Renormalization-group analysis of the validity of staggered-fermion QCD with the fourth-root recipe

Yigal Shamir

Tel-Aviv University

hep-lat/0607007

with input from

- C. Bernard, PRD 73 (2006) 114503 [hep-lat/0603011]
- C. Bernard, M. Golterman, YS, PRD 73 (2006) 114511 [hep-lat/0604017]
- C. Bernard, M. Golterman, YS, S. Sharpe, hep-lat/0603027

Doubling problem — 4th-root staggered fermions

Naive-fermion propagator =
$$\frac{a}{i\sum_{\mu}\gamma_{\mu}\sin(ap_{\mu})}$$
 \implies 16 poles!Elimination ("taste" = quark)naive \longrightarrow staggered \longrightarrow 4th-root staggered16 tastes \longrightarrow 4 tastes \longrightarrow 1 tasteexact symmetrybrute force!4 components \longrightarrow 1 component \longrightarrow ?

4th-root staggered: $Z = \int \mathcal{DU} \exp(-S_g(U)) \prod_{i=1}^{N_f} \det^{1/4}(D_{stag}(m_i))$

- cheap (one-component per color per site) + non-anomalous chiral symmetry
- \implies light quark masses
- But: taste symmetry broken \Rightarrow **non-locality!!**

Really non-local and non-unitary? $(a \neq 0)$

Consider Goldstone-Pion sector (one-flavor theory) CB, hep-lat/0603011 CB, MG, YS, hep-lat/0604017

• continuum: no pions

• staggered: 1 Goldstone pions + 14 approx Goldstone pions = 15 in C.L. right number of (approx) pions for 4-quark theory, not for 1-quark theory?!

• The physical states: taste-singlets (only η' !!).

Must achieve cancellation of contributions of all unphysical states.

Not possible at $a \neq 0$: (tasty) pion masses have $O(a^2)$ corrections.

This talk: Argue that it should work in the continuum limit, because exact taste symmetry is recovered.

Non-locality?? So What?!

Q: Do 4th-root staggered fermions provide a valid regularization of QCD? Who cares? Just a numerical trick, leave it to the engineers. Unacceptable answer! Continuum and chiral extrapolations require analytic control! A (1): Bother! Because of claimed high-precision QCD results: $f_K/f_\pi = 1.210(0.3\%)(1.0\%) \longrightarrow \text{best} |V_{us}|$ (MILC '04, Marciano '04) Heavy-Heavy, Heavy-Light (HPQCD, UKQCD, MILC, Fermilab) "mixed"

A (2): Bother! Advanced-level, exciting field-theory problem! \vee

Renormalization-Group blocking

- Problem: UV taste violations are always O(1).
- Solution: RG blocking, hold coarse-lattice spacing $a_c \ll \Lambda_{QCD}^{-1}$ fixed: original fields $U_{\mu}, \ \chi, \ \overline{\chi}, \qquad a_f = a_c 2^{-n-1}$ k^{th} step fields $V_{\mu}^{(k)}, \ \psi_{i\alpha}^{(k)}, \ \overline{\psi}_{i\alpha}^{(k)}, \qquad a_k = a_c 2^{k-n}$ coarse-lattice fields $V_{\mu}^{(n)}, \ \psi_{i\alpha}^{(n)}, \ \overline{\psi}_{i\alpha}^{(n)}, \qquad a_n = a_c$
- Starting point is one-component theory: need all of its symmetries!
- Perform n + 1 blocking steps, k = 0 step is special: transition from one-component basis to taste basis (next slide)
- RG projects onto small-momentum states \implies acts naturally in taste basis.
- Two mechanisms to avoid doublers (next slide)

From one-component basis to taste basis

• Free taste-basis Dirac operator (block 2^4 site variables into 4×4 field):

 $D_{taste} = a_0^{-1} \sum_{\mu} \left([\gamma_{\mu} \otimes \mathbf{1}] i \sin(p_{\mu} a_0) + [\gamma_5 \otimes \xi_5 \xi_{\mu}] (1 - \cos(p_{\mu} a_0)) \right) + m$ where $\mathbf{1}$ = identity $4 \otimes 4$ matrix in taste space, and $a_0 = 2a_f$. Get a feeling: the $U(1)_{\epsilon}$ chiral symmetry is $\delta \psi = i [\gamma_5 \otimes \xi_5] \psi$ Doublers removed by Wilson-like term (irrelevant; breaks taste symmetry).

