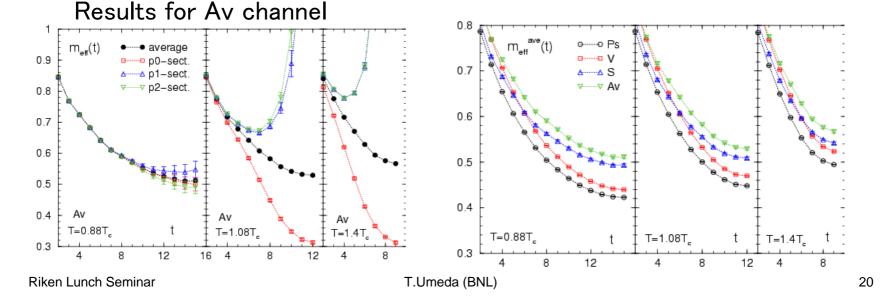
the drastic change in P-wave states disappears in $m_{eff}^{sub}(t)$ \rightarrow the change is due to the constant contribution

Polyakov loop sector dependence

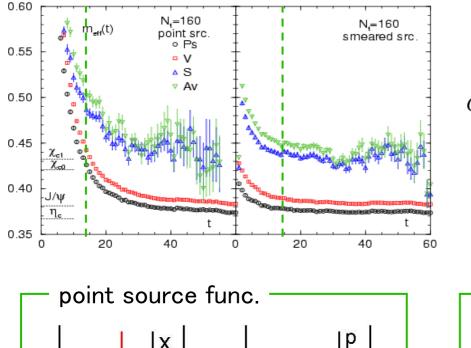


■ after Z₃ transformation const. → Re(exp(-i2 π n/3))*const.

- even below T_c, small const. effect enhances the stat. fluctuation.
 - drastic change in P-states disappears.



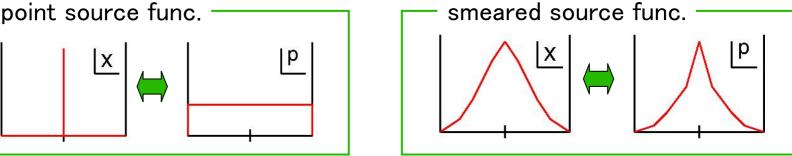
Results with extended op.



Spatially extended operators:

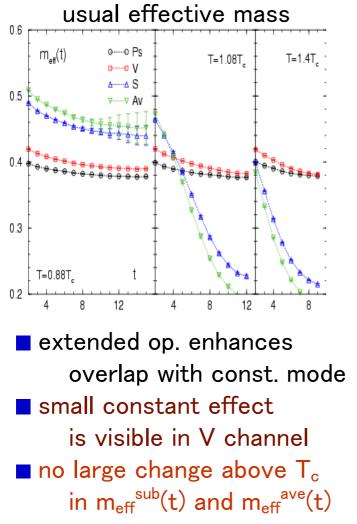
$$O_{\Gamma}(\vec{x},t) = \sum_{\vec{y}} \phi(\vec{y}) \bar{q}(\vec{x}-\vec{y},t) \Gamma q(\vec{x},t)$$

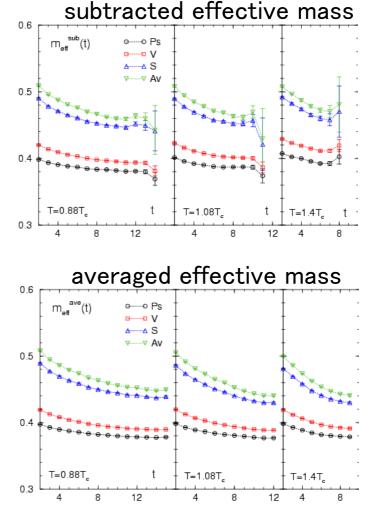
with a smearing func. $\phi(\mathbf{x})$
in Coulomb gauge

