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Effects of Focusing on Radiation Damping and Quantum Excitation in Electron Storage Rings

Zhirong Huang and Ronald D. Ruth
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(Received 8 September 1997)

In this Letter we calculate the effects of a linearly varying focusing field on radiation damping and
quantum excitation in an electron storage ring using a quantum mechanical perturbation approach. This
model predicts correctly the limits of pure bending and pure focusing. We find that quantum excitation
can be exponentially suppressed by the focusing field when the radiation formation length is comparable
to the transverse-oscillation wavelength. This new result on quantum excitation may have interesting
applications in the generation of ultralow emittance beams. [S0031-9007(98)05544-6]

PACS numbers: 29.27.Eg, 29.20.Dh, 41.60.Ap, 41.75.Ht
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In an electron storage ring, synchrotron radiation cr
ated by bending magnets gives rise to the radiation dam
ing of the beam emittances in all 3 degrees of freedo
[1]. It is well known [1–3] that the damping effects ar
counteracted by quantum excitation due to random ph
ton emissions, which leads to natural emittances when
damping and the excitation rates balance. Electron st
age rings routinely obtain such natural emittances, a
the art of lattice design in modern synchrotron radiatio
sources or damping rings is to minimize these emittanc
under various constraints.

On the other hand, it has been shown [4] that, in
straight, continuous focusing channel, the transverse da
ing rate is independent of the particle energy, and that
quantum excitation is induced. In fact, the final normalize
transverse emittance in an ideal focusing system is limi
only by the uncertainty principle and is equal to one-ha
of the Compton wavelength of the electron, which is mu
smaller than the natural transverse (horizontal or vertic
emittance achieved in a normal damping ring.

Therefore, the radiation reaction in a focusing syste
is very different from that in a bending magnet. Althoug
the transverse focusing quadrupoles are present in a sto
ring to confine the beam, and they can modify the indivi
ual radiation damping rates by coupling with the bendin
fields in a combined-function system [3], their contribu
tions to the overall radiation effects are usually negligib
compared to the bending dipoles. The length associa
with a typical photon emission (the radiation formatio
length) is on the order ofryg [2,3], wherer is the bending
radius andg is the electron energy in units of its rest energ
mc2. The standard treatment of quantum excitation c
be quasiclassical because the radiation formation lengt
much shorter than the transverse-oscillation waveleng
Thus, one can model the radiation to be instantaneous w
a continuous spectrum of frequencies and treat the qu
tum nature of radiation as fluctuations about the avera
rate [1,3]. In Ref. [2], radiation damping and quantum e
citation were analyzed by a rigorous quantum mechani
approach for a weak focusing synchrotron. The resu
agree with those of Refs. [1,3] and confirm the quasicla
sical picture of quantum excitation.
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However, as the strength of the transverse focusin
increases or as the bending field gradually decreases,
radiation formation length and the transverse-oscillatio
wavelength may become comparable. The radiation
this case cannot be regarded as instantaneous. Th
it is desirable to have a general treatment of radiatio
effects in a storage ring with arbitrarily strong bending an
focusing present. In this Letter, we extend the quantum
mechanical analysis developed in Ref. [4] to include th
bending case and show that quantum excitation can
suppressed by a strong focusing environment. Both th
pure bending and the pure focusing are two limiting case
of the general result. Finally, we point out that there exist
an interesting regime that might be useful for ultralow
emittance generation.

We consider here a simple model of storage ring
with a continuous, linear focusing field around a circula
electron orbit provided by a uniform magnetic field. The
model for the focusing field used below is electrostatic in
origin such as that created by a dilute cloud of positiv
ions. The more realistic magnetic focusing field will be
discussed later. Suppose that a reference electron w
momentump0 has a circular trajectory with radiusr. Let
s be the distance along the ideal orbit from some referenc
point, andx andy be the horizontal and vertical distance
from the ideal orbit, the three components of the vecto
potentialA for the uniform bending field in the curvilinear
coordinates systemsx, s, yd are [5]

Ax ­ Ay ­ 0 ,

As ; sA ? ŝd
µ

1 1
x
r

∂
­ 2

cp0

e

√
x
r

1
x2

2r2

!
.

(1)

We assume the focusing forces2Kxd in the horizontalx
direction and neglect the electron motion in the vertica
y direction; the total energy of the electron can be
decomposed as

E ­

s
m2c4 1 p2

xc2 1
sps 2 eAsycd2c2

s1 1 xyrd2 1
1
2

Kx2

ø Es 1
p2

xc2

2Es
1

1
2

Kesx 2 xed2 2
1
2

Kex2
e . (2)
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s,
he
Here the longitudinal energy,Es ­
p

m2c4 1 p2
s c2, the

effective focusing strength,Ke ­ K 1 fp2
0c2 1 3sps 2

p0dp0c2gysEsr2d, the equilibrium orbit displacement
xe ­ sps 2 p0dcysKerd, and the betatron oscillation
frequency, vb ­

p
Kec2yEs, are all functions ofps.