• QCD:
$$D_{stag} \Longrightarrow D_{taste}$$
 via gaussian "RG" step ($Q^{(0)} = \text{unitary}$):
 $D_{taste}^{-1}(\alpha_0) = \alpha_0^{-1} + Q^{(0)} D_{stag}^{-1} Q^{(0)\dagger}$

 $D_{taste}(\alpha_0)$ satisfies Ginsparg-Wilson relation for m = 0 and $\alpha_0 \neq \infty$. \implies Modified Ginsparg-Wilson-Lüscher chiral symmetry. Doublers removed by "GW mechanism" (compatible with taste symmetry).

Free Theory (warm up I)

We can start directly in taste basis

Blocked Dirac operator contains all the long-distance physics

$$D_n^{-1} = \alpha_n^{-1} + Q^{(n)} D_{n-1}^{-1} Q^{(n)\dagger}$$

= $(\alpha_n^{-1} + (16 \alpha_{n-1})^{-1} + \dots + (16^{n-1} \alpha_1)^{-1}) +$ zero if $\tilde{x} \neq \tilde{y}$
+ $Q^{(n)} Q^{(n-1)} \cdots Q^{(1)} D_{taste}^{-1} Q^{(1)\dagger} \cdots Q^{(n-1)\dagger} Q^{(n)\dagger}$

 \implies Original propagator between smeared sources!

 \implies Correlation functions constrained by all the original lattice symmetries. Continuum limit:

$$D_n \to [\tilde{D}_\infty \otimes \mathbf{1}]$$

 $\det^{1/4}(D_{taste}) [\mathsf{UV} \text{ part removed}] \to \det(\tilde{D}_\infty)$

Interacting theory: Master Plan

Blocked Dirac operator: $D_n = [\tilde{D}_{inv,n} \otimes \mathbf{1}] + \Delta_n$

Taste breaking comes from irrelevant Δ_n , should scale like $a_f/a_c^2 \times \log$. Continuum limit: $\Delta_n \to 0$ for $a_f \to 0$, at fixed a_c .

Continuum-limit coarse-lattice theory with exact taste symmetry!

$$Z_{\infty} = \int \mathcal{D}\mathcal{V} \exp\left[-\frac{F^2}{g_r^2(a_c)} - * * *\right] \left\{ \det^{1/4} \left([\tilde{D}_{inv,\infty} \otimes \mathbf{1}] \right) + \# \# \# \right\}$$
$$= \int \mathcal{D}\mathcal{V} \exp\left[-\frac{F^2}{g_r^2(a_c)} - * * * \right] \left\{ \det\left(\tilde{D}_{inv,\infty}\right) + \# \# \# \right\}$$
$$= \int \mathcal{D}\mathcal{V} dq d\overline{q} \exp\left[-\frac{F^2}{g_r^2(a_c)} - * * * \right] \exp\left[-\overline{q} \ \tilde{D}_{inv,\infty} \ q - \# \# \# \right]$$

Assume m > 0, hence $det(D_n)$ is positive; take positive 4th root.

Continuum-limit [coarse-lattice] theory

• One-taste representation: quark fields = q, \overline{q} . Physical states only.

$$Z_{\infty} = \int \mathcal{D}\mathcal{V}dqd\overline{q} \exp\left[-\frac{F^2}{g_r^2(a_c)} - * * *\right] \exp\left[-\overline{q} \ \tilde{D}_{inv,\infty} \ q - \#\#\#\right]$$

More Wilson loops: *** (technicality when a_c is small enough). Multifermion interactions: ### (same as above).

• Fourth-root four-taste representation: CB, hep-lat/0603011 CB, MG, YS, SS, hep-lat/0603027

- Replica rule at the level of the chiral effective theory.
- Extended Hilbert space with unphysical (tasty) states.
- Physical, unitary subspace (taste singlet sector) in the continuum limit.
- No "paradoxes" based on symmetries (reply to Creutz, hep-lat/0603020).

