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1. Abstract 
 
PS304 is a plasma spray deposited solid lubricant coating with feedstock 

composed of NiCr, Cr2O3, Ag and BaF2-CaF2 powders. The effects of rounded BaF2-
CaF2 particles on the gravity-fed flow characteristics of PS304 feedstock have been 
investigated. The BaF2-CaF2 powder was fabricated by water atomization using four sets 
of process parameters. Each of these powders was then characterized by microscopy and 
classified by screening to obtain 45 to 106 µm particles and added incrementally from 0 
to 10 wt% to the other constituents of the PS304 feedstock, namely nichrome, chromia 
and silver powders. The relationship between feedstock flow rate, measured with the Hall 
flowmeter, and concentration of fluorides was found to be linear in each case. The slopes 
of the lines were between those of the linear relationships previously reported using 
angular and spherical fluorides and were closer to the relationship predicted using the 
rule of mixtures. The results offer a fluoride fabrication technique potentially more cost-
effective than gas atomization processes or traditional comminution processes. 
 

2. Introduction 
 
PS304 is a high temperature composite solid lubricant coating [1–6] developed 

for the reduction of friction and wear in turbomachinery incorporating foil air bearing 
technology [7–9]. The constituents of PS304 are nickel-chromium (80Ni-20Cr), 
chromium oxide (Cr2O3), silver and eutectic barium fluoride-calcium fluoride (62BaF2-
38CaF2, hereafter called fluorides), which are each prepared in powder form for plasma 
spray deposition. To reliably deposit the coating, the powder must flow through the 
powder feed system in a predictable manner, which is strongly dependent upon on the 
environmental humidity [10] and the physical properties [11,12] of the coating feedstock 
powder. Specifically, flow of PS304 feedstock was enhanced with increased particle size 
and sphericity of the fluorides. Gas atomization produced the best flowing particles due 
to their high degree of sphericity, but each batch yielded only a small percentage of 
particles that were suitable for processing [12]. Typical sizes for thermal spray deposited 
powders range from 5 to 200 µm, where optimal processing characteristics are generally 
obtained over a preferred range of 20 to 100 µm [13]. However, the mean particle size 
obtained by gas atomization was 17 µm. Water atomization generally produces higher 
yields of usable powder without necessarily increasing the percentage of fine particles 
(fines) [14]. Additionally, water atomization tends to be less expensive and more suitable 
to high volume production when spherical particle shapes are not required since water 
atomization typically produces rounded particle shapes. The purpose of this investigation 
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was to optimize the yield size of fluorides obtained by atomization techniques and then 
study the flow characteristics of plasma spray feedstock powders prepared with these 
fluorides. 

 
3. Background 
 

a. Particle morphology 
 

Powder particles have many different morphological features which influence 
flow properties, including shape, topography and surface microstructure, depending on 
their fabrication technique [15]. Representative particle shapes are shown in Figure 1 
including angular, rounded and spherical. The best flow properties are generally obtained 
with spherical particles. A general quantitative measurement is the aspect ratio, the ratio 
of particle length to width. A more descriptive particle shape quantifier is the degree of 
true sphericity (or, simply, sphericity), which was defined by Wadell [16] as the surface 
area of a sphere with the same volume as a given particle divided by the surface area of 
the particle. Due to the difficulty of measuring surface areas and volumes of small 
particles, a practical approximation was later offered: 

 

p

p

D

d
=φ  

 
where dp is the projected particle diameter and Dp is the diameter of the smallest circle 
circumscribing the projected image, shown schematically in Figure 2 [17]. Sphericity will 
have a maximum value of one for a perfect sphere. Scanning electron microscopy is an 
effective tool for qualitative analysis of particle morphology. With the use of current 
commercially available image analysis software, quantitative aspect ratio and sphericity 
measurements may also be obtained. 