Thus, the transverse motion is a harmonic oscillation th
is coupled with the longitudinal momentum through th
equilibrium orbit displacement and the oscillation fre
quency. Following the treatment of Ref. [4] that neglec
spin, the eigenenergies of the electron in this system ar

Esn,psd ­ Es 1 "vb

µ
n 1

1
2

∂
2

1
2

Kex2
e , (3)

and the eigenstates are

csn,psdsrd ­

µ
1

2pr

∂1y2

exp

µ
i

ps

"
s

∂
xsn,psdsxd ,

xsn,psdsxd ­

√
Cn

x0

!1y2

exp

"
2

sx 2 xed2

2x2
0

#
Hn

√
x 2 xe

x0

!
,

(4)

where n ­ 0, 1, 2, . . . is the transverse quantum leve
Cn ­ s2nn!

p
p d21 is a normalization constant,x0 ­p

"c2yEsvb is the ground statesn ­ 0d oscillation ampli-
tude, andHn is thenth-order Hermite polynomial. Both
the eigenenergies and eigenstates are functions ofn and
ps, the two quantum numbers that correspond to consta
of motion in the absence of radiation.

The change of the transverse quantum leveln due to
spontaneous radiation can be calculated with first-ord
time-dependent perturbation theory. The transition ra
Wfi from an initial stateisn, psd into a final statefsn0, p0

sd
with the emission of a photonskg ­ kg k̂g , vg ­ kgcd is
given by [4]

Wfi ­
Z dkg

s2pd3

2pe2

"kgc

2X
l­1

jk fje2ikg?rsy ? êldjilj2

3 2pdsvg 2 vfid , (5)

where vfi ­ sEi 2 Efdy", y . s p 2 eAycdc2yE is
a

,

at
e
-
ts
e

l,

nts
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te

the electron velocity operator, andê1,2 are two orthogonal
unit polarization vectorssê1,2 ? k̂g ­ 0d.

Since we are interested in the total radiation effect
we can integrate Eq. (5) over the momentum space of t
photons. First, let us expand thed function,

dsvg 2 vfid ­
1

2p

Z 1`

2`

dte2isvg2vfidt , (6)

and write Eq. (5) as

Wfi ­
e2

p"c

Z 1`

2`
dteivfi t

Z Z kgdkgdVg

4p
e2ikg ct

3

2X
l­1

Z
dr1cp

fsr1de2ik?r1 sy1 ? êldcisr1d

3
Z

dr2cfsr2deikg?r2syy
2 ? êldcp

i sr1d , (7)

where y1,2 is used to distinguish between the velocity
operators that operate on coordinater1 ­ sx1, s1d and
r2 ­ sx2, s2d. By applying the polarization sum rule,

2X
l­1

sy1 ? êld syy
2 ? êld ­ y1 ? y

y
2

2 sy1 ? k̂gd syy
2 ? k̂gd , (8)

and introducing the Green’s function [2],

Gst, rd ­ 2
Z Z kgdkgdVg

4p
e2ikgct1ikg?r

­ lim
e!10

1
c2st 2 ied2 2 r2

, (9)

we obtain

Wfi ­
e2c
p"

Z 1`

2`

dteivfi t
Z Z

dr1dr2cp
f sr1dcf sr2d

3 Gst, jr1 2 r2jd

√
1 2

y1 ? y
y
2

c2

!
cisr1dcp

i sr2d .

(10)

We make the change of variablesf ­ ss1 2 s2dyr

andf0 ­ ss1 1 s2dyr, and insert Eq. (4) into Eq. (10) to
write
Wfi ­
e2c
p"

Z 1`

2`
dte2vfi t

Z 2p

22p

df

2p
exp

"
i

sps 2 p0
sdrf

"

# Z Z
dx1dx2xfsx1dxfsx2dGVxisx1dxisx2d , (11)

where
Gst, x1, x2, fd ­ fc2st 2 ied2 2 sr 1 x1d2 2 sr 1 x2d2 1 2sr 1 x1d sr 1 x2d cosfg21, (12)

V sx1, x2, fd ­ 1 2
y1 ? y

y
2

c2 ­ 1 2
sp1 2 eA1ycd ? sp2 2 eA2ycdy

E2yc2

. 1 2
spx1px2 1 p2

s dc2

E2 cosf 2
spx1 1 px2dpsc2

E2 sinf 1 O

√
x2

1,2

r2

!
. (13)
he
In the last equation,px1 ­ 2i"≠y≠x1 and px2 ­
2i"≠y≠x2 are the transverse momentum operators,
ps is the eigenvalue of both operatorsps1 andps2.

