

GOES HDR

Binary Message Protocol

Thoughts & Suggestions

12/08/2006

Microcom Design, Inc.

10948 Beaver Dam Road, Suite C
Hunt Valley, MD 21030

12/08/2006 GOES Binary Protocol Discussion Microcom Design, Inc.

Table of Contents
1 Introduction ... 1
1.1 Binary GOES Message .. 1
1.2 IT Transparency ... 2
1.3 Compaction versus Compression... 2

2 IT Transparent Compaction... 5
2.1 Pseudo-Binary Compaction.. 5
2.2 Numeric ASCII Compaction.. 6
2.3 Alphanumeric ASCII Compaction ... 8

3 Binary Protocol Comments.. 10
3.1 Length versus EOT... 10
3.2 Character Length versus Byte Length .. 10
3.3 Packet Length and CRC Check.. 10
3.4 Length Field and BER versus Phase Reference Loss.. 11
3.5 Phase Reference Retraining... 12

4 Binary Protocol Summary.. 14
4.1 General GOES HDR Binary Structure .. 14
4.2 GOES HDR Flag Byte .. 15

List of Figures

Figure 1: Typical Pseudo-Binary Message... 3

Figure 2: Pseudo-Binary Bit Map ... 5

Figure 3: Pseudo-Binary Compaction... 6

Figure 4: Numeric ASCII Example 1... 6

Figure 5: Numeric ASCII Example 2... 7

Figure 6: Binary Message Structure Single Packet .. 14

Figure 7: Binary Message Structure Multiple Packets .. 14

Figure 8: Basic Packet Structure.. 14

Figure 9: Message Length Structure .. 14

Microcom Design, Inc. i

12/08/2006 GOES Binary Protocol Discussion Microcom Design, Inc.

List of Tables
Table 1: Bit Packing Example .. 2

Table 2: Possible Numeric ASCII Character Set .. 7

Table 3: Numeric ASCII Special Character Translation.. 7

Table 4: Alphanumeric ASCII Character Set .. 9

Table 5: GOES HDR Flag Byte (Modified) ... 15

Microcom Design, Inc. ii

12/08/2006 GOES Binary Protocol Discussion Microcom Design, Inc.

1 Introduction
As a result of the GOES Manufacturer’s Meeting in Asheville, NC on November 9, 2006,
Microcom Design, Inc. has prepared this document to share our thoughts on a GOES
Binary Message Protocol and Format.
Significant discussion has taken place with regard to a new binary format, and certain
key items seem to have reached a general consensus (e.g. the use of a message
length instead of an EOT sequence). However, the discussion so far has been focused
more at the structure level than the information or format level. While this white paper
will also address some areas of the binary message structure, the primary purpose of
this document is to offer a few suggestions on mechanisms to compact the information
to be transmitted.
More importantly, the suggested compaction algorithms are intended to provide reduced
message length without requiring any modifications in information processing.
Specifically, Microcom is proposing that the binary protocol include information
compaction schemes that will be “IT Transparent”. Note that the proposal is to include
these schemes in the standard in such a way as to not preclude generic binary
message data, but as a way to facilitate a rapid transition to use of binary messages.
The sole purpose of which is to reduce the message length in a GOES transmission,
thereby improving the time efficiency of the system.

1.1 Binary GOES Message
While it is generally agreed that a binary GOES message format is necessary to reduce
message lengths/durations in order to make better use of the limited resources,
maximum improvement from a binary message will only be achieved when data points
are sent using as few bits as absolutely necessary. Further, to realize this potential
requires breaking the byte boundaries and bit packing data points.
ARGOS transmissions are a good example of this approach. ARGOS messages are
limited to a maximum message length of 256 bits (32 bytes). Consider the simple
example shown in Table 1, sending the values in binary without bit packing requires 12
bytes while bit packing the values requires only 8 bytes. Since quite often multiple
values for each parameter would typically be transmitted, the total duration of a typical
GOES message will be significantly reduced. Assuming that four 15 minute samples
are transmitted once an hour, the information portion of a packed message would be
0.85 seconds versus 1.28 seconds unpacked.
Note that for a Pseudo-Binary (PB) message using the same parameters from Table 1
is only slightly longer than the binary unpacked message. For all but the Humidity
parameter, the number of binary bytes required to represent the value is the same as
the number of PB characters; the 7 bits required for humidity requires 2 PB characters.
Therefore as Table 1 indicates, it’s quite possible that without bit packing binary data,
little, if any, message length savings can be realized versus Pseudo-Binary GOES
Messages. However, packed binary messages can have a significant back-end cost to
the end users since the decoding software will have to be modified to handle the bit
packing of the data points. While this is not a difficult task to implement in software, still

