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Abstract

The primary purpose of the study presented in this volume of the Task Order 25

Final Report is to present the results and data analysis of the in-duct transmission loss

measurements that were taken in the GEAE Acoustic Laboratory and analyzed by Rohr,

Inc. Transmission loss testing was performed on full scale, 1/2 scale, and 1/5 scale

treatment panel samples. The objective of the study was to compare predicted and

measured transmission loss for full scale and sub-scale panels in an attempt to evaluate the

variations in suppression between full and sub-scale panels which were ostensibly of

equivalent design. A computer program was written to solve for the forward and

backward mode coefficients of acoustic propagation in a rectangular duct based on

pressure measurements in hardwall sections of the duct.

Modal measurement data taken at GEAE were transferred to Rohr, Inc, for

analytical evaluation. Using a modal analysis duct propagation prediction program, Rohr

compared the measured and predicted mode content. Generally, the results indicate an

unsatisfactory agreement between measurement and prediction, even for full scale. This is

felt to be attributable to difficulties encountered in obtaining sufficiently accurate test

results, even with extraordinary care in calibrating the instrumentation and performing the

test. Test difficulties precluded the ability to make measurements at frequencies high

enough to be representative of sub-scale liners.

It is concluded that transmission loss measurements without ducts and data

acquisition facilities specifically designed to operate with the precision and complexity

required for high sub-scale frequency ranges are inadequate for evaluation of sub-scale

treatment effects. If this approach is to be pursued further, it will be necessary to develop

adequate sub-scale laboratory test facilities and provide instrumentation of sufficient

precision and complexity.
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1. Introduction

The primary purpose of the study presented in this volume of the Task Order 25 Final

Report is to present the results and data analysis of the in-duct transmission loss measurements
that were taken in the GEAE Acoustic Laboratory and analyzed by Rohr, Inc. Transmission loss

testing was performed on full scale, 1/2 scale, and 1/5 scale treatment panel samples. The

objective of the study was to compare predicted and measured transmission loss for full scale and

sub-scale panels in an attempt to evaluate the variations in suppression between full and sub-scale

panels which were ostensibly of equivalent design.

The modal measurements consisted of acoustic pressure measurements at 20 microphone

locations upstream and 20 locations downstream of the treatment sample. Partial arrays of

microphones were used to obtain pressure-squared measurements of insertion loss, as well. The

microphone positions for the upstream and downstream axial measurement locations varied with

duct height and width. In addition to the height and width transverse mode decomposition, the

two axial planes of measurement allow the separation of forward and backward travelling waves.

A schematic of the layout of the rectangular duct modal measurement test is shown in

Figure (1-1). Tests were conducted at various frequencies and for various flow Mach numbers.

Hardwall

FLOW

Upstream Measurement plane #1 Downstream Measurement Plane #1

Treatment Panel

Figure (1-1) Schematic of modal measurement rectangular duct.

Modal measurements for a number of treatment panels were made in the Acoustic

Laboratory Flow Duct Facility at GEAE. Descriptions of the test procedure, range of test

conditions, and items tested are included below. A computer program was developed to perform

the modal decomposition of the pressure measurements taken in the rectangular duct. A least

squares best fit to the mode coefficients is obtained using the Singular Value Decomposition

technique, which is a robust linear equation solver that identifies and overcomes possible ill-

conditioning in the set of linear equations. A user's guide to the various versions of the program



is included, and some sample cases of use of the program for actual measured duct data is

presented.

The modal measurement data taken at GEAE were transferred to Rohr, Inc, for analytical

evaluation. Using a modal analysis duct propagation prediction program, Rohr compared the

measured and predicted mode content. Descriptions of the modal analysis duct propagation

prediction program, the comparative analysis procedure, and the results of the comparison are
presented below.

Generally, the results indicate an unsatisfactory agreement between measurement and

prediction, even for full scale. This is felt to be attributable to difficulties encountered in obtaining

sufficiently accurate test results, even with extraordinary care in calibrating the instrumentation

and performing the test. Test difficulties precluded the ability to make measurements at

frequencies high enough to be representative of sub-scale liners.

It is concluded that transmission loss measurements without ducts and data acquisition

facilities specifically designed to operate with the precision and complexity required for high sub-

scale frequency ranges are inadequate for evaluation of sub-scale treatment effects. If this

approach is to be pursued further, it will be necessary to develop adequate sub-scale laboratory

test facilities and provide instrumentation of sufficient precision and complexity.
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2. Basic Theory of Flow Duct Acoustics

2.1 Sound Propagation in a Rectangular Duct with Flow

Theoretical studies of sound propagation in an acoustically lined duct in the presence of

grazing flow have been made by many investigators m'3'4'5 (reference list included at the end of this

Section). The derivation of the governing and boundary condition equations for this analysis is

described in Sections 2.1, 2.2, and 2.3. The effect of an axially segmented wall impedance in a

rectangular duct has been developed and studied previously by Eversman 4, Kraft 6, Bauer 7, and

Joshi 8. The Finite Element Method (FEM) with Weighted Residual formulation 9 is used herin to

resolve the eigenvalues and eigenvectors of the governing equation. This method has been

successfully used to investigate the transmission of sound in a lined duct with flow by Eversman 1°,

Astley _°, and Vo n. The FEM formulation for this analysis is described in Section 2.4 using a

three-node element and piece-wise quadratic shape functions.

The analytical model considered in this study is a rectangular duct with one or two lined

side walls in the presence of a grazing flow. The geometry of the acoustically lined duct is

illustrated in Figure (1-1). The fluid flow is assumed to be in z direction and is constant. The

walls of the duct perpendicular to the y axis are treated with acoustic lining material, while the

other two walls are not lined. The lining impedance (soffwall boundary condition) is assumed to

be uniform through the duct.

The objective is to calculate the attenuation of the sound wave as it propagates down a

rectangular duct in the presence &flow. The equation of continuity of mass in vector notation is:

c3P-----_*-t- V" (9" l_*) = 0 (2-1)
Ot

Euler's equation in the absence of body forces written as a single vector equation is:

oU-_-_+ 0"(.VO*) -------7-Vp* (2-2)
O

Because the acoustic processes are nearly adiabatic, the behavior of a perfect gas is described by

the adiabatic equation of state:

(2-3)

and



(2-4)

The acoustic equations are obtained by considering a small perturbation (p, P, re ) on a

mean state (p0, Po, Oo ) so that

and

_t

o = Oo+ o (2-5)

P* = Po + P (2-6)

l_l" = lJ o +-_ (2-7)

The resulting acoustic field equations are:

Acoustic Continuity

Acoustic Momentum

OP
(Uo • v)9 + 9o(V • re)= o (2-8)

c3t

G_V

_og +_o(Oo.v)v+oo<V.V)Oo+_(Oo.V)Oo=vP

These are the basic, first order, partial differential equations for the

quantities: 9, P, and re, where

and

re= Vx;+Vy_+Vzf_

(2-9)

three unknown acoustic

(2-10)

l_o = M(x, y)k (2-11)

The x, y, and z components of the acoustic momentum equation are:

C3Vx = __1 0P

-- + M(x, y) c3z 190 c3x
(2-12)



C3Vy

c3t
-- + M(x, y)

C3Vy_ 1 c3p

Oz PO Oy
(2-13)

and

OM(x, y)

&x
+Vy

OM(x,y) + M(x, y) gvz - 1 aP
Oy c_z Po az

(2-14)



2.2 Governing Wave Equation in the Presence of Grazing Flow

In order to simplify calculations, the variables used in

dimensionalized by the following parameters:

P : poC 2

Section 2.1 will be non-

P:Po

"7:c

l._I0 :C

(2-15)

x, y, and z : H (duct height)

t : I-I/c

After combining the acoustic continuity (Equation 2-8), momentum (Equation 2-9), and

equation of state (Equations 2-3 and 2-4) equations with nondimensional variables (using original

notation), only one equation with one unknown, P, will be generated:

_-+M P+ _z[_x_x-_-y . =.&+M vZP
(2-16)

where

2rffH
and r I -

C

P(x, y, z) = eirlte -ik zZP(x, y)

; (f: frequency Hz, c: speed of sound).

(2-17)

From Equation (2-17), we have

8P OP

c3t irl and c3z ikz (2-18)

Substituting Equation (2-18)into (2-16), and dividing (2-16)by-irl(1-M_-), yields:



2 kz

O2P + _4+ l _ ]IBM8P_X2 kz h c_x cnx1-M--
1"1

Oy oyj

(2-19)

In the region of uniform mean flow, M(x,y)=constant;
c3M c3M

c3x Oy
-0.

Equation (2-19) can be reduced to the following equation:

Ill l ;l}c32p c32P rl2 I-M - P
c3x2 _ c3y----5-" +

= 0 (2-20)

2.3 Description of Hardwall and Softwall Boundary Conditions

2.3.1 Softwall Case

The development of boundary

displacement across a boundary layer

conditions is based on the continuity of the particle

The facing sheet of the soffwall and the fluid in the duct

are regarded as separated by a vortex sheet. At the outer surface (free stream side) of the vortex

sheet, the amplitudes of the particle displacement (_,y) and particle velocity (vy) are related by the

following equation:

Vy = + M : (in - iMkz)_y (2-21)

The amplitude of the particle displacement at the inner surface of the vortex sheet (axial flow is

zero) is written as:

O_w _ irl_w (2-22)
Vw- _t

We assume continuity of particle displacement across the boundary layer,

(2-23)

The acoustic impedance (Z) and Admittance (A) are determined as

7



P 1
Z - - (2-24)

v w A

From the momentum equations (2-12 and 2-13), at the outer edge of the vortex sheet, we obtain:

0y _-+M Vy = (irl- iMkz)vy (2-25)

Substituting Equations (2-21), (2-22), (2-23) and (2-24) into equation (2-25), we get

I0P_ irlA 1-M P
e3y

(2-26)

2.3.2 Hardwall Case

By the method of separation of variables, the solution of equation (2-16) can be rewritten

based on Equation (2-17):

(2-27)

where kx and ky are wave constants, and A, B, C and D are arbitrary constants which can be

determined from pertinent boundary conditions. It should be noted that both symmetrical and

asymmetrical modes exist on the cross section (x-y plane) of the duct in both the x and y

directions. In the x direction,

_X
-0 (2-28)

for symmetrical modes, and

for antisymmetrical modes.

It should be noted that the normal component of the particle velocity vanishes at the

hardwall. The boundary condition at the hardwall is given by:



0P(x__,y) = 0 and
I×=o

The boundary condition at the softwall is given by:

c_P(x,c3yy) y=0 ;_ 0 and

8P(x,(_xy) x=W = 0
(2-30)

0P(X,c3yy) y=H _e0
(2-31)

If the above boundary conditions are used, then solutions of the wave equation are written as

follows

P(x, y)= 4AC cos(kxx) cos(kyy ) (2-32)

where

nT_
= -- and

kx W'
n = 0,2,4,6,... for symmetrical modes, and

n = 1,3,5,... for antisymmetrical modes.

2.4 Numerical Solution of Eigenvalues

In this section, numerical solutions for Equation (2-19) for the case of a fully developed

duct flow and a boundary layer near the walls are presented. In the present problem, the pressure

amplitude function P(y) could be expanded in terms of a set of basis functions (_j) in the form:

n

p(y)= _--' pj_j(y) (2-33)
j'1

where the basis functions are generated using a three-node element with quadratic shape

functions. For a generalized element (-1 _<{ _ 1 ), P can be expressed by the following equation:

1[P'V({) = [N1 ({), N2({), N3(_) P2

kP3

(2-34)

where, -1 < { _<1, and



1

NI(_) = 2_(_ - 1)

N2(_) = -(_ + 1)({ - 1)

N3(_) = =1_(_+ 1)
Z

(2-35)

The resulting error function e(y) of Equation (2-19) produced by the assumed solution, Equation

(2-33), is forced to be orthogonal to each of the basis functions; thus,

1

SW(y)s(y)dy = 0

0
(2-36)

where W(y) is the weight function or test function

W(y) =

N

Z 13i_i (Y)
i=l

(2-37)

For the plugflow condition, Equation (2-36) becomes:

I W(y)8(y)dy =
0

1 Ill  t/ tl}tf W(y)" c32p c32p 2 k 2
o c3x--5-+ c3Y----5- + r12 1 - M - P dy

=0

(2-38)

Using the standard integration-by-parts and rearranging the equation yields:

1 /kz']0I}[OPt:TW n2_2 1 }oJW(Y)_(y)dy = k,-q-) [oL (4 b2 )PW dy

k 0

(2-39)

Because 13i are arbitrary, Equation (2-36) represents N equations to be satisfied by Pj

rather than the single equation it appears to be. Therefore, we choose [31= 1, 13i= 0 for i ¢ 1 of

10



the first linear equation, and [32 = 1, 13i= 0 for i _ 2 of the second linear equation. Continuing in

this fashion, we arrive at the system of N linear equations for the N unknowns of Pj.

Substituting the assumed 13i along with Equations (2-33) and (2-36) into Equation (2-39),

it becomes:

k i k 0
= 0 (2-40)

Therefore, the axial propagation constants kz+n and kzn and their corresponding eigenvectors

Pn + and Pn- can be determined by Equation (2-38) for positive- and negative-traveling acoustic

modes.
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3. Modal Measurement Data Analysis

3.1 Modal Expansion

An objective of this study was to develop a computer program to perform the modal

decomposition of the pressure measurements taken in the rectangular duct. A least-squares best
fit to the measured data is used as the basis of the data analysis. The program has the capability

of determining the sensitivity of the measured mode coefficients to errors in the measured data.

Special features of this modal data analysis program are:

. The capability of weighting the measured pressure at each sensor based on a known or

estimated uncertainty in the reliability of the sensor. This is done through an input of the

standard deviation of the sensor measurement, nominally set to 1.0 if the standard deviation is

unknown. Setting the standard deviation of a given sensor to 2.0, for instance, would weight

that sensor measurement by 0.5, etc.

. A Singular Value Decomposition linear equation solver is used to solve the linear equations

resulting from the least-squares fit. This is a robust solution technique that may give useful

results even in cases where the equations are ill-conditioned.

. A computation of the variance of the resulting mode coefficients is made. This is a measure of

the goodness-of-fit (or accuracy) of the modal expansion to the input data. It could be used

to evaluate different geometric arrangements of sensor arrays or effects of random error in the

measured pressures on errors in the resulting coefficients (using a random error generation

simulation).

The analysis is based on the standard modal decomposition of acoustic waves in a

hardwall rectangular duct with uniform mean flow. 1,2 (References are listed at end of Section.)..If

the geometric triplet (x,y,z) denotes the coordinates of an arbitrary point in the interior of or on
the walls of the duct, as defined in Figure (3-1), then we can write the coordinates of the jth

pressure measurement point as (N,yj,zj).

13
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Figure (3-1). Rectangular duct coordinate system conventions.

In terms of the component rectangular duct modes, the pressure solution in the duct at the

jth measurement point is given by

p(xj, yj, zj) =
m,fl

where

m

n

W

H

CF,_

CB_

= mode order for x-modes (m = 0,1,2,.... ,m)

= mode order for y-modes (n = 0,1,2,.... ,oo)

= duct width (x-direction)

= duct height (y-direction)

= mode coefficient for forward-travelling (re, n) mode

= mode coefficient for backward-travelling (re, n) mode

The duct eigenvalues in the x- and y- directions are given by

mx/W and nrc/H , respectively.

In the hardwall duct, the eigenvalues are independent of mean flow.

