Λ

 $I(J^P) = 0(\frac{1}{2}^+)$ Status: ****

We have omitted some results that have been superseded by later experiments. See our earlier editions.

A MASS

The fit uses Λ , Σ^+ , Σ^0 , Σ^- mass and mass-difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1115.683 ± 0.006 OUR FI	Т				
1115.683 ± 0.006 OUR A	/ERAGE				
$1115.678 \pm 0.006 \pm 0.006$	20k	HARTOUNI	94	SPEC	рр 27.5 GeV/с
$1115.690 \pm 0.008 \pm 0.006$	18k	¹ HARTOUNI	94	SPEC	рр 27.5 GeV/с
\bullet \bullet \bullet We do not use the	following	data for averages,	fits,	limits, e	etc. • • •
1115.59 ± 0.08	935	HYMAN	72	HEBC	
1115.39 ± 0.12	195	MAYEUR	67	EMUL	
1115.6 ±0.4		LONDON	66	HBC	
1115.65 ± 0.07	488	² SCHMIDT	65	HBC	
1115.44 ± 0.12		³ BHOWMIK	63	RVUE	
1		_			

¹We assume *CPT* invariance: this is the $\overline{\Lambda}$ mass as measured by HARTOUNI 94. See below for the fractional mass difference, testing *CPT*.

² The SCHMIDT 65 masses have been reevaluated using our April 1973 proton and K^{\pm} and π^{\pm} masses. P. Schmidt, private communication (1974).

³ The mass has been raised 35 keV to take into account a 46 keV increase in the proton mass and an 11 keV decrease in the π^{\pm} mass (note added Reviews of Modern Physics **39** 1 (1967)).

$$(m_{\Lambda} - m_{\overline{\Lambda}}) / m_{\Lambda}$$

(

A test of CPT invariance.

VALUE (units 10 ⁻⁵)	DOCUMENT ID		TECN	COMMENT
$-$ 1.0 \pm 0.9 OUR AVERAGE				
$-$ 1.08 \pm 0.90	HARTOUNI	94	SPEC	рр 27.5 GeV/с
-26 ± 13	BADIER	67	HBC	2.4 GeV/c pp
$4.5~\pm~5.4$	CHIEN	66	HBC	6.9 GeV/c <u>p</u> p

∧ MEAN LIFE

Measurements with an error $\geq 0.1\times 10^{-10}$ s have been omitted altogether, and only the latest high-statistics measurements are used for the average.

$VALUE (10^{-10} s)$	EVTS	DOCUMENT ID		TECN	COMMENT
$2.632\pm0.020~\text{OUR}$	AVERAGE	Error includes scale	facto	or of 1.6.	See the ideogram below.
2.69 ± 0.03	53k	ZECH	77	SPEC	Neutral hyperon beam
$2.611 \!\pm\! 0.020$	34k	CLAYTON	75	HBC	0.96–1.4 GeV/c $K^- p$
$2.626 \!\pm\! 0.020$	36k	POULARD	73	HBC	0.4–2.3 GeV/c K ⁻ p
HTTP://PDG.LI	BL.GOV	Page 1		Creat	ted: 6/29/1998 12:16

 Λ mean life (10⁻¹⁰ s)

$$(\tau_{\Lambda} - \tau_{\overline{\Lambda}}) / \tau_{\text{average}}$$

A test of CPT invariance.

VALUE	DOCUMENT ID		TECN	COMMENT
0.044±0.085	BADIER	67	HBC	2.4 GeV/c pp

BARYON MAGNETIC MOMENTS

Written 1994 by C.G. Wohl (LBNL).

The figure shows the measured magnetic moments of the stable baryons. It also shows the predictions of the simplest

quark model, using the measured p, n, and Λ moments as input. In this model, the moments are [1]

$$\mu_{p} = (4\mu_{u} - \mu_{d})/3 \qquad \mu_{n} = (4\mu_{d} - \mu_{u})/3$$

$$\mu_{\Sigma^{+}} = (4\mu_{u} - \mu_{s})/3 \qquad \mu_{\Sigma^{-}} = (4\mu_{d} - \mu_{s})/3$$

$$\mu_{\Xi^{0}} = (4\mu_{s} - \mu_{u})/3 \qquad \mu_{\Xi^{-}} = (4\mu_{s} - \mu_{d})/3$$

$$\mu_{\Lambda} = \mu_{s} \qquad \mu_{\Sigma^{0}} = (2\mu_{u} + 2\mu_{d} - \mu_{s})/3$$

$$\mu_{\Omega^{-}} = 3\mu_{s}$$

and the $\varSigma^0 \to \varLambda$ transition moment is

$$\mu_{\Sigma^0\Lambda} = (\mu_d - \mu_u)/\sqrt{3} \; .$$

The quark moments that result from this model are $\mu_u = +1.852 \,\mu_N$, $\mu_d = -0.972 \,\mu_N$, and $\mu_s = -0.613 \,\mu_N$. The corresponding effective quark masses, taking the quarks to be Dirac point particles, where $\mu = q\hbar/2m$, are 338, 322, and 510 MeV. As the figure shows, the model gives a good first approximation to the experimental moments. For efforts to make a better model, we refer to the literature [2].