 1

12/08/2006 GOES Binary Protocol Discussion Microcom Design, Inc.

costs are costs and the users may opt not to incur these charges, especially since many
users prefer to have their messages in a readable format anyway.
Hence there are compelling reasons to define a binary message structure that provides
significant reductions in message length, but does not affect the Information Technology
(IT) currently processing the GOES messages, i.e. a structure that is “IT Transparent”.
However, this binary format definition should not eliminate or prohibit the use of true
binary GOES messages.

 Table 1: Bit Packing Example

Parameter

Units

Range

Resolution

Bits

Binary
Bytes

PB
Bytes

ASCII
Bytes

Rain Fall counts 0 to 4095 1 12 2 2 4

Air Temp Celsius -40 to +60 0.1 10 2 2 5

Humidity % rel 0 to 100 1 7 1 2 3

Solar Rad w/m2 0 to 2000 1 11 2 2 4

Wind Dir deg 0 to 360 1 9 2 2 3

Wind Speed m/s 0 to 40 0.1 9 2 2 4

Battery volts 9 to 15.3 0.1 6 1 1 4

 Total: 64 bits
8 bytes

96 bits
12 bytes

104 bits
13 bytes

216 bits
27 bytes

1.2 IT Transparency
As noted above, the primary goal of an IT Transparent binary format definition is to
reduce message durations with minimal, if any, impact on the end user’s information
processing software. To achieve the second half of this goal, it is therefore necessary
to ultimately deliver the GOES message data to the end users in the same (or
reasonably similar) format to what they now get. Since the only place to achieve the
first half is at the GOES transmitter, it therefore makes sense to consider a compression
or compaction scheme that is applied just prior to transmitting the data while the
decompression or de-compaction is applied as soon as the message is received, i.e. at
the demodulator.
If the compression/compaction process occurs in this manor, it will be completely
transparent to the users. The data to be transmitted can still be buffered in the same
format currently used and the same format will be used to deliver the data.

1.3 Compaction versus Compression
In the preceding section, the terms compaction and compression were used to define
the process whereby the message length would be reduced prior to transmission.
While a complete discussion of compression techniques is well beyond the scope of this
document, there are essentially two broad categories of compression techniques, lossy
and loss-less compression. Lossy compression techniques are used in video and audio

 2

12/08/2006 GOES Binary Protocol Discussion Microcom Design, Inc.

(e.g. JPEG, MP3) systems where a certain amount of information loss can be tolerated
in exchange for increased compression. Obviously, lossy compression is not applicable
to GOES data transfers.
Loss-less compression techniques ensure that the original data can be exactly
recovered from compressed data. Very generally speaking, there are two main types of
loss-less compression mechanisms; run-length encoding and entropy encoding. Run-
length encoding schemes typically are most applicable to data that includes long runs of
identical information (e.g. voice with long periods of silence between words). Entropy
encoding schemes utilize various algorithms that characterize the data and defines
character sets or tables whereby the most common piece of information or symbol is
represented with only a few bits and less common characters are represented with
more bits; one of the earliest uses of entropy encoding is Morse code.
The most widely known/used compression tool is PKZIP developed by PKWARE. In it’s
original form PKZIP used a variety of methods to compress computer files. However, in
practice, the latest version of PKZIP uses Phil Katz’s (the PK in PKZIP) DEFLATE
algorithm. While it has been suggested to define a binary standard that uses PKZIP as
the compression algorithm, using PKZIP as the tool to compress short messages (or
small files) will more than likely inflate the size of the message. For example, consider
the real Pseudo-Binary message data captured from channel 49 shown below.

