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Doubling problem → 4th-root staggered fermions

Naive-fermion propagator =
a

i
∑

µ γµ sin(apµ)
=⇒ 16 poles!

Elimination (“taste” = quark)

naive −→ staggered −→ 4th-root staggered
16 tastes −→ 4 tastes −→ 1 taste

exact symmetry brute force!
4 components −→ 1 component −→ ?

4th-root staggered: Z =
∫

DU exp(−Sg(U))
∏Nf

i=1 det1/4(Dstag(mi))

• cheap (one-component per color per site) + non-anomalous chiral symmetry

=⇒ light quark masses

But: taste symmetry broken =⇒ non-locality!!non-locality!!
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Really non-local and non-unitary? (a 6= 0)

Consider Goldstone-Pion sector (one-flavor theory) CB, hep-lat/0603011

CB, MG, YS, hep-lat/0604017

• continuum: no pions

• staggered: 1 Goldstone pions + 14 approx Goldstone pions = 15 in C.L.

right number of (approx) pions for 4-quark theory, not for 1-quark theory?!

• The physical states: taste-singlets (only η′ !!).

Must achieve cancellation of contributions of all unphysical states.

Not possible at a 6= 0: (tasty) pion masses have O(a2) corrections.

This talk: Argue that it should work in the continuum limit, because
exact taste symmetry is recovered.
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Non-locality?? So What?!

Q: Do 4th-root staggered fermions provide a valid regularization of QCD?

Who cares? Just a numerical trick, leave it to the engineers.Who cares? Just a numerical trick, leave it to the engineers.

Unacceptable answer!

Continuum and chiral extrapolations require analytic control!

A (1): Bother! Because of claimed high-precision QCD results: V

fK/fπ = 1.210(0.3%)(1.0%) −→ best |Vus| (MILC ’04, Marciano ’04)

Heavy-Heavy, Heavy-Light (HPQCD, UKQCD, MILC, Fermilab)

“mixed” .......

A (2): Bother! Advanced-level, exciting field-theory problem! V
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Renormalization-Group blocking

• Problem: UV taste violations are always O(1).

• Solution: RG blocking, hold coarse-lattice spacing ac � Λ−1
QCD fixed:

original fields Uµ, χ, χ, af = ac 2−n−1

kth step fields V
(k)
µ , ψ

(k)
iα , ψ

(k)

iα , ak = ac 2k−n

coarse-lattice fields V
(n)
µ , ψ

(n)
iα , ψ

(n)

iα , an = ac

• Starting point is one-component theory: need all of its symmetries!

• Perform n+ 1 blocking steps, k = 0 step is special:
transition from one-component basis to taste basis (next slide)

• RG projects onto small-momentum states =⇒ acts naturally in taste basis.

• Two mechanisms to avoid doublers (next slide)
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From one-component basis to taste basis

• Free taste-basis Dirac operator (block 24 site variables into 4 × 4 field):

Dtaste = a−1
0

∑

µ

(

[γµ ⊗ 1]i sin(pµa0) + [γ5 ⊗ ξ5ξµ](1 − cos(pµa0))
)

+m

where 1 = identity 4 ⊗ 4 matrix in taste space, and a0 = 2af .

Get a feeling: the U(1)ε chiral symmetry is δψ = i[γ5 ⊗ ξ5]ψ

Doublers removed by Wilson-like term (irrelevant; breaks taste symmetry).

• QCD: Dstag =⇒ Dtaste via gaussian “RG” step (Q(0) = unitary):

D−1
taste(α0) = α−1

0 +Q(0) D−1
stag Q

(0)†

Dtaste(α0) satisfies Ginsparg-Wilson relation for m = 0 and α0 6= ∞.

=⇒ Modified Ginsparg-Wilson-Lüscher chiral symmetry.

Doublers removed by “GW mechanism” (compatible with taste symmetry).
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Free Theory (warm up I)

We can start directly in taste basis

Blocked Dirac operator contains all the long-distance physics

D−1
n = α−1

n +Q(n) D−1
n−1 Q

(n)†

=
(

α−1
n + (16αn−1)

−1 + · · · + (16n−1α1)
−1

)

+ zero if x̃ 6= ỹ

+ Q(n)Q(n−1) · · ·Q(1) D−1
taste Q

(1)† · · ·Q(n−1)†Q(n)†

=⇒ Original propagator between smeared sources!