References

- See, for example, D.H. Perkins, *Introduction to High Energy Physics* (Addison-Wesley, Reading, MA, 1987), or D. Griffiths, *Introduction to Elementary Particles* (Harper & Row, New York, 1987).
- See, for example, J. Franklin, Phys. Rev. D29, 2648 (1984);
 H.J. Lipkin, Nucl. Phys. B241, 477 (1984);
 K. Suzuki, H. Kumagai, and Y. Tanaka, Europhys. Lett. 2, 109 (1986);

S.K. Gupta and S.B. Khadkikar, Phys. Rev. **D36**, 307 (1987);

M.I. Krivoruchenko, Sov. J. Nucl. Phys. 45, 109 (1987);

L. Brekke and J.L. Rosner, Comm. Nucl. Part. Phys. 18, 83 (1988);

K.-T. Chao, Phys. Rev. **D41**, 920 (1990) and references cited therein Also, see references cited in discussions of results in the experimental papers.

A MAGNETIC MOMENT

See the "Note on Baryon Magnetic Moments" above. Measurements with an error $~\geq$ 0.15 $\mu_{\it N}$ have been omitted.

VALUE (μ	N)	EVTS	DOCUMENT ID		TECN	COMMENT
-0.613	±0.004	OUR AVERAGE				
-0.606	± 0.015	200k	COX	81	SPEC	
-0.6138	3 ± 0.0047	3M	SCHACHIN	78	SPEC	
-0.59	± 0.07	350k	HELLER	77	SPEC	
-0.57	± 0.05	1.2M	BUNCE	76	SPEC	
-0.66	± 0.07	1300	DAHL-JENSEN	171	EMUL	200 kG field

I **ELECTRIC DIPOLE MOMENT**

A nonzero value is forbidden by both T invariance and P invariance.

VALUE ($10^{-16} e cm$)	CL%	DOCUMENT ID		TECN			
< 1.5	95	⁴ PONDROM	81	SPEC			
$\bullet \bullet \bullet$ We do not use the	following	data for averages	, fits	, limits, etc. • • •			
<100	95	⁵ BARONI	71	EMUL			
<500	95	GIBSON	66	EMUL			
⁴ PONDROM 81 measures $(-3.0 \pm 7.4) \times 10^{-17}$ <i>e</i> -cm. ⁵ BARONI 71 measures $(-5.9 \pm 2.9) \times 10^{-15}$ <i>e</i> -cm.							

I **DECAY MODES**

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$p\pi$	(63.9 ± 0.5) %
Γ ₂	$n\pi^0$	(35.8 ± 0.5) %
Γ ₃	$n\gamma$	$(1.75\pm0.15) imes10^{-3}$
Г4	$p\pi^-\gamma$	[a] (8.4 ± 1.4) $ imes 10^{-4}$
Γ ₅	$pe^-\overline{\nu}_e$	$(8.32\pm0.14) imes 10^{-4}$
Г ₆	$p\mu^-\overline{ u}_\mu$	$(1.57\pm0.35) imes10^{-4}$

[a] See the Particle Listings below for the pion momentum range used in this measurement.

CONSTRAINED FIT INFORMATION

An overall fit to 5 branching ratios uses 20 measurements and one constraint to determine 5 parameters. The overall fit has a $\chi^2 =$ 10.5 for 16 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

<i>x</i> 2	-100			
x ₃	-2	-1		
×5	46	-46	-1	
×6	0	0	0	0
	<i>x</i> ₁	<i>x</i> ₂	x ₃	×5

