

NASA PRINCIPAL CENTER FOR REGULATORY RISK ANALYSIS AND COMMUNICATION

NASA's Agency-Wide Strategy for Environmental Regulatory Risk Analysis and Communication

Kristen Duda CH2M HILL 25 June 2008

Agenda

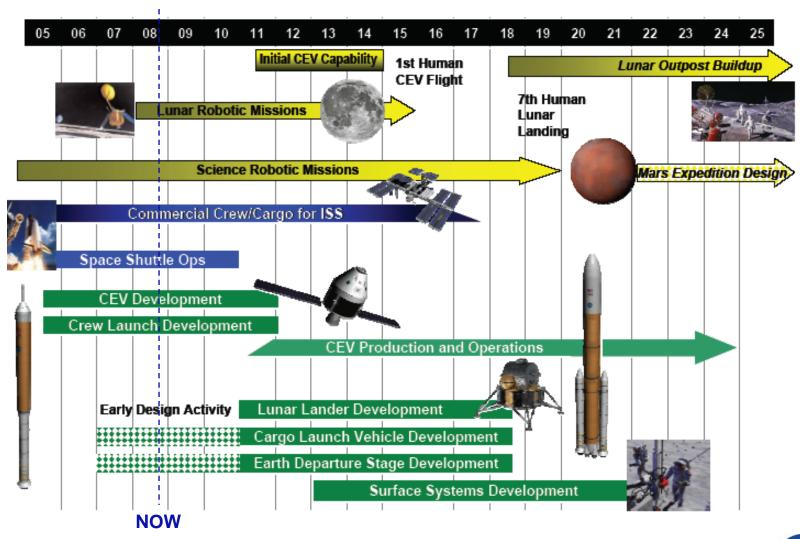
- Overview: NASA Program Transition
- Overview: Principal Center for Regulatory Risk Analysis and Communication (RRAC PC)
- Regulatory Tracking and Communication Process

Program Transition

Vision:

> "To advance U.S. scientific, security, and economic interests through a robust space exploration program."

NASA Strategic Goals 2006-2016, NASA 2006 Strategic Plan


- Complete International Space Station
- Safely fly Space Shuttle until 2010
- Develop and fly Crew Exploration Vehicle before 2014
- Return to the Moon before 2020
- Promote international and commercial participation
- Develop supporting innovative technologies, knowledge, and infrastructures
- Implement sustained and affordable human and robotic programs

NASA's Space Vehicle Timeline

Program Transition

- NASA plans for the Constellation Program's vehicle designs to have long service lives
 - ➤ Even more important to incorporate sustainable designs to avoid future regulatory issues and operational obsolescence
 - > Important to consider:
 - Materials selection to avoid obsolescence
 - Design for obsolescence avoidance in long service-life programs
 - Minimize environmentally high-risk materials

RRAC PC Overview

- NASA's Agency-wide resource for identifying and managing risks associated with changing environmental regulations
- Goals of the RRAC PC
 - Proactively detect, analyze and communicate environmental regulatory risks to NASA Programs and facilities
 - Communicate with regulators and participate in the mitigation of such risks
 - Provide centralized support on emerging regulations to NASA HQ Environmental Management Division

RRAC PC Focus in Perspective

Risks posed by the Program to the environment

- Identified under NEPA through the Environmental Impact Statement (EIS) process prior to Program inception
- The EIS describes programmatic options and addresses environmental considerations associated with each, usually in a one-time effort

Risks posed <u>to</u> the Program by environmentally-related drivers

- On-going effort through the life of the Program
- Risk to Program grows with time due to changes in laws and regulations
- Active participation in legislative and rulemaking processes reduces Program risk

Regulations Can Drive Program Risks

- Changing regulations have the potential to affect program activities directly and indirectly
 - Could restrict certain activities, operations, or right to operate
 - Changes in operational activities
 - High-efficiency spray equipment
 - Quantities of thinner allowed for coating application
 - Limitations on where or how operations can take place
 - In spray booths rather than "in the field"
 - Require dipping or brushing instead of spraying
 - Changes to protective equipment requirements