(3-1)

14



Theaxialpropagationconstants,whichdo dependonmeanflow, aregivenby

+
Kmn -_

I_M 2
(3-2)

for the forward direction and by

m

Kmr I

-- (1-- 2 mn 2ik2-
I_M 2

(3-3)

for the backward direction, where

M

k =

=

C =

f =

duct uniform flow Mach number

o/c = wave number

2rtf = circular frequency

speed of sound

frequency in Hertz.

Note that the eigenfunctions are the same in both directions, even in the flow case, whereas the

propagation constants are different.

The acoustic pressure on the left side of Equation (3-1) is actually measured as a transfer

function relative to one sensor chosen as the reference sensor. Thus the pressure measurements

are relative to the reference sensor in both magnitude and phase. Thus, the unknown modal

coefficients CFm_ and CBm_ will be found with relative magnitude and phase. Since the

suppression is to be determined as a ratio of downstream to upstream energy, this causes no

problems. Absolute pressure levels can be determined at any measurement position at any

frequency from the measured transfer function if the autospectra of the reference microphone is

determined in calibrated reference pressure units (as long as the signal-to-noise ratio of the

reference microphone is sufficiently high).

For each measurement point, j, there is one equation in a number of unknowns that is

equal to the total number of mode coefficients included in the expansion. There will be as many

equations as measurement points, which puts an upper limit on the number of modes that can be

discriminated. Preferably, there will be at least twice as many measurement points as unknown

mode coefficients in the expansion so that spatial aliasing can be minimized.

With more measurement points than unknowns, we have an over-determined set of linear

equations that must be solved for the unknown mode coefficients in the least-squares sense. In

practice, there should be enough measurement points to discriminate all modes that contribute

15



significantly to the pressurepattern at the measurementfrequency,which generally means
includingat leastall cut-onmodes.

3.2 Matrix Formulation

At measurement point j, we define

Pj = p(xj, y j, zj ) (3-4)

Xj = (x j, y j, zj ) (3-5)

q : (m,n) (3-6)

CFq = CF,_ (3-7)

CBq = CB_ (3-8)

=cos =x  
(IgFq j' c°s(-5-Je (3-9)

(3-10)

where q represents a numerical index that is unique for each (m,n) mode.

the two-dimensional array of mode indices into a one-dimensional array.

number to be one of the dimensions of the set of linear equations in mode number and

measurement position number. This is merely a computational convenience, and to convert from

the single index, q to the double index mode designation, (m,n) is simply a matter of bookkeeping.

The index q converts
This allows the mode

Using index q, we can write the pressure measurement modal expansion as

Pj = Z [CFq*Fq,j + CBq_Bq,j] (3-11)

q

for measurement point j. The equations for the measurements at all points can be stacked into the
matrix form

{P} : [_F}{CF} + [OB}{CB} (3-12)

where the square brackets denote an NPTS rows by NMODES columns matrix and the curly

brackets denote an NPTS-order vector for {P} and an NMODES-order vector for {CF} and
{CB }, where

NPTS = the number of measurement points

16



NMODES = thetotal numberof modesin theexpansion

Thematrix formulationof thepressuremeasurementmodalexpansionswill be the starting
point for the developmentof the least squaresbest fit method for determiningthe modal
coefficients,which arecontainedin the {CF} and{CB} vectors.

The matrix equationcan be written in a simpler form by stacking the forward and
backwardblocksinto asinglematrixandvector,asfollows:

{oF}{P}=[_F qbB] CB =[q)]{C} (3-13)

where [q_] is an NPTS by 2*NMODES matrix and {C} is a 2*NMODES vector.

3.3 Mode Coefficients by Least Squares Fit and Singular Value Decomposition

There are several methods by which the mode coefficients could be found. Since the x

and y modes are orthogonal, even with mean flow (in the hardwall duct), a Fourier-type

expansion could be used, based on a numerical integration approximation over the measurement

points.

The method chosen is based on the theory of least squares best fit of a set of data points

(the pressure measurements) to a linear combination of a set of basis functions (the duct modes) 3.

The parameters that will be chosen (the mode coefficients) are those that minimize the )_2 statistic,

which is a measure of the difference between the measured data and the analytical fit, given by

NPTS

j=l NMODES

Pj- Zc ® (xj)
i=l

_j

(3-14)

In the expression for _2, oj is the standard deviation associated with the measurement at point j.

The measurement standard deviation oj may or may not be known. If it is not known, it

can arbitrarily be set to 1.0 at each measurement point. The ability to include the standard

deviation does indicate a fundamental assumption regarding the method, however, and that is that

the measurement errors follow a Gaussian (normal) random distribution about some mean value at

each measurement point. This implies that there are no systematic errors in the pressure

measurements.

To apply the least squares method, we first define the design matrix, [_D] as
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CI)i (X,)
_Dji - -- (3-15)

c_j

and define the vector {PS} as

PSj - -- (3-16)
Gj

As detailed in Press, et. al. (henceforth referred to as Numerical Recipes) 4, the modal coefficient

vector {C} is determined by solving the linear system

[c_]{C} = {]3} (3-17)

where

[ot] = [_D]T[(1)D] (>18)

and

{_} = [_D]T{ps} (3-19)

Although any method of solving a linear system of equations could be used to solve for

{C } (such as Gaussian elimination), Numerical Recipes 5 strongly recommends the use of singular

value decomposition.

Singular value decomposition (SVD) is a method of solving systems of linear equations

that is particularly immune to problems caused by nearly ill-conditioned systems. If a near

singularity is encountered in the system matrix, SVD will not only provide a diagnostic warning of

the condition, it will attempt to eliminate the cause of the problem and give the best possible

solution with the remaining information. It is the method of choice for least squares problems.

The subroutines used in this program are taken directly from Numerical Recipes, and the reader is
referred there for more detailed information.

In addition, the uncertainties in the modal coefficients Ci are given by the diagonal

elements of the inverse &the [oq matrix. That is, the variances of Ci are given by

Cy2(Ci) = Qii (3-20)

where

[Q] = [or] -1 (3-21)

This is an estimate of the error in the modal coefficients.

18



To concludethis section,it is notedthat themethodof leastsquaresfit andthemethodof
Fourierexpansionin modalbasisfunctionsareequivalent.This is discussedin Hamming.6

3.4 Acoustic Energy Flux in the Duct with Flow

The axial component of acoustic intensity flux in a hardwall rectangular duct with flow is

given by

,z,e[Ii+M2>"" "1= pv z +--pp + pcMvzv z (3-22)
pc

where Re implies the real part of the expression, the asterisk implies taking a complex conjugate,

and p is the ambient air density.

Substituting the modal expansions for acoustic pressure and axial velocity component and

integrating over the duct cross-section (using mode orthogonality) results in the expression for

energy flux in the (re, n) mode,

WH
FLXmn = ECmn -- (3-23)

4

where

ECmn = 1 Re.
pc

I+M )

* KfK* 1

k ,+M+

I k//k)1-M K--- 1-M 1-M
k

(3-24)

This form applies to either forward or backward traveling energy flux, depending on the choice of

the propagation constant for the (m,n) mode, and for the plane at which the C_ are referenced.

Energy will be propagated only in cut-on modes, although there is some energy convection over
short distances in the mean flow case.

To obtain the total power level (PWL) in forward travelling modes at a measurement

plane upstream of the treatment and a measurement plane downstream of the treatment, the

energy is found as a sum over modes:

EfWd = E FLX_ d (upstream) (3-25)
up

m,n

EfWddown = Z FLX_ d (downstream)

m,rl

(3 -26)
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Thesuppressionof forward-travellingPWL, denotedAPWL,in dB, is thengivenby

EfWd

APWL= 101ogl0/E- _
\ up

(3-27)

This represents the measured suppression of a treatment panel located between the upstream and

downstream measurement planes.

A users' guide for operation of the program RD2PMM to perform the modal

measurement data analysis is included in Appendix A.
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4. Acoustic Modal Measurement

Acoustic transmission loss and insertion loss measurements were made using a series of

treatment panels in the Flow Duct Facility in the GEAE Acoustic Laboratory. Treatment panels

on which testing was performed are listed in Table (4-1).

Table 1 Treatment Panels Used for Duct Testing

Panel

Number Treatment Description

Full Scale 10% Perforate SDOF1.1.1

1.2.1 Half Scale 10% Perforate SDOF

2.1 Full Scale 12% Perforate SDOF

2.3 Half Scale 12% Perforate SDOF

2.5 Fifth Scale 12% Perforate SDOF

3.1 Full Scale 8% Perforate SDOF

3.3 Half Scale 8% Perforate SDOF

3.5 Fifth Scale 8% Perforate SDOF

4.1

4.2

5.1 Full Scale 60 Rayl Linear SDOF

6.1.1 Full Scale DDOF

6.2.1 Fifth Scale DDOF

Full Scale 90 Rayl Linear SDOF

Fifth Scale 90 Rayl Linear SDOF

For the transmission loss measurements, acoustic data were acquired at two planes

upstream and two planes downstream of the treatment test section, with 10 microphones at each

plane. The microphones in this configuration were used for the modal decomposition data

analysis, and the modal energy in the forward-traveling modes upstream was compared to the

energy in the forward-traveling modes downstream to determine the transmission loss.

For the insertion loss measurements, a subset of the 20 microphone positions upstream

and 20 positions downstream was used to obtain an estimate of the energy flux. The time-

averaged pressure-squared signals from 8 selected microphones upstream and 8 microphones

downstream were summed to provide an estimation of energy flux. The transmission loss is

determined by taking 10 log of the ratio of downstream p2 to upstream p2. The transmission loss

measurement was then corrected by subtracting the transmission loss for an untreated (hardwall)

duct, giving the insertion loss. The insertion loss was computed very quickly on-line, so that it

was available with little extra effort, whereas the modal measurement required data reduction and

post-processing of the microphone data.

The measurements were made using discrete frequency excitation to a bank of

loudspeakers. The discrete frequencies were chosen to be specified 1/3 octave band center

frequencies. Signal enhancement techniques were used to improve signal-to-noise ratio. This

involved synchronized time-domain averaging before the FFT application. Fifty (50) time
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averageswere usedat Mach 0.0 and 500 averageswere usedat Mach0.8. This approachwas
extremelyeffectivein improvingsignal-to-noise-ratio.

Four Altec-Lansing299-8A Speakers(50 Watts each)with a frequencyrange500 to
15000Hz. were used asthe discretesoundsource. The speakerswere drivenby JBL Model
6260 Power Amplifiers (150 Watt each channel). A Hewlett-Packard 8904A Multifunction

Synthesizer was used for signal generation. The microphone arrays used Kulite transducers,

Model XCS-190, rated at 5psig.

The signal conditioning amplifiers were VISHAY Model # 2310. Microphone signals

were recorded on two METRUM RSR 512 Digital Tape Recorders. Each recorder had 24

tracks, of which 20 were used for upstream transducers (recorded on Metrum #1) and the 20

downstream transducer signals were recorded on Metrum # 2. Tape recorders were synchronized

by means of event markers. Recorded data analyzed in post-test processing to provide input to

the modal decomposition data analysis.

All transducers were calibrated for pressure amplitude at 500 Hz. Upstream transducers

were calibrated for amplitude and phase relative to transducer #1 of that array. Similarly, the

downstream transducers were calibrated relative the # 1 transducer of that array. The # 1 upstream

and downstream transducers were used to obtain upstream-to-downstream magnitude and phase
calibration.

Boundary Layer profiles were measured by a total pressure (impact) probe using a

ROTADATA Actuator Type RTA290. The ROTADATA controller was operated under

software control by an HP9133 computer via IEEE488 interface.

Validyne pressure transducers were used for measuring steady pressures. These

measurements were required in the DC Flow Apparatus and for the total and static pressures used

in the boundary layer profile measurements. The signals from these transducers were acquired

through a 16 channel A to D converter system in the HP9133 computer. These transducers were

calibrated with the help of a Druck DP 1601 Digital Pressure Indicator.

Appendix B is the laboratory procedure for calibration of the acoustic data acquisition

aystem. Appendix C gives the laboratory procedure for the reduction of the acoustic data

recorded during flow duct testing.

Insertion loss data show significant repeatability scatter. It was later shown analytically

that the axial variation of the sum of pressure-squared can be quite large at discrete frequencies

when a limited number of propagating modes are present due to the interference of forward

propagating modes alone. The errors generated by axial mode interference are sufficiently large

to make the validity of the pressure-squared insertion loss as a measure of treatment effectiveness

questionable. For this reason, no insertion loss data is included in this report.

The results of the modal measurement transmission loss testing are examined in the next
section.
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5. Correlation of Theory with Experiment

5.1 Introduction

In order to design optimum acoustic treatment, it is necessary to develop a robust

acoustic prediction code and an experimental method to estimate and optimize the

acoustic performance. Ultimately, the code has to be correlated with the experimental

algorithm and measurement results.

In this section, in-duct attenuation predictions are compared with measured flow

duct data. The flow duct test algorithm and data were introduced in Sections 3 and 4.

The FORTRAN program RD2PMM was used to measure the forward and backward

mode coefficients (mode amplitudes) at the upstream plane and the downstream plane as

well as the attenuation of acoustic energy.

In the following sections, analytical results based on the theory discussed in

Section 2 will be compared with the experimental data in Section 4. Three flow duct

conditions were considered in this analysis.

Condition 1: Itardwall Case - No Mean Flow: Analysis of the acoustic mode

phase angle shift between the downstream and upstream propagating waves in a hardwall

duct without taking account of grazing flow effects.

Condition 2: Softwall Case - No Mean Flow: Analysis of the attenuation of the

acoustic energy for the propagating modes in a softwall duct without taking account of

grazing flow effects.

Condition 3: Softwall Case - Uniform Mean Flow: Analysis of the attenuation

of the acoustic energy of the propagating modes in a softwall duct with grazing flow

effects.

Because many modes are generated in the upstream region, in this section, the

"cut-off' modes will be excluded in this correlation analysis and only the "cut-on" modes

will be studied. These cut-off modes could be significantly attenuated in a hardwall duct

within a short propagating distance. The cut-off ratio, which was first introduced by E.

Rice 1, is defined as:

g2 = 1 (5-1)

(k x+k})O-
where,

Rice, E. J., "Acoustic Liner Optimum Impedance for Spinning Modes with Cut-OffRatio as the
Design Criterion", NASA TM X-73411, July, 1976.
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m_ n_
kx = -- and ky = _ (5-2)W H

WhenEquation(5-1) is usedin Equation(3-2), it is seenthat at _ = 1 the radical
inEquation(3-2) vanishesandthis will be termedcut-off For _ < 1, the axialcoefficient
propagationk_ will be complexand dampingoccurs in the pressureterm of Equation
(3-1). Therefore,in a hardwall duct, modeswith _ < 1 are categorizedas "cut-off'
modes;_ > 1 are"cut-on" modes.

5.2 Hardwali Case - No Mean Flow

In order to achieve good correlation between analytical predictions and

experimental data, it is necessary to provide accurate physical parameters which are

required for the prediction program. These parameters include: in-duct Mach number,

duct geometry, boundary layer thickness, in-duct temperature, acoustic modal content,

and liner impedance with grazing flow. Among these parameters, the modal content is

especially critical for noise attenuation predictions.

In this section, the upstream modal content (z = 0") estimated in Section 4.3.1 will

be used to predict the downstream modal content (z = 56"). Then the experimentally

estimated downstream modal content, shown in the Section 4.3.1, will be compared with
the prediction results.