I BRANCHING RATIOS

VALUEEVTSDOCUMENT IDTECNCOMMENT0.641 ± 0.005 OUR AVERAGE0.640 ± 0.005 OUR AVERAGE0.640 ± 0.005 OUR AVERAGE0.640 ± 0.005 OUR AVERAGE0.643 ± 0.0169030.643 ± 0.016903HUMPHREY620.624 ± 0.030CRAWFORD 59BF($n\pi^0$)/ $\Gamma(N\pi)$ T_{eCN} $\Gamma_2/(\Gamma_1+\Gamma_2)$ VALUEEVTS0.359 ± 0.005 OUR FITDOCUMENT ID0.310 ± 0.028 OUR AVERAGE0.355 ± 0.05BROWN0.35 ± 0.05CHRETIEN0.310 ± 0.028 OUR AVERAGE0.355 ± 0.05BROWN0.355 ± 0.05BROWN0.361 ± 0.03475CHRETIEN63HLBC Γ_3/Γ VALUE (units 10 ⁻³)EVTSDOCUMENT IDTECNCOMMENTCOMMENT1.75 ± 0.15 OUR FIT1816LARSON93SPECK ⁻ p at rest• • We do not use the following data for averages, fits, limits, etc. • •1.78 ± 0.24 $+ 0.16$ 287NOBLE92SPECSee LARSON 93 $\Gamma(n\gamma)/\Gamma(n\pi^0)$ T_{ECN} COMMENTIDVALUE (units 10 ⁻³)EVTSDOCUMENT IDTECNCOMMENT• • • We do not use the following data for averages, fits, limits, etc. • • •• • • We do not use the following data for averages, fits, limits, etc. • • •
0.641±0.005 OUR FIT 0.640±0.005 OUR AVERAGE 0.646±0.008 4572 BALTAY 71B HBC $K^- p$ at rest 0.635±0.007 6736 DOYLE 69 HBC $\pi^- p \rightarrow \Lambda K^0$ 0.643±0.016 903 HUMPHREY 62 HBC 0.624±0.030 CRAWFORD 59B HBC $\pi^- p \rightarrow \Lambda K^0$ $\Gamma(n\pi^0)/\Gamma(N\pi)$ $\Gamma_2/(\Gamma_1+\Gamma_2)$ VALUE $EVTS$ DOCUMENT ID TECN 0.359±0.005 OUR FIT 0.310±0.028 OUR AVERAGE 0.35±0.05 BROWN 63 HLBC 0.291±0.034 75 CHRETIEN 63 HLBC $\Gamma(n\gamma)/\Gamma_{total}$ Γ_3/Γ VALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN COMMENT 1.75±0.15 1816 LARSON 93 SPEC $K^- p$ at rest ••• We do not use the following data for averages, fits, limits, etc. ••• 1.78±0.24 ^{+0.14} 287 NOBLE 92 SPEC See LARSON 93 $\Gamma(n\gamma)/\Gamma(n\pi^0)$ Γ_3/Γ_2 VALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN COMMENT ••• We do not use the following data for averages, fits, limits, etc. •••
0.640 ± 0.005 OUR AVERAGE 0.646 ± 0.008 4572 BALTAY 71B HBC $K^- p$ at rest 0.635 ± 0.007 6736 DOYLE 69 HBC $\pi^- p \rightarrow \Lambda K^0$ 0.643 ± 0.016 903 HUMPHREY 62 HBC 0.624 ± 0.030 CRAWFORD 59B HBC $\pi^- p \rightarrow \Lambda K^0$ $\Gamma(n\pi^0)/\Gamma(N\pi)$ $\Gamma_2/(\Gamma_1+\Gamma_2)$ VALUE EVTS DOCUMENT ID TECN 0.305 ± 0.05 OUR FIT DOCUMENT ID TECN 0.305 ± 0.05 BROWN 63 HLBC 0.35 ± 0.05 BROWN 63 HLBC 0.291 ± 0.034 75 CHRETIEN 63 HLBC $\Gamma(n\gamma)/\Gamma_{\text{total}}$ Γ_3/Γ VALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN COMMENT 1.75 ± 0.15 0UR FIT 1.75 ± 0.15 1816 LARSON 93 SPEC $K^- p$ at rest ••• We do not use the following data for averages, fits, limits, etc. ••• 1.78 ± 0.24 $^+0.14$ 287 NOBLE 92 SPEC See LARSON 93 $\Gamma(n\gamma)/\Gamma(n\pi^0)$ Γ_3/Γ_2 VALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN COMMENT ••• We do not use the following data for averages, fits, limits, etc. •••
0.646 ± 0.008 4572 BALTAY 71B HBC $K - p$ at rest 0.635 ± 0.007 6736 DOYLE 69 HBC $\pi^- p \rightarrow \Lambda K^0$ 0.643 ± 0.016 903 HUMPHREY 62 HBC 0.624 ± 0.030 CRAWFORD 59B HBC $\pi^- p \rightarrow \Lambda K^0$ $\Gamma(n\pi^0)/\Gamma(N\pi)$ $\Gamma_2/(\Gamma_1+\Gamma_2)$ VALUE EVTS DOCUMENT ID TECN 0.359 ± 0.005 OUR FIT 0.310 ± 0.028 OUR AVERAGE 0.35 ± 0.05 BROWN 63 HLBC 0.291 ± 0.034 75 CHRETIEN 63 HLBC $\Gamma(n\gamma)/\Gamma_{\text{total}}$ Γ_3/Γ $VALUE$ (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT 1.75 ± 0.15 OUR FIT 1.75 ± 0.15 OUR FIT 1.75 ± 0.15 1816 LARSON 93 SPEC $K^- p$ at rest $\bullet \bullet We$ do not use the following data for averages, fits, limits, etc. $\bullet \bullet$ 1.78 $\pm 0.24^{+0.14}_{-0.16}$ 287 NOBLE 92 SPEC See LARSON 93 $\Gamma(n\gamma)/\Gamma(n\pi^0)$ Γ_3/Γ_2 $VALUE(units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT\bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Γ(nπ ⁰)/Γ(Nπ)Γ2/(Γ1+Γ2)VALUEEVTSDOCUMENT IDTECN0.359±0.005 OUR FITOUR AVERAGE0.35 ±0.05BROWN63 HLBC0.35 ±0.05BROWN63 HLBCCHRETIEN63 HLBC0.291±0.03475CHRETIEN63 HLBCΓ3/ΓVALUE (units 10 ⁻³)EVTSDOCUMENT IDTECNCOMMENT1.75±0.151816LARSON93SPECK ⁻ ρ at rest***
