BROOKHAVEN NATIONAL LABORATORY

BIOLOGY DEPARTMENT

BNL-3 RUN

FINAL REPORT

Marcelo E. Vazquez NASA-BNL Primary Liaison Scientist

June 1998

TABLE OF CONTENTS

Executive Summary	3
Participants	4
Participants Statistics	6
Beam Characteristics	7
Run Dates	8
Beam Time Description	8
Experimenters and Run Statistics	9
Experimenters and Biological Samples	10

EXECUTIVE SUMMARY

During the Fall of 1997, a series of radiobiological and physics experiments were performed using the BNL's Alternating Gradient Synchrotron (Experiment 919, BNL-3). These experiments were part of NASA's Space Radiation Health Program (SRHP), heavy ion radiobiology research program at BNL.

A total of 22 groups participated in the BNL-3 run, 16 of which were returnees from 1996's BNL-2. Six groups were new participants. From the total number of participants, 20 groups were full proposals and 3 were piggyback experiments. These represented 21 institutions from United States, and 1 from Japan, totaling 64 users. Their experiments were dedicated to the study of the physics characteristics and the biological effects of ⁵⁶Fe ion beams on detectors, and a hierarchy of biological systems ranging from isolated DNA, to cells, tissues and animals. A total of 1800+ biological samples were irradiated at the AGS A-3 beam line, employing 82 hours of beam time. In addition, 37 hours were used for physics experiments, and a total of 30 hours were necessary for beam characterization, dosimetry, and calibration.

During the BNL-3, AGS provided iron beams with two energies: 1 GeV/nucleon (1.06 GeV/nucleon*, LET: 148 keV/ μ m), and 0.6 GeV/nucleon (0.565 GeV/nucleon*, LET: 177 keV/ μ m) for biology and physics experiments. The dose/rates used were as low as 7 cGy/min and as high as 16 Gy/min for 1 GeV/nucleon, and from 10 cGy/min up to 16 Gy/min for 0.6 GeV/ nucleon iron beams. The spill rate employed was 30 spills/min with a duration of 500 msec/spill. The spill fluence was (particles/spill) 3.9 x 10⁸ (max) and 2.1 x 10⁶ (min) for 0.6 GeV/nucleon; and 4 x 10⁸ (max) and 1.7 x 10³ (min) for 1 GeV/nucleon. The intensities (particles/cm²/sec on target) used during the run were 1.12 x 10⁷ (max) and 5.97 x 10³ (min) for 0.6 GeV/nucleon, 1.12 x 10⁷ (max) and 4.92 x 10⁵ (min) for 1 GeV/nucleon. A 7.5-cm diameter beam spot was employed for the exposures.

One of the highlights from BNL-3 was the use for the first time of a robotic sampler changer provided by the National Institute of Radiological Sciences from Japan. The device was employed by 3 groups, and demonstrated the advantages of having such a device for the exposure and exchange of samples under different operational conditions. In general, all the users were able to complete their experimental protocols. However, in one case, a set of samples was exposed incorrectly due to problems in the beam control operations, jeopardizing the interpretation of the results. After the run, the failure was identified and appropriate measures were taken to avoid similar incidents.

Radiobiological experiments employed cells, tissues and intact specimens, which required a complex coordination and planning of their respective logistic support. Biological studies used human, mouse, rat, hamster and canine cell lines (25), human-hamster hybrid cell lines, chick neural tissue (retina) and intact specimens (rodents). The full program was completed in 8 days (180 hours) under the AGS's operation schedule and with the allocated beam time dedicated for the NASA radiobiology program.