 
b. Processing 
 

The powder constituents used in this study were fabricated by either atomization 
or comminution (crushing) processes. Atomization produces particles by the rapid 
solidification of droplets of the molten bulk material where gas or water is used to break 
up the molten stream [18,19]. Resultant particles from these processes are 
characteristically spherical (Figure 3a) or rounded (Figure 3b) due to the effect of surface 
tension on the molten material. An example of the comminution process is shown 
schematically in Figure 3c. This process takes advantage of the naturally occurring flaws 
in brittle materials to produce a powder from a bulk material by a combination of 
compressive and shear forces. The result is an irregular particle with faceted surfaces 
resulting from brittle fracture (Figure 3c). Approximately 70 wt% of the BaF2-CaF2 
particles produced by comminution were smaller than the usable size [11,12]. This 
material had to then be melted again and re-processed, adding significant cost to the 
powder fabrication process. Therefore, modification of the fluoride particle size and 
shape was identified as the primary focus of this and other recent investigations [11,12]. 
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c. Materials 
 

Figure 4 shows the constituents of PS304 and their physical characteristics are 
listed in Table 1. The nichrome particles shown in Figure 4a are 44 to 74 µm in size and 
have a rounded shape resulting from water atomization. The chromia particles shown in 
Figure 4b have an angular morphology. This powder was fabricated by sintering the bulk 
material into large bricks and then comminuting the bricks into a powder. The spherical 
silver particles (Figure 4c) were fabricated by gas atomization. These three powders are 
available commercially and their sizes and shapes were not modified for this study. 

The fluorides were obtained by combining 68 wt% BaF2 and 32 wt% CaF2 in a 
graphite crucible to melt under vacuum at 1100 °C followed by vacuum cooling. The 
solidified material was then removed from the crucible and crushed into a powder for 
subsequent processing by atomization techniques. Previously, BaF2-CaF2 was fabricated 
by gas atomization [12], which produced spherical particles. However, the mean yield 
particle size was approximately 17 µm, while the desired size range was 45 to 106 µm. 
To the best of the authors’ knowledge, BaF2-CaF2 has not previously been fabricated by 
water atomization. This study was undertaken to determine if water atomization could be 
used to fabricate fluorides and to optimize the yield of these particles for the desired size 
range (45 to 106 µm). 

The principles of a water atomization process are illustrated schematically in 
Figure 5 [14,18]. In this process, the material is melted in a crucible with a bottom-tapped 
nozzle under an argon cover. The molten material is allowed to flow under gravity 
through the nozzle and free-fall for a distance F. The atomization fluid then breaks the 
molten stream up into droplets, which form particles as they quench and solidify. 
Compared to spherical particles typically produced by gas atomization, water atomization 
tends to produce merely rounded particles due to the higher thermal conductivity of the 
atomization fluid [15,19]. The advantages of water atomization over gas atomization are 
reduced cost, increased production volume and increased mean particle size [14]. 

 
4. Experimental Procedure 
 

a. Materials 
 

Materials used in this study were purchased from commercial vendors. Nichrome 
powder (98.17 percent by chemical analysis) was fabricated by water atomization and 
screened to retain 44 to 74 µm particles. Chromia powder (99.18 percent by chemical 
analysis) was fabricated by comminution and screened to retain 30 to 44 µm particles. 
Silver powder (100 percent purity) of 45 to 100 µm diameter was fabricated by gas 
atomization. High purity (100 percent) calcium fluoride and barium fluoride (99 percent 
purity) were combined at the eutectic composition for the binary compound 
(68 wt%BaF2-32 wt%CaF2) in a graphite crucible, melted under a moderate vacuum at 
1100°C and then cooled under a moderate vacuum. 

Large blocks of the solidified fluoride material (5 to 10cm) were removed from 
the crucible and comminuted into a coarse powder for subsequent processing by water 
atomization. Approximately 1060g of the fluorides were loaded into a graphite crucible 
and induction melted at 1250 °C for processing with four sets of parameters (Processes 
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A, B, C and D), as listed in Table 2. The four processes differ by the water pressures and 
water and melt flow rates used. 

ASTM standard specification B 214–99 was used to classify the fluorides by size. 
The screens used in this procedure were manufactured according to ASTM standard 
specification E–11. The screens were stacked vertically in order of coarsest mesh to finest 
mesh. The screen mesh sizes used were numbers 140, 170, 200, 230, 270, 325 and 400. 
The screening instrument uses a vertically oscillating column of air and a combination of 
vertical and horizontal tappers to separate the particles according to size. The fluorides 
were classified by screening and a 45 to 106 µm particle size distribution was retained. 