VALUEEVTSDOCUMENT IDTECN0.359±0.005 OUR FIT0.310±0.028 OUR AVERAGE0.35 ±0.05BROWN63 HLBC0.291±0.03475CHRETIEN63 HLBC $\Gamma(n\gamma)/\Gamma_{total}$ Γ_{3}/Γ VALUE (units 10 ⁻³)1.75±0.15UR FIT1.75±0.151816LARSON93 SPECK^- p at rest••• We do not use the following data for averages, fits, limits, etc.••1.78±0.24 $^{+0.14}_{-0.16}$ 287NOBLE92 SPECVALUE (units 10 ⁻³)EVTSDOCUMENT IDTECNVALUE (units 10 ⁻³)EVTSDOCUMENT IDTECNVALUE (units 10 ⁻³)EVTSDOCUMENT IDTECNCOMMENTVALUE (units 10 ⁻³)EVTSDOCUMENT IDTECNVALUE (units 10 ⁻³)EVTSDOCUMENT IDTECNCOMMENT••• We do not use the following data for averages, fits, limits, etc.•••
O.359 ± 0.005 OUR FIT0.310 ± 0.028 OUR AVERAGE0.35 ± 0.05 BROWN0.35 ± 0.05 BROWN0.291 ± 0.034 75CHRETIEN63HLBC $\Gamma(n\gamma)/\Gamma_{total}$ For CommentVALUE (units 10^{-3})EVTS1.75 ± 0.15 OUR FIT1.75 ± 0.15 1816LARSON93SPEC $K^- p$ at rest••• We do not use the following data for averages, fits, limits, etc.1.78 $\pm 0.24^{+0.14}_{-0.16}$ 287NOBLE92SPECSee LARSON 93 $\Gamma(n\gamma)/\Gamma(n\pi^0)$ Γ_3/Γ_2 VALUE (units 10^{-3})EVTSOCUMENT IDTECNCOMMENT••• We do not use the following data for averages, fits, limits, etc.••• We do not use the following data for averages, fits, limits, etc.••• We do not use the following data for averages, fits, limits, etc.••• We do not use the following data for averages, fits, limits, etc.••• We do not use the following data for averages, fits, limits, etc.••• We do not use the following data for averages, fits, limits, etc.••• We do not use the following data for averages, fits, limits, etc.
0.310±0.028 OUR AVERAGE 0.35 ±0.05 BROWN 63 HLBC 0.291±0.034 75 CHRETIEN 63 HLBC $\frac{\Gamma(n\gamma)/\Gamma_{total}}{\Gamma(n\gamma)/\Gamma_{total}} \frac{EVTS}{DOCUMENT ID} \frac{TECN}{TECN} \frac{COMMENT}{TECN} \frac{COMMENT}{TTT} \frac{1.75\pm0.15 \text{ OUR FIT}}{1.75\pm0.15} 1816 \text{ LARSON } 93 \text{ SPEC } K^- p \text{ at rest} \text{ even we do not use the following data for averages, fits, limits, etc. • • • • 1.78\pm0.24^{+0.14}_{-0.16} 287 \text{ NOBLE } 92 \text{ SPEC See LARSON } 93 \text{ SPEC } \Gamma_3/\Gamma_2 \frac{VALUE (units 10^{-3})}{TECN} \frac{EVTS}{DOCUMENT ID} \frac{TECN}{TECN} \frac{COMMENT}{TECN} \frac{COMMENT}{T3} \frac{VALUE (units 10^{-3})}{TTS} \frac{EVTS}{DOCUMENT ID} \frac{TECN}{TECN} \frac{COMMENT}{TECN} \frac{COMMENT}{TTS} \frac{VALUE (units 10^{-3})}{TTS} \frac{EVTS}{TTS} \frac{DOCUMENT ID}{TTS} \frac{TECN}{TTS} \frac{COMMENT}{TTS} \frac{COMMENT}{TTS} \frac{TECN}{TTS} \frac{COMMENT}{TTS} \frac{TECN}{TTS} \frac{COMMENT}{TTS} \frac{TTS}{TTS} \frac{TTS}$
0.35 ± 0.05 BROWN 63 HLBC 0.291 ± 0.034 75CHRETIEN 63 HLBC $\Gamma(n\gamma)/\Gamma_{total}$ Γ_{5} Γ_{3}/Γ $VALUE (units 10^{-3})$ $EVTS$ $DOCUMENT ID$ $TECN$ $COMMENT$ 1.75 ± 0.15 OUR FIT $I816$ LARSON 93 SPEC K^-p at rest $\bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$ $\bullet \bullet$ $F(n\gamma)/\Gamma(n\pi^0)$ Γ_3/Γ_2 $VALUE (units 10^{-3})$ $EVTS$ $DOCUMENT ID$ $TECN$ $COMMENT$ $\bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet$ $\bullet \bullet$