B1K@Gj@Gh@Gg@Gf@Gf@Gd@Gc@Ga@EX@EX@Sw@Sw@Sw@SwH
Figure 1: Typical Pseudo-Binary Message

When this 46 byte sequence is saved as a text file and run through PKZIP, the resultant
zip file is actually 144 bytes (over 3 times as large). However, a good portion of this is
overhead as the PKZIP program is intended to compress computer files and therefore
store path and filename information. On the other hand, this simple example shows that
while the compression algorithm implemented within PKZIP may prove useful at some
time, the actual use of PKZIP as the compression/decompression tool is not appropriate
to this application. Further, even examining the actual size of the compressed data
within the file shows only a 27% reduction (34 versus 46 bytes). This is only a slight
improvement (1 byte) over the Pseudo-Binary Compaction scheme defined in Section
2.1.
Returning the general cases of compression algorithms and the application at hand,
what can be considered a special case of entropy encoding is a reduced character set
algorithm. For example, rather than entropy encoding the entire ASCII character set,
reduce the number of allowed characters and encode them in a fewer number of bits.
Since the resultant character set will contain less than 8 bits, the message characters
can be compacted (or packed) into fewer bytes than would be necessary otherwise.
While an appropriate character set or sets need to be defined for the ASCII, the idea of
compaction is immediately applicable to the Pseudo-Binary format.
Further, one important caveat to the decision on the determination of any compression
or compaction scheme to be utilized in GOES messages must also be considered. The
primary purpose of the idea of compressing GOES messages is to reduce the message
window sizes by reducing message durations. However, since it is an absolute

 3

12/08/2006 GOES Binary Protocol Discussion Microcom Design, Inc.

requirement that the message fit within the reduced window, the compression or
compaction algorithm utilized must give readily predictable results. Otherwise, it is not
possible to reduce the window length with 100% assurance that the compressed
message will fit within the reduced window. In other words, the window length must be
sized for the minimal amount of compression.
To clarify this caveat, consider the use of run-length compression as applied to a series
of sensor readings that have not changed for a period of time (e.g. tipping bucket counts
during extended period of no rainfall). A simple count of the repeated values would
allow the message length to be reduced by sending the count and only one copy of the
value. While this would reduce the message length for certain transmissions, the
window size could not be reduced since the window must be sized to accommodate
messages when the data does change frequently (e.g. on rainy days for tipping bucket
readings).
Note there are certainly other good reasons to implement compression techniques that
produce shorter messages sometimes (e.g. reduced power consumption, reduced
susceptibility to interfering transmitters, etc.). However, the primary goal of reduced
message windows is not satisfied by these algorithms.
Microcom believes that the simple compaction techniques suggested in the subsequent
sections of this document will not only be easier to implement, but will also prove to be
effective compression algorithms for the special cases of GOES messages.

 4

12/08/2006 GOES Binary Protocol Discussion Microcom Design, Inc.

2 IT Transparent Compaction
Microcom is proposing three compaction schemes. In general, these schemes are
intended to produce more efficient use of message windows without burdening the
users with costly software upgrades/modifications to their information processing
systems; i.e. the schemes are IT Transparent.
The schemes suggested are geared toward users who are already reducing messages
durations using Pseudo-Binary coding, as well as user’s who are reluctant to switch
from transmitting and receiving ASCII data.

2.1 Pseudo-Binary Compaction
Pseudo-Binary is actually a good first step toward reducing GOES message lengths and
is, by its nature, a compaction scheme already being employed by many GOES users.
Microcom’s Pseudo-Binary Compaction scheme is a simple extension of this format that
would reduce the information portion of the message by 25%.
In Pseudo-Binary (PB) format, binary data is encapsulated in ASCII characters. Each
ASCII character can carry up to six bits of binary information. To express values
beyond 6-bits, multiple ASCII characters are simply concatenated. In other words, two
PB characters can represent 12-bits of information, 3 characters can represent 18-bits,
and so on.
To ensure the ASCII characters used to convey the binary information are printable, the
PB character definition requires bit 6 of the byte to be a 1 (one); bit 7 is used for the odd
parity byte as shown below.