=⇒ Correlation functions constrained by all the original lattice symmetries.

Continuum limit:

Dn → [D̃∞ ⊗ 1]

det1/4(Dtaste) [UV part removed] → det(D̃∞)
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Interacting theory: Master Plan

Blocked Dirac operator: Dn = [D̃inv,n ⊗ 1] + ∆n

Taste breaking comes from irrelevant ∆n, should scale like af/a
2
c × log.

Continuum limit: ∆n → 0 for af → 0, at fixed ac.

Continuum-limit coarse-lattice theory with exact taste symmetry!

Z∞ =

∫

DV exp

[

−
F 2

g2
r(ac)

− ∗ ∗ ∗ ∗

]

{

det1/4
(

[D̃inv,∞ ⊗ 1]
)

+ ###
}

=

∫

DV exp

[

−
F 2

g2
r(ac)

− ∗ ∗ ∗ ∗

]

{

det
(

D̃inv,∞

)

+ ###
}

=

∫

DVdqdq exp

[

−
F 2

g2
r(ac)

− ∗ ∗ ∗ ∗

]

exp

[

− q D̃inv,∞ q − ###

]

Assume m > 0, hence det(Dn) is positive; take positive 4th root.
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Continuum-limit [coarse-lattice] theory

• One-taste representation: quark fields = q, q. Physical states only.

Z∞ =

∫

DVdqdq exp

[

−
F 2

g2
r(ac)

− ∗ ∗ ∗ ∗

]

exp

[

− q D̃inv,∞ q − ###

]

More Wilson loops: ∗ ∗ ∗∗ (technicality when ac is small enough).
Multifermion interactions: ### (same as above).

• Fourth-root four-taste representation:
CB, hep-lat/0603011

CB, MG, YS, SS, hep-lat/0603027

– Replica rule at the level of the chiral effective theory.

– Extended Hilbert space with unphysical (tasty) states.

– Physical, unitary subspace (taste singlet sector) in the continuum limit.

– No “paradoxes” based on symmetries (reply to Creutz, hep-lat/0603020).

8



What do we leave behind?

Removed cutoff effects contained in det(Hk), all k, where

Hk = [γ5 ⊗ ξ5]
(

Dk−1 + αkQ
(k)†Q(k)

)

Free theory: gap is O(1/ak) by construction =⇒ Only cutoff effects removed.

Effective action: S
(k)
eff = −tr logHk

Ordinary staggered theory (before integrating over gauge fields):

Z =

∫

DU DV(0)DV(1) · · · DV(n) exp

(

− Sg −

n
∑

k=0

K
(k)
B −

n
∑

k=0

S
(k)
eff

)

×

∫

dψ(n)dψ
(n)

exp
(

− ψ
(n)
Dnψ

(n)
)

Mutatis mutandis: 1/Hk is short ranged =⇒ S
(k)
eff local.

Mobility edge of Hk is O(1/ak) coarse-lattice theory is local!

�����:

�����: XXXXXz
XXXXXz
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Ordinary staggered theory (warm up II)

Recall Dn = [D̃inv,n ⊗ 1] + ∆n. Introduce re-weighted theories:

Zinv,n =

∫

DU DV(0)DV(1) · · · DV(n) exp

(

− Sg −

n
∑

k=0

K
(k)
B −

n
∑

k=0

S
(k)
eff

)

×

∫

dψ(n)dψ
(n)

exp
(

− ψ
(n)

[D̃inv,n ⊗ 1]ψ(n)
)

• exact taste symmetry by construction

• local + renormalizable

Scaling: |∆n| ∼ 2−n−1/ac = af/a
2
c (up to logs)

Same continuum limit: Z∞(J) = Zinv,∞(J) (J = source)

=⇒ continuum-limit theory has exact taste symmetry.

Actually ....
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Actually (gory details!) ...