0.291±0.034 75 CHRETIEN 63 HLBC $\Gamma(n\gamma)/\Gamma_{total} \qquad \Gamma_3/\Gamma$ $\frac{VALUE (units 10^{-3})}{1.75\pm0.15 \text{ OUR FIT}} \xrightarrow{EVTS} \xrightarrow{DOCUMENT ID} \xrightarrow{TECN} \xrightarrow{COMMENT}$ 1.75±0.15 1816 LARSON 93 SPEC K^-p at rest ••• We do not use the following data for averages, fits, limits, etc. ••• 1.78±0.24 $^{+0.14}_{-0.16}$ 287 NOBLE 92 SPEC See LARSON 93 $\Gamma(n\gamma)/\Gamma(n\pi^0) \qquad \Gamma_3/\Gamma_2$ $\frac{VALUE (units 10^{-3})}{VALUE (units 10^{-3})} \xrightarrow{EVTS} \xrightarrow{DOCUMENT ID} \xrightarrow{TECN} \xrightarrow{COMMENT}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\frac{VALUE \text{ (units } 10^{-3})}{1.75 \pm 0.15 \text{ OUR FIT}} \xrightarrow{EVTS} \xrightarrow{DOCUMENT ID} \xrightarrow{TECN} \xrightarrow{COMMENT}$ $\frac{VALUE \text{ (units } 10^{-3})}{1.75 \pm 0.15} \xrightarrow{EVTS} 1816 \text{ LARSON } 93 \text{ SPEC } K^- p \text{ at rest}$ $\bullet \bullet \text{ We do not use the following data for averages, fits, limits, etc. } \bullet \bullet$ $1.78 \pm 0.24 \xrightarrow{+0.14}{-0.16} 287 \text{ NOBLE } 92 \text{ SPEC See LARSON } 93$ $\frac{\Gamma(n\gamma)/\Gamma(n\pi^{0})}{VALUE \text{ (units } 10^{-3})} \xrightarrow{EVTS} \xrightarrow{DOCUMENT ID} \xrightarrow{TECN} \xrightarrow{COMMENT}$ $\bullet \bullet \text{ We do not use the following data for averages, fits, limits, etc. } \bullet \bullet$
VALUE (units 10^{-3})EVTSDOCUMENT IDTECNCOMMENT1.75±0.15 OUR FIT1816LARSON93SPEC $K^- p$ at rest•••We do not use the following data for averages, fits, limits, etc.••••1.78±0.24 $^+0.14_{-0.16}$ 287NOBLE92SPECSee LARSON 93 $\Gamma(n\gamma)/\Gamma(n\pi^0)$ Γ_3/Γ_2 VALUE (units 10^{-3})EVTSDOCUMENT IDTECNCOMMENT•••We do not use the following data for averages, fits, limits, etc.••
1.75±0.15 OOR FIT1.75±0.15 OOR FIT1.75±0.15 I816 LARSON 93 SPEC K^-p at rest••• We do not use the following data for averages, fits, limits, etc. •••1.78±0.24 $^+0.14_{-0.16}$ 287 NOBLE 92 SPEC See LARSON 93 $\Gamma(n\gamma)/\Gamma(n\pi^0)$ Γ_3/Γ_2 VALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN COMMENT••• We do not use the following data for averages, fits, limits, etc. •••
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1.78±0.24 ^{+0.14} _{-0.16} 287 NOBLE 92 SPEC See LARSON 93 $\Gamma(n\gamma)/\Gamma(n\pi^0)$ Γ_3/Γ_2 <u>VALUE (units 10⁻³)</u> EVTS DOCUMENT ID TECN COMMENT ••• We do not use the following data for averages, fits, limits, etc. •••
1.78 \pm 0.24 $\substack{+0.14 \\ -0.16}$ 287 NOBLE 92 SPEC See LARSON 93 $\Gamma(n\gamma)/\Gamma(n\pi^0)$ Γ_3/Γ_2 <u>VALUE (units 10^3)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> ••• We do not use the following data for averages, fits, limits, etc. •••
$ \begin{array}{c c} \Gamma(n\gamma)/\Gamma(n\pi^{0}) & \Gamma_{3}/\Gamma_{2} \\ \hline \hline VALUE \ (units \ 10^{-3}) & EVTS & DOCUMENT \ ID & TECN & COMMENT \\ \bullet \bullet \bullet \ We \ do \ not \ use \ the \ following \ data \ for \ averages, \ fits, \ limits, \ etc. \ \bullet \ \bullet \end{array} $
$\Gamma(n\gamma)/\Gamma(n\pi^0)$ Γ_3/Γ_2 VALUE (units 10 ⁻³)EVTSDOCUMENT IDTECNCOMMENT• • • We do not use the following data for averages, fits, limits, etc.• • ••
VALUE (units 10^{-3})EVTSDOCUMENT IDTECNCOMMENT• • • We do not use the following data for averages, fits, limits, etc. • •
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$
$2.86 \pm 0.74 \pm 0.57$ 24 BIAGI 86 SPEC SPS hyperon beam
$\Gamma(p\pi^{-}\gamma)/\Gamma(p\pi^{-}) \qquad \qquad \Gamma_{4}/\Gamma_{1}$
VALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN COMMENT
1.32±0.22 72 BAGGETT 72C HBC $\pi^- < 95 \text{ MeV}/c$
$\Gamma(pe^{-}\overline{\nu}_{e})/\Gamma(p\pi^{-}) \qquad \qquad \Gamma_{5}/\Gamma_{1}$
VALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN COMMENT
1.301 ± 0.019 OUR FIT
1.301 ± 0.019 OUR AVERAGE
1.335 ± 0.056 7111 BOURQUIN 83 SPEC SPS hyperon beam
1.313 ± 0.024 10k WISE 80 SPEC
1.23 ± 0.11 544 LINDQUIST // SPEC π $p \rightarrow K^{\circ}/$
1.21 \pm 0.07 1009 NATZ 73 HBC 1.31 \pm 0.06 1078 ALTHOFE 71 OSPK
1.01 ± 0.00 1010 ALTION 11 OSER 1.17 ±0.13 86 6 CANTER 71 HBC K ⁻ a at root
1.20 ± 0.12 143 ⁷ MALONEY 69 HBC
1.17 ± 0.18 120 ⁷ BAGLIN 64 FBC K ⁻ freen 1.45 GeV/c
1.23 ± 0.20 150 ⁷ ELY 63 FBC
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$