In the analytical prediction method, a translation factor was applied to the

upstream mode coefficients (amplitudes and phases) to estimate the modal contents at

downstream plane:

cFdown up -iKrld-mn = CFmne (5-3)

where

k z = Kri

2xit{
1"1:normalized frequency --

c

H: duct height (treatment to hardwaU = 4 inch)

d: acoustic wave propagation distance normalized by H

CFmd°_"n: mode coefficient for (m, n) mode at downstream plane

CFmup : mode coefficient for (m, n) mode at upstream plane
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Substituting the eigenvalues (kx and ky) and normalized frequencies (11) into

Equation (3-2) for the in-duct temperature at 526.09 ° R, the propagation coefficients (K)

for each cut-on mode are determined and tabulated in Table (5-1).

Table (5-1). Mode Propagation Parameters

Frq. (Hz) Vl Mode kx* ky* K

1245 2.3187 (1,1) 0.0000 0.0000 1.0000

1599 2.9779 (1,1) 0.0000 0.0000 1.0000

1599 2.9779 (2,1) 2.5133 0.0000 0.5364

2002 3.7285 (1,1) 0.0000 0.0000 1.0000

2002 3.72 85 (1,2) 0.0000 3.1416 0.53 86

2002 3.7285 (2,1) 2.5133 0.0000 0.7387

2502 4.65 97 (1,1) 0.0000 0.0000 1.0000

2502 4.6597 (1,2) 0.0000 3.1416 0.73 85

2502 4.6597 (2,1) 2.5133 0.0000 0.8421

2502 4.65 97 (2,2) 2.5133 3.1416 0.5045

3149

3149

3149

3149

3149

5.8646 (1,1) 0.0000 0.0000 1.0000

5.8646 (1,2) 0.0000 3.1416 0.8444

5.8646 (2,1) 2.5133 0.0000 0.9035

5.8646 (2,2) 2.5133 3.1416 0.7276

5.8646 (3,1) 5.0265 0.0000 0.5152

*: kx and ky are the eigenvalues in the x and y directions

After applying the translation factor (Equation 5-3) to the measured upstream

mode coefficients (amplitudes and phases), shown in Section 5.1, the down stream mode

coefficients are determined and tabulated in Table (5-2) below:

Table (5-2).

Measured Upstream

Frq. (Hz) Mode p 1 ph 1 p2

1245 1,1 II 0.9935 3.95 0.936

1599 1,I 0.7562 -66.45 0.7325

Downstream Mode Coefficients

2,1

Measured

1599 2,1 0.8232 -124.89 0.6686

2002 1,1 0.3657 5.43 0.3372

2002 1,2 0.7857 -167.83 0.6866

2002 2,1 0.1397 94.32 0.1445

2502 1,1 0.3597 -75.8 0.3217

2502 1,2 0.8522 -175.37 0.7266

2502 2,1 0.007 -144.77 0.005

2502 2,2 0.0809 119.15 0.0848

3149 1,1 0.9261 -157.02 0.7499

3149 1,2 2.1065 170.1 1.7402

3149 0.2149 -94.02 0.1873

DownslxeamDownstream Predicted

ph2 p2

55.73 0.9935

142.48 0.7562

51.24 0.8232

87.25 0.3657

-43.04 0.7857

110.72 0.1397

27.35 0.3597

22.74 0.8522

171.87 0.007

146.47 0.0809

-173.03 0.9261

136.31 2.1065

133.65 0.2149

-27.22 0.5545

-38.48 0.1483

ph2
-55.94

64.82

33.79

-105.34

21.34

45.04

146.48

-55.67

-52.30

33.47

178.72

157.82

-24.32

3149 2,2 0.5545 -160.52 0.5395 16.66

3149 3,1 0.1483 89.1 0.2494 -174.54

Based on the theoretical assumption shown in Section 2.3, the predicted modal

amplitude would remain unchanged in a hardwall duct while the "cut-on" acoustic wave

propagates downstream. The modal phase would be shit_ed according to the translation

factor as a function of propagation distance.
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The percentage differences between the measured and predicted downstream mode

coefficients are tabulated in Table (5-3) below.

Table (5-3).

Frq. (I/z)

1245

1599

1599

2002

2002

2002

Differences Between Measured and Predicted Downstream

Mode Coefficients

Mode

Measured - Predicted
%=

Amplitude

1,1 -6.14%

1,1 -3.24%

2,1 -23.12%

1,1 -8.45%

1,2 -14.43%

Measured

2,1

2502 1,1

2502 1,2

Phase

200.38%

54.51%

34.06%

220.73%

149.58%

3.32% 59.32%

-11.81% --435.58%

-17.29% 344.81%

2502 2,1 -40.00% 130.43%

2502 2,2 4.60% 77.15%

3149 1,1 -23.50% 203.29%

3149 1,2 -21.05% -15.78%

3149 2,1 -14.74% 118.20%

3149 2,2 -2.78% 161.20%

3149 3,1 40.54% -353.59%

The above table indicates that the measured and predicted mode coefficients do

not correlate well. This can indicate the presence of significant errors in the noise
attenuation calculation.

5.3 Softwall Case - No Mean Flow

The acoustic panel selected for this analysis is a Single Degree Of Freedom

(SDOF) Linear acoustic liner (Panel 4.1). The liner configuration is described in Table
(5-4) below:
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Table (5-4). Liner Configuration for Modal Measurement Test

DynaRohr Panel 4.1

Face P,.3Rayls Diameter Thickness POA NLF

Sheet 84.53 0.050" 0025" 32% 1.49

Core & Core Height Core Type Back Skin

Back Skin 1.0" 0.032"; Aluminum3/8 cell, .003" AI foil, 4.2 lb/ft 3

5.3.1 Impedance Analysis

The single frequency excitation method is used to calculate the normal incidence

impedance of the test panel. The theory used in this analysis is described in Volumes 2

and 3. The in-duct temperature and pressure used are 531°R and 14.70 psi. The in-duct

sound pressures are calculated based on the average of the sound pressure measured at the

upstream and downstream locations and are listed in Table (5-5) below:

Table (5-5). Data Used to Determine Duct SPL

Frequency Average

(i-iz)
1250

1600

2000

2500

3150

4000

SPL (dB)
128.85

125.36

133.84

135.62

120.07

124.15

The predicted impedance levels are summarized in Table (5-6) below:

Table (5-6). Predicted Liner Impedance Values

Frequency (Hz) Resistance Reactance

1250

1600

2000

2500

3150

4000

1.602 -1.351

1.596 -0.866

1.638 -0.469

1.655 -0.086

1.591 0.330

1.599 0.849

5.3.2 Noise Attenuation Analysis

The acoustic treatment starts at z = 24.5 and ends at z = 36.5". Therefore, the

modal amplitudes at the z = 24.5 inch plane are first estimated by using Equation (5-3)

with the mode coefficients measured at z = 0 inch as an initial value. The axial

propagation coefficients tabulated in Table (5-7) below are used in Equation (5-3):
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Table (5-7). Modal Axial Propagation Constants at Different Frequencies

Frq. (Hz) [ rl Mode kx* ky* K
I

1250 11 2.3172 (1,1) 0.0000 0.0000 1.000016oo,,2.9660 oooooooooo1oooo
1600 I] 2.9660 (2,1) 2.5133 0.0000 0.5310

2000

2000

2000

2500

2500

2500

2500

3150

3150

3150

3150

3150

4000

4000

4000

4000

4000

4000

4000

4000

3.7075 (1,1) 0.0000 0.0000 1.0000

3.7075 (1,2) 0.0000 3.1416 0.5310

3. 7075 (2,1) 2.5133 0.0000 0.7352

4.6344 (1,1) 0.0000 0.0000 1.0000

4.6344 (1,2) 0.0000 3.1416 0.7352

4.6344 (2,1) 2.5133 0.0000 0.8402

4.6344 (2,2) 2.5133 3.1416 0.4963

5.8393 (1,1) 0.0000 0.0000 1.0000

5.8393 (1,2) 0.0000 3.1416 0.8429

5.8393 (2,1) 2.5133 0.0000 0.9026

5.8393 (2,2) 2.5133 3.1416 0.7248

5.8393 (3,1) 5.0265 0.0000 0.5089

7.4150 (I,1) 0.0000 0.0000 1.0000

7.4150 (1,2) 0.0000 3.1416 0.9058

7.4150 (1,3) 0.0000 6.2832 0.5310

7.4150 (2,1) 2.5133 0.0000 0.9408

7.4150 (2,2) 2.5133 3.1416 0.8400

7.4150 (2,3) 2.5133 6.2832 0.4088

7.4150 (3,1) 5.0265 0.0000 0.7352

7.4150 (3,2) 5.0265 3.1416 0.6008

The mode coefficients (p2 and ph2) at z = 24.5", which will be used to define the

noise source at the beginning of the acoustic treatment, are summarized in Table (5-8)
below:
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Frq. (Hz)

1250

1600

1600

2000

2000

2000

2500

2500

2500

2500

3150

3150

3150

3150

3150

4000

Table (5-8).

Measured

Mode pl

1,1 0.9720

1,1 1.5606

2,1 0.9605

1,1 0.3673

1,2 0.8138

2,1 0.0506

1,1 0.3154

1,2 0.9495

2,1 0.0213

2,2 0.0717

1,1 0.7764

1,2 2.1600

2,1 0.1071

2,2 0.1831

3,1 0.1564

1,1 0.4526

1,2 1.0729

Source Mode Coefficients

Upstream

phl

-60.09

36.19

176.31

103.57

-63.98

-161.30

172.75

Measured Downstream

p2 ph2

0.936 55.73

0.7325 142.48

0.6686 51.24

0.3372 87.25

0.6866 -43.04

0.8138 176.31

0.3217 27.35

0.7266 22.74

0.005 171.87

-97.38 0.0848 146.47

-147.11 0.7499 -173.03

-179.14 1.7402 136.31

-137.87 0.1873 133.65

148.70 0.5395 -27.22

156.16 0.2494 -38.48

53.34 0.4526 28.85

4000 68.08 1.0729 -128.98

4000 1,3 1.7712 13.89 1.7712 63.28

4000 2,1 0.0759 114.64 0.0759 174.28

4000 2,2 0.2778 114.90 0.2778 86.72

4000 2,3 0.4469 -52.38 0.4469 50.42

4000 3,1 0.2278 -159.44 0.2278 83.53

4000 3,2 0.0436 120.22 0.0436 10.20

The impedance levels of the SDOF linear liner computed in Section 5.2.1 are used

to define the boundary conditions along the wall from z = 24.5" to z = 36.5". Two

analytical algorithms are used to evaluate the in-duct noise attenuation:

Segment noise propagation - both transmitted and reflected acoustic waves are

considered in the analysis,

Continuous noise propagation - only transmitted waves are considered.

The incident acoustic energy at the z = 24.5" plane and the transmitted acoustic

energy at the z = 36.5" plane were computed for each transverse mode (x-direction) at
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each frequency by a Rohr developed In-Duct Noise Propagation code. The noise

attenuation at each frequency was calculated by taking the difference between the

summation of the incident acoustic energy and the summation of the transmitted acoustic

energy of all the cut-on transverse modes. The combined predicted attenuations are

tabulated in Table (5-9):

Table (5-9). Panel 4.1 In-duct Noise Attenuation Data (dB) at 0.0 Mach Number

Frequency

(rul
1250

GEAE Test

Data
Segment Algorithm

6.4 6.92

1600 8.13 9.46 9.52

2000 7.58 9.24 13.42

2500 8.55 5.33 10.71

3150 11.51 4.09 7.58

4000 11.83 5.72

Continuous

AJ_orithrn
6.93

7.66

They are also illustrated in Figure (5-1):
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Figure (5-1). In-Duct Noise Attenuation at Mach No. 0.0 Panel No. 4.1

5.4 Softwall Case - Uniform Mean Flow

5.4.1 Grazing Flow Impedance Analysis

The single frequency excitation method is used to calculate the grazing flow
impedance. The theory used in this analysis is described in Volumes 2 and 3. The in-duct

aerodynamic parameters are listed in Table (5-10) below:
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Table (5-10). Aerodynamic Parameters for Impedance Prediction

Static

Temperature

(°R)

525.07

Static

Pressure (psi)

14.131

Mach

Number

0.30

Displacement Boundary

Layer Thickness (inch)

0.054

The in-duct sound pressures are calculated based on average Sound Pressure Levels (SPL)

measured at the upstream and downstream locations, summarized in Table (5-11) below:

Table (5-11). In-Duct Measure Sound Pressure Levels

Frequency

(m)
1250

1600

2000

2500

3150

4000

Average

SPL (dB)

124.97

148.45

135.56

132.43

127.18

124.98

The predicted impedance levels are given in Table (5-12):

Table (5-12). Predicted Impedances for Test Liner

Frequency (Hz) Resistance Reactance

1250

1600

2000

2500

3150

4000

1.633 -1.360

1.900 -0.882

1.693 -0.490

1.673 -0.115

1.649 0.293

1.641 0.804

5.4.2 Noise Attenuation Analysis

For the noise attenuation analysis in the presence of grazing flow, the axial

propagation coefficients were first calculated and applied to Equation (5-3) to determine

the mode coefficients at z = 24.5". The eigenvalues in the x and y directions as well as

propagation coefficients are summarized in Table (5-13) below:
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Table (5-13). Eigenvalues and Propagation Constants for Modal Computation

Frq. (Hz) 1"1 Mode kx* ky* K

1250 2.3302 (1,1) 0.0000 0.0000 0.7692

1600 2.9827 (1,1) 0.0000 0.0000 0.7692
1600 2.9827 (2,1) 2.5133 0.0000 0.3241

2000 3.7284 (1,1) 0.0000 0.0000 0.7692

2000 3.7284 (1,2) 0.0000 3.1416 0.3241

2000 3.7284 (2,1) 2.5133 0.0000 0.5119

2500

2500

2500

4.6605 (1,1) 0.0000 0.0000 0.7692

4.6605 (1,2) 0.0000 3.1416 0.5119

4.6605 (2,1) 2.5133 0.0000 0.6127
2500

3150

3150

3150

3150

3150

3150

4.6605 (2,2) 2.5133 3.1416 0.2938

5.8722 (1,1) 0.0000 0.0000 0.7692

5.8722 (1,2) 0.0000 3.1416 0.6153

5.8722 (2,1) 2.5133 0.0000 0.6735

5.8722 (2,2) 2.5133 3.1416 0.5020

5.8722 (3,1) 5.0265 0.0000 0.3047

5.8722 (3,2) 5.0265 0.0000 -0.0333

*: kx and ky_, the eigenvalues in the x and y directions

The mode coefficients at z = 24.5" are summarized in Table (5-14) below:

Table (5-14). Mode Coefficients at Measurement Planes

Measured Ups_eam Measured Downstream

Frq.(Hz) Mode pl phl p2 ph2

1250 1,1 1.3361 4,7 1.3361 95.7

1600 1,1

1600 2,1

2000 1,1

2000 1,2

2000 2,1

2500 1,1

0.04404 57.0 0.04404 -28.1

0.01514 -105.1 0.01514 -84.35

0.1616 -147.7 0.1616 -74.1

0.1988 -169.1 0.1988 126.8

0.0206 -62.6 0.0206 -12.4

0.3473 -86.7 0.3473 95.3

0.8029 -166.2 0.8029 76.6

0.0181 173.7 0.0181 -108.0

0.2064 20.6 0.2064 -99.92

0.2268 121.8 0.2268 -23.3

0.5632 111.8 0.5632 -76.2

0.0374 87.3 0.0374 139.4

0.0909 36.9 0.0909 82.4

0.1315 63.7 0.1315 155.8

2500 1,2

2500 2,1

2500 2,2

3150 1,1

3150 1,2

3150 2,1

3150 2,2

3150 3,1

3150 3,2 .. 0.7160 -169.7 0.7160 -101.1

The mode coefficients (p2 and ph2) tabulated in the above table are used to define

the noise source at the z = 24.5" plane. The grazing flow impedance levels of the SDOF

linear liner computed in Section 5.3.1 are used to define the boundary conditions along the

wall from z = 24.5" to z = 36.5". The two analytical algorithms with the uniform (plug)
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flow assumption, described in Section 5.2.2, are used to calculate the in-duct noise

attenuation.