Regulations Can Drive Program Risks

- Could affect availability and usage of materials
 - Production phase-out or restriction on ability to apply or use materials
 - ODSs, brominated flame retardants, and others
 - Formulation changes by vendors to critical materials and/or components
 - Despite contractual notification clauses, can happen without notification
 - May require material replacement efforts
 - Replacement costs; potential schedule impacts; potential performance variance

Regulatory Tracking Process

RRAC PC Regulatory Monitoring

- Evolving applicability and relevance guidelines
 - Programmatic
 - human spaceflight, other space vehicles, aeronautics programs
 - direct and indirect impacts
 - critical supply chain issues
 - Facilities
 - NASA Centers
 - Other critical processing facilities
 - Emergency landing sites abroad

Recognize that the requirements of Programs and supporting Facilities CHANGE and that those changes can affect the applicability of emerging regulatory requirements

Example: Regulatory applicability thresholds

Regulatory Tracking Process

RRAC PC Regulatory Monitoring

- Monitor emerging regulatory information from appropriate sources
 - "Official" Sources
 - * Federal Register, Semiannual Regulatory Agenda, State regulatory notices
 - Other countries and international organizations
 - Other Sources
 - * Regular communication with regulators
 - Networks with other stakeholders, especially other Federal agencies
 - Global trends

- 2. Just because a requirement doesn't affect you directly, doesn't mean it will not impact your operations at some point in time
- 3. The best information on emerging requirements is often found on the "grapevine"
 - Example: European Union regulations and international partnerships

Regulatory Risk Management Process

RRAC PC Regulatory Communication

- When significant regulatory changes are identified, timely communication is essential
 - Communication of changing requirements to the regulatory stakeholders – NASA Programs and Facilities
 - Communication of potential issues to management and, when appropriate, back to the regulating agency

Regulatory Communications Process

RRAC PC Regulatory Communication

- Communicate regulatory changes to the affected NASA Community
 - General alerts and summaries
 - Specifically-targeted technical working groups
- Solicit feedback on potential impacts from emerging regulatory changes
 - Direct or indirect impacts
 - Short-term or long-term
 - Include worst-case scenario
 - 1. Insist on knowing your technical community; they are the ones who know when a "potential impact" becomes an "issue"

- 2. For potentially mission-critical impacts, don't assume the information will filter to the right person or organization HUNT THEM DOWN
- 3. Don't assume your Program is immune just because the requirement doesn't directly affect you you rely on your SUPPLY CHAIN
- 4. In determining potential impacts, be twice as pessimistic as the life of your Program

Regulatory Communications Process

RRAC PC Regulatory Communication

- Communicate identified impacts to management
 - Assess mitigation options
 - > Follow the "greenest" path that still meets Mission requirements
- When necessary, communicate issues to regulators
 - Sometimes mission-critical technical performance or safety-related factors must be considered
 - Collaboration with regulators can produce effective, innovative regulatory solutions

Lessons Learned

- 1. Honest, open bilateral communications with regulators is essential
- 2. Focusing on technical requirements, data, and Mission success goes a long way toward establishing credibility
- 3. A clear, proven COMMITMENT TO DO THE RIGHT THING speaks volumes

RRAC PC Lessons Learned

- Programs and Centers are dynamic... so are regulations
 - Just because regulations may not initially apply does not mean they will not in the future
 - Just because regulations may not directly affect operations does not mean they won't affect the program indirectly through the supply chain
- Communication is key when it comes to regulatory impacts
 - Up and down the chain of command to ensure the right organizations and people are informed
- Maintaining a "do the right thing" commitment is critical to the long-term success of programs and should be a significant part of a strategy for compliance

Questions?

For further information, please contact:

Sharon Scroggins, NASA/MSFC 256-544-7932

sharon.scroggins@nasa.gov

http://www.rracpc.org/