HTTP://PDG.LBL.GOV

Created: 6/29/1998 12:16

⁶ LINDQUIST 71 OSPK See LINDQUIST 77 218 $1.32 \ \pm 0.15$

⁶Changed by us from $\Gamma(pe^-\overline{\nu}_e)/\Gamma(N\pi)$ assuming the authors used $\Gamma(p\pi^-)/\Gamma_{total} =$ ^{2/3.} ⁷ Changed by us from $\Gamma(pe^{-}\overline{\nu}_{e})/\Gamma(N\pi)$ because $\Gamma(pe^{-}\nu)/\Gamma(p\pi^{-})$ is the directly mea-

sured quantity.

$\Gamma(ho\mu^-\overline{ u}_\mu)/\Gamma(N\pi)$				$\Gamma_6/(\Gamma_1+\Gamma_2)$
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
1.57 ± 0.35 OUR FIT				
1.57 ± 0.35 OUR AVER/	AGE			
1.4 ± 0.5	14	BAGGETT	72B HBC	$K^- p$ at rest
$2.4 \hspace{0.1in} \pm 0.8$	9	CANTER	718 HBC	$K^- p$ at rest
$1.3 \hspace{0.1in} \pm 0.7$	3	LIND	64 RVUE	
1.5 ± 1.2	2	RONNE	64 FBC	

I **DECAY PARAMETERS**

See the "Note on Baryon Decay Parameters" in the neutron Listings. Some early results have been omitted.

α_{-} FOR $\Lambda \rightarrow p\pi^{-}$						
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
0.642 ± 0.013 OUR AVE	RAGE					
$0.584\!\pm\!0.046$	8500	ASTBURY	75	SPEC		
0.649 ± 0.023	10325	CLELAND	72	OSPK		
0.67 ± 0.06	3520	DAUBER	69	HBC	From Ξ decay	
$0.645\!\pm\!0.017$	10130	OVERSETH	67	OSPK	Λ from $\pi^- p$	
0.62 ± 0.07	1156	CRONIN	63	CNTR	Λ from $π^- p$	
ϕ ANGLE FOR $\Lambda \rightarrow$	• p π ⁻				$(\tan\phi=\beta \ / \ \gamma)$	
VALUE ($^{\circ}$)	EVTS	DOCUMENT ID		TECN	COMMENT	
$-$ 6.5 \pm 3.5 OUR AVE	RAGE					
$-$ 7.0 \pm 4.5	10325	CLELAND	72	OSPK	Λ from $\pi^- p$	
$-$ 8.0 \pm 6.0	10130	OVERSETH	67	OSPK	Λ from $\pi^- p$	
13.0 ± 17.0	1156	CRONIN	63	OSPK	Λ from $\pi^- p$	
$\alpha_0 / \alpha = \alpha (\Lambda \rightarrow n \pi^0) / \alpha (\Lambda \rightarrow p \pi^-)$						
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
1.01 ±0.07 OUR AVE	RAGE					
$1.000\!\pm\!0.068$	4760 ⁸	OLSEN	70	OSPK	$\pi^+ n \rightarrow \Lambda K^+$	
1.10 ± 0.27		CORK	60	CNTR		
⁸ OLSEN 70 compare	s proton and	neutron distribu	itions	s from Λ	decay.	
$\left[\alpha_{-}(\Lambda) + \alpha_{+}(\overline{\Lambda})\right] / $	$\left[\alpha_{-}(\Lambda)-\alpha_{-}(\Lambda)\right]$	$\alpha_+(\overline{\Lambda})]$				
VALUE	FVTS	DOCUMENT ID		TECN	COMMENT	
-0.03±0.06 OUR AVE	RAGE	DOCOMENT		1201	comment	
$+0.01\pm0.10$	770	TIXIER	88	DM2	$J/\psi \rightarrow \Lambda \overline{\Lambda}$	
-0.07 ± 0.09	4063	BARNES	87	CNTR	$\overline{p}p \rightarrow \overline{\Lambda}\Lambda$ LEAR	
-0.02 ± 0.14	10k ⁹	CHAUVAT	85	CNTR	рр, р р ISR	
⁹ CHAUVAT 85 actua	ally gives $lpha_+$	$(\overline{\Lambda})/\alpha_{-}(\Lambda) = -$	-1.0	4 ± 0.29	. Assumes polarization is	
same in $\overline{p}p \rightarrow \overline{\Lambda}X$ a	and $pp \rightarrow \Lambda$	X. Tests of this	assu	mption.	based on <i>C</i> -invariance and	
fragmentation, are satisfied by the data.						