The incident acoustic energy at the z = 24.5" plane and the transmitted acoustic

energy at the z = 36.5" plane were computed for each transverse mode (x-direction) at

each frequency using the In-Duct Noise Propagation code. The noise attenuation at each

frequency was calculated by taking the difference between the summation of the incident

acoustic energy at z=24.5 '' and the summation of the transmitted acoustic energy at

z=36.5 '' for all of the cut-on transverse modes. The combined predicted attenuations are

tabulated in Table (5-15):

Table (5-15). Panel 4.1 In-duct Noise Attenuation Data (dB)At 0.3 Mach Number

Frequency

(m)
1250

GEAE Test

Data

Segment Algorithm

4.0 3.3

1600 1.8 4.1 4.1

2000 9.6 4.0 4.7

2500 5.9 4.5 7.7

3150 9.9 3.8 6.8

Continuous

Algorithm
3.3

They are also illustrated in Figure (5-2), below:

- -e- Segment

lo.o - - *" • Continuous

8.09.0--_",., _ Measured //
w 7.0 /

5.0
t'_ _J L_ -_ "-_" "-- ......

/
<_ 2.0 _-]

1.o

/
o

o

o

0.0

- - -II"

1250 1600 2000 2500 3150

Frequency (Hz)

Figure (5-2). In-Duct Noise Attenuation at Mach No. 0.3 Panel No. 4.1
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6. Conclusions and Recommendations

Computer programs have been written to accomplish the modal decomposition of pressure

measurements made in a hardwall section of a rectangular duct. The program, although tailored

to the particular output format of the tests run in the GEAE Acoustics Laboratory, is general in

nature and could be adapted to other modal measurement test facilities with arbitrary sensor array

placement. The program contains unique features such as the use of singular value decomposition

to achieve the least squares best fit of the mode coefficients to the measured data and the ability

to specify standard deviations for individual sensors in the measurement.

One obvious and relatively simple upgrade to the program would be to allow a different

number of sensors at the upstream and downstream measurement planes. A version of the

program could be written to use specifically chosen modes in the expansion such that the set may

include some cut-off.modes but the set may not form a rectangular block of indices. The program

can be used with modal measurement "simulator" programs to determine optimum placement of

sensor arrays for future modal measurements.

Modal measurement data taken at GEAE were transferred to Rohr, Inc, for analytical

evaluation. Using a modal analysis duct propagation prediction program, Rohr compared the

measured and predicted mode content. Generally, the results indicate an unsatisfactory agreement

between measurement and prediction, even for full scale. This is felt to be attributable to

difficulties encountered in obtaining sufficiently accurate test results, even with extraordinary care

in calibrating the instrumentation and performing the test. Test difficulties precluded the ability to

make measurements at frequencies high enough to be representative of sub-scale liners.

It is concluded that transmission loss measurements without ducts and data acquisition

facilities specifically designed to operate with the precision and complexity required for high sub-

scale frequency ranges are inadequate for evaluation of sub-scale treatment effects. If this

approach is to be pursued further, it will be necessary to develop adequate sub-scale laboratory

test facilities and provide instrumentation of sufficient precision and complexity.

The advantage offered by a transmission loss duct test is that it allows correlation of the

scaled liner impedance with predicted liner performance under a controlled and idealized set of

conditions, but under flow and sound pressure level conditions that simulate the engine duct

environment. The issue becomes whether the added expense of developing a duct test facility

aimed specifically at scaled treatment is cost effective considering the cost saving gained by being

able to design treatment using scale model fan vehicles compared to the cost of full scale engine

treatment testing. Further investigation is needed to assess the relative costs.
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7. Appendix A - RD2PMM Program User's Guide

7.1 Program Versions and Choice of Number of Modes in the Expansion

The RD2PMM program calculates the modal decomposition of an array of acoustic

pressure measurements taken at arbitrary positions in a hardwall segment of rectangular duct. It

is important that the duct be hardwall and uniform over the full extent of the upstream or

downstream modal decompositions (which are done independently), because the analysis depends

upon the assumption that the axial propagation over the axial extent of the array is accurately

represented by modal propagation in a uniform hardwall duct.

If the duct geometry, flow field, or wall impedance varies from uniform over the

measurement segment, this assumption is violated. It is further assumed that the slug flow

(infinitely thin boundary layer) assumption is an accurate representation of the acoustic

propagation. Under these conditions, the duct modes are orthogonal, and no energy is carried in
the cross-modes.

The input parameters include:

• Case description

• Duct cross section geometry

• Duct axial geometry

• Frequency of measurement

• Duct flow Mach number

• Ambient air temperature in duct

• Number of measurement points in the sensor array

• Number of x-modes and y-modes to be used in the modal expansion

• The number of the designated reference sensor

• SPL measured at the reference sensor

• An index to specify only forward or both forward and backward modes

• The singularity factor for the singular value decomposition matrix solution

• Coordinates and complex pressure measured at each sensor

• Standard deviation of the measurement at each sensor

There are two slightly different versions of the program, RD2PMM2 and RD2PMM3 (the

original version, RD2PMM1, was replaced by RD2PMM3). The programs are distinguished by

the means of choosing the modes used in the modal expansion. In RD2PMM3, the modes in the

expansion are specified as a rectangular block of indices, for example 3 x-modes and 2 y-modes.

This 3 by 2 block, illustrated in Table (A-l) below, contains 6 modes, some of which may be cut-
off.
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Table (A-l) Block of (MX,NY) modes chosen for modal expansion in RD2PMM3.

(1,1) (1,2)

(2,1) (2,2)

(3,1) (3,2)

RD2PMM3 then allows the user the option of repeating the decomposition with a different set of

component modes (say 3 x-modes by 3 y-modes) for as many cases as desired.

The RD2PMM2 version automatically finds all cut-on modes at the frequency of

measurement and performs the decomposition in only those modes. No cut-off modes are

included in the expansion. The block index specification in the input data file is ignored in this
case.

One must take some care in the choice of mode numbers for the modal expansion. The

number of modes in the expansion should not exceed the number of sensors in the upstream or the

downstream array (it is assumed in both current program versions that both upstream and

downstream arrays have the same number of sensors, although this restriction is not formally

necessary and could be relaxed.) For instance, if there are 20 sensors in each array, the maximum

number of modes would be 20 (20 forward propagating or, more likely, 10 forward propagating
and 10 backward propagating).

Having the same number of modes as sensors, however, is like trying to find 20

coefficients of a Fourier series from 20 data points. Spatial aliasing problems will occur, and

accuracy, particularly for the higher order modes, will be degraded. It would be better to choose

about half the number of modes in the expansion as measurement points. In our example, this

would mean expanding in 5 forward-propagating and 5 backward-propagating modes.

Listings of the program are not included with this report since they are still subject to
debugging and improvement. Current versions of the programs are available from the author for

interested parties. Since it is considered to be a research code, no guarantees can be made

regarding program applicability or accuracy.

7.2 Program Input File

The input file for the program is an ASCII "card" file with a series of records. This file is

generated as part of the modal measurement data reduction procedure, and is thus provided by the

Acoustic Laboratory. The format for the input file is provided on the following page.

In order to change any options or input in the data file, any ASCII text editor may be

used. For instance, it may be desired to expand only in forward-travelling modes, ignoring any
contribution from backward-travelling modes, in which case a 0 would be entered in the IBKWD

position.
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RD2PMM2.FOR or RD2PMM3.FOR INPUT SHEET

Separate variables by spaces or co, tuna

Records read in ASCII format

'Case Description'

HTIN WDIN

DTP DDA

FRQHZ

FMACH

NPTS

TDEGF

NMX NMY

NREF SPLR

IBKWD

WFAC

Up to 60 characters

Duct width (x) and height (y), inches

Distance from Plane 1 to start of treatment

and distance from Plane 1 upstream to Plane 1

downstream, inches

Frequency, Hz.

Duct Mach #, Temperature, degF

Number of measurement points (sensors), upstream

Assumed to be same number upstream and downstream

for 2-plane comparison

Number of x-modes and y-modes to used in modal

expansion

Reference sensor designated number,

SPL at reference sensor

= 0 if no backward modes assumed

= 1 for both fwd and bkwd

SVD singularity factor (~1.E-6)

NP X Y Z PTFR PTFI STD Measured data input at each point

repeat for each point

NP = Designated sensor number

X,Y,Z = sensor coordinates, in.

PTFR = real part of pressure transfer function

PTFI = imaginary part of pressure transfer function

STD = sensor assumed standard deviation, usually 1.0

Inverse of sensor STD is weighting factor

Y
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The WFAC parameter is used in the singular value decomposition (SVD) to determine

which terms are discarded. The choice of this value depends somewhat on the precision of the

computer being used, but is otherwise more dependent upon the artistry of the user. If any modes

generate WFAC values smaller than this amount, they will be discarded from the expansion, per
the SVD procedure. A value around 1.E-6 is a reasonable guess.

The standard deviation of the measurement at each sensor (STD) is normally not known

very accurately. Its determination would require a large number of repeat experiments, usually an

unaffordable luxury. If the standard deviations of the measurement are unknown, set STD to 1.0

for each sensor (only relative values of STD are significant).

If one or more sensors are known to be defective, their contribution to the whole can be

diminished by arbitrarily increasing STD by some factor. For instance, if STD for a given sensor

is set to 2.0 (all others being 1.0), the weighting given to the offending sensor in the expansion is

1/2 or half the weighting of all the others.

7.3 Program Output

The following data, which will be illustrated in a sample case in the following section, is

included in the output data file for both versions of the program:

• Input data

• Input and output datafile names

• Modes used in expansion

• Calculated modal propagation constants and axial wavelengths

• Mode number/index key

• SVD output parameters

• Measured mode coefficients, all planes and directions

• Mode coefficient standard deviations of the fit

• If the two-plane (upstream, downstream) option is used, the energy flux, forward and

backward, upstream and downstream, and APWL is computed and printed.

The pressure mode coefficients can be directly transferred to duct propagation prediction

programs such as the GE RFDP code, or the pressure can be expanded in modes over the source

plane for input to FEM-type codes.

The output file is in standard ASCII format so that the results can be easily printed or

imported into databases or spreadsheets for further analysis.
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7.4 Running the Programs

For convenience, the FORTRAN executable files RD2PMM2.EXE and RD2PMM3.EXE

should be copied into the subdirectory in which the input files reside and in which the output files

will be written.

After starting the program, the user will be asked to enter the number of planes for

computation of mode coefficients. If only one set of measurements are to be analyzed (either

upstream or downstream), enter 1. If both upstream and downstream planes are to be analyzed,

enter 2.

If only 1 plane is being analyzed, the program will then ask for the name of the input data

file. If 2 planes of data are being analyzed the program will ask for both upstream and

downstream input data file names. The progam then requests the name of the output data file.

IfRD2PMM2 is being run, the program will execute and stop. IfRD2PMM3 is being run,

the program will ask for the number of x-modes and y-modes to be included in the expansion. If

another case is desired, RD2PMM3 will ask the user to enter 1, after which another mode number

pair is requested. If the user enters anything other than 1 when asked if there is another case, the

program will quit.

The output file is written to the current subdirectory using the filename input by the user.

7.5 Sample Case

A sample case taken directly from a modal measurement in the 4 inch by 5 inch duct in the

GEAE Acoustics Laboratory is included here for illustration. This case is the measurement at

2500 Hz., Mach 0.0, for Test Panel 4.1, a 1 inch deep wiremesh faceplate SDOF treatment panel

(the details of these tests are reported on elsewhere).

At 2500 Hz., there are four modes cut-on. These are the (1,1), (2,1), (1,2), and (2,2)

modes, which just happens to be a square block of indices.
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The upstream modal measurement resulted in the input data file UP410005.DAT:

P41-00-05.FRQ

4.000

24.50

2502.441

0.000

2O

2 4

1 13

1

0.10E-

l 4.010

2 4.010

3 4.010

4 4.010

5 2.000

6 0.000

7 0.000

8 0.000

9 0.000

i0 2.000

ii 4.010

12 4.010

13 4.010

14 4.010

15 2.000

16 0.000

17 0.000

18 0.000

19 0.000

20 2.000

5.000

56.00

70.000

9.895

O5
4. 920

3.005

1.650

0.030

0 000

0 045

1 655

2 920

4 905

5 000

4. 920

3 005
1 650

0 030

0 000

0 045

1 655

2 920

4 905

5 000

0

0

0

0

0

0

0.

0.

0.

0.

I.

I.

i.

I.

I.

I.

i.

i.

i.

I.

Processed time:Tue Jun 6 07:11:03

000 0.100000E+01

000 0.986482E+00

000 0.901976E+00

000 0.868987E+00

000 0.916673E-01

000 -0.777912E+00

000 -0.724785E+00

000 -0.835292E+00

000 -0.727773E+00

000 0.157300E+00

005 0.728650E+00

005 0.667809E+00

005 0.519296E+00

005 0.597250E+00

005 0.239692E+00

005 0.436094E-01

005 0.567900E-01

005 -0.I06060E+00

005 -0.998554E-01

005 0.313136E+00

0 000000E+00

0 539242E-01

-0 552247E-01

-0 852066E-01

0 242227E+00

0 612961E+00

0 557766E+00

0 719708E+00

0 528255E+00

0 276621E+00

-0 921396E+00

-0 933248E+00

-0 948466E+00

-0 II0330E+01

-0 229031E-01

0 898323E+00

0 873310E+00

0 878621E+00

0 817884E+00

-0 829904E-01

1 00

1 00

1 00

1 00

1 00

1 00

1 00

1 00

1 00

1 00

1 00

1 00

1 00

1.00

1.00

1.00

1.00

1.00

1.00

1.00
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The downstream modal measurement resulted in the input data file DP410005.DAT:

P41-00-05.FRQ

4.000 5.000

24.50 56.00

2502.441

0.000 70.000

20

2 4

1 139.895

1

0.10E-05

1 4.010 4.

2 4.010 3.

3 4.010 I.

4 4.010 0.

5 2.000 0.

6 0.000 0.

7 0.000 i.

8 0.000 3.

9 0.000 4.

i0 2.OOO 5.

ii 4 010 3.

12 4 010 3.

13 4 010 i.

14 4 010 O.

15 2 000 O.

16 0 000 O.

17 0 000 I.

18 0 000 3.

19 0 000 4.

20 2 000 5.

