Sabina Jordan (MS
- 6 -
April 28, 1999
styleref To2

[image: image1.png]@ Sandia National Laboratories

Operated for the U.S. Department of Energy by

Sandia Corporation

Albuquerque, New Mexico 87185-1110

date:
 April 28, 1999

to:
 Sabina Jordan (MS 0780)

from:
William Hart (MS 1110)

subject:
Opportunities for using Parallel Learning Algorithms on the Next Generation Security Simulation Project

Abstract

The memo provides an overview of the different ways that parallelism can be exploited to solve learning problems associated with the Next Generation Security Simulation (NGSS) project. We begin with an overview of the goals of the NGSS project and then discuss the types of learning problems that need to be solved to model human behavior in the NGSS simulator. We cast these learning problems as optimization applications and discuss their characteristics. Finally, we discuss four different opportunities for exploiting large-scale parallelism for these optimization problems and describe current progress and future directions for using Sandia’s parallel computing resources for this project.

Introduction

The NGSS project aims to develop a PC-based simulation tool that can be used to evaluate the security of sensitive sites. This tool is specifically targeted at security assessment for sites that use a limited number of personnel to maintain a defensive policy that can react to assaults from a small team of attackers. The simulation model includes basic elements of movement and small arms combat (e.g. small arms fire). To simplify the simulator, movement is constrained to a graph; agents can lie at any position along edges of the graph or at nodes of the graph. The simulation also includes special actions by associating them with their effect (e.g. a special action can be initiated to destroy a specific wall).

An important component of the NGSS simulator is the behavior that is used to define the actions of the individuals that are attacking and defending a site. For defenders, the simulator needs to effectively model the behavior of individuals involved in both routine defensive policies, as well as defensive maneuvers that are in response to an attack. Defenders need to engage in combat while achieving broad strategic goals such as denying access to a site or capturing all attackers. For defenders, the simulator needs to effectively model the behavior of individuals that are evading or overcoming defensive barriers (e.g. sensors or doors). Further, attackers need to be able to engage in combat while achieving broad strategic goals such as penetrating a site or defending an escape route for other team members.

Learning Problems

The NGSS team has adopted a machine learning approach to model the behavior of defenders and attackers in the NGSS simulator. Modeling human behavior is a daunting task, but preliminary studies with small-scale combat simulations suggest that limited tactical behaviors can be learned with standard machine learning techniques. In these scenarios, individuals are modeled by agents that use information about the state of the simulation to guide their decisions in the next time step. For example, we have applied genetic programming (GP) methods to simple combat scenarios with no physical barriers. In these scenarios, GP generates agent controllers that quickly move agents towards a goal while evading defending agents.

In this report we will not delve into the specifics of different approaches for solving these machine learning problems. In general, these types of learning problems can described as supervised learning problems, where the goal is to find parameters for an agent that matches a set of training data. In the context of security assessment, we can easily generate a large set of training data using the security simulation. The behaviors of agents can be scored during or after each simulation, giving an overall score for the agent parameters across all training trials. This combined score can then be used to guide the search for better agent parameters.

Although the problem for finding attacker and defender behaviors can itself be viewed as a supervised learning problem, this problem is certainly too difficult to solve all at once. Consequently, we have decomposed this problem into several learning subproblems. In particular, we are evaluating ways of breaking up the agent behaviors into different domains that can be learned independently. For example, coordinating behaviors to achieve broad strategic goals can be separated from the control needed to achieve limited tactical objectives. Thus we expect that there will be many independent or loosely related learning problems that need to be solved to build an effective model of human behavior for the NGSS simulator.

Learning and Optimization

The learning problems discussed in the previous section generally involve a search method that explores a space of agent parameters to find a better (or sufficiently good) model of agent behavior. For example, GP searches through a space of tree structures that represent control programs for agents. Methods like GP are examples of optimization algorithms, which are general-purpose search algorithms. Optimization is a convenient way to cast these learning algorithms because the use of a general-purpose optimization method highlights the domain-dependent characteristics of the learning problem.

