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Effects of Focusing on Radiation Damping and Quantum Excitation in Electron Storage Rings
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In this Letter we calculate the effects of a linearly varying focusing field on radiation damping and
guantum excitation in an electron storage ring using a quantum mechanical perturbation approach. This
model predicts correctly the limits of pure bending and pure focusing. We find that quantum excitation
can be exponentially suppressed by the focusing field when the radiation formation length is comparable
to the transverse-oscillation wavelength. This new result on quantum excitation may have interesting
applications in the generation of ultralow emittance beams. [S0031-9007(98)05544-6]

PACS numbers: 29.27.Eg, 29.20.Dh, 41.60.Ap, 41.75.Ht

In an electron storage ring, synchrotron radiation cre- However, as the strength of the transverse focusing
ated by bending magnets gives rise to the radiation damprncreases or as the bending field gradually decreases, the
ing of the beam emittances in all 3 degrees of freedomadiation formation length and the transverse-oscillation
[1]. Itis well known [1-3] that the damping effects are wavelength may become comparable. The radiation in
counteracted by quantum excitation due to random phathis case cannot be regarded as instantaneous. Thus,
ton emissions, which leads to natural emittances when thi¢ is desirable to have a general treatment of radiation
damping and the excitation rates balance. Electron stoeffects in a storage ring with arbitrarily strong bending and
age rings routinely obtain such natural emittances, anébcusing present. In this Letter, we extend the quantum
the art of lattice design in modern synchrotron radiationrmechanical analysis developed in Ref. [4] to include the
sources or damping rings is to minimize these emittancesending case and show that quantum excitation can be
under various constraints. suppressed by a strong focusing environment. Both the

On the other hand, it has been shown [4] that, in goure bending and the pure focusing are two limiting cases
straight, continuous focusing channel, the transverse dampf the general result. Finally, we point out that there exists
ing rate is independent of the particle energy, and that nan interesting regime that might be useful for ultralow
guantum excitation is induced. In fact, the final normalizedemittance generation.
transverse emittance in an ideal focusing system is limited We consider here a simple model of storage rings
only by the uncertainty principle and is equal to one-halfwith a continuous, linear focusing field around a circular
of the Compton wavelength of the electron, which is muchelectron orbit provided by a uniform magnetic field. The
smaller than the natural transverse (horizontal or verticalinodel for the focusing field used below is electrostatic in
emittance achieved in a normal damping ring. origin such as that created by a dilute cloud of positive

Therefore, the radiation reaction in a focusing systemons. The more realistic magnetic focusing field will be
is very different from that in a bending magnet. Althoughdiscussed later. Suppose that a reference electron with
the transverse focusing quadrupoles are present in a storag@mentump, has a circular trajectory with radiys Let
ring to confine the beam, and they can modify the individ-s be the distance along the ideal orbit from some reference
ual radiation damping rates by coupling with the bendingpoint, andx andy be the horizontal and vertical distance
fields in a combined-function system [3], their contribu-from the ideal orbit, the three components of the vector
tions to the overall radiation effects are usually negligiblepotential A for the uniform bending field in the curvilinear
compared to the bending dipoles. The length associatetbordinates systerfx, s, y) are [5]
with a typical photon emission (the radiation formation A=A =0
length) is on the order gf /y [2,3], wherep is the bending * 4 ’ (1)
radius andy is the electron energy in units of its rest energy A, = (A3 < 1) _ _¢Po (i X_2>

) . s = H1 + + .
mc*~. The standard treatment of quantum excitation can p e \p 2p?
be quasiclassical because the radiation formation length js
much shorter than the transverse-oscillation wavelengt
Thus, one can model the radiation to be instantaneous wi
a continuous spectrum of frequencies and treat the qua
tum nature of radiation as fluctuations about the averag
rate [1,3]. In Ref. [2], radiation damping and quantum ex- (ps — eA,J)2c2 |
citation were analyzed by a rigorous quantum mechanical g = \/m2c4 + p2c? + Ps J + — Kx2

e assume the focusing for¢e Kx) in the horizontalx
1zpﬁirection and neglect the electron motion in the vertical
. direction; the total energy of the electron can be
decomposed as

approach for a weak focusing synchrotron. The results (1 +x/p)?
agree with those of Refs. [1,3] and confirm the quasiclas- p2c? 1 5 1 )
sical picture of quantum excitation. ~E; 2E, + B Ke(x = xe)” — 5Kexe- (2)