From Eq. (3), we can make the approximationvfi .
ysps 2 p0

sdy" 1 vbsn 2 n0d with y ­ psc2yE. Ex-
nd
panding the final transverse wave function in terms of t
initial equilibrium orbit displacement, i.e.,

xsn0,p0
sdsxd .

"
1 1

sps 2 p0
sdc

Ker

≠

≠x

#
xsn0,psdsxd , (14)
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and introducing the notationsps 2 p0
sdry" ­ l, we finally arrive at

Wfi ­
e2c
p"

Z 1`

2`

dteisn2n0dvb t
Z 2p

22p

df

2p
exp

∑
il

µ
f 2

yt
r

∂∏ Z Z
dx1dx2xn0sx1dxn0sx2dFlxnsx1dxnsx2d , (15)
s
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where we have dropped the subscriptps from all of
the transverse wave functions and defined a transve
operator

Flst, x1, x2, fd ;

√
1 1 il

px1c
Ker2

! √
1 1 il

px2c
Ker2

!
3 Gst, x1, x2, fdVsx1, x2, fd . (16)

From Ref. [2], the rate of change of the transver
quantum number is given by

dn
dt

­
X
n0

X
p0

s

sn0 2 ndWfi ­
X
n0

X
l

sn0 2 ndWfi . (17)

The sum overl can be first carried out by using the set o
relations,X

l

exp

∑
il

µ
f 2

yt
r
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­ 2pdp

µ
f 2

yt
r

∂
,

X
l

il exp

∑
il

µ
f 2

yt
r
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­ 2pd0

p

µ
f 2

yt
r

∂
,

(18)

wheredpsfd is the periodicd function with periodicity
2p , and the prime means a derivative with respect tof.
Integration by parts overf yields

dn
dt

­
e2c
p"

X
n0

sn0 2 nd
Z 1`

2`
dteisn2n0dvbt

3
Z Z

dx1dx2xn0sx1dxn0sx2dFxnsx1dxnsx2d ,

(19)
where

Fst, x1, x2d ­

√
1 2

px1c
Ker2

≠

≠f

! √
1 2

px2c
Ker2

≠

≠f

!
GV ,

(20)
and the derivative with respect tof is to be evaluated at
f ­ ytyr due to the delta functions in Eq. (18).

The Green’s function in Eq. (12) plays the role o
determining the major contribution of the time integra
Let us define a dimensionless time variablet ­ ctyr and
expand cosf in the denominator of Eq. (12) to obtain

G .

"
Ist, fd 2

√
x1 2 x2

r

!2

2
x1 1 x2

r
f2

#21

r22,

(21)
where Ist, fd ­ st 2 ied2 2 f2 1 f4y12 .
t2sg22 1 t2y12d sincef ­ ytyr. The time integral is
significant only whent , f , 1yg, or ct , ryg (the
radiation formation length). Thus, we can also expa
Eq. (13) for smallf to obtain

V .
1

g2 1
f2

2
1

px1px2c2

E2 2
spx1 1 px2dc

E
f

1 O

√
x2

1,2

r2

!
. (22)

We can further expand the Green’s function
2320
rse

e

f

f
l.

d

G .
1

r2

"
1
I

1
sx1 2 x2d2

r2

1
I2 1

sx1 1 x2d
r

f2

I2

1
sx1 1 x2d2

r2

f4

I3 1 · · ·

#
. (23)

To evaluate the double integrals of the transvers
coordinates in Eq. (19), let us writepx andx in Eqs. (20),
(22), and (23) in terms of the raising and lowering
operators (a anday) of the harmonic oscillator

px ­ 2i

s
Esvb"

2c2 sa 2 ayd ,

x 2 xe ­

s
c2"

2Esvb

sa 1 ayd .
(24)

Applying these operators to the transverse wave function
leads to three types of selection rules. Those generat
by constant terms have the selection rulen0 ­ n, and thus
have no contribution to the summation overn0 due to the
multiplying factorsn0 2 nd in Eq. (19). Those generated
by terms proportional topx1px2, x1x2, px1x2, andpx2x1
have the selection rulen0 ­ n 6 1, and are the lowest-
order terms in". Those generated byx2