 $g_A / g_V \text{ FOR } \Lambda \rightarrow p e^- \overline{\nu}_e$

Measurements with fewer than 500 events have been omitted. Where necessary, signs have been changed to agree with our conventions, which are given in the "Note on Baryon Decay Parameters" in the neutron Listings. The measurements all assume that the form factor $g_2 = 0$. See also the footnote on DWORKIN 90.

-	- 2					
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
-0.718 ± 0.015 OUR A	VERAGE					
$-0.719 \pm 0.016 \pm 0.012$	37k	¹⁰ DWORKIN	90	SPEC	$e\nu$ angular corr.	
-0.70 ± 0.03	7111	BOURQUIN	83	SPEC	$\Xi \rightarrow \Lambda \pi^-$	
-0.734 ± 0.031	10k	11 WISE	81	SPEC	$e\nu$ angular correl.	
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$						
-0.63 ± 0.06	817	ALTHOFF	73	OSPK	Polarized <i>A</i>	
¹⁰ The tabulated result assumes the weak-magnetism coupling $w \equiv g_{\mu\nu}(0)/g_{\mu\nu}(0)$ to be						
0.97, as given by th	ne CVC hy	pothesis and as ass	umed	by the	other listed measurements.	

0.97, as given by the CVC hypothesis and as assumed by the other listed measurements. However, DWORKIN 90 measures w to be 0.15 \pm 0.30, and then $g_A/g_V=-0.731\pm0.016$.

¹¹This experiment measures only the absolute value of g_A/g_V .

I REFERENCES

We have omitted some papers that have been superseded by later experiments. See our earlier editions.

HARTOUNI	94	PRL 72 1322	+Jensen, Kreisler+	(BNL E766 Collab.)
Also	94B	PRL 72 2821 (erratum)	Hartouni, Jensen+	(BNL E766 Collab.)
LARSON	93	PR D47 799	+Noble, Bassalleck+	(BNL-811 Collab.)
NOBLE	92	PRL 69 414	+ (BIRM, BOST, BRCO,	BNL, CASE, BUDA, LANL+)
DWORKIN	90	PR D41 780	+Cox, Dukes, Overseth+	(MICH, WISC, RUTG, MINN)
TIXIER	88	PL B212 523	+Ajaltouni, Falvard, Jousset+	(DM2 Collab.)
BARNES	87	PL B199 147	+ (CMU, SACL, LAN	L, VIEN, FREIB, ILL, UPPS+)
BIAGI	86	ZPHY C30 201	+ (BRIS, CERN, GEVA	, HEIDP, LAUS, LOQM, RAL)
CHAUVAT	85	PL 163B 273	+Erhan, Hayes+	(CERN, CLER, UCLA, SACL)
BOURQUIN	83	ZPHY C21 1	+Brown+ (BRIS, GEV	/Å, HEIDP, LALO, RL, STRB)
COX	81	PRL 46 877	+Dworkin+ (MICI	H, WISC, RUTG, MINN, BNL)
PONDROM	81	PR D23 814	+Handler, Sheaff, Cox+	(WISC, MICH, RUTG, MINN)
WISE	81	PL 98B 123	+Jensen, Kreisler, Lomanno, Po	ster+ (MASA, BNL)
WISE	80	PL 91B 165	+Jensen, Kreisler, Lomanno, Po	ster+ (MASA, BNL)
SCHACHIN	78	PRL 41 1348	Schachinger, Bunce, Cox+	(MICH, RUTG, WISC)
HELLER	77	PL 68B 480	+Overseth, Bunce, Dydak+	(MICH, WISC, HEIDH)
LINDQUIST	77	PR D16 2104	+Swallow, Sumner+	(EFI, OSU, ANL)
Also	76	JPG 2 L211	Lindquist, Swallow+	(EFI, WUSL, OSU, ANL)
ZECH	77	NP B124 413	+Dydak, Navarria+ ((SIEG, CERN, DORT, HEIDH)
BUNCE	76	PRL 36 1113	+Handler, March, Martin+	(WISC, MICH, RUTG)
ASTBURY	75	NP B99 30	+Gallivan, Jafar+	(LOIC, CERN, ETH, SACL)
CLAYTON	75	NP B95 130	+Bacon, Butterworth, Waters+	(LOIC, RHEL)
ALTHOFF	73	PL 43B 237	+Brown, Freytag, Heard, Heintz	e+ (CERN, HEID)
ALTHOFF	73B	NP B66 29	+Brown, Freytag, Heard, Heintz	e+ (CERN, HEID)
KATZ	73	Thesis MDDP-TR-74-04	.4	(UMD)
POULARD	73	PL 46B 135	+Givernaud, Borg	(SACL)
BAGGETT	72B	ZPHY 252 362	+Baggett, Eisele, Filthuth, Freh	se+ (HEID)
BAGGETT	72C	PL 42B 379	+Baggett, Eisele, Filthuth, Freh	se, Hepp+ (HEID)
CLELAND	72	NP B40 221	+Conforto, Eaton, Gerber+	(CERN, GEVA, LUND)
HYMAN	72	PR D5 1063	+Bunnell, Derrick, Fields, Katz-	⊢ Ì (ANL, CMU)́
ALTHOFF	71	PL 37B 531	+Brown, Freytag, Heard, Heintz	e+ (CERN, HEID)
BALTAY	71B	PR D4 670	+Bridgewater, Cooper, Habibi+	(COLU, BING)
BARONI	71	LNC 2 1256	+Petrera, Romano	(ROMA)
CANTER	71	PRL 26 868	+Cole, Lee-Franzini, Loveless+	(STON, COLU)
CANTER	71B	PRL 27 59	+Cole, Lee-Franzini, Loveless $+$	(STON, COLU)