What do we leave behind?

Removed cutoff effects contained in det(H_k), all k, where $H_k = [\gamma_5 \otimes \xi_5] \Big(D_{k-1} + \alpha_k Q^{(k)\dagger} Q^{(k)} \Big)$

Free theory: gap is $O(1/a_k)$ by construction \Longrightarrow Only cutoff effects removed. Effective action: $S_{eff}^{(k)} = -\text{tr } \log H_k$

Ordinary staggered theory (before integrating over gauge fields):

$$Z = \int \mathcal{D}\mathcal{U} \,\mathcal{D}\mathcal{V}^{(0)} \,\mathcal{D}\mathcal{V}^{(1)} \cdots \mathcal{D}\mathcal{V}^{(n)} \,\exp\left(-S_g - \sum_{k=0}^n \mathcal{K}_B^{(k)} - \sum_{k=0}^n S_{eff}^{(k)}\right)$$
$$\times \int d\psi^{(n)} d\overline{\psi}^{(n)} \,\exp\left(-\overline{\psi}^{(n)} D_n \,\psi^{(n)}\right)$$

Mutatis mutandis: $1/H_k$ is short ranged $\implies S_{eff}^{(k)}$ local.

Mobility edge of H_k is $O(1/a_k)$

coarse-lattice theory is local!

Ordinary staggered theory (warm up II)

Recall $D_n = [\tilde{D}_{inv,n} \otimes \mathbf{1}] + \Delta_n$. Introduce re-weighted theories:

$$Z_{inv,n} = \int \mathcal{D}\mathcal{U} \,\mathcal{D}\mathcal{V}^{(0)} \,\mathcal{D}\mathcal{V}^{(1)} \cdots \mathcal{D}\mathcal{V}^{(n)} \,\exp\left(-S_g - \sum_{k=0}^n \mathcal{K}_B^{(k)} - \sum_{k=0}^n S_{eff}^{(k)}\right)$$
$$\times \int d\psi^{(n)} d\overline{\psi}^{(n)} \,\exp\left(-\overline{\psi}^{(n)} [\tilde{D}_{inv,n} \otimes \mathbf{1}]\psi^{(n)}\right)$$

exact taste symmetry by construction

local + renormalizable

Scaling: $|\Delta_n| \sim 2^{-n-1}/a_c = a_f/a_c^2$ (up to logs) Same continuum limit: $Z_{\infty}(J) = Z_{inv,\infty}(J)$ (J =source) \Rightarrow continuum-limit theory has exact taste symmetry. Actually

Actually (gory details!) ...

• Need an IR bound: $||1/D_n|| \le 1/m_r(a_c)$

gives bound on difference between corresponding observables

$$\det(D_n) = \det\left([\tilde{D}_{inv,n} \otimes \mathbf{1}]\right) \det\left(1 + \Delta_n [\tilde{D}_{inv,n} \otimes \mathbf{1}]^{-1}\right)$$
$$= \det\left([\tilde{D}_{inv,n} \otimes \mathbf{1}]\right) \left(1 + O(\epsilon_n^2)\right) \qquad \text{traceless on}$$
$$\underset{\text{taste index}}{\operatorname{taste}}$$

where

$$\epsilon_n = \frac{2^{-n-1}}{a_c m_r(a_c)} = \frac{a_f}{a_c^2 m_r(a_c)}$$

• Scaling of Δ_n

 \implies Convergence of Taylor expansion ($\epsilon_n < 1$) for $n \ge n_0$.

$$\implies \epsilon_n \to 0 \text{ for } n \to \infty.$$

• However, need $m_r(a_c) > 0$.

 \implies limits $a \rightarrow 0$ and $m \rightarrow 0$ not always commute!

What did we use (ordinary staggered)? What shall we use (4th-root staggered)?

• Power-counting renormalizability (with/out rooting)

 \implies scaling of $g_r(a_k), m_r(a_k).$

- Locality of S^k_{eff} (with/out rooting)
- Scaling of irrelevant operators: trust in local + renormalizable theories only!

 \implies In 4th-root theory, rely on taste-breaking scaling in the reweighted theories only.