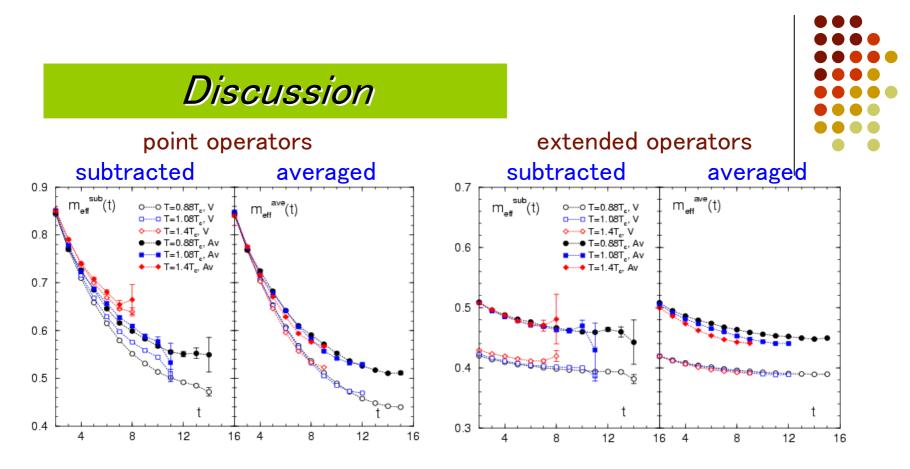


The extended op. yields large overlap with lowest states

Results with extended op.



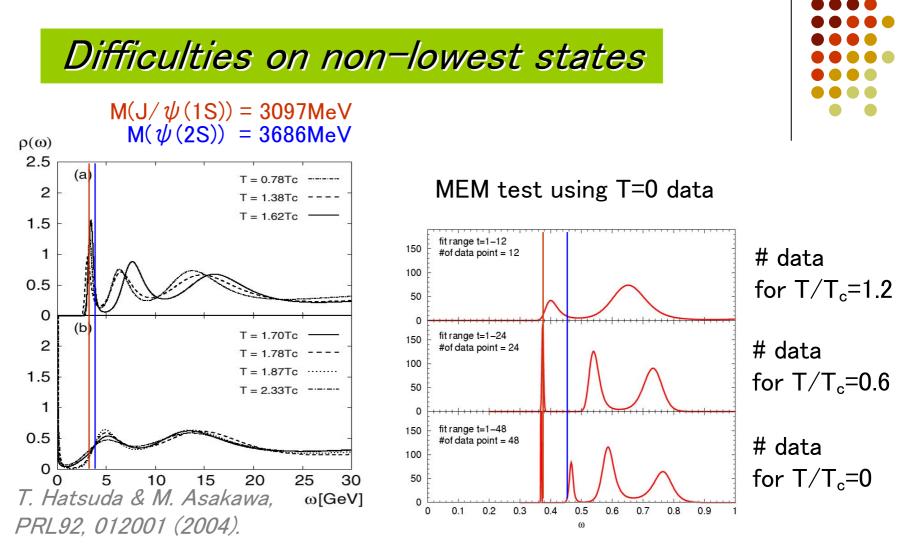




The drastic change of P-wave states is due to the const. contribution. \rightarrow There are small changes in SPFs (except for $\omega=0$).

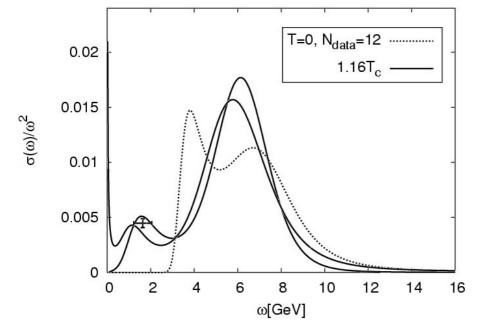
Why several MEM studies show the dissociation of $\chi_{\rm c}$ states ?

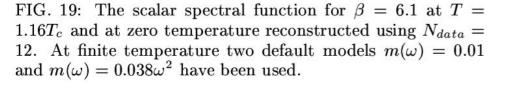
 \rightarrow above T_c, χ _c state is not the lowest state Analysis of non-lowest state is difficult even if MEM is applied.



It is difficult to reproduce the non-lowest states peak at T>0 Furthermore P-wave states have larger noise than S-wave states

Discussion





Most systematic & reliable calc. using MEM for charmonium SPFs

They concluded that

the results of SPFs for P-states are not so reliable.

e.g. large default model dep.

the drastic change just above Tc is reliable results.