^{*} Actual beam energy on target

PARTICIPANTS

Exp.	Participants	Affiliation	Title
B-1	J. Miller	Lawrence Berkeley National Laboratory, CA	Ph.D., Principal Investigator
	L. Heilbron	11	Ph.D., Co-Principal Investigator
	C. Zeitlin	"	Ph.D., Co-Worker
	R.P. Sigh	"	Ph.D., Co-Worker
	K. Holabird	"	Ph.D., Co-Worker
	M. Nyman	"	Ph.D., Co-Worker
	W. Holley	"	Ph.D., Co-Worker
	W. Schimmerling	NASA, HDQ, Washington DC	Ph.D., Co-Worker
B-2	D. Chen	Los Alamos National Laboratory, NM	Ph.D., Principal Investigator
	T. Hei	Columbia University, NY	Ph.D., Co-W
B-3	T.C. Yang	NASA, Johnson Space Flight Center, TX	Ph.D., Principal Investigator
	S. Yamada	"	Co-Worker
	P. Riggs	"	Co-Worker
	H. Wu	Kelsey-Seybold Co., TX	Co-Worker
	K. George	KRUG, TX	Co-Worker
B-7	B. Rabin	University of Maryland Baltimore County, MD	Ph.D., Principal Investigator
	J. Joseph	"	Ph.D., Co-Principal Investigator
	B. Shukitt-Hale	"	Investigator
	J. McEwen	n	Tech. Support
B-9	B. Sutherland	Brookhaven National Laboratory, NY	Ph.D., Principal Investigator
	P. Bennett	"	MS., Biology Associate
	J. Sutherland	"	Ph.D., Co-Worker
	J. Trunk	"	Co-Worker
	D. Monteleone	"	Co-Worker
	N. Metting	Pacific Northwest National Laboratory, WA	Ph.D., Co-Worker
B-10	L. Lutze-Mann	University of California, CA	Ph.D., Principal Investigator
	R. Winegar	SRI International, CA	Ph.D., Co-Principal Investigator
	P. Chang	"	Ph.D., Co-Worker
B- 12	T. Hei	Columbia University, NY	Ph.D., Principal Investigator
	C. Piao		Co-Worker
D 10	R. Miller		Co-Worker
B-13	E. B-Kubiczek	University of Maryland, MD	Ph.D., Principal Investigator
D 14	G. Harrison	Desifie Northwest National Laboratory WA	Ph.D. Co-worker
D-14	N. Meung	Pacific Northwest National Laboratory, WA	Ph.D., Philipai Investigator
D 15	B. Sutherland	Brooknaven National Laboratory, NY	Ph.D., Co-Investigator
B-12	C. waldren	Colorado State University, CO	Ph.D., Principal Investigator
	М. Lenarczyk	Columbia University NV	Dh D. Co Investigator
D 10	D. Cooper	Lowrence Derkeley National Laboratory, CA	Ph.D. Principal Investigator
D-10	P. Cooper B. Pydborg	Lawrence Berkeley National Laboratory, CA	Ph.D. Co Principal Investigator
	E Kwoh		Co Investigator
B 10	A Kronenberg	Lawrence Berkeley National Laboratory, CA	Ph D. Principal Investigator
D-17	C Wiese	"	Post-Doctoral Student
	S. Gauny		Senior Research Associate
B-20	A Kronenberg	Lawrence Berkeley National Laboratory, CA	Ph D Principal Investigator
D 20	A Grosovsky	University of California Riverside CA	Ph D Co-Principal Investigator
	C Wiese	Lawrence Berkeley National Laboratory, CA	Post-Doctoral Student
	S. Gauny	"	Senior Research Associate
B21	G. Nelson	Loma Linda University CA	Ph.D., Principal Investigator
	G. Kasarian	"	Co-Worker
	W. Schubert	n	Co-Worker
B22	M. Vazquez	Brookhaven national Laboratory. NY	MD, Ph.D., Principal Investigator
	J. Miller	Lawrence Berkeley National Laboratory, CA	Ph.D., Co-Principal Investigator

Exp.	Participants	Institution	Title
B-23	A. Brooks	Washington State University, WA	Ph.D., Principal Investigator
	S. Bao	"	Co-Worker
	K. Rithidech	SUNY, Stony Brook, NY	Ph.D., Co-Worker
B-24	T. Borak	Colorado State University, CO	Ph.D., Principal Investigator
	B. Gersey		Student, Co-Worker
B-25	H. Evans	Case Western Reserve University, OH	Ph.D., Principal Investigator
	T. Evans		Assistant
B-26	W. Morgan	University of California, CA	Ph.D., Principal Investigator
	C. Limoli		Ph.D., Co-Principal Investigator
B27	T. Jorgensen	Georgetown University Medical C., DC	Ph.D., Principal Investigator
	P. Russell	"	Research Associate
	M. Moskovitch	"	Ph.D., Co-Worker
B28	Y. Furusawa	National Institute of Radiological Sciences, Japan	Ph.D., Principal Investigator
(*)	M. Matsufuji	"	Ph.D., Co-Worker
	M. Saito	"	Student Co-Worker
B29	N. Mohan	The University of Texas Health Sciences at San	Ph.D., Principal Investigator
(**)		Antonio, TX	_
B-30 (***)	P. Kale	Alabama Agricultural and Mechanical U., AL	Ph.D., Principal Investigator

(*) Piggyback experiment with Tracy Yang (B-3)
(**) Piggyback experiment with Gregory Nelson (B-21)
(***) Piggyback experiment with Betsy Sutherland (B-9)