• Need an IR bound: ‖1/Dn‖ ≤ 1/mr(ac)

gives bound on difference between corresponding observables

det(Dn) = det
(

[D̃inv,n ⊗ 1]
)

det
(

1 + ∆n [D̃inv,n ⊗ 1]−1
)

= det
(

[D̃inv,n ⊗ 1]
) (

1 +O(ε2n)
)

H
H

H
H

H
H

HY

traceless on
taste indexwhere

εn =
2−n−1

acmr(ac)
=

af

a2
c mr(ac)

• Scaling of ∆n

=⇒ Convergence of Taylor expansion (εn < 1) for n ≥ n0.

=⇒ εn → 0 for n→ ∞.

• However, need mr(ac) > 0.

=⇒ limits a→ 0 and m→ 0 not always commute!
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What did we use (ordinary staggered)?

What shall we use (4th-root staggered)?

• Power-counting renormalizability (with/out rooting)

=⇒ scaling of gr(ak), mr(ak).

• Locality of Sk
eff (with/out rooting)

• Scaling of irrelevant operators: trust in local + renormalizable theories only!

=⇒ In 4th-root theory, rely on taste-breaking scaling in the reweighted theories
only.

• Reweighted theories have physical Hilbert space, belong to the correct
universality class.
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Glossary of local theories

Interpolating theories for ordinary staggered fermions

Zinter,n(t) =

∫

DU DV(0)DV(1) · · · DV(n) exp

(

− Sg −
n

∑

k=0

K
(k)
B −

n
∑

k=0

S
(k)
eff

)

×

∫

dψ(n)dψ
(n)

exp
[

− ψ
(n)

(

[D̃inv,n ⊗ 1] + t∆n

)

ψ(n)
]

Re-weighted theories for 4th-root staggered fermions

Zroot
inv,n =

∫

DU DV(0)DV(1) · · · DV(n) exp

(

− Sg −
n

∑

k=0

K
(k)
B −

1

4

n
∑

k=0

S
(k)
eff

)

×

∫

dq(n)dq(n) exp
(

− q(n)D̃inv,n q
(n)

)
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4th-Root Theory (the real thing!)

• Use scaling of ∆n in re-weighted theories. Obtain:

〈

O(n)
〉

4th root
=

〈

O(n) exp

[

1

4
tr log

(

1 + ∆n [D̃inv,n ⊗ 1]−1
)

]〉

re-weighted

=
〈

O(n)
〉

re-weighted

(

1 +O(ε2n)
)

.

Again, same continuum limit: Zroot
∞ (J) = Zroot

inv,∞(J)

• Restrict to taste singlet sources J = [J̃ ⊗ 1], obtain

Z∞(J̃) =

∫

DVdqdq exp

[

−
F 2

g2
r(ac)

−∗∗∗

]

exp

[

− q D̃inv,∞ q− q J̃ q−##

]

=⇒ Continuum-limit theory is local + renormalizable

=⇒ Continuum-limit theory in the correct universality class
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Conclusion

• 4th-root theory is valid in the continuum limit, under plausible assumptions.

• Actual taste-breaking scaling in low-energy physics = O(afΛ2
QCD),

much better than assumed O(af/a
2
c).

• That’s why it works in practice.

• Works in principle, but fails (badly!) in practice for non-zero density: root of
complex-det needed! (B. Svetitsky, M. Golterman, YS, hep-lat/0602026).

• Need effective low energy theory.

C. Bernard: staggered chiral perturbation theory + replica trick
(plausible assumptions) .

• Re-derive from underlying theory (work in progress).
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Summary

– Ordinary and fourth-root staggered are power-counting renormalizable –
progress towards a rigorous proof (J. Giedt, hep-lat/0606003)

– Effective action obtained by integrating out UV modes is local –
homework: mobility-edge picture requires numerical confirmation.

– Scaling of irrelevant operators in reweighted theories –
homework: set up perturbation theory, compute (and confirm) the scaling.

=⇒ Reweighted theories are in the correct universality class.

=⇒ 4th-root and reweighted theories have the same continuum limit.

=⇒ 4th-root theory is valid in the continuum limit;
once homework done, true under plausible/conventional assumptions.
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