In MEM results, we sometimes
 find a kind of divergence at ω=0
 → it may & should be caused by the constant contribution

Discussion

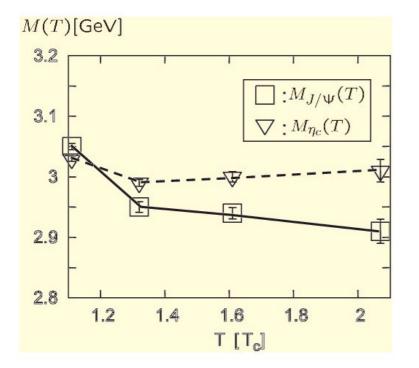


FIG. 8. Temperature dependence of the pole mass (on PBC) of J/Ψ and η_c for $(1.11-2.07)T_c$. The squares denote $M_{J/\Psi}(T)$ and the inverse triangles denote $M_{\eta_c}(T)$. There occurs the level inversion of J/Ψ and η_c above $1.3T_c$.

H. Iida et al., PRD74, 074502 (2006)

Several groups show

almost no change in Ps channel

small but visible change in V channel

These results can be explained by the constant contribution. - no constant in Ps channel

 small constant in V channel (proportional to p_i²)
 in free quark case

Summary

- We discuss a constant contribution to meson correlators at T>0
- The constant mode is important to study temporal correlators in deconfined phase

As a result of the study, we find that drastic changes in charmonium correlators for χ_c states just above the T_c are due to the constant contribution. The other differences in the χ_c states are small. It may indicate the survival of χ_c states above T_c, at least T=1.4T_c.

The result may affect the scenario of J/ψ suppression. It is important to take the constant effects into account for studies of the dissociation temp. of $\chi_c \& \psi'$.

Discussion



(*) These is no Z3 symmetry in full QCD.

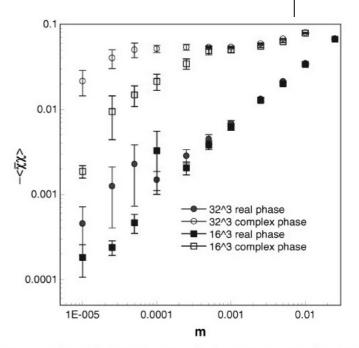
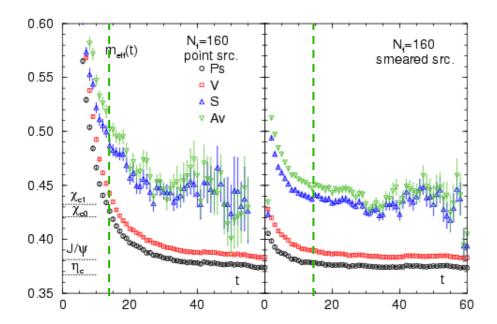


FIG. 1. The chiral condensate $\langle \bar{\chi} \chi \rangle$ plotted as a function of quark mass for a pure gauge calculation on $16^3 \times 4$ and $32^3 \times 4$ lattices. The real phase (closed points) is the most physical [det(D - m) is largest for this phase]. No evidence is seen for the expected anomalous behavior, $\langle \bar{\chi} \chi \rangle \sim m^{-1}$ as $m \to 0$.

S. Chandrasekharan et al., PRL82, 2463, (1999).

Results with extended op.



Spatially extended operators:

 $O_{\Gamma}(\vec{x},t) = \sum_{\vec{y}} \phi(\vec{y}) \bar{q}(\vec{x}-\vec{y},t) \Gamma q(\vec{x},t)$ with a smearing func. $\phi(\mathbf{x})$ in Coulomb gauge

 $\phi(\vec{x}) = \exp\left(-A|\vec{x}|^P\right)$

A, P are tuned by matching with charmonium wave func.

momentum distribution of quark propagator

 is given by Fourier transformation of φ(x)
 our extended op. enhances lower momentum of quark prop.
 → The extended op. yields large overlap with lowest states
 (※) smearing func. changes only overlap with each state