1x2
2 , x2

1x2px2,
andx1px1x2

2 have the selection rulen0 ­ n 6 2, but they
are higher-order terms in" and will be ignored. Thus,
the summation overn0 can be greatly reduced by the
selection rulen0 ­ n 6 1. Finally, the time integral can
be performed using the residue technique in the comple
t plane. After some lengthy but straightforward algebraic
manipulations, we obtain

dn
dt

­ 2
2
3

e2g3

r2mc
sj2 2 1dn

1
e2g3

r2mc
exps22

p
3 jd

144j3 Fsjd , (15)

where

Fsjd ­ 55
p

3 1 330j 1 262
p

3 j2 1 300j3

1 48
p

3 j4, (26)

and j ­ srygdyb is the ratio of the radiation formation
length over the reduced betatron wavelengthb ­ cyvb .

From Ref. [4], the normalized transverse emittance´N

of the beam is related to the average of the transver
quantum leveln by ´N ­ l-ckn 1 1

2 l. Thus, we have

d´N

dt
­ 2Gb

"
sj2 2 1d

√
´N 2

l-c

2

!

2 l-c
exps22

p
3 jd

96j3 Fsjd

#
, (27)

whereGb ­ 2e2g3ys3r2mcd is the damping constant due
to the bending field. Equation (27) describes the gener
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result of radiation (anti-)damping (the first term) an
quantum excitation (the second term) in this combine
function system. The relative amount of radiation dampin
and quantum excitation, as well as the natural emittan
(if any), can be determined by a single dimensionle
parameterj, which is a measure of the radiation formatio
length in units of the reduced betatron wavelength.

In normal synchrotrons and storage rings, the radiati
formation length is much shorter than the reduced betatr
wavelength, i.e.,ryg ø b or j ø 1, and Eq. (27)
becomes

d´N

dt
­ Gb

(√
´N 2

l-c

2

!
1 l-c

55
p

3
96j3

)

­ Gb

(√
´N 2

l-c

2

!
1 l-c

55
p

3 g3

96n3

)
, (28)

where n ­ ryb is the betatron tune for the simple
system. The first term of Eq. (28) is antidamping instea
of damping because the combined-function system stud
here has a negative horizontal damping partition numb
sJx ­ 21d [3]. However, the second term of Eq. (28
gives the same quantum excitation rate as that using
quasiclassical model in a smooth storage ring [3].

In the opposite limit, wherer ! ` (a straight focusing
channel), we haveryg ¿ b or j ¿ 1; Eq. (27) then
reduces to

d´N

dt
­ 2Gbj2

√
´N 2

l-c

2

!
­ 2Gc

√
´N 2

l-c

2

!
, (29)

whereGc ­ Gbj2 ­ 2reKy3mc is the damping rate due
to the focusing field, andre ­ e2ymc2 is the classical
electron radius. As expected, no quantum excitation
induced, and the fundamental emittancel-cy2 can be
reached in the ideal focusing channel [4].

In the intermediate regime where the radiation fo
mation length is on the order of the reduced betatro
wavelengthsryg , bd, the rate of quantum excitation is
exponentially suppressed according to Eq. (27) and sta
to depart from the result based on the quasiclassical mo
(Fig. 1). A physical interpretation can be given as fo
lows: The transverse energy levels of the electron are w
separated as a result of the strong focusing force. Rad
tive transition to higher transverse levels becomes impo
sible for the electron with almost all photon emissions, an
hence the quantum excitation is suppressed by the focus
environment.

Although the vertical motion is omitted from our sim-
plified model, it can be included in our analysis withou
difficulty. It is clear that quantum excitation to the ver
tical emittance will be similarly suppressed by the ve
tical focusing force when the radiation formation lengt
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FIG. 1. Quantum excitation rate in units ofGbl-c, predicted by
(a) the quasiclassical model, i.e., the second term of Eq. (28
and (b) the quantum mechanical perturbation approach, i.e., th
second term of Eq. (27).

becomes comparable to the reduced betatron wavelen
in the vertical direction. In addition, we note that all of the
above results can be extended to alternating-gradient a
separated-function systems when longitudinal variation
of both bending and focusing fields are short compare
with the radiation formation length. Thus, the electron
in such lattices will damp instead of antidamp in the hori
zontal direction, and the natural transverse emittance m
be substantially reduced because of the enhancement of
diation damping and the suppression of quantum excitatio
due to very strong focusing. In Ref. [6], we have provide
preliminary lattice considerations on a focusing-dominate
damping ring based on the results obtained in this Lette
and discussed some limiting effects to the ultimate emi
tance of an intense electron beam. Generation of ultralo
emittance electron beams is an interesting subject in
own right, and the effects discussed here may have pote
tial applications in novel accelerators or light sources.
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