• Reweighted theories have physical Hilbert space, belong to the correct universality class.

Glossary of <u>local</u> theories

Interpolating theories for ordinary staggered fermions

$$Z_{inter,n}(t) = \int \mathcal{D}\mathcal{U} \,\mathcal{D}\mathcal{V}^{(0)} \,\mathcal{D}\mathcal{V}^{(1)} \cdots \mathcal{D}\mathcal{V}^{(n)} \,\exp\left(-S_g - \sum_{k=0}^n \mathcal{K}_B^{(k)} - \sum_{k=0}^n S_{eff}^{(k)}\right) \\ \times \int d\psi^{(n)} d\overline{\psi}^{(n)} \,\exp\left[-\overline{\psi}^{(n)} \left([\tilde{D}_{inv,n} \otimes \mathbf{1}] + \mathbf{t}\Delta_n\right)\psi^{(n)}\right]$$

Re-weighted theories for 4th-root staggered fermions

$$Z_{inv,n}^{root} = \int \mathcal{D}\mathcal{U} \,\mathcal{D}\mathcal{V}^{(0)} \,\mathcal{D}\mathcal{V}^{(1)} \cdots \mathcal{D}\mathcal{V}^{(n)} \,\exp\left(-S_g - \sum_{k=0}^n \mathcal{K}_B^{(k)} - \frac{1}{4} \sum_{k=0}^n S_{eff}^{(k)}\right) \\ \times \int dq^{(n)} d\overline{q}^{(n)} \,\exp\left(-\overline{q}^{(n)} \tilde{D}_{inv,n} \,q^{(n)}\right)$$

4th-Root Theory (the real thing!)

• Use scaling of Δ_n in re-weighted theories. Obtain:

$$\left\langle \mathcal{O}^{(n)} \right\rangle_{\text{4th root}} = \left\langle \mathcal{O}^{(n)} \exp \left[\frac{1}{4} \operatorname{tr} \log \left(1 + \Delta_n \left[\tilde{D}_{inv,n} \otimes \mathbf{1} \right]^{-1} \right) \right] \right\rangle_{\text{re-weighted}}$$

$$= \left\langle \mathcal{O}^{(n)} \right\rangle_{\text{re-weighted}} \left(1 + O(\epsilon_n^2) \right)$$

Again, same continuum limit: $Z^{root}_{\infty}(J) = Z^{root}_{inv,\infty}(J)$

• Restrict to taste singlet sources $J = [\tilde{J} \otimes \mathbf{1}]$, obtain

$$Z_{\infty}(\tilde{J}) = \int \mathcal{D}\mathcal{V}dqd\bar{q} \,\exp\left[-\frac{F^2}{g_r^2(a_c)} - * **\right] \exp\left[-\overline{q}\,\tilde{D}_{inv,\infty}\,q - \overline{q}\,\tilde{J}\,q - \#\#\right]$$

 \implies Continuum-limit theory is local + renormalizable

 \implies Continuum-limit theory in the correct universality class

Conclusion

- 4th-root theory is valid in the continuum limit, under plausible assumptions.
- Actual taste-breaking scaling in low-energy physics = $O(a_f \Lambda_{QCD}^2)$, much better than assumed $O(a_f/a_c^2)$.
- That's why it works in practice.
- Works in principle, but fails (badly!) in practice for non-zero density: root of complex-det needed! (B. Svetitsky, M. Golterman, YS, hep-lat/0602026).
- Need effective low energy theory.

C. Bernard: staggered chiral perturbation theory + replica trick (plausible assumptions) .

• Re-derive from underlying theory (work in progress).

Summary

- Ordinary and fourth-root staggered are power-counting renormalizable progress towards a rigorous proof (J. Giedt, hep-lat/0606003)
- Effective action obtained by integrating out UV modes is local homework: mobility-edge picture requires numerical confirmation.
- Scaling of irrelevant operators in reweighted theories homework: set up perturbation theory, compute (and confirm) the scaling.
- \implies Reweighted theories are in the correct universality class.
- \implies 4th-root and reweighted theories have the same continuum limit.
- ⇒ 4th-root theory is valid in the continuum limit; once homework done, true under plausible/conventional assumptions.