PO 1 B5 B4 B3 B2 B1 B0
Figure 2: Pseudo-Binary Bit Map

With this definition, the PB character set extends from 0x40 (‘@’) to 0x7F (DEL). Since
DEL is the only non-printable character in this range, the PB standard allows 0x3F (‘?’)
to be sent instead (the only time B6 can not be 1). However, the important point is that
only B5 through B0 actually carry the information of concern to the end-user.
As such, a simple mechanism to reduce the message length is to transmit just the
information bits. Further, this compaction could be done on the fly by the transmitter,
and the de-compaction could be performed by the demodulator as it is being received.
Since this process is limited to the transmitter/receiver pair, the result is essentially a
25% reduction in message information length that is transparent to the user.
In the example shown below, the first four characters of the Pseudo-Binary message
from Figure 1 are compacted into three bytes. Note that as shown in Figure 3 the same
24 information bits (4 x 6 = 24) are sent (the parity and forced 1 bit are not information
bits) from the original four bytes, just concatenated into three bytes (3 x 8 = 24)

 5

12/08/2006 GOES Binary Protocol Discussion Microcom Design, Inc.

P1--B--- P1--1--- P1--K--- P1--@---
11000010 00110001 11001011 11000000

--B--- --1--- --K--- --@---
000010 110001 001011 000000
xxxxxx xxyyyy yyyyzz zzzzzz

00001011 00010010 11000000
xxxxxxxx yyyyyyyy zzzzzzzz

Figure 3: Pseudo-Binary Compaction

Applying this compaction scheme to the entire message of Figure 1, would reduce the
information from 46 bytes to 35 bytes. For a GOES HDR 300 bps message this is a
message length reduction of almost 0.3 seconds.
At the receive end the demodulator would know this compaction algorithm was in effect,
and simply reverse the procedure and deliver the end user the original pseudo-binary
data shown in Figure 1.

2.2 Numeric ASCII Compaction
While the Pseudo-Binary compaction scheme can yield a 25% reduction in information
message duration, the Numeric ASCII Compaction scheme can yield a 50% reduction.
Microcom has noted that many users are still sending ASCII, but are only sending the
data values, i.e. no labels or other text strings are being sent. For these user’s only a
small portion of the entire ASCII character set is being transmitted, primarily the ASCII
numerals 0 through 9. Two examples of such messages captured from a GOES DRGS
as shown below.

08.38
009
135
-02
000
085
15.9
020.7
144
014
00161

Figure 4: Numeric ASCII Example 1

Using these two examples as a basis, Microcom has defined a 4-bit character set that
could be used to encode these messages as shown in Table 2. Using this character set
and compacting two characters into every byte, will yield a 50% reduction in the
information portion of the message.

 6

12/08/2006 GOES Binary Protocol Discussion Microcom Design, Inc.

+2006.,+337.0,+1856.,+13.31,+13.57,+14.15,+4940.,+29.62,+720.0,
+13.50,+10.00,+4.000,+2.400,+13.10,+10.00,+0.000,+27.07,+412.1,
+19.39,+15.31,+79.14,+25.08,+721.5,+21.94,+21.94,+2.205,+31.20,
+46.64,+1089.,+13.37,+24.63,+120.0,+0.207,+4.578,+10.13,+458.3,
+13.46,+23.13,+120.0,+0.143,+4.513,+13.36,+333.3,+13.44,+24.59,
+120.0,+56.33,+28.25,+0.527,+1542.,+34.89,+30.14,+10.00,+56.63,
+28.26,+5.468,+1542.,+35.09,+5.601,+10.00,+56.45,+28.25,+1542.,
+34.96,+10.00,+20.60,+14.90,+59.62,+25.16,+67.09,+412.0,+0.000,
+10.00,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+13.58,+120.0,

Figure 5: Numeric ASCII Example 2

Note that the numeric character set shown in Table 2 does not include a cr/lf sequence.
To accommodate this sequence as well as a few other possible (albeit less used)
numeric characters, the special code sequences in Table 3 are also defined. Since
these combinations of polarity symbols and the decimal point are not valid in numeric
representations, they can readily be implemented to effectively increase the character
set with minimal, if any, loss of efficiency. Specifically, using only the cr/lf sequence
does not affect the overall compression as two ASCII characters are still compressed to
two 4-bit codes.