945 O.

350 0

680 0

070 0

000 0

080 0

675 0

355 0

945 0

000 0

945 1

350 1

680 1

070 1

000 1

080 1

675 1

355 1

945 1

000 1

Processed time:Tue Jun 6 07:11:03

000

000

000

000

000

000

000

000

000

000

010

010

010

010

010

010

010

010

010

010

0.372860E+00

0.973588E+00

0 960073E+00

0 970684E+00

0 780312E+00

0 601760E+00

0 505032E+00

0 374523E+00

0 335106E+00

0 668857E+00

0 725774E+00

0 792234E+00

0 770739E+00

0 752161E+00

0 280125E+00

-0 229635E+00

-0 267258E+00

-0 277127E+00

-0 291671E+00

0 200445E+00

-0.236690E+00

0.226096E-01

-0.833162E-02

0.409265E-01

-0.127245E+00

-0.323001E+00

-0.327699E+00

-0.278524E+00

-0.240291E+00

-0.I12959E+00

-0 608125E+00

-0 605890E+00

-0 637691E+00

-0 728808E+00

-0 699518E+00

-0 670994E+00

-0 572909E+00

-0 510695E+00

-0 449993E+00

-0 527979E+00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00
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The output from RD2PMM2, for the case with cut-on modes only, is the following:

PROGRAM RD2PPMM2 - INCLUDES CUT-ON MODES ONLY

RECT,_JGULAR DUCT MODAL MEASUREMENT DATA ANALYSIS

CASE HEADING

P41-00-05.FRQ Processed time:Tue Jun 6 07:11:03

OUTPUT DATAFILE = C410005X.DAT

INPUT DATAFILE = UP410005.DAT

INPUT DATAFILE = DP410005.DAT

AT PLANE PAIR 1

AT PLANE PAIR 2

DUCT HEIGHT (Y) = 4.00000 in .33333 ft

DUCT WIDTH (X) = 5.00000 in .41667 ft

DIST FROM UPSTRM SENSOR PLANE TO TRTMT LEADING EDGE =

DIST FROM UPSTREAM SENSOR #I TO DWNSTREAM SENSOR #i =

AIR TEMP = 70.00000 degF

DUCT MACH NO. = .00000

24.50000 in

56.00000 in

2.04167 ft

4.66667 ft

EREQUENCY = 2502.44100 Hz

SPEED OF SOUND = 1128.06500 ft/s

WAVE NUMBER = 13.93830 1/ft

SVD SINGULARITY FACTOR = 1.00000E-06

NUMBER OF MEASUREMENT POINTS = 20

NUMBER OF X-MODES CONSIDERED = 4

NUMBER OF Y-MODES CONSIDERED = 2

PRESSURE REFERENCE SENSOR DESIGNATION =

PRESSURE REFERENCE SPL = 139.895 dB

J DSGN X, in. Y, in. Z, in. PTFReal

1 !

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

i0 it

ii ii

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

MX NY

i i

i 2

2 i

2 2

3 i

3 2

4 i

4 2

PTFImag

4.9200

3.0050

1.6500

.0300

.0000

.0450

1.6550

2.9200

4.9050

5.0000

4.9200

3.0050

1.6500

0300

000O

0450

1 6550

2 9200

4 905O

5 0000

4.0!00 .0000

4.0100 .0000

4.0100 .0000

4.0100 .0000

2.0000 .0000

.0000 .0000

.0000 .0000

.0000 .0000

.0000 .0000

2.0000 .0000

4.0100 1.0050

4.0100 1.0050

4.0100 1.0050

4.0100 1.0050

2.0000 !.0050

.0000 !.0050

.0000 !.0050

.0000 1.0050

.0000 1.0050

2.0000 1.0050

1.0000E+00

9.8648E-01

9.0198E-01

8.6899E-01

9.1667E-02

-7.7791E-01

-7.2478E-01

-8.3529E-01

-7.2777E-01

1.5730E-01

7.2865E-0i

6.6781E-01

5.1930E-01

5.9725E-01

2.3969E-01

4.3609E-02

5.6790E-02

-I.0606E-01

-9.9855E-02

3.13!4E-01

0 0000E+00

-5 3924E-02

5 5225E-02

8 5207E-02

-2 4223E-01

-6 1296E-01

-5 5777E-01

-7 i971E-01

-5 2825E-01

-2 7662E-01

9 2140E-01

9.3325E-01

9.4847E-0!

I.I033E+00

2.2903E-02

-8.9832E-01

-8.7331E-01

-8.7862E-01

-8.1788E-01

8.2990E-02

PROPAGATION CONST_XTS {i/ft - k-MULTIPLIED}

& .<41AL WAVELENGTH, inches F => Fwd, B => Bkwd

RePKF ImPKF ZWLF RePKB ImPKB ZWLB

13.938300 .000000 5.409 -13.938300

10.268870 .000000 7.342 -10.268870

11.722930 .000000 6.432 -11.722930

6.971423 .000000 10.815 -6.971423

.000000 5.754962 ******** .000000

.000000 11.042920 ******** .000000

-.000001 17.814720 ******** .000001

-.000001 20.154170 **_***** .000001

.000000 -5.409

.000000 -7.342

.000000 -6.432

.00O000 -10.815

-5.754962 ********

-11.042920 *******_

-17.814720 ********

-20.154170 ******_*

Std Dev

i 000

1 000

1 000

1 000

1 000

1 000

1 000

1.000

1.000

!.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000
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NUMBER OF CUT-ON MODES = 4

PROBLEM MODE ORDER = 8

MODE# MXF NYF MODE# MXB NYB

1 1 1 5 1 i

2 2 ! 6 2 1

3 1 2 7 ! 2

4 2 2 8 2 2

FOR SUCCESSFUL SVD, INFO SHOULD BE ZERO. INFO =

J,AWSV = 1 5.299961

J,AWSV = 2 5.166289

J,AWSV = 3 4.531259

J,AWSV = 4 4.109190

J,AWSV = 5 3.490297

j,AWSV = 6 2.429513

J,AZSV = 7 2.359705

J,AWSV = 8 1.239705

WMAX = 5.3000E+00 WMIN = 5.3000E-06

MEASURED MODE COEFFICIENTS

FORWARD

MODE# MX NY COMPLEX COEFFICIENT

1 1 1 1.38367E-01 -2.83424E-01

2 2 i -2.11092E-02 2.68653E-03

3 1 2 -9.99362E-01 -3.04402E-01

4 2 2 -9.20950E-03 -7.11376E-02

MAGNITUDE PHASE, deg

3.15396E-01 -63.9785

2.12795E-02 172.7470

9.49480E-01 -161.3008

7.i7312E-02 -97.3757

BACKWARD

MODE# MX NY COMPLEX COEFFICIENT

5 1 i -4.28227E-02 -2.34929E-03

6 2 1 -1.54780E-02 1.61426E-02

7 1 2 4.48531E-02 -6.99747B-03

8 2 2 4.18779E-02 3.75269B-02

MODE COEFFICIENT

J StdDev

2.4350E-01

3.2969E-01

3 3077E-01

5 9497E-0i

2 4350E-0i

3 2969E-01

3 3077E-01

5 9497E-0!

FIT STANDARD DEVIATIONS

MAGNITUDE PHASE, deg

4.28871E-02 -176.8598

2.23641E-02 133.7959

4.53956E-02 -8.8672

5.62319E-02 41.8636

PROG_ RD2PP_M2 - INCLUDES CUT-ON MODES ONLY

RECTANGULAR DUCT MODAL MEASUREMENT DATA ANALYSIS

CASE HEADING

P41-0C-05.FRQ Processed time:Tue Jun 6 07:11:03

OUTPUT DATAFILE = C410005X.DAT

INPUT DATAFILE = UP410005.DAT

INPUT DATAFILE = DP410005.DAT

AT PLANE PAIR 1

AT PLA/qE PAIR 2

DUCT HEIGHT (Y) = 4.00000 in .33333 ft

DUCT WIDTH (X) = 5.00000 in .41667 ft

DIST PROM UPSTRM SENSOR PLANE TO TRTMT LEADING EDGE =

DIST FROM UPSTRE_< SENSOR #i TO DWNSTREAM SENSOR #i =

24.50000 in

56.08000 in

2.04167 ft

4.66667 fZ
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AIR TEMP : 70.00000 degF

DUCT _-_CH NO. = .00000

FREQUENCY = 2502.44100 Hz

SPEED OF SOUND = 1128.06500 ft/s

WAVE NUMBER = 13.93830 i/ft

SVD SINGULARITY FACTOR = 1.00000E-06

NUMBER OF MEASUREMENT POINTS = 20

NUMBER OF X-MODES CONSIDERED = 4

NUbIBER OF Y-MODES CONSIDERED = 2

PRESSURE REFERENCE SENSOR DESIGNATION =

PRESSURE REFERENCE SPL = 139.895 dB

UPSTREAM -> DOWNSTREAM TRANSFER FUNCTION = 3.728600E-01 2.366900E-01

J DSGN X, in. Y, in. Z, in. PTFReal PTFImag

I 1 4

2 2 3

3 3 i

4 4

5 5

6 6

v 7 !

8 8 3

9 9 4

i0 iC 5

ii ii 3

12 12 3

13 13 1

14 14

15 15

16 16

17 17 1

18 i_ 3

19 19 4

20 20 5

9450 4.0100 .0000 3.7286E-01 2.3669E-01

3500 4.0100 .0000 9.7359E-01 -2.2610E-02

6800 4.0100 .0000 9.6007E-0! 8.3316E-03

0700 4.0100 .0000 9.7068E-01 -4.0927E-02

0000 2.0000 .0000 7.8031E-01 1.2724E-01

0800 .0000 .0000 6.0176E-01 3.2300E-01

6750 .0000 .0000 5.0503E-01 3.2770E-01

3550 .0000 .0000 3.7452E-01 2.7852E-01

9450 .0000 .0000 3.3511E-01 2.4029E-01

0000 2.0000 .0000 6.6886E-01 1.1296E-01

9450 4.0100 1.0100 7.2577E-01 6.0812E-01

3500 4.0100 1.0100 7.9223E-01 6.0589E-01

6800 4.0100 1.0100 7.7074E-01 6.3769E-01

0700 4.0100 1.0100 7.5216E-01 7.2881E-0!

0000 2.0000 i.0100 2.8012E-01 6.9952E-01

0800 .0000 1.0100 -2.2964E-01 6.7099E-01

6750 .0000 1.0100 -2.6726E-01 5.7291E-0!

3550 .0000 1.0100 -2.7713E-01 5.1069E-01

9450 .0000 i.0100 -2.9167E-01 4.4999E-01

0000 2.0000 1.0100 2.0044E-01 5.2798E-01

PROPAGATION CONSTANTS (i/ft - k-MULTIPLIED)

& AXIAL WAVELENGTH, inches F => Fwd, B => Bkwd

MX NY RePKF imPKF ZWLF RePKB ImPKB ZWLB

1 i 13.938300 .000000 5.409

! 2 10.268870 .00000O 7.342

2 i 11.722930 .000000 6.432

2 2 6.971423 .000000 10.815

3 ! .000000 5.754962 ********

3 2 .000000 11.042920 ********

4 1 -.000001 17.814720 _*_*****

4 2 -.000001 20.154170 *_******

-13

-i0

-ll

-6

938300

268870

722930

971423

000000

000000

000001

00000!

-5

-ii

-17

-20

.000000 -5.409

000000 -7.342

000000 -6.432

000000 -10.815

754962 ********

042920 ********

814720 ********

154170 ********

NUMBER OF CUT-ON MODES = 4

PROBLEM MODE ORDER = 8

MODE# MXF NYF MODE# MXB NYB

! ! 1 5 1 !

2 2 ! 6 2 !

3 1 2 7 1 2

4 2 2 8 2 2

FOR SUCCESSFUL SVD, INFO SHOULD BE ZERO. INFO = 0

J,AWSV = !

J,AWSV = 2

J,AWSV : 3

J,AWSV = 4

J,AWSV = 5

J,AWSV = 6

J,AWSV = 7

5 269103

5 139447

4 609812

4 187496

3 498797

2 471864

2 364881

Std Dev

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

i.000

1.000

1.000

1.000

!.000

!.000

1.000

1.000

1.000

1.000

1.000
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J,AWSV = 8 1.265114

_X = 5.2691E+00 _!N = 5.2691E-06

MEASURED MODE COEFFICIENTS

FORWARD

MODE# MX NY COMPLEX COEFFICIENT

l 1 2.24280E-0! 1.86984E-01

2 ! 2.46207E-02 2.21279E-02

1 2 -1.55680E-0! 5.94458E-02

2 2 -9.58030E-04 3.01652E-02

MAGNITUDE PHASE, deg

2.92001E-01 39.8182

3.310328-02 41.9477

1.66644E-01 159.1009

3.0!804E-02 91.8191

BACKWARD

MODE# MX NY COMPLEX COEFFICIENT

5 1 1 I.I0624E-02 3.32900E-02

6 2 1 -6.15369E-03 -3.25182E-03

7 1 2 2.22200E-02 -6.40232E-02

8 2 2 2.21101E-02 -2.86427E-03

MODE COEFFICIENT FIT STANDARD DEVIATIONS

J StdDev

i 2.4263E-01

2 3.2539E-01

3 3.2883E-01

4 5.83608-01

5 2.4263E-0!

6 3.2539E-01

7 3.2883E-01

8 5.8360E-0!

FORWARD ENERGY UPSTREAM = 2.4983E+00 WATTS

BACKWARD ENERGY UPSTREAM = -1.7467E-02 WATTS

MAGNITUDE PHASE, deg

3.50799E-02 71.6182

6.96005E-03 -152.1465

6.77694E-02 -70.8601

2.22949E-02 -7.3813

FORWARD ENERGY DOWNSTREAM =

BACKWARD ENERGY DOWNSTREAM =

DELTA PWL = -8.5478E+00 dB

3.4903E-01 WATTS

-1.5980E-02 WATTS
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A sample output file from RD2PMM3, with just two different mode expansion cases, is

the following

PROGRAM. RD2 P._w_43

RECTA_NGULAR DUCT MODAL MEASUREMENT DATA ANALYSIS

CASE HEADING

P4!-00-05.FRQ Processed time:Tue Jun 6 07:11:03

OUTPUT DATAFILE = M410005X.DAT

INPUT DATAFILE = UP410005.DAT

INPUT DATAFILE = DP410005.DAT

AT PLANE PAIR 1

AT PLANE PAIR 2

DUCT HEIGHT {Y] = 4.00000 in .33333 ft

DUCT WIDTH (X} = 5.00000 in .41667 ft

DIET FROM UPSTRM SENSOR PLANE TO TRTMT LEADING EDGE =

DIET FROM UPSTREAM, SENSOR #I TO DWNSTREAM SENSOR #i =

AIR TEMP = 70.00000 degF

DUCT MACH NO. = .00000

24.50000 in

56.00000 in

2.04167 ft

4.66667 ft

FREQUENCY = 2502.44100 Hz

SPEED OF SOUND = 1128.06500 ft/s

WAVE NUMBER = 13.93830 I/It

SVD SINGULARITY FACTOR = 1.00000E-06

PRESSURE REFERENCE SENSOR DESIGNATION =

PRESSURE REFERENCE SPL = 139.895 dB

J DSGN X, in. Y, in. Z, in. PTFReal

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

18

19

23

1 4.9200

2 3.0050

3 1.6500

4 .0300

5 .0C00

6 .0450

1.6550

8 2.9200

9 4.9050

!0 5.0000

!! 4 9200

12 3 0050

13 i 6500

14 0300

15 0000

16 0450

i7 1 6550

!8 2 9200

19 4 9050

20 5 0000

4.0100

4.0100

4.0100

4.0100

2.0000

.0000

.0000

.0000

.0000

2.0000

4.0100

4.0100

4.0100

4.0100

2.0000

.0000

.0000

.0000

.0000

2.0000

NUMBER OF MEASUREMENT POINTS =

NUMBER OF X-MODES = 4

NUMBER OF Y-MODES = 2

2O

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

1.0050

1.0050

1.0050

1.0050

1.0050

1.0050

1.0050

1.0050

1.0050

1.0050

1.0000E+00

9 8648E-01

9 0i98E-0!