The learning problems that we have considered to model agent behaviors in the NGSS simulator have the following characteristics:

1. Mixed continuous-discrete parameter domains: Learning techniques like GP involve a search of both combinatorial parameters like the program tree as well as continuous parameters like the real-valued constants used in the tree. Other learning paradigms like neural networks have similar characteristics when you consider the structure of the neural network in addition to the real-valued weights in a given neural network.

2. High dimensional search space: The number of inputs that can be provided to an agent in the NGSS simulation can easily exceed 100. Consequently, any nontrivial learning framework needs to consider several hundreds of search parameters to process these inputs.

3. Randomized objective: The NGSS simulator involves random events, particularly when small-arms fire is used during combat. Further, there may be some advantages to using randomized behavior in agents to make them less predictable by their opponents. Both of these factors contribute to randomization in the total objective that is used for optimization.

4. Expensive function calculations: The calculation of the objective function for learning with the NGSS simulator will be expensive for many learning problems simply because of the expense involved with running the NGSS simulator multiple times. Getting accurate estimates of the value of a set of agent parameters many involve averaging over many simulations, and each simulation may be long.

5. Variable cost function calculations: The amount of CPU resources used to compute the objective function for a given set of agent parameters can vary for many reasons. Randomization can introduce different simulation paths that have different lengths. Further, different initial configurations of a given scenario may result in different simulation lengths.

6. Nondifferentiable objective function: The objective function is not differentiable (i.e. does not have gradient information) since it involves discrete parameters and it is randomized.

7. Constraints: We expect that there will exist constraints on the set of agent parameters. For example, finding a smallest set of agent parameters is often desirable to ensure that the optimizer does not “over-learn” the set of training examples.

These optimization characteristics need to be considered when selecting the optimization method for machine learning. Unfortunately, these characteristics define a particularly difficult class of optimization problems. Thus it is particularly important that the learning problem is carefully defined. Further, exploiting parallel computing resources is an important step to solving large learning problems in a timely manner.

Opportunities for Parallelism

There are many opportunities for exploiting parallelism for the types of optimization problems that were described in the previous section. We describe four ways that optimization can be exploited for NGSS learning problems.

1. Parallelized Simulations: Parallelizing the NGSS simulator is the most basic way that parallelization can be introduced. However, we do not expect that this will be a particularly effective use of parallel resources because the simulators are too small. Although a simulation may run through many time steps, there are a limited number of activities (like agent decisions) that can be computed simultaneously. Consequently, these simulations are inherently sequential.

2. Parallelization of the Function Evaluation: The objective function calculation for these learning problems involves the evaluation of a set of parameters across multiple trials. Consequently, it is natural to parallelize the objective function calculation by independently evaluating the parameters on different trials in parallel. Figure 1 illustrates how this parallelism can be accomplished with a basic master-slave algorithm. In this calculation, the parameters, , are sent to the slave processes, and the cost of the objective function, , is returned so the master process can compute the total function evaluation. Since the simulation calculations may vary in length, the master process must dynamically send the slave processes new trials to evaluate. However, this overhead is minimal when compared to the total cost of each simulation.

[image: image2.wmf]Master

Function

Process

Slave 1

Function

Process

Slave 2

Function

Process

Slave 3

Function

Process

x

f

1

(x)

f

3

(x)

x

Figure 1. Illustration of a master-slave algorithm that distributes the calculation of the trials in a single objective function calculation.

3. Independent Calculation of Function Evaluations: Since the value of the objective function depends only on the search parameters, the optimization method can parallelize the evaluation of independent function evaluations. For example, in each iteration of GP a set of new points is generated, each of which can be independently computed since the GP generates the entire set at once. Figure 2 illustrates how this parallelism can be accomplished with a basic master-slave algorithm. The only difference from the master-slave method described in Figure 1 is that the slaves send the result of the entire function evaluation back to the master.

[image: image3.wmf]Master

Optimization

Process

Slave 1

Function

Process

Slave 2

Function

Process

Slave 3

Function

Process

x

f(x)

f(x)

x

Figure 2. Illustration of a master-slave algorithm that distributes the calculation of independent objective functions.