Morphology of the fluorides was measured using commercially available image 
analysis software with images imported from an SEM. A small amount of powder was 
poured onto waxed paper and tapped gently to allow the particles to come to rest at their 
most stable position, which will also produce the largest projected area [17]. The particles 
were distributed so that they were not in contact and then transferred to an SEM mount 
with double-sided conductive tape. The particle image was distinct from the black 
background. The software measurement system was calibrated using a micron marker 
such that each pixel corresponded to 0.56 µm. Each imported monochromatic SEM 
image had a bit depth of 8-bits per pixel with an image resolution of 712 by 484 pixels 
[20]. The supplied image analysis software was used to measure the aspect ratio, the two-
dimensional surface area of selected particle images, from which dp was calculated, and 
the maximum chord length Dp (see Figure 2). 
 

b. Flow test 
 

The flow rate of each powder blend was tested according to ASTM B 213–97. For 
this test, a 50 g sample of the powder blend being tested was loaded into a Hall 
flowmeter. For each flow test, a powder blend consisting of 60 g nichrome, 20 g chromia, 
10 g silver and from 0 to 10 wt% fluorides was prepared by mixing the constituents 
together in a 125 mL high density polyethylene bottle until well blended. A 50.0g sample 
was obtained from the powder blend for flow testing. A digital stopwatch was used to 
measure the time it took the entire sample to exit the funnel. The test was repeated once; 
the times were averaged to the nearest 0.1s and designated the flow time. The data were 
reported on a plot of flow time versus the weight fraction of fluorides in the powder 
blend. 

 
c. Processing 
 

PS304 coating was applied by plasma spray [21,22] to 25.4 mm diameter, 
6.35 mm thickness Inconel 718 substrates using standard process parameters [23]. The 
substrates were prepared by grit blasting with coarse Al2O3 particles and then applying 
the coating at a thickness of approximately 0.4 mm. 
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5. Results and Discussion 
 

a. Materials 
 

The morphologies of the water atomized fluorides are shown in Figure 6. The 
particles have the rounded shape characteristic of water atomized materials. The average 
aspect ratio was 1.62 and the average sphericity was 0.78, based on a 185 particle sample, 
which is similar to values previously reported for angular fluorides (Table 1) [24]. 
However, as can be seen by comparing the powder images, sphericity does not 
necessarily account for differences in surface area. Therefore, particles with higher 
surface area due to more attached satellites may have the same sphericity as those with 
lower surface area. At high magnification, a fine grained microstructure may be 
observed, attributed to rapid solidification. The fluorides have increasingly smoother 
surfaces due to the decreasing occurrence of attached satellites from Process A to Process 
D. Apparently, the higher water pressure caused increased breakup of the molten 
fluorides where smaller droplets impacted larger ones before the larger particles 
solidified [25,19]. 

Mean particle sizes as measured by a light blockage particle analysis technique 
are listed in Table 2 [26]. Compared to the mean particle diameter of 17 µm from 
previously studied spherical fluorides, the mean sizes of the rounded fluorides are 
substantially larger, ranging from 31.7 to 46.9 µm. 

 
b. Flow test 
 

The results from flow testing are shown graphically in Figure 7. The flow time 
increased linearly with increasing concentration of the fluorides. Flow was slightly 
improved with increasing surface smoothness of the fluorides, as demonstrated by the 
fact that the fluorides produced by Process A (with more attached satellites and, 
correspondingly, higher surface area) resulted in generally higher flow times than for 
Process B fluorides and so on. Therefore, the sphericity measurement may not carry 
enough relevant information to uniquely indicate differences in flow behavior with the 
given experimental procedures. Figure 7 also shows lines representing the flow behavior 
of similarly prepared powder blends with angular and spherical fluorides [12]. The flow 
times of the powder blends with rounded fluorides are generally between those with 
angular and spherical fluorides. 