8 6899E-01

9 1667E-02

-7 7791E-01

-7 2478E-01

-8 3529E-01

-7 2777E-01

1 5730E-0!

7.2865E-01

6.6781E-0!

5.1930E-01

5.9725E-01

2.3969E-01

4.3609E-02

5.6790E-02

-I.0606E-01

-9.9855E-02

3.1314E-01

PTF!mag

0 0000E+00

-5 3924E-02

5 5225E-02

8 5207E-02

-2 4223E-0!

-6 1296E-01

-5 5777E-01

-7 1971E-01

-5.2825E-01

-2.7662E-0!

9.2140E-01

9.3325E-01

9.4847E-01

I.I033E+00

2.2903E-02

-8.9832E-0i

-8.7331E-01

-8.7862E-0!

-8.1788E-0!

8.2990E-02

Std Dev

1.000

1.000

1.000

1.000

1.000

!.000

1.000

1.000

1.000

1.000

1.000

1.000

!.000

1.000

i.000

1.000

1.000

1.000

1.000

1.000

PROPAGATION CONSTANTS (!/It - k-MULTiPLIED)

& AXIAL WAVELENGTH, inches F => Fwd, B => Bkwd

MX NY RePKF ImPKF ZWLF RePKB

i !

! 2

2 !

2 2

3 I

3 2

!3 938300

i0 268870

i! 722930

6 971423

000000

000000

000000 5.409

000000 7.342

000000 6.432

000000 10.815

5 754962 _*******

ii 042920 _*'*****

ImPKB ZWLB

-13.938300 .000000 -5.409

-10.268870 .000000 -7.342

-11.722930 .000000 -6.432

-6.971423 .000000 -10.815

.000000 -5.754962 ********

.000000 -11.042920 ****_***
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4 1 -.000001 17.814720 ******** .000001 -17.814720 *******_

4 2 -.000001 20.154170 ******** .000001 -20.154170 ********

MX NY FelD COL# BK-_D COL#

1 1 1 9

2 ! 2 i0

3 1 3 ii

4 ! 4 12

i 2 5 13

2 2 6 14

3 2 7 15

4 2 8 16

FOR SUCCESSFUL SVD, INFO SHOULD BE ZERO. INFO =

J,AWSV = 1 14.806920

J,AWSV : 2 14.010460

J,AWSV = 3 6.947521

J,AWSV = 4 6.765834

J,AWSV = 5 4.981485

J,AWSV = 6 4.476947

J,AWSV = 7 4.142041

J,AWSV = 8 3.895124

J,AWSV = 9 3.518194

J,AWSV = i0 2.802498

J,AWSV = !i 2.455015

J,AWSV = 12 2.365283

J,AWSV = 13 1.749348

J,AWSV : 14 1.697060

J,AWSV = 15 1.172557

J,AWSV = 16 1.086329

W__<X = 1.4807E_01 WMIN = 1.4807E-05

MEASURED MODE COEFFICIENTS

FORWAR D

MX NY COMPLEX COEFFICIENT MAGNITUDE PHASE, deg

! 1 1.34938E-01 -2.90361E-01

i 2 -8.99480E-01 -3.07793E-01

2 1 -2.57174E-02 2.00361E-02

2 2 -1.37300E-03 -7.16467E-02

3 1 6.66241E-03 4.38428E-02

3 2 2.52635E-02 1.91754E-02

4 1 -1.65993E-02 -4.85092E-02

4 2 -2.27930E-02 -2.02527E-02

3.20184E-01 -65.0744

9.50684E-01 -161.1095

3.26010E-02 142.0783

7.16599E-02 -91.0978

4.43461E-02 81.3594

3.17165E-02 37.1991

5.12706E-02 -108.8904

3.04908E-02 -138.3773

BACW_ARD

MX NY COMPLEX COEFFICIENT MAGNITUDE PHASE, deg

i 1 -4.51382E-02

1 2 3.93688E-02

2 1 1.59755E-03

2 2 5.09446E-02

3 1 5.72343E-03

3 2 -8.61400E-03

4 1 -5.7663!E-04

4 2 -6.83364E-03

-i 29154E-02

-7 67778E-03

3 !3039E-02

5 22596E-02

-2 77855E-03

-! 00824E-02

2 68092E-03

-3 14445E-03

4.69496E-02 -164.0325

4.01105E-02 -11.0354

3.13446E-02 87.0785

7.29823E-02 45.7300

6.36223E-03 -25.8952

1.32611E-02 -130.5092

2.74223E-03 102.1386

7.52238E-03 -155.2908

MODE COEFFICIENT FIT STANDARD DEVIATIONS

J StdDev

1 2.6427E-01

2 4.06!6E-01

3 7.3369E-0i

4 4.4145E-0i

5 3.3911E-01

6 6.6382E-01

7 5.3950E-0!

8 4.4201E-31

9 2.6427E-01

i0 4.0616E-01
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i! 4.53i0E-01

12 9.9294E-02

13 3.3911E-01

14 6.6382E-01

15 2.1396E-01

16 8.1930E-02

?ROGRAH RD2PMH3

RECTANGULAR DUCT MODAL MEASUREMENT DATA ANALYSIS

CASE HEADING

P4!-00-O5.FRQ Processed time:Tue Jun 6 07:11:03

OUTPUT DATAFILE = M410005X.DAT

INPUT DATAFILE = UP410005.DAT AT PLANE PAIR i

INPUT DATAFILE = DP410005.DAT AT PLANE PAIR 2

DUCT HEIGHT (Y) = 4.00000 in .33333 ft

DUCT WIDTH [X} = 5.00000 in .41667 ft

DIST FROM UPSTRM SENSOR PLANE TO TRTMT LEADING EDGE =

DIST FROM UPSTREAM SENSOR #i TO DWNSTREAM SENSOR #i =

24.50000 in

56.00000 in

,AIR TEMP = 70.0000,0 degF

DUCT MACH NO. = .00000

FREQUENCY = 2502.44100 Hz

SPEED OF SOUND = 1128.06500 ft/s

WAVE NUMBER = 13.93830 i/It

SVD SINGULARITY FACTOR = 1.00000E-06

PRESSURE REFERENCE SENSOR DESIGNATION =

PRESSURE REFERENCE SPL = 139.895 dB

UPSTRE_ v -> DOhqJSTRE_ TP_ANSFER FUNCTION = 3.728600E-01 2.366900E-01

J DSGN X, in. Y, in. Z, in. PTFReal PTFImag

i i 4.9450

2 2 3.350'3

3 3 1.6800

4 4 .0700

5 5 .0000

6 6 .0800

7 ? 1.6750

8 8 3.3550

9 9 4.9450

10 _ 5.0000

ii !! 3.9450

12 12 3.3500

13 i3 1.6800

14 14 .0700

15 15 .0000

16 !6 .0800

17 17 1.6750

18 18 3.3550

19 19 4.9450

20 20 5.0000

4.0100

4.0100

4.0100

4.0100

2.0000

.0000

0000

0000

0000

2 0000

4 0100

4 0100

4 0100

4 0100

2 0000

0000

0000

0000

.0000

2.0000

NUMBER OF MEASUREMENT POINTS =

NUMBER OF X-MODES = 4

NUMBER OF Y-MODES = 2

20

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

1.0100

1.0!00

1 0100

1 0100

1 0100

i 0100

! 0100

! 0100

1 0100

! 0100

3.7286E-01 2.3669E-01

9.7359E-01 -2.2610E-02

9.6007E-01 8.3316E-03

9.7068E-01 -4.0927E-02

7.8031E-01 1.2724E-01

6.0176E-01 3.2300E-01

5.0503E-01 3.2770E-0!

3.7452E-01 2.7852E-01

3.35!IE-01 2.4029E-01

6.6886E-01 1.1296E-01

7.2577E-01 6.0812E-01

7.9223E-01 6.0589E-01

7.7074E-01 6.3769E-01

7.5216E-01 7.2881E-01

2.8012E-01 6.9952E-01

-2.2964E-01 6.7099E-01

-2.6726E-01 5.7291E-01

-2.7713E-01 5.1069E-01

-2.9167E-01 4.4999E-01

2.0044E-01 5.2798E-0!

PROPAGATION CONSTANTS [lift - k-MULTIPLIED)

& ,<XIAL WAVELENGTH, inches F => _wd, B => Bkwd

MX NY RePKF ImPKF ZWLF RePKB

! " !3.938300 .000000 5.409 -13.938300

i 2 iC.268870 .000000 7.342 -10.268870

2 i 11.722930 .000000 6.432 -11.722930

ImPKB ZWLB

.000000 -5.409

.000000 -7.342

.000000 -6.432

2.04167 ft

4.66667 ft

Std Dev

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1 000

1 000

1 000

1 000

! 000

i 000

1 000

1 000

1 000

1.000

48



2 6.971423 .000000 10.815

1 .000000 5.754962 *_*****_

2 .000080 ii.042920 *_****_

! -.000001 in.814720 _*_**_*

2 -.000001 2C.154170 ********

-6.971423 .000000 -10.815

.000000 -5.754962 *******_

.000000 -11.042920 ***_***_

.000001 -17.814720 _*******

.00008! -20.154170 *****_**

MX NY FWD COL# BKWD COL#

! 1 i 9

2 1 2 !0

3 1 3 !i

4 ! 4 12

! 2 5 13

2 2 6 14

3 2 7 15

4 2 8 16

FOR SUCCESSFUL SVD, INFO SHOULD BE ZERO. INFO = 0

J,AWSV = i 15.304210

J,AWSV = 2 13.798030

J,AWSV = 3 6.726806

J,AWSV = 4 5.581583

J, AWSV = 5 4.776353

J,AWSV = 6 4.434527

J, AWSV = 7 4 . 177710

J,AWSV = 8 3. 927159

J,AWSV = 9 3. 452292

J,AWSV = i0 2.945761

J,AWSV = ii 2.579583

J,AWSV = 12 2.309944

J,AWSV = 13 1.997982

J,AWSV = 14 1.502061

J,AWSV = 15 1.198104

J,AWSV = 16 9.730095E-01

9_JAX = 1.5304E+0! _MIN = 1.5304E-05

MEASURED MODE COEFFICIENTS

FORWARD

MX NY COMPLEX COEFFICIENT MAGNITUDE PHASE, deg

1 1 2.20887E-01 1.85616E-01

1 2 -1.55600E-01 5.91786E-02

2 1 2.14!97E-02 2.10687E-02

2 2 -1.52943E-03 3.38961E-02

3 1 2.52804E-02 -6.83934E-03

3 2 -3.61784E-03 -1.83505E-03

4 i 1.99567E-03 -5.85673E-03

4 2 -9.07!59E-04 3.080_7E-03

2.88521E-01 40.0409

1.66473E-01 159.1769

3.00449E-02 44.5267

3.39306E-02 92.5855

2.61892E-02 -15.1384

4.05662E-03 -153.1048

6.18741E-03 -71.1835

3.21155E-03 106.4075

BACKWARD

MX NY COMPLEX COEFFICIENT

! i 1.08770E-02 3.53515E-02

1 2 2.16747E-02 -6.36685E-02

2 1 -4.26381E-03 -5.43283E-05

2 2 2.3258!E-02 -7.75607E-03

3 1 -1.63557E-02 5.12006E-03

3 2 5.43420E-03 1.48397E-03

4 I 3.40208E-04 2.07723E-03

4 2 -5.33287E-04 -1.39540E-04

MODE

J

MAGNITUDE PHASE, deg

3.69869E-02 72.8979

6.72568E-02 -71.1999

4.26416E-03 -179.2700

2.45172E-02 -18.4424

1.71384E-02 162.6175

5.633!8E-03 15.2739

2.10490E-03 80.6987

5.51241E-04 -165.3367

COEFFICIENT FIT STANDARD DEVIATIONS

StdDev

1 2.7423E-01

2 3.6430E-01

3 8.5133E-01

4 3.9004E-01

5 3.4790E-0!

6 6.2362E-0i

7 6.2393E-01
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8 3.9481E-0!

. __.7423E-0!

i0 3.6430E-8!

ii 5.5608E-0i

_ _.2672E-02

13 3.4790E-01

14 6.2362E-01

15 2.8592E-01

16 8.!578E-02

FORWARD ENERGY UPSTREAM =

BAC_4ARD ENERGY UPSTREAH =

2.5153E+00 WATTS

-2.2421E-02 WATTS

FORWARD ENERGY DOWNSTREAM =

BACKWARD ENERGY DO_STRE._M =

DELTA ?WL : -8.6635E+00 dB

3.4217E-01 WATTS

-1.6348E-02 WATTS

NEXT MODE COMBINATION

NUMBER OF MEASUREMENT POINTS =

NUMBER OF X-MODES = 2

NUMBER OF Y-MODES = 4

2O

?RGPAGATION CONSTANTS (i/ft - K-MULTIPLIED)

& AXIAL WAVELENGTH, inches F => Fwd, B => Bkwd

MX NY RePKF ImPKF ZWLF RePKB

1 i i3.938300 .000000 8.409

! 2 10.268870 .000000 7.342

1 3 -.000001 12.689750 ********

i 4 -.OOOO0! 24.600040 ********

2 1 11.722930 .000000 6.432

2 2 6.971423 .000000 10.815

2 3 -.00000! 14.760710 *******_

2 4 -.000001 25.729570 ***_***_

-13 938300

-i0 268870

000001

000001

-ii 722930

-6 971423

00000!

000001

MX NY .--74D COL# BKWD COL#

! i i 9

2 l 2 i0

I 2 3 i!

2 2 4 12

i 3 5 13

2 3 6 14

I 4 7 15

2 4 8 16

FOR SUCCESSFUL SVD, INFO SHOULD BE ZERO. INFO = 0

J,AWSV = 1

J,AWSV : 2

J,AWSV = 3

J,AWSV = 4

J,AWSV = 5

J,AWSV = 6

J,AWSV = 7

J,AWSV= 6

J,AWSV= 9

J,AWSV = i0

J,AWSV = ii

J,AWSV = 12

J,AWSV - 13

J,AWSV = 14

J,AWSV : 15

J,AWSV = 16

23.047460

19.182560

10.500460

9.561220

4.556411

4.497321

4 267453

3 561482

3 476959

2 708364

1 844897

1 831978

8.316209E-07

5.038856E-07

4.465964E-07

1.335616E-07

ImPKB ZWLB

.000000 -5.409

• 000000 -7.342

-12.689750 ********

-24.600040 ****_***

• 000000 -6.432

.000000 -10.815

-14.760710 *_****_÷

-25.729570 ********
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_%IAX = 2.3047E+01

J, SING AWSV= 13

J, SING AWSV= 14

J, SING AWSV= 15

J, SING AWSV= 16

WMIN = 2.3047E-05

8.3162E-07

5.0389E-07

4.4660E-07

!.3356E-07

MEASURED MODE COEFFICIENTS

FORWARD

MX NY COMPLEX COEFFICIENT

! 1 1.392228-01 -2.72742E-0!

