No. RZA2007-1138 Page 61of 74 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z ConF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z DCP Polarization o diode compression point φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001 #### Methods Applied and Interpretation of Parameters: - *NORMx,y,z:* Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. No. RZA2007-1138 Page 62of 74 ET3DV6 SN:1737 February 19, 2007 # Probe ET3DV6 SN:1737 Manufactured: September 27, 2002 Last calibrated: February 23, 2005 Recalibrated: February 19, 2007 Calibrated for DASY Systems (Note: non-compatible with DASY2 system!) No. RZA2007-1138 Page 63of 74 ET3DV6 SN:1737 February 19, 2007 ## DASY - Parameters of Probe: ET3DV6 SN:1737 | Sensitivity in Free Space ^A | | | Diode C | ompression ^B | |--|--------------|-----------------|---------|-------------------------| | NormX | 1.52 ± 10.1% | $\mu V/(V/m)^2$ | DCP X | 95 mV | | NormY | 1.66 ± 10.1% | $\mu V/(V/m)^2$ | DCP Y | 94 mV | | NormZ | 1.71 ± 10.1% | $\mu V/(V/m)^2$ | DCP Z | 93 mV | Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8. ### **Boundary Effect** | TOI | | |-----|--| | TSL | | 900 MHz Typical SAR gradient: 5 % per mm | Sensor Center to Phantom Surface Distance | | 3.7 mm | 4.7 mm | |---|------------------------------|--------|--------| | SAR _{be} [%] | Without Correction Algorithm | 8.3 | 4.5 | | SAR _{be} [%] | With Correction Algorithm | 0.7 | 0.0 | #### TSL 1750 MHz Typical SAR gradient: 10 % per mm | Sensor Center to Phantom Surface Distance | | 3.7 mm | 4.7 mm | |---|------------------------------|--------|--------| | SAR _{be} [%] | Without Correction Algorithm | 11.9 | 8.0 | | SAR _{be} [%] | With Correction Algorithm | 0.5 | 0.1 | ### Sensor Offset Probe Tip to Sensor Center 2.7 mm The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8). ^B Numerical linearization parameter; uncertainty not required. No. RZA2007-1138 Page 64of 74 ET3DV6 SN:1737 February 19, 2007 ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) No. RZA2007-1138 Page 65of 74 ET3DV6 SN:1737 February 19, 2007 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) No. RZA2007-1138 Page 66of 74 ET3DV6 SN:1737 February 19, 2007 # Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) No. RZA2007-1138 Page 67of 74 ET3DV6 SN:1737 February 19, 2007 ## **Conversion Factor Assessment** | f [MHz] | Validity [MHz] ^C | TSL | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty | |-------------|------------------------------|-------|------------------------|------------------------|-------|-------|--------------------| | 900 | ± 50 / ± 100 | Head | 41.5 ± 5% | 0.97 ± 5% | 0.27 | 2.89 | 6.85 ± 11.0% (k=2) | | 1750 | ± 50 / ± 100 | Head | 40.1 ± 5% | 1.37 ± 5% | 0.52 | 2.56 | 5.42 ± 11.0% (k=2) | | 1950 | ± 50 / ± 100 | Head | 40.0 ± 5% | 1.40 ± 5% | 0.49 | 2.89 | 5.15 ± 11.0% (k=2) | | 000 | ± 50 / ± 100 | D. d. | FF 0 + F9/ | 1.05 ± 5% | 0.25 | 2.82 | 6.52 ± 11.0% (k=2) | | 900
1750 | ± 50 / ± 100
± 50 / ± 100 | Body | 55.0 ± 5%
53.4 ± 5% | 1.05 ± 5%
1.49 ± 5% | 0.35 | 2.62 | 4.97 ± 11.0% (k=2) | | 1950 | ± 50 / ± 100 | Body | 53.4 ± 5%
53.3 ± 5% | 1.49 ± 5%
1.52 ± 5% | 0.88 | 2.00 | 4.64 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Body | 52.7 ± 5% | 1.95 ± 5% | 0.66 | 2.16 | 4.10 ± 11.8% (k=2) | ^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. No. RZA2007-1138 Page 68of 74 ET3DV6 SN:1737 February 19, 2007 # **Deviation from Isotropy in HSL** Error (ϕ , ϑ), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) No. RZA2007-1138 Page 69of 74 ## ANNEX F: D1900V2 DIPOLE CALIBRATION CERTIFICATE No. RZA2007-1138 Page 70of 74 Calibration Laboratory of Schmid & Partner Engineering AG Zaughausstrasse 43, 8004 Zurich, Switzerland C Service sulses d'étatornage S Servicio svizzero di taratura S Seiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation. The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates. #### Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D1900V2-541_Feb07 Page 2 of 6 No. RZA2007-1138 Page 71of 74 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY4 | V4.7 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | | | | | ### Head TSL parameters The following parameters and calculations were applied. | and the state of t | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0±0.2) °C | 38.9 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature during test | (22.1 ± 0.2) °C | - | - | #### SAR result with Head TSL | SAR averaged over 1 cm ² (1 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.73 mW /g | | SAR normalized | normalized to 1W | 38.9 mW /g | | SAR for nominal Head TSL parameters 1 | normalized to 1W | 38.6 mW/g ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.09 mW /g | | SAR normalized | normalized to 1W | 20.4 mW /g | | SAR for nominal Head TSL parameters 1 | normalized to 1W | 20.2 mW/g ± 16.5 % (k=2) | Certificate No: D1900V2-541_Feb07 Page 3 of 6 ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" No. RZA2007-1138 Page 72of 74 #### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.4 Ω - 8.9 JΩ | |--------------------------------------|-----------------| | Return Loss | - 26.4 dB | #### General Antenna Parameters and Design | PARTICIPATE AND ADDRESS OF THE | and the state of t | |---|--| | Electrical Delay (one direction) | 1.214 ns | | Entering Print Color of Court | 7.6.17.110 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|------------------| | Manufactured on | October 4 , 2001 | Certificate No: D1900V2-541_Feb07 Page 4 of 6 No. RZA2007-1138 Page 73of 74 #### **DASY4 Validation Report for Head TSL** Date/Time: 20.02.2007 09:25:37 Test laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; serial: D1900V2-SN: 541 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL 1900 MHz; Medium parameters used: f=1900 MHz; σ=1.38 mho/m; ε_r=38.9; ρ= 1000kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) DASY4 Configuration: - Probe: ET3DV6-SN1507(HF); ConvF(5.03, 5.03, 5.03); Calibrated: 19.10.2006 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.1_2007 - Phantom: Flat Phantom 4.9L; Type: QD000P49AA; - Measurement SW: DASY, V4.7 Build 53; Post processing SW: SEMCAD, V1.8 Build 172 Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.1 V/m; Power Drift = 0.059 dB Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 9.73 mW/g; SAR(10 g) = 5.09 mW/g Maximum value of SAR (measured) = 11.3 mW/g 0 dB = 11.3 mW/g Certificate No: D1900V2-541_Feb07 Page 5 of 6 No. RZA2007-1138 Page 74of 74