Table 2: Possible Numeric ASCII Character Set

Char Code Char Code Char Code Char Code

0 0000 4 0100 8 1000 . (dp) 1100

1 0001 5 0101 9 1001 + 1101

2 0010 6 0110 space 1010 - 1110

3 0011 7 0111 , 1011 / 1111

Table 3: Numeric ASCII Special Character Translation

ASCII
Char(s)

Numeric
Chars

Double
Code

cr/lf ++ 1101 1101

+- 1101 1110

= -+ 1110 1101

: .. 1100 1100

E -- 1110 1110

The improvement and simplicity of this compaction scheme are readily apparent. While
additional reductions in message lengths can be realized for these types of messages,
this is more a function of the user community than any compaction or compression
scheme. For example, in Figure 4, the cr/lf sequences terminating each value could

 7

12/08/2006 GOES Binary Protocol Discussion Microcom Design, Inc.

simply be replaced with spaces or commas. By simply replacing the two-character
termination (cr/lf) with a single character termination (e.g. space), an additional 5 bytes
can be eliminated.
In the second example, every value is terminated with a comma. A simple count will
show that there are 81 commas embedded in this message. While comma delimited
values are readily imported into spreadsheets, this process could readily be done by a
simple software tool that scans the message after receipt and inserts a comma ahead of
every polarity sign. By adopting a convention similar to the familiar SDI-12 protocol, the
plus and minus symbols could suffice as the numeric separators.
On the other hand, note that all the values in the example of Figure 5 are positive. If the
vast majority of these readings can not be negative, simply omitting the plus sign for
these values can produce a similar result without impacting how the comma delimited
string shown is imported into a spreadsheet. Note also that some values are terminated
in a decimal point; if these values are always whole numbers, than transmitting this
character is unnecessary.
In summary, by tweaking the original message (users) and implementing the ASCII
Numeric Compaction algorithm (manufacturers), significant message length reductions
can be readily achieved without significant effort.

2.3 Alphanumeric ASCII Compaction
The Numeric Compaction scheme, described in the preceding section can be readily
extended to a more complete Alphanumeric ASCII Compaction scheme. Microcom is
suggesting an alphanumeric compaction algorithm that is based on limiting the alpha
portion of the character set to capital letters only.
The approach makes use of entropy encoding by using 5 bits to represent the most
common characters (e.g. the numeric symbols of Table 2), and defining a 6-bit
character set for the letters and some additional punctuation characters.
The Alphanumeric ASCII Compacted character set is shown in Table 4. The first
column of Table 4 is the numeric characters from the Numeric ASCII character set.
However, these characters are now encoded as a 5-bit binary value with the most
significant bit being 0. An additional 31 characters (including the uppercase letters) is
defined using a 6-bit code that has the most significant bit set to 1. This variable size
code set provides a total of 47 characters.

During the compaction process, the 5 or 6-bit codes are continuously packed together
to form bytes. The compacted data is then transmitted. As the data is received, the
codes are de-compacted and reverse translated. The de-compaction algorithm first
requires the examination of the next un-compacted bit to determine how many total bits
to extract (0 = 5 bits and 1 =6 bits).

Assuming all characters are equally likely to be represented, the average number of bits
per character is 5.66. Therefore, the minimum compression ratio is 29.3%. However,
assuming the data to be compacted is totally numeric, a compression ratio of 37.5% is

 8

12/08/2006 GOES Binary Protocol Discussion Microcom Design, Inc.

possible; although, if this were the case Numeric ASCII compression should be used.
Regardless, the effective compression ratio is between 29% and 37% depending on the
data to be compacted. Since the message format is known by the user, a simple
calculation can determine the compression for a given message structure. For
example, assuming 10% of the bytes are alpha and 90% of the bytes are numeric, the
average compression is 36.3% (i.e. (8-5.1)/8).

Table 4: Alphanumeric ASCII Character Set

Char Code Char Code Char Code

0 00000 A 100000 Q 110000

1 00001 B 100001 R 110001

2 00010 C 100010 S 110010

3 00011 D 100011 T 110011

4 00100 E 100100 U 110100

5 00101 F 100101 V 110101

6 00110 G 100110 W 110110

7 00111 H 100111 X 110111

8 01000 I 101000 Y 111000

9 01001 J 101001 Z 111001

space 01010 K 101010 cr/lf 111010

, 01011 L 101011 # 111011

. 01100 M 101100 = 111100

+ 01101 N 101101 : 111101

- 01110 O 101110 ; 111110

/ 01111 P 101111 n/a 111111

 9

12/08/2006 GOES Binary Protocol Discussion Microcom Design, Inc.