PARTICIPANTS STATISTICS

PARTICIPANTS	BNL-3
Ph.D., Principal Investigators	22
Ph.D., Co-Principal Investigators	6
Co-Investigator, Investigator	3
Co-Workers	11
Ph.D. Students	11 2
Post-Doctoral Students	2
Research Associates	4
Research Assistants	1
Assistants	1
Technicians	1
Total:	64

INSTITUTIONS	BNL-3
National	21
International	1
Total	22

BEAM CHARACTERISTICS

	⁵⁶ Fe ²⁶ 600 MeV/n	⁵⁶ Fe ²⁶ 1000 MeV/n
Fluence (particles/cm ² /sec)		
Maximum on target	1.12 x 10⁷	$1.12 \ge 10^7$
Minimum on target	5.97×10^3	4.92×10^3
Spill rate	30 spills/min	30 spills/min
Spill length	500 msec	500 msec
Particles/spill Maximum Minimum	3.9 x 10 ⁸ 2.1 x 10 ⁶	4 x 10 ⁸ 1.7 10 ³
Beam spot diameter	7.5 cm	7.5 cm
Beam cut off length.	<1%	<1%
Actual Energy Extracted On Target	610+/-10 MeV/n 565+/-10 MeV/n	1087 MeV/n 1060 MeV/n
Actual LET	177 keV/µm	148 keV/µm
Dose/rate recorded. Maximum Minimum	19 Gy/min 0.1 Gy/min	16 Gy/min 0.07 Gy/min
Minimum dose exposure	0.05 Gy	0.05 Gy
No of hours for beam characterization and dosimetry	3	24

RUN DATES

Run dates	Scheduled		Actual	
	Date	Time	Date	Time
Run start	10/17	0800	10/17	1200
Run end	10/23	1300	10/25	0600
Beam tuned into cave	10/16	0800	10/16	1837
Beam delivered to users				
A. Fe 1 GeV/n	10/17	0800	10/17	1200
End run	10/21	0300	10/22	1832
B. Fe 0.6 GeV/n	10/21	1900	10/22	2015
End run	10/23	0900	10/24	2000
C. Fe 1 GeV/n	10/23	2100	10/24	2015
End run	10/23	1300	10/25	0600

BEAM TIME DESCRIPTION (hours)

Total Clock Time	(from 10/17 1200 to 10/25 0600)		180
Total Beam-on Time		149	
Total Beam-off time		31	
Beam Time for Biology			
1 GeV/n	66		
0.6 GeV/n	16		
Sub-total		82	
Beam Time for Physics			
1 GeV/n	24		
0.6 GeV/n	13		
Sub-total		37	
Beam time for dosimetry,			
calibration etc.			
1 GeV/n	27		
0.6 GeV/n	3		
Sub-total		30	
Totals		149	

EXPERIMENTERS AND RUN STATISTICS

Exp. ID	Principal Investigator	Energy	Beam Time Approved	Beam Time Used	Dose Range (cGy)	Dose/Rate (cGy/min)	Number of Samples
B1	Miller	1 GeV	8	14	NA	NA	NA
		600 MeV	16	9			
B2	Chen	1 GeV	2	0.5	NA	NA	NA
B3	Yang	1 GeV	7	7	50 - 500	200	175
		600 MeV	1	1			
B7	Rabin	1 GeV	1.5	6	50 - 200	50 - 100	132
		600 MeV	4.5	-			
B9	Sutherland	1 GeV	2.25	5	35 - 140	100	70
		600 MeV	0.75	2			
B10	Lutze-Mann	1 GeV	6	6	100	30 - 90	102
B12	Hei	1 GeV	4	4	10 - 300	100	136
B13	Kubiczek	1 GeV	3	3	10 - 295	100 - 200	94
		600 MeV	1	2			
B14	Metting	1 GeV	2	2	10 - 80	100	50
B15	Waldren	1 GeV	3.5	1	8 - 200	13 - 74	128
B18	Cooper	1 GeV	2.5+	6	10 - 160	800 - 1500	162
		600 MeV	2.5+	5	Gy		
B19-20	Kronenberg	1 GeV	20+	15	30 - >2000	100 - 1000	150
B21	Nelson	1 GeV	3	3	700 - 7000	1000	44
B22	Vazquez	1 GeV	3	3	5 - 200	50 - 100	392
		600 MeV	1	1			
B23	Brooks	1 GeV	1.25	2	20 - 100	100	20
B24	Borak	1 GeV	5+	11	NA	NA	NA
		600 MeV	5+	4			
B25	Evans	1 GeV	1.5	2	63 - 250	100	30
B26	Morgan	1 GeV	2	2	10 - 1000	200	80
B27	Jorgensen	1 GeV	1	1	1 - 450	1000	23
		600 MeV	3	3	Gy		
B28	Furusawa	1 GeV	NA	NA	200 - 1400	200	14
		600 MeV					
B29	Mohan	1 GeV	0.25	NA	10 - 140	NA	NA
B30	Kale	600 MeV	NA	NA	NA	NA	NA
Totals			113.5 hr.	119 hr.	5 cGy to 450 Gy	13 to 1000 cGy	1802+