4. Parallelized Optimization Method: Parallelizing the optimization method beyond the parallel calculation of independent function evaluations can be achieved for a variety of optimization methods. In particular, heuristic methods like evolutionary algorithms, and multistart global optimization methods can be parallelized by extending the basic search strategy. For example, evolutionary algorithms like GP can be parallelized using an “island model” in which independent GP processes are run with a modest amount of communication to coordinate their total search. Also, hybrid algorithms that combine global and local optimizers can be parallelized by running independent local optimizations simultaneously.

It is important to note that these four modes of parallelism can be combined to form levels of parallelism in the same way as the levels of parallelism used by the DAKOTA toolkit. For example, Figure 3 illustrates how the parallelization of independent function evaluations and the parallelization of function evaluations can be combined to distribute the total calculation of a set of function evaluations.

[image: image4.wmf]
Figure 3. Illustration of the use of two levels of parallelism. Dark points represent master processors that coordinate the calculation of trials on the light points (a set of processors denoted by the dashed lines). The dark points also serve as slaves to the large dark offset point, which runs the optimizer.

Current Progress and Perspectives

Because of the natural parallelism in GP and other evolutionary algorithms, we have focused on the third type of parallelism. We have implemented a GP within the SGOPT optimization library using SGOPT abstract evolutionary algorithm class hierarchy. This class hierarchy implicitly employs parallelization of function evaluation calls; parallelization is achieved when the underlying hardware supports it. We reimplemented the master-slave protocol used by SGOPT to dynamically distributed the function evaluations based upon the demand from the slave processors. This type of master-slave algorithm can accommodate variability in the objective function cost more readily than the previous implementation in SGOPT, which statically distributed all of the function evaluation calculations to the available processors. We have tested this parallel optimization capability using a parallel GP to solve simple toy problems on a network of workstations. This code will easily port to other parallel computing environments at Sandia since the MPI communication standard was used to parallelize the optimizer.

The amount of parallelism that can be exploited in methods like the parallel GP is limited because there are natural serial bottlenecks in optimizers. Consequently, we are considering designs for using multiple levels of parallelism that combine parallelized function evaluations or parallelized optimizers or both. We are presently focused on parallelized function evaluations because this is likely to provide the most scalable form of parallelism. We are also considering parallel hybrid algorithms to distribute the evaluation of independent local searches in a hybrid GP. We expect that hybrid GPs will be needed to effectively optimize the continuous constants in GP trees.

We have also considered parallel optimizers like the island-model GP. However, these methods do not scale well to large numbers of processors because the weak communication that they use is not sufficient to coordinate a search among many processes. However, a multistart method would effectively scale since it explicitly avoids this form of coordination. Thus we are also considering multistart GPs for various learning applications.

Discussion

It is clear that there are many opportunities for using parallelism for the learning applications related to the NGSS project. In all cases, parallelism can be achieved across a wide range of computing platforms. Further, parallel methods can be designed which have excellent performance on high-performance parallel computing platforms like ASCI Red and Cplant.

However, one limiting factor concerns the development environment for the NGSS simulation. High-performance computing platforms generally provide an UNIX-like operating environment. Unfortunately, this environment does not provide the set of tools that are available within an MS Windows environment. Consequently, the use of high-performance parallel computing platforms requires the development of a separate simulation code for the parallel architectures. We expect that this will not lead to inconsistent agent behaviors between the two simulation codes since the simulators can be benchmarked on simple examples.

Figure 2. Illustration of a master-slave algorithm that distributes the calculation of the trials in a single objective function calculation.

x

f(x)

f(x)

x

Slave 3 Function Process

Slave 2 Function Process

Slave 1 Function Process

Master Optimization Process

Exceptional Service in the National Interest

_986069946.doc

x

f(x)

f(x)

x

Slave 3 Function Process

Slave 2 Function Process

Slave 1 Function Process

Master Optimization Process

_986797766.doc

_986069887.doc

x

f3(x)

f1(x)

x

Slave 3 Function Process

Slave 2 Function Process

Slave 1 Function Process

Master Function Process