3 Binary Protocol Comments
While the previous section focused on suggested binary compaction formats that are
somewhat independent of the binary protocol, there are several topics with regard to the
message structure that should be given consideration in developing a complete binary
protocol. Further, Microcom has given some additional thought to the binary protocol
subsequent to the discussions at the recent GOES Manufacturers Meeting in Asheville.

3.1 Length versus EOT
Microcom agrees with what appeared to be the consensus of opinion at the Asheville
meeting that a message length should be used in place of an EOT sequence. Use of
any type of EOT sequence is problematic (bit stuffing or byte stuffing) to prevent the
sequence from appearing in the message portion. Further, as was noted in Asheville,
the length field provides other advantages and is no more costly in transmission time
then the EOT sequence.

3.2 Character Length versus Byte Length
While an overall byte length for the message can be included, the compaction schemes
presented in this paper will require a character length in addition to, or in place of, an
actual byte length. The reason for this is that the compaction schemes have multiple
characters (or portion thereof) residing in a single byte and/or characters crossing byte
boundaries. Accordingly, to distinguish between real information content and unfilled
data, a character length is required.
The simplest example of this is the Numeric ASCII compaction. At the end of the
reception process when the last byte of data has all zeroes in the four least significant
bits, the receiver needs some way to know whether this is an unused character or is the
digit ‘0’.
While not as readily apparent, a similar situation also arises in the Pseudo-Binary case
when three pseudo-binary characters must be compacted, i.e. when the overall
character length is one byte less than an integer multiple of 4. The three PB characters
will still require 3 bytes for compaction, but the receiver needs to know that the final six
bits should not be de-compacted; otherwise, an extra ‘@’ symbol will be generated
(assuming a zero fill – the ‘@’ symbol is the PB character for the all zero case).
Therefore, some mechanism must be included to identify the character length. Note
that even though the converse is not true, knowing the character length does guarantee
the determination of the exact number of bytes required for a given compaction scheme.

3.3 Packet Length and CRC Check
It was also discussed in Asheville that the binary protocol should include a CRC;
specifically, the 16-bit CRC-CCITT. Microcom has used similar 16-bit CRCs and also
agrees that such a check should be included in the binary specification.
However, Microcom believes that a single CRC at the end of the message is not
sufficient when used for longer message lengths. Microcom suggests that a Packet
Length/CRC protocol be included in the specification. The Packet Length can be a

 10

12/08/2006 GOES Binary Protocol Discussion Microcom Design, Inc.

single byte value, allowing up the 256 bytes/characters per packet. At the end of each
packet a 16-bit CRC should be included to verify the validity of each individual packet.
Note that the Packet Length field can also solve the problem of the character length
issue in the previous section. However, when the message is true binary, the length is
in bytes.
For the numeric ASCII compaction scheme a character length of 256 requires 128 bytes
(2 characters per byte). Even an addition of a 16-bit CRC is still much less parity
overhead than in the current ASCII format (1 bit per 8 bytes versus 1 bit per byte), and a
CRC can detect multiple bit errors in a byte more effectively than a single parity bit.

3.4 Length Field and BER versus Phase Reference Loss
During the aforementioned Asheville meeting, the topic of protecting the length from bit
errors was also discussed. While Microcom originally agreed that the length should be
encoded in such a way as to ensure its integrity, subsequent analysis has altered
Microcom’s position. At the minimum signal-to-noise (SNR) ratios for the GOES HDR
system (11-12 Eb/No), the BER performance has a theoretical performance significantly
better than 10-8. Even factoring in the implementation loss of the DigiTrak demodulators
currently in use at Wallops CDA, the BER has been shown to be better than 10-6 at the
minimum SNR.
Further, as was noted in Asheville, the primary limiting factor in GOES message
reception at the minimum SNR is not BER, but instead Phase Reference Loss. Upon
receipt of a GOES message, the carrier portion of the message is used to establish the
initial phase reference of the signal. However, the reference phase of the GOES signal
does not remain constant during the message, and the demodulators must attempt to
maintain phase reference in the presence of modulation, noise, and frequency drift. At
high SNRs, this is a fairly easy and reliable process. However, at the SNR drops
toward the minimum level, the ability to maintain phase reference approaches a
threshold.
Above this threshold, the demodulators have an extremely high probability of
maintaining phase reference. However, Microcom has shown that below the threshold
the probability of phase reference loss increases significantly and is directly related to
message length. This threshold phenomenon occurs at approximately 12.5 dB Eb/No
for 300 bps messages and at 11.5 dB Eb/No for 1200 bps. DAMS-NT acceptance
testing showed that at these levels the demodulators should have a BER performance
better than 10-7.
Once phase reference is lost, BER is no longer meaningful as the phase information is
being correlated against the wrong phase. In other words, every symbol is perceived to
be erroneous. Accordingly, once phase reference is lost, the demodulated data is
completely garbled, and no amount of subsequent error correction can rectify the
problem.
On the other hand, this also implies that the least likely place to have garbled data is at
the beginning of the message. Therefore, as long as the overall byte length is
transmitted early in the process, it should have a high reliability of being properly
received.