! 2 -2.8!917E-0! -I.00403E-01

! 3 -2.683908-02 -1.80876E-02

1 4 -2.98804E-01 -6.868658-02

2 i -2.49721E-02 !.079i9E-02

2 2 9.34493E-03 -n.69038E-03

2 3 -6.39968E-03 -3.30033E-03

2 4 9.23154E-03 -7.99469E-03

MAGNITUDE PHASE, deg

3.06220E-01 -62.9578

2.99262E-01 -160.3970

3.23650E-02 -!46.0228

3.06597E-01 -167.0542

2.72042E-02 156.6279

1.21025E-02 -39.4525

7.20056E-03 -152.7197

1.2212!E-02 -40.8932

BACKWARD

MX NY COMPLEX COEFFICIENT

i !

i 2

1 3

! 4

2 i

2 2

2 3

2 4

-3 37953E-62

-2 752798-01

7 78177E-03

3 20010E-03

-8 201818-03

$ 96645E-03

6 04235E-03

8 29347E-03

MAGNITUDE PHASE, deg

-2.66190E-03 3.38999E-02 -175.4964

-4.i5290E-02 2.78394E-0! -171.4210

2.10799E-03 8.06223E-03 15.1570

-I.02676E-01 i.02726E-01 -88.2148

1.15759E-02 1.41870E-02 125.3185

-7.81149E-03 1.18919E-02 -41.0621

8.4710!E-03 1.04052E-02 54.4999

-5.05687E-03 9.71358E-03 -31.3724

MODE COEFFICIENT PIT STANDARD DEVIATIONS

J StdDev

! 3.0319E-01

2 3.5688E-01

3 1.2270E-6!

4 1.5497E-01

5 4.7399E-01

6 4 7547E-01

7 1 3217E-01

8 ! 7171E-01

9 3 0319E-01

!0 3 5688E-01

i! i 2270E-01

!2 ! 5497E-01

13 1 6293E-01

14 1 3878E-0!

15 4 9808E-02

16 6 3850E-02

2ONUMBER OF MEASUREMENT POINTS =

HUMBER OF X-MODES = 2

NUMBER OF Y-MODES = 4

PROPAGATION CONSTANTS (i/ft - k-MULTIPLIED)

& AXIAL WAVELENGTH, inches : => Fwd, B => Bkwd

MX NY RePKP ImPKF ZWLF RePKB ImPKB ZWL8

-13.938300 .000000 -5.409

-10.268870 .000000 -7.342

.00000! -12.689750 *****_**

.00000! -24.600040 ********

-11.722930 .000000 -6.432

-6.971423 .000000 -10.815

.00000! -14.760710 *_*_**_*

.00000! -25.729570 *_******

I 1 13.938300 .000000 5.409

1 2 10.268870 .000000 7.342

1 3 -.000001 12.689750 ********

! 4 -.00000! 24.600040 *_******

2 1 11.722938 .000000 6.432

2 2 6.971422 .000000 10.815

2 3 -.000001 14.760710 *_******

2 4 -.000001 25.729570 *_****_*

MX NY E_4D COL# BKWD COL#

l i I 9

2 1 2 i0

1 2 3 ii
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2 2 4 12

! 3 5 13

2 3 6 14

1 4 7 15

2 4 8 16

FOR SUCCESSFUL SVD, INFO SHOULD BE ZERO. INFO =

J,AWSV = i

J,AWSV = 2

J,AWSV = 3

J,AWSV = 4

J,AWSV = 5

J,AWSV = 6

J,AWSV = 7

J,AWSV = 8

J,AWSV = 9

J,AWSV = i0

J,AWSV = ii

J,AWSV = 12

J,AWSV = 13

J,AWSV = 14

J,AWSV = 15

J,AWSV = 16

_@t<\ = 2.3047E+01

J, SING AWSV= 13

J, SING AWSV= 14

J, SING AWSV= 15

J, SING AWSV= 16

23 047460

19 182560

i0 500460

9 561220

4 556411

4 497321

4.267453

3.561482

3.476959

2.708364

1.844897

1.831978

8.316209E-07

5.038856E-07

4.465964E-07

1.3356i6E-07

W51IN = 2.3047E-05

8.3162E-07

5.8389E-07

4.4660E-07

i.3356E-07

MEASURED MODE COEFFICIENTS

FORWARD

MX NY

! i 2

1 2 -4

1 3 -5

i 4 -4

2 1 2

2 2 6

2 3 7

2 4 8

COMPLEX COEFFICIENT MAGNITUDE PHASE, deg

26594E-01 1.87760E-01 2.94276E-01 39.6458

07963E-02 1.53748E-03 4.08252E-02 177.8417

79262E-03 3.75135E-03 6.90123E-03 147.0726

01201E-02 5.42658E-03 4.04855E-02 172.2970

59220E-02 2.08156E-02 3.32452E-02 98.7648

59834E-03 9.62324E-03 1.16681E-02 55.5629

81686E-04 3.50984E-03 3.59583E-03 77.4444

06908E-03 9.88569E-03 1.27608E-02 50.7774

BAC_NARD

MX NY

! i

! 2

! 3

1 4

2 !

2 2

2 3

2 4

MODE

J

i

2

3

4

5

6

7

8

9

i0

ii

12

13

14

COMPLEX COEFFICIENT MAGNITUDE PHASE, deg

1.i1513E-02 3.i0205E-02 3.29640E-02

-3.62688E-02 6.19348E-03 3.67938E-02

1.79593E-03 -i.25379E-03 2.19029E-03

-1.62818E-02 -1.77365E-02 2.40766E-02

-7.27442E-03 -2.84364E-03 7.81047E-03

7.94985E-03 8.39731E-03 1.15635E-02

-1.22202E-03 -!.39147E-03 1.85190E-03

-1.46421E-03 -6.05460E-04 1.58446E-03

COEFFICIENT FIT STANDARD DEVIATIONS

StdDev

3.0319E-01

3.5688E-01

1.2270E-01

1.5497E-01

4.7399E-01

4.7547E-01

1.3217E-01

1.7171E-01

3.0319E-01

3.5688E-01

1.2270E-0!

1.5497E-01

1.6293E-01

1.3878E-O1

70.2274

170.3093

-34 9201

-132 5513

-158 6490

46 5679

-131 2902

-157 5346
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15 4.9808E-02

16 6.3850E-02

FORWARD ENERGY UPSTRE_

BAC_NARD ENERGY UPSTRE_ =

5.2287E-0i WATTS

-1.9061E-01 WATTS

EORWARD ENERGY DO_STREAM =

BACKWARD ENERGY DOWNSTREAM =

DELTA PWL = -2.5680E+00 dB

2.8947E-01 WATTS

-7.1766E-03 WATTS

Other than the particular modes used in the expansion, the output from the two versions

of the program provides the same information in the same format.
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Appendix B - Calibration of the Acoustic Data Acquisition System

Introduction

The acoustic data acquisition system consists of 20 upstream transducers, 20 downstream

transducers for Insertion Loss measurements and 2 transducers for the In-Situ Impedance

measurements. The signals from the 20 upstream transducers (numbered 1 through 20) pass

through VESHAY amplifiers (numbered 1 through 20) and are recorded on digital tape recorder
METRUM # 1.

Similarly, the signals from the 20 downstream transducers (numbered 21 through 40) pass

through VESHAY amplifiers (numbered 21 through 40) and are recorded on METRUM #2 tape

recorder. The signals from the two transducers for the In-Situ measurements pass through two

PACIFIC amplifiers and are recorded on one of the above METRUM tape recorders. For on-line

data reduction and analysis, 8 of the upstream signals and 8 of the downstream signals are fed to

the 16 channel SD9000 analyzer. Also the signals from the two In-Situ transducers are fed to the

PC based 2 channel analyzer for on-line computation of the impedance of test panels.

The calibration procedure described below is designed to correct acoustic data for

channel to channel differences and for converting the signal amplitudes to dB levels.

8.2 Calibration of the Signal Conditioning Amplifiers and the Tape Recorder Systems

For the calibration of the amplifiers and the tape recorder systems, set VESHAY gain to

100 and follow the steps described below.

1. Apply white noise signal source to VESHAY #1 through #20
2. Record calibration data on METRUM recorder #1

3. Apply white noise signal source to VESHAY #21 through #40
4. Record calibration data on METRUM recorder #2

5. If VESHAY #1 is replaced for any reason, repeat steps A and B.If VESHAY #21 is

replaced for any reason, repeat steps C and D

6. Ifa VESHAY from #2 through #20 is replaced, apply white noise signals to VESHAY #1

and the new VESHAY and record the signals on the METRUM #1

7. If a VESHAY from #22 through #40 is replaced, apply white noise signals to VESHAY

#21 and the new VESHAY and record the signals on the METRUM #2

8.3 Relative Calibration of the Kulite Transducers

For the following steps, set each VESHAY gain to 1000
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1. Install the "reference Kulite" transducer in position # 1 of the calibration tube and connect

it to VESHAY #1.

2. Install up to 4 Kulite transducers in positions #2 through #5 of the calibration tube and

connect them to VESHAYs #2 through #5 respectively.

3. Apply white noise signal to the calibration speaker and record the data on METRUM #1.

8.4 Amplitude Calibration

For the following steps, set each VESHAY gain to 1000.

1. Apply a discrete frequency Piston Phone signal (250 Hz., 120 dB) to the "reference

transducer and record the data on METRUM # 1.

2. Install the "reference Kulite" transducer in position #1 of the calibration tube and connect

it to VESHAY # 1.

3. Install up to 4 Kulite transducers in positions #2 through #5 of the calibration tube and

connect them to VESHAYs #2 through #5 respectively.

4. Apply discrete frequency 250 Hz signal to the calibration speaker and record the data on
METRUM # 1.

8.5 Relative and Amplitude Calibration of the Transducers, Signal Conditioning

Amplifiers, and the Tape Recorder System

For the following steps, set the gain for each SPECIFIC and VESHAY amplifier to

1000.

1. Install the "reference Kulite" transducer in position # 1 of the calibration tube and connect

it to VESHAY #1.

2. Install the In-Situ Kulites #1 and #2 in positions #2 and #3 of the calibration tube and

connect them to PACIFIC #1 and PACIFIC #2 respectively.

3. Connect VESHAY #1 to channel #1 and PACIFIC #1 and PACIFIC #2 to channels 21

and 22 of METRUM # 1 (or METRUM #2 if necessary).

4. Apply white noise signal to the calibration speaker and record the data.

5. Apply discrete signal at 250 Hz to the calibration speaker and record the data.

The above calibration data will be reduced and applied, during the reduction of recorded

test data as described in Appendix C.
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Appendix C - Procedure for the Reduction of the Flow Duct Acoustic Data

Introduction

The acoustic data acquisition system for the insertion loss measurements (by the modal

decomposition method) consists of two arrays with 20 transducers in each array.

The upstream transducer array consists of 20 Kulite transducers (numbered 1 to 20),

connected to channels 1 through 20 of the digital tape recorder METRUM #1 through the signal

conditioning amplifiers VESHAY # 1 through #20.

The downstream transducer array also consists of 20 Kulite transducers (numbered 1 to

20), connected to channels 1 through 20 of the digital tape recorder METRUM #2 through the

signal conditioning amplifiers VESHAY #21 through #40.

The procedures described below show how to reduce the recorded calibration and test data.

All recorded data is to be reduced in the frequency range 0 to 10kHz with a bandwidth between 10
and 20 Hz.

9.2 Relative Calibrations Of A Transducer Array System

The transducer array system consists of 20 Kulites, 20 Veshay amplifiers and a Metrum tape
recorder.

The relative calibration correction for a transducer channel #i relative to the transducer

channel #1 is defined as the transfer function Xc(i, 1,f), obtained when both transducer systems are

subjected to the same acoustic pressure input in a calibration tube. This transfer function is given by

Xc(i,l,f) = {S(i,f).S*(1,f)}/{ S(1,f).S*(1,f)} = Xs(i,l,f). Xt(i,l,f) (1)

where f is the acoustic frequency, Xs(i,l,f') is the relative correction of the "system" channels

(without transducers) consisting of the amplifiers, the tape recorder channels and the Analyzer's A-

D converter channels. Xt(i, 1,f) is the relative correction of the ith and the 1 st transducers.

The calibration data were recorded in accordance with the procedures described in

Appendix B. The data reduction procedures are described below.

Suffixes "u" and "d" are used below to refer to the upstream and downstream transducer
systems.
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9.2.1 Relative Calibrations X% (i,l,f) Of The Upstream Systems

The upstream systems consist of Veshay Amplifiers #1 through 20, the Metrum #1 tape

recorder and the SD9000 analyzer.

Execute the following steps to reduce the recorded data:

A. Connect output channels 1 through 16 of METRUM #1, to input channels 1 through

16 of the SD9000 respectively.

B. Play back white noise data recorded per section 1.2, steps A and B of Appendix B and

analyze to obtain the time averaged values (frequency domain averaging) of the

following transfer function data

Xs_(i,l,f) = {Su(i,f). Su*(1,f)}/{Su(1,f). Su*(1,f)}

where i = 2, 3, 4, 5,. ...... , 16.

C. Connect output channels 1, 17, 18, 19 and 20 of METRUM #1, to input channels 1, 2,

3, 4 and 5 of the SD9000 respectively.

D. Play back white noise data recorded per section 1.2, steps A and B of Appendix B and

analyze to obtain the time averaged values (frequency domain averaging) of the

following transfer function data

Xs_(i+16,1,f) = {Su(i,f). Su*(1,f)}/{Su(1,f). Su*(1,f

where i = 2, 3, 4 and 5.

9.2.2 Relative Calibrations Xsd (i, 1,f) Of The Downstream Systems

The downstream system consists of Veshay amplifiers #21 through 40, the Metrum #2

tape recorder & the analyzer SD9000.

Execute the following steps to reduce the recorded data:

A. Connect output channels 1 through 16 of METRUM #2, to input channels 1 through

16 of the SD9000 respectively.

B. Play back white noise data recorded per section 1.2, steps C and D of Appendix B and

analyze to obtain the time averaged values (frequency domain averaging) of the

following transfer function data

Xsd(i,l,f) = {Sd(i,f). Sd*(1,f)}/{Sd(1,f). S_'(1,f)}
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wherei = 2, 3, 4, 5,. ......, 16.

C. Connectoutput channels1, 17,18, 19and20of METRUM #2, to input channels1, 2,
3, 4 and5 of the SD9000respectively.

D. Playbackwhite noisedata recordedpersection1.2,stepsC andD of AppendixB and
analyzeto obtain the time averagedvalues (frequency domain averaging) of the
following transferfunction data

Xso(i+16,1,f)= {Sa(i,f).Sa'(1,f)}/{Sd(1,f).Sd'(1,f)}

wherei = 2, 3, 4 and5.

9.2.3 The Calibration Of The Transducers Relative To A Reference Transducer

The relative calibration data for the Kulite transducers were recorded per the instructions in

Section 8.3 of Appendix B. All data were recorded using VESHAY amplifiers # 1, 2, 3, 4 and 5 on

tracks 1 through 5 of METRUM #1. A reference transducer was connected to VESHAY #1.

Transducers # n, (n+l), (n+2) and (n+3) were connected to VESHAY #2 through 5.

9.2.3.1 Relative Calibration Of The 20 Upstream Transducers

Execute the following steps.

A. Connect output channels 1 through 5 of METRUM #1 to input channels 1 through 5 of

the SD9000 analyzer.