Regardless of the possible particle-particle interactions, simply based on the rule 
of mixtures, the volume of a standard 50 g powder sample of PS304 feedstock powder is 
expected to increase with increasing content of fluorides because the theoretical density 
of the fluorides, 4.01 g/cm3, is less than the other constituents. The densities of nichrome, 
chromia and silver are 8.57, 5.22 and 10.49 g/cm3, respectively (Table 1). If the flow time 
of the powder blend were only dependent upon the volume of powder transferred though 
the funnel with no particle interaction effects, the flow time of a 50 g sample with 
10 wt% fluorides would be expected to take 9 percent longer than a 50 g sample with no 
fluorides, due to the 9 percent increased volume for the 50 g sample. The calculated flow 
times based only on increased volume are represented by the dashed line in Figure 7. The 
powder blend with 10 wt% angular fluorides would then have a flow time of about 29s as 
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shown by the calculated line in Figure 7, instead of the measured 31.6s, if volume alone 
were considered. Based on this, the measured flow time using angular fluorides was 
approximately 9 percent higher than expected. This difference is thought to be due to the 
increased interparticle cohesion generated by the angular fluorides and its resulting 
increase on the volume of the powder blend. Using spherical fluorides, the flow time was 
independent of the concentration of fluorides. In this case, the effect of increasing volume 
was offset by the improvement in flow created by the spherical fluorides. With rounded 
fluorides, however, the flow behavior essentially follows the rule of mixtures calculation. 

 
c. Performance 
 

The as-deposited pull-off adhesion strength of the coatings on the Inconel 
substrates was measured using a standard test procedure [27]. The average adhesion 
strengths obtained using conventional angular fluorides and rounded fluorides fabricated 
by process D were 20.2±5.2MPa [27] and 18.7±3.2MPa, respectively. By statistical 
inference, no difference in the mean values from these two sample populations could be 
detected. Aluminum witness coupons were coated along with the Inconel substrates to 
perform analysis of the coating chemistry by an x-ray fluorescence technique. Each 
coating had nominally the same composition. Coated Inconel samples were sectioned 
perpendicular to the coating and prepared with standard metallographic procedures to 
examine the as-sprayed microstructures, shown in Figure 8. The coatings had 
characteristic lamellar thermal sprayed microstructure with no major differences between 
them. Tribological performance of the coatings may also be investigated with pin-on-disk 
testing or bearing friction and wear evaluation [1,4]. 
 

6. Conclusions 
 

The objective of this study was to investigate the effects of the addition of 
rounded fluorides on the flow characteristics of PS304 feedstock. Based on the results, 
the following conclusions were drawn. 

 
 Water atomization can be used to fabricate novel rounded fluorides, which tend to 

have aspect ratio and sphericity measurements similar to those of angular 
fluorides and larger mean diameters than previously studied gas atomized 
spherical fluorides. 

 Further work is needed to develop a metric that quantifies particle morphology in 
a way that is distinct to flow behavior. 

 Increasing water pressure during atomization tends to produce particles with more 
attached satellites. 

 Increasing the concentration of fluorides in the powder blend produces a linear 
increase in powder flow times. 

 Fluorides with smoother surfaces generate less of an increase in the powder flow 
time. 

 The flow behavior of PS304 with rounded fluorides is intermediate to that with 
angular and spherical fluorides and is approximated by a rule of mixtures 
calculation. 
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 The PS304 coating characteristics obtained with rounded fluorides are equivalent 
to those with angular and spherical fluorides. 

 Water atomization is potentially a good method for high volume, low cost 
production BaF2-CaF2 powder with predictable flow characteristics. 
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Figure 1. Typical particle shapes [15].
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Figure 2. Parameters used in the calculation of sphericity
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(a)    

 

(b)   
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Figure 3. Comparison of particle fabrication techniques considered in this investigation 
and their resultant powders (original SEM magnification 500×) [28,29].
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 (a)  

(b)  

(c)  

Figure 4. Non-fluoride constituents of PS304 feedstock; (a) nichrome, (b) chromia and 
(c) silver (original magnification 600×). 
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Figure 5. Principle elements of a water atomization process [14,18].
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(a)  
 

(b)  
 

(c)  
 

(d)  
 

Figure 6. Typical morphologies of fluorides fabricated by (a) Process A, (b) Process B, 
(c) Process C and (d) Process D from Table 2 (original magnification 500×). 
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Figure 7. Plot of flow time as a function of BaF2-CaF2 concentration. Angular and 

spherical fluoride concentration dependence from previous work [12]. 
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(a)  
 

(b)  
 

(c)  
 

(d)  
 

Figure 8. Characteristic PS304 coating microstructures with rounded fluorides from (a) 
Process A, (b) Process B, (c) Process C and (d) Process D (original magnification 200×). 
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