 11

12/08/2006 GOES Binary Protocol Discussion Microcom Design, Inc.

Potential loss of phase reference is also a good argument for utilizing smaller packets
with a CRC per packet as was suggested in the previous section. If only a single CRC
is used on long messages (> 1000 bytes), then loss of phase reference at the tail end of
the data will make it impossible to validate any of the data. Breaking the message into
packets with a CRC per packet would provide an opportunity to validate a portion of the
data even if phase reference is lost downstream.
It has also been suggested that the message length be encoded in the same 31/10
BCH code used for the GOES ID. However, based on the preceding discussion, this
does not appear to be necessary. Further, the BCH code used for the GOES ID, can
theoretically only correct 2 bit errors. However, the correction algorithm provided to
Microcom that was implemented in the DAMS-NT system can not correct every
combination of two-bit errors. Further, a side nature of the Trellis encoding used in the
GOES system is that when bit errors do occur they tend to come in bursts; this is a
result of the fact that when the Trellis decoder can not correct an error due to excessive
noise, it identifies an erroneous correction path that typically will alter several bits. In
other words, if an error occurs in the BCH code, it’s more likely than not to have more
then 1 bit in error and quite probably more than 2.

3.5 Phase Reference Retraining
As was noted in the previous section, at low signal-to-noise ratios, the primary cause of
corrupted data is loss of phase reference at the demodulator. This naturally begs the
question: Is it possible to improve the phase tracking performance?
In theory, the answer is “yes”. A common technique employed in digital cell
communication is to periodically send a known sequence of modulation to allow the
receiver to retrain or re-establish a good phase reference.
During the DAMS-NT project, test results showed that at 11 dB Eb/No, a 10-second,
300 bps HDR message has a probability of not losing phase reference and being fully
received of ~95%. However, a 2.5 second message at the same SNR is properly
received virtually 100% of the time. Further, as the message length increases the
probability of completely receiving the message falls exponentially. This suggests that if
a solid phase reference can be re-established every couple of seconds, the probability
of correctly receiving long messages can be significantly improved. This is because a
single long message would essentially become a series of concatenated short
messages.
The unknown factor in this approach is how much retraining time is required.
Obviously, one can surmise that by inserting 0.5 seconds of carrier followed by 18
symbols of bi-phase data (3 clocks and a 15-bit FSS) every 2.5 seconds, a 10-second
message should have similar performance to a 2.5 second messages. However,
adding 0.6 seconds of transmission time every 2.5 seconds is obviously contrary to the
desire to reduce message lengths, and is too costly from this perspective. On the other
hand, if the retraining time could be reduced to a tenth of a second or less and still
produce similar results, perhaps it would be a worthwhile cost.
The next logical question is how to effectively insert a retraining sequence. Obviously, a
simple approach would be to insert the sequence at a fixed time interval (e.g. after

 12

12/08/2006 GOES Binary Protocol Discussion Microcom Design, Inc.

every 2.5 seconds of modulated data). However, the final retraining sequence may
prove wasteful if there are only a few bytes left to transmit; for example, adding a
retraining sequence for a 2.6 second message is most likely of very little use. Further,
setting a fixed time period is somewhat limiting since it’s not adaptable to the variety of
user messages used in GOES DCS.
In the next section, a proposed binary message structure based upon packets is
detailed. Using a packet structure greatly facilitates the possibility of inserting a
retraining sequence as the sequence can be readily inserted after all but the last packet
to be transmitted.
Unfortunately, a clear recommendation cannot be made as to whether or not this
process would prove useful without being too costly (from a message duration
perspective). Additional analysis and experimentation would be required to fully
characterize the benefits and costs of including a retraining sequence. However, it
certainly seems as though this could prove useful and would be a worthwhile
investigation.