PARTICIPANTS AND BIOLOGICAL SAMPLES

Exp.	Title	Participants	Biological sample
B-2	Radiation Induced Genomic Instability	D. Chen (PI)	Human cell line (reduced expression of
			Rad51 and hhRad52 genes)
B-3	Effect of Shielding on the Induction of	T.C. Yang (PI)	Mouse Fibroblasts (C3H10T1/2)
	Oncogenic and Cytogenetic Damages		Human Fibroblasts
			Human Lymphocytes
			Human mammary epithelial cells
			Canine kidney cells (MDCK)
B-7	Effects of Exposure to Heavy Particles	B. Rabin (PI)	Rod. Sprague-Dawley
B-9	DNA Damage and Restoration in	B. Sutherland (PI)	Human skin fibroblast and epithelial
	Mammalian Cells and Tissues		cells
B-10	Molecular Analysis of HZE Damage in	L. Lutze-Mann (PI)	Transgenic Mice:
	Transgenic Mice		C57lacZ, CBA1acZ,
			p53 hemyzygous lacZ,
			p53 nullizygous lacZ
B-12	Cytogenetic and Neoplastic Transforming	T. Hei (PI)	Human epithelial cells:
	Effects of heavy Ions in mammalian Cells		bronchial cells BEP2D and
			breast cells MCF-1F
B-13	Molecular Damage by 1 GeV/amu Fe-ions	E. B-Kubiczek (PI)	Human cell lines: (MCF7, PC3,
			WT,ADR AND HCT15)
B-14	Effect of Heavy Ion Exposure on a	N. Metting (PI)	Human skin fibroblasts
	Mechanism of Cell-Cycle Regulation		Human keratinocytes
B-15	HZE Radiation Genotoxicity in	C. Waldren (PI)	Human-hamster hybrid cell line (A_L)
	Mammalian Cells		
B-18	DNA Repair and early Development of	P. Cooper (PI)	Human fibroblasts (GM38)
	Chromosomal Changes		
B-19	Mutagenesis Studies in Human Cells	A. Kronenberg (PI)	Human lymphoid cells (TK6)
			WTK-bclX _L
D 20			
B-20	High LET Radiation and Genomic	A. Kronenberg (PI)	1 K6 cells
D 01	Instability in Human Cells	C. Nalaan (DI)	Nomata das (different stusius)
D-21	Apoptosis and Oxidative Stress genes	G. Nelson (PI)	iventatodes (different strains)
	Domage in the Nemetode C. aleganta		
D 22	In Vitro Collular and Molecular Effects of	M Vazquaz (DI)	Chick ambruog ratingl avalants
D-22	Heavy long and Target Fragmentation on	IVI. V azquez (FI)	Chick embryos retinar explaints
	Neural Cells		
B-23	In Vivo Induction and Repair of Genomic	A Brooks (PI)	Rat enithelial cells from lungs
25	Instability	11. DIOURS (11)	trachea and bone marrow
B-25	Induction of Genomic Instability in Human	H Evans (PI)	Human lymphoblast (TK6 and
2 25	Lymphoblasts	····	WTK1)
B-26	Mechanisms of High LET Genomic	W. Morgan (PI)	GM10115 Cell line
~	Instability	<i>G</i> ··· (/	
B-27	DNA Strand Breaks Produced in	T. Jorgensen (PI)	VC79 Chinese Hamster Cells
	Mammalian Cells by Heavy Ion Irradiation		
B-28	Effects of Shielding on the Induction of	Y. Furusawa (PI)	VC79 Chinese Hamster Cells
	Oncogenic and Cytogenic Damages in	``´´	
	Mammalian Cells by Energetic Iron		
	Particles		
B-29	Genetic Effects of Iron Ions	M. Mohan (PI)	Normal human macrophage cells
			(Mono Mac 6)
B-30	Iron Ion Mutagenesis	P. Kale (PI)	Drosophila Fly