B. Play back the relative calibration data for the upstream transducers # n, (n+l), (n+2) and

(n+3), where n = 1. Analyze the data to obtain the time averaged values (frequency

domain averaging) of the following transfer function data

Xc_(n,0,f) = {S(n,2,f). S'(0,1,f)}/{S(0,1,f). S*(0,1,f)}

Xc_(n+l,O,f) = {S(n+l,3,f). S°(O,I,f)}/{S(O,I,O. S'(O,l,f)}

X_(n+2,0,f) = {S(n+2,4,f). S*(O,l,f)}/{S(O,l,f). S'(O,l,f)}

Xc_(n+3,0,f) = {S(n+3,5,f). S'(O,I,f)}/{S(O,I,O. S'(O,l,f)}

Note: in the term S(x, y, f) , x represents the transducer number, y represents the A-D

channel number and f represents the frequency.

C. Calculate the relative calibration data for the transducers # n, (n+l), (n+2) and (n+3) as

follows
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Xt_(n,O,f)-- Xc_(n,O,f)/ Xs_ (2,1,f)

Xt_(n+ 1,O,f) = Xc_(n+ 1,O,f) / Xs_ (3,1,f)

Xt_(n+2,0,O = Xc_(n+2,0,O / Xs_(4,1,0

Xtu(n+3,0,f) = Xc_(n+3,0,f) / Xs_ (5,1,f)

D. Repeat steps B and C with n=5, n=9 and n=13.

We should now have transducer calibrations Xtu(i,0,f);

upstream transducers relative to the reference transducer.

i=l, 2, 3, 4, ... ,20; for all the

9.2.3.2 Relative Calibration Of The 20 Downstream Transducers

Execute the following steps.

A Connect output channels 1 through 5 of METRUM #1 to input channels 1 through 5 of

the SD9000 analyzer.

B. Play back the relative calibration data for the downstream transducers # n, (n+l), (n+2)

and (n+3), where n = 1. Analyze the data to obtain the time averaged values (frequency

domain averaging) of the following transfer function data

Xca(n,O,f) = {S(n,2,f). S*(O,l,f)}/{S(O,l,f). S*(O,l,f)}

Xca(n+l,O,f) = {S(n+l,3,f). S*(O,i,f)}/{S(O,l,f). S'(O,l,f)}

Xcd(n+2,0,f) = {S(n+2,4,0. S*(O,m,f)}/{S(O,l,f). S*(O,l,f)}

Xcd(n+3,0,f) = (S(n+3,5,f). S'(0,1,f))/{S(0,1,f). S'(0,1,f))

Note: in the term S(x, y, f) , x represents the transducer number, y represents the A-D

channel number and f represents the frequency.

C. Calculate the relative calibration data for the transducers # n, (n+l), (n+2) and (n+3) as

follows

Xta(n,O,f) = Xcd(n,O,f) / Xsa (2,1,f)

Xta(n+l,O,O = Xca(n+l,O,f) / Xsa (3,1,f)

Xtd(n+2,0,f) = Xcd(n+2,0,f) / Xsd(4,1,t)
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Xtd(n+3,0,f)= XCd(n+3,0,f)/ XSd(5,1,f)

D. Repeat steps B and C with n=5, n=9 and n=13.

We should now have transducer calibrations Xtd(i,0,f); i=l, 2, 3, 4, ... ,20; for all the

downstream transducers relative to the reference transducer.

9.2.4 Calculation Of The Total System Relative Calibrations

We have reduced the relative calibration data in sections 2.2,1, 2.2.2 and 2.2.3 to obtain the

following relative calibration data:

Xsu (i, 1,f) ; the relative calibrations of the upstream amplifiers, VESHAY #1 through #20,

connected to the input channels #1 through #20 of tape recorder METRUM #1. No

transducers were included during this calibration. These calibrations are with respect to the

upstream data channel #1.

XSd (i,l,f) ; the relative calibrations of the downstream amplifiers, VESHAY #21 through

#40, connected to the input channels #1 through #20 of tape recorder METRUM #2. No

transducers were included during this calibration. These calibrations are with respect to the

upstream data channel # 1.

• Xtu(i,0,f) ; the relative calibrations of the 20 upstream Kulite transducers with respect to a
reference transducer #0.

• Xtd(i,0,f) ; the relative calibrations of the 20 downstream Kulite transducers with respect to
a reference transducer #0.

As during the test, transducer #1 is connected to the data channel #1, we have to determine

"total channel calibration correction", using equation (1), as follows :

Xc_ (i, 1,f) = Xsu (i, 1,f). Xt,,(i,0,f)/Xtu(1,0,f)

XCd (i, 1,f) = XSd (i, 1,f). Xtd(i,O,f)/Xtd(1,O,f)

where the data channel number, i = 1, 2, 3, 4, 5, .., 20. The calibrations, Xc_ (i, 1,f) and XCd (i, 1,f),

will be used in correcting the reduced test data from the upstream and the downstream data
channels.
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9.3 Reduction And Correction Of The Transducer Signals

This applies to the 20 upstream and 20 downstream transducer signals recorded on tape

recorders Metrum #1 and Metrum #2, respectively

All recorded data will be reduced in the frequency range 0 to 10 kHz with the same setup

that was used for the reduction of the calibration data. These data will be reduced using the "signal

enhancement method" (time domain averaging).

9.3.1 Reduction Of The Recorded Data From The Up Stream Transducers

Execute the following steps to reduce the upstream data.

A. Connect output channels #1 through 16 of METRLrM #1 recorder to input channels 1

through 16 of the SD9000 analyzer.

B. Replay the recorded test data, staring at a specified value of the [RIG time code, and

reduce to obtain the following time averaged transfer function data

Hmu (i, 1, f) = {S (i, f). S* (1, f)} / {S (1, f). S* (1, f)}

and the auto spectral value {S (1, f). S* (1, f) }

where i = 2, 3, 4, 5, ..., 16; fis the acoustic excitation frequency.

C. Connect output channels #1, #17, #18, #19 and #20 of METRUM #1 recorder to input

channels 1 through 5 of the SD9000 analyzer.

D. Replay the recorded test data, staring at the specified value of the IRIG time code used

in step B above, and reduce to obtain the following time averaged transfer function data

Hmu (i+16, 1, f) = {S (i, f). S* (1, f)} / {S (1, f). S* (1, f)}

where i = 2, 3, 4 and 5.

E. Compute the corrected transfer function data as follows:

Hc_ (i, 1, f) = Hmu (i, 1, f)/Xca (i,l,f)

SPLu (1,f') =

for i = 2, 3, 4, 5, . ........ ,20.

9.3.2 Reduction Of The Recorded Data From The Downstream Transducers

Execute the following steps to reduce the downstream data.
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A Connect output channels #1 through 16 of METRUM #2 recorder to input channels 1

through 16 of the SD9000 analyzer.

B. Replay the recorded test data, starting at a specified value of the IRIG time code (used

in the reduction of upstream data), and reduce data to obtain the following time

averaged transfer function data

Hrnd (i, 1, f)= {S (i, f). S* (1, f)} / {S (1, f). S* (1, f)}

and the auto spectral value

{S (1, f). S* (1, f)}

where i = 2, 3, 4, 5, ..., 16; fis the acoustic excitation frequency.

C. Connect output channels #1, #17, #18, #19 and #20 of METRUM #2 recorder to input

channels 1 through 5 of the SD9000 analyzer.

D. Replay the recorded test data, starting at the specified value of the I]LIG time code used

in step B above, and reduce to obtain the following time averaged transfer function data

Hmu (i+16, 1, f) = {S (i, f). S* (1, f)} / {S (1, f). S* (1, f)}

where i = 2, 3, 4 and 5.

E Compute the corrected transfer function data as follows:

HCd (i, 1, f) = Hrna (i, 1, f)/XCd (i, 1,f)

SPLa (1,f) =

for i = 2, 3, 4, 5, ......... ,20.
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10. Appendix D - DC Flow Resistance and Impedance Measurements with Grazing Flow

10.1 Measurement of Impedance with Grazing Flow by the Two-Microphone Method

Attempts at the in-situ measurement of impedance in the presence of grazing flow using

the two-microphone method were generally unsuccessful, for all instrumented panels. The duct

test treatment panel instrumented for the grazing flow measurement is shown schematically in

Volume 3 in Figure 2.2-2. Figure 10.1 is an illustration of the method of mounting the two

microphones in a treatment panel hexcell.

Facesheet
ii i ilii_ Hexcell
i i i i i iiiiiiiiiiiiii!i!ii !iiiiiiiiii iii iiiiiiii. wall

J

Surface Microphone
Installation Tube

-----___ Backplate
Microphone

Rigid
Backplate

Figure 10.1 Illustration of microphone installation in hexceil cavity for in-situ two-

microphone grazing flow impedance measurement method.

A check of the measurement technique in a rigid wall cavity showed excellent correlation

of measured data with theory. This check was performed before setting up the panels in the Flow

Duct. The impedance with broad band excitation at Mach 0.0 was designed to check the quality

of test location in the panel. If the measurement looked reasonable then "good data" would be

expected under grazing flow conditions. Unfortunately, the checks were unsatisfactory for all the

four panels. Due to the questionable validity of the results, no impedance measurement data is

presented.

The principal reason for the problem is suspected to be the transmission of sound through

hexcell cavity walls. A second possibility is a problem with the seal at the bond between the

facesheet and the particular hexcell chosen for the impedance measurement. Although extreme
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carewastakenin the fabricationof thesepanels,it is difficult to insurethat eachindividualhexcell
is properlysealed.Apparentlyanunluckychoiceof cell to instrumentwasmadeonfour separate
occasions.

Onemethodof possiblypreventingthis problemis to insert a rigid-walledtube into the
backof thetreatmentpanelaftercuttingout a coreplug,asshownin Figure 10.2. Specialcarein
fabricationwould be requiredto sealthe tube againstthe facesheet.The tube neednot be the
samedepthasthe honeycomb,and,in fact, tubesof severaldifferentlengthscouldbeinstalledfor
differentfrequencyranges. Thetwo microphoneswouldbe installedthrougha rigid backplateat
theendof thetube. Thesmallertubeholdingthe microphonethat is to be locatedat thefaceplate
could beusedasa guideto drill a hole in thefaceplatethroughwhichthe microphonecould be
insertedandalignedwith thefaceplatesurface.

Porous Facesheet

I J L ! i I !"f-'PI J I r

Hexcell

Walls -- _, _.=.._._..;_=

Surface Microphone /

f Faceplate-Tube
I I _ I I _TI i I I [ I r Ej I

J

Seal

i Instrumentation
Tube Insert

Rigid
J Backplate

Back Cavity
I 4t_

Microphone

Figure 10.2 Diagram of proposed improved two-microphone impedance measurement
method.

Although the two-microphone in-situ impedance measurement with grazing flow has been

accomplished successfully in the past by numerous researchers, it is questionable whether

improvements in the method are worth pursuing for application to scaled treatment designs. The

problems in measurement will be compounded by the increased precision required to make the

measurement at higher frequencies, particularly considering the smaller hexcell cross-dimension

required. Other methods of measuring impedance in the presence of grazing flow at high

frequencies are likely to hold more promise, and their development would be a better investment

of resources than attempting to improve the two-microphone method.
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10.2 DC Flow Tests with Grazing Flow

10.2.1 The Test Apparatus

These tests were conducted in the 4 inch by 5 inch rectangular flow duct apparatus. This

test apparatus is schematically illustrated in Figure 10.3 below. A schematic drawing of the test

panel instrumented with the DC flow feature is shown in Volume 3, Figure 2.2-2.

P'-V
Ap_

5.0 in.---I_

IT FLOW

4.0 in.

I Test area on face sheet of panel

I_ (1 in. by 3 in._/ectangular area)

I ;]n0e0aCgsheRetYtl° ] Test Panel [ 1.0mby3in
cross section tube

regulate flow rate

To vacuum pump

Flow Meter
J

*-- J

-- Apf-_

B.T,

I

/,'r-,,,, Circular Cross
Section

Figure 10.3 Diagram of the DC flow resistance with grazing flow apparatus installation in

the grazing flow duct.

The DC flow test area is built into the single-degree-of-freedom test panel. The air sucked

through the sample flowed into a tube with a 1.0 in. by 3.0 in cross section at the top and a
circular cross section at the bottom. A laminar flow element Meriam flow meter with maximum

flow rate of 20 SCFM was used to measure the flow rates. A needle valve was also employed

downstream of the flow meter to control air flow through the test area.

Validyne pressure transducers were used to measure the pressures Ps, APs, Pt, and APf.

The pressure transducers were calibrated with the help of a Druck Model 601 digital pressure

indicator with the labeled uncertainty of 1% full scale. The Druck was calibrated by the Evendale

Standards Lab on the established cycles, by a traceable standard to an accuracy of 0.05% full

scale. A thermocouple was used to measure the temperature of the air downstream of the sample.

The temperature of the flow in the DC flow apparatus was assumed to be constant.
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Great care was taken to eliminate any leakages in the apparatus between the test panel and

the flow meter. This was necessary to ensure measurement accuracy. There are, however, some

anomalies in the data which suggest possible leaks in the "sample region" of the panels.

10.2.2 Test Data

DC flow resistance measurements in the presence of gazing flow were made on four

different instrumented panels, as indicated in Table 10.1, below. The measurements were made at

Mach 0.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 in the GEAE Flow Duct Facility.

Panel

Designation
1.1.2

Treatment

Description Scale
Faceplate POA

or Resistance
Cavity

Depth, in.
PP SDOF FULL 10% 1.0

1.2.1 PP SDOF HALF 10% 0.5

1.3.1 PP SDOF PP 1/5 10% 0.5

DPTH 1/2

4.2 LINEAR SDOF FULL 90 Rayl 1.0

Table 10.1 List of panels instrumented for DC flow resistance with grazing flow
measurement.

The measured data were fit to the standard linear form for DC flow resistance as a

function of through-flow velocity,

RDC = A + BU (10.-1)

where A is the intercept and B is the slope obtained from a linear curve-fit to the measured data.

Three plots are presented for each panel in Figures 10.4 to 10.15. The first plot in each

group of three shows the measured DC flow resistance data for all of the flow Mach numbers.

The second plot shows the curve fit for the intercept (A-value) as a function of Mach number.

The third plot shows the slope (B-value) as a function of Mach number.
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The results for Panel 1.2.1 in Figures 10.7, 10.8, and 10.9 indicate a measurement

problem, suspected to be caused by a defective panel sample. These results should be ignored,

but are included to indicate the nature of the data when measurement problems are experienced.

The results for the two perforated plate panels show expected behavior as a function of

grazing flow Mach number, where the linear part of the flow resistance, the intercept A, increases

approximately linearly with Mach number, except possibly for a slightly more rapid increase as

Mach 0.8 is approached. Panel 1.1.2 is a full scale facesheet, with 0.039 inch hole diameter

and0.025 inch thickness, while Panel 1.3.1 is a 1/5 scale facesheet, with 0.008 inch hole diameter

and 0.005 inch thickness. For Panel 1.1.2, the nonlinear part, the slope B, increases up to about

Mach 0.5, and then levels off. The B-value for the 1/5 scale Panel 1.3.1 decreases with Mach

number, going to zero at about Mach 0.7.

The wiremesh facesheet, Panel 4.2, shows less sensitivity of both A-value and B-value to

grazing flow, as might be expected. The A-value, as shown in Figure 10.14, drops slowly with

Mach number up to about Mach 0.65, then seems to increase rapidly. The B-value shows a slow

increase up to about Mach 0.7, then drops.

DC flow resistance measurements with grazing flow, performed with care and using

carefully instrumented panels, show promise as a useful method for obtaining information about

flow effects on the resistance of facesheets, even up to Mach numbers of 0.8. Use of these tests

in the future and further correlation of the data with analytical models is highly recommended.
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