 13

12/08/2006 GOES Binary Protocol Discussion Microcom Design, Inc.

4 Binary Protocol Summary
This section summarizes some of the more salient points for a suggested binary
message protocol to be implemented in the GOES system. While this is only a
summary, complete details of proposed GOES HDR Binary Protocol Specification is
provided in a separate document. In addition to detailing the proposed message
structure, the specification also encapsulates the compaction schemes explained
previously.

4.1 General GOES HDR Binary Structure
The proposed general binary message structure is shown in Figure 6 and Figure 7.
Note that there are actually two formats proposed; one for short messages and one for
longer messages. The primary distinction is that the longer messages will be
transmitted in two or more packets, and short message will only require a single packet.

Carrier
0.5s
0.25s

Clock
1-0-1
1=180

FSS
15 Bits

GOES ID
4 Bytes

Flag Byte
8 bits

Packet
Length
1 Byte

Data 16-Bit
CRC

Encoder
Flush

(Variable)

Figure 6: Binary Message Structure Single Packet

Carrier

0.5s
0.25s

Clock
1-0-1
1=180

FSS
15
Bits

GOES
ID

4 Bytes

Flag
Byte
8 bits

Message
Length
2 Bytes

Data Packets
| Length | Data | CRC |

Encoder
Flush

2 Bytes

Figure 7: Binary Message Structure Multiple Packets

The basic packet structure is shown in Figure 8. Each packet consists of a one byte
length field, a variable number of data bytes (as defined by the length field), and a 16-bit
CRC. Allowing for variable length packets allows the packet sizes to be tailored or
optimized based on an individual user’s requirements.

Packet
Length
1 Byte

Data
Bytes

16-Bit
CRC

Figure 8: Basic Packet Structure

As shown in Figure 7, longer messages will require multiple packets to completely send
the data. When the multiple packet structure is used, an overall message length field is
included prior to the first packet. The proposed message length field has the format
shown in Figure 9.

POL13L12L11L10L9L8L7
MS Byte

POL6L5L4L3L2L1L0
LS Byte

Figure 9: Message Length Structure

 14

12/08/2006 GOES Binary Protocol Discussion Microcom Design, Inc.

 15

Additional details on the proposed binary message structure and how it is implemented
with the compaction algorithms are provided in the aforementioned proposed GOES
HDR Binary Protocol Specification.

4.2 GOES HDR Flag Byte
One natural question that arises from the compaction algorithms discussed in Section 2
is how to identify the actual compaction algorithm utilized in a message. Microcom
suggests the following use of the flag bits in the GOES HDR flag byte to address this
requirement.

 Table 5: GOES HDR Flag Byte (Modified)

Bit(s) Name Description
1

LSB
Multiple Packets

BMP
0 = Message includes only one packet.
1 = Message includes multiple one packet.
Only used for Binary and Compacted Messages.

2 UTC Time Sync
BTS

0 = No UTC Time Sync since last transmission.
1 = UTC Time Sync since last transmission.
Only used for Self-Timed Messages.

3 Compaction
BCM

0 = No Compaction in Use.
1 = ASCII/Pseudo Binary Compaction Active.
(Binary application to be determined.)

4 Coding Type
BCM

0 = ASCII Numeric Compaction.
1 = ASCII Alphanumeric Compaction.
(Binary and Pseudo-Binary use to be determined.)

5 Spare TBD – Send as 0
7/6 Message Type

BMT
00 = Reserved.
01 = ASCII
10 = Binary
11 = Pseudo-Binary

8
MSB

Parity
PO

Odd Parity

Additional details on the meaning and use of these flag bits are provided in the
aforementioned proposed GOES HDR Binary Protocol Specification.

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Binary GOES Message
	IT Transparency
	Compaction versus Compression

	IT Transparent Compaction
	Pseudo-Binary Compaction
	Numeric ASCII Compaction
	Alphanumeric ASCII Compaction

	Binary Protocol Comments
	Length versus EOT
	Character Length versus Byte Length
	Packet Length and CRC Check
	Length Field and BER versus Phase Reference Loss
	Phase Reference Retraining

	Binary Protocol Summary
	General GOES HDR Binary Structure
	GOES HDR Flag Byte