DAHL-JENSEN LINDQUIST	71 71	NC 3A 1 PRL 27 612	+ (CERN, ANKA, LAUS, MPIM, ROMA) +Sumner+ (EFI, WUSL, OSU, ANL)
OLSEN	70	PRL 24 843	+Pondrom, Handler, Limon, Smith+ (WISC, MICH)
DAUBER	69	PR 179 1262	+Berge, Hubbard, Merrill, Miller (LRL)
DOYLE	69	Thesis UCRL 18139	(LRL)
MALONEY	69	PRL 23 425	+Sechi-Zorn (UMD)
GRIMM	68	NC 54A 187	(HEID)
HEPP	68	ZPHY 214 71	+Schleich (HEID)
BADIER	67	PL 25B 152	+Bonnet, Briandet, Sadoulet (EPOL)
MAYEUR	67	U.Libr.Brux.Bul. 32	+Tompa, Wickens (BELG, LOUC)
OVERSETH	67	PRL 19 391	+Roth (MICH, PRIN)
PDG	67	RMP 39 1	Rosenfeld, Barbaro-Galtieri, Podolsky+ (LRL, CERN, YALE)
BURAN	66	PL 20 318	+Eivindson, Skjeggestad, Tofte+ (OSLO)
CHIEN	66	PR 152 1171	+Lach, Sandweiss, Taft, Yeh, Oren+ (YALE, BNL)
ENGELMANN	66	NC 45A 1038	+Filthuth, Alexander+ (HEID, REHO)
GIBSON	66	NC 45A 882	+Green (BRIS)
LONDON	66	PR 143 1034	+Rau, Goldberg, Lichtman+ (BNL, SYRA)
SCHMIDT	65	PR 140B 1328	(COLU)
BAGLIN	64	NC 35 977	+Bingham+ (EPOL, CERN, LOUC, RHEL, BERG)
HUBBARD	64	PR 135B 183	+Berge, Kalbfleisch, Shafer+ (LRL)
LIND	64	PR 135B 1483	+Binford, Good, Stern (WISC)
RONNE	64	PL 11 357	+ (CERN, EPOL, LOUC, BERG+)
SCHWARTZ	64	Thesis UCRL 11360	(LRL)
BHOWMIK	63	NC 28 1494	+Goyal (DELH)
BLOCK	63	PR 130 766	+Gessaroli, Ratti+ (NWES, BGNA, SYRA, ORNL)
BROWN	63	PR 130 769	+Kadyk, Trilling, Roe+ (LRL, MICH)
CHRETIEN	63	PR 131 2208	+ (BRAN, BROW, HARV, MIT)
CRONIN	63	PR 129 1795	+Overseth (PRIN)
ELY	63	PR 131 868	+Gidal, Kalmus, Oswald, Powell+ (LRL)
HUMPHREY	62	PR 127 1305	+Ross (LRL)
CORK	60	PK 120 1000	+Kerth, Wenzel, Cronin+ (LRL, PRIN, BNL)
CRAWFORD	59B	PRL 2 266	+Cresti, Douglass, Good, Licho+ (LRL)