2318 0031-900798/80(11)/2318(4)$15.00 © 1998 The American Physical Society



VOLUME 80, NUMBER 11 PHYSICAL REVIEW LETTERS 16 MRcH 1998

Here the longitudinal energy, = /m?c* + pZc?, the the electron velocity operator, a@g, are two orthogonal
effective focusing strengthk, = K + [pdc? + 3(p; —  unit polarization vectorse, , - l?:y = 0).
po)poc?]/(Esp?), the equilibrium orbit displacement, Since we are interested in the total radiation effects,
xe = (ps — po)c/(K.p), and the betatron oscillation we can integrate Eq. (5) over the momentum space of the
frequency, wg = JK.c?/E,, are all functions ofp;. photons. First, let us expand tlaefunction,
Thus, the transverse motion is a harmonic oscillation that 1 +o )
is coupled with the longitudinal momentum through the d(wy — wypi) = oy f dte™ =)l (6)
equilibrium orbit displacement and the oscillation fre- i -
quency. Following the treatment of Ref. [4] that neglectsand write Eq. (5) as
spin, the eigenenergies of the electron in this system are W e’ f*‘” dreiont ] ] kydk,d()., okt

_ 47

fi

mhce

o

Eup) = E; + hwﬁ<n + %) - %Kgxz, ©) 2 T
Xy f drigy(ri)e”"" " (vy - e\)ipi(r1)
A=l

and the eigenstates are

1/2 X dryirs(ra) iy ra LIPS V() @)
Yinp)(r) = <2L> exp(i &S>X(n,p5)(X), ] 2prra)e v) A 1

P h (4) where v, is used to distinguish between the velocity

C, 1/2 (x — x¢)? X — Xe operators that operate on coordinate= (x{,s;) and
Xnpy)(x) = ol B B H, W )° 2= (x2.s2). Byapplying the polarization sum rule,
0

2

where n = 0,1,2,... is the transverse quantum level, D (w1 -y () - &) = v - v)
C, = (2"n!/7)~" is a normalization constantyy = A=l — (v - k)l - k), (8)
\/ﬁcz/Eow is the ground staté: = 0) oscillation ampli- ) . , .
tude, andH,, is thenth-order Hermite polynomial. Both and introducing the Green’s function [2],
the eigenenergies and eigenstates are functions arfd Glr.r) — _] ] kydk,d(), o ikycrtik, T
ps, the two quantum numbers that correspond to constants ’ 47
of motion in the absence of radiation. |

The change of the transverse quantum levelue to = lim — — 5> 9
spontaneous radiation can be calculated with first-order, e=t0 (1 — i€)* —r
time-dependent perturbation theory. The transition rateve obtain

W; from an initial state (n, p,) into a final statef (', p}) 2 (T .
with the emission of a phototk, = kyk,,w, = kyc)is ~ Wr = — dre' 1’ ] ] dridry(r)y(ra)
given by [4] o +
L] s
dk, 2me? & o X G(t,|ry — "2|)<1 - )%("1)% (r2).
Wy = r > Kfle ™ (v - el c?
Q2m)? hkyc = (10)
X 27m8(wy — wfi), (5) We make the change of variables = (s; — s2)/p
where s = (Ei — Ep)/h, v = (p — eA/c)/E is | an_ct1¢’ = (s; + s2)/p, and insert Eq. (4) into Eq. (10) to
write
ec (77 7 (ps — py)
Wi = S0 [ et [T SR exg i PR [ e x ()G i) (1)
mh J_w —om 27T h
where
G(t,x1,x2, ) = [c*(t —i€)* — (p + x1)* = (p + x2)> + 2(p + x1) (p + x2) COsP]™", (12)
t
. vt vy (p1 — eAi/c) - (pr — eAr/o)t
V(xi,x,¢)=1— 2 1= E2/c2
(pxlpx2 + pSZ)CZ (le + Px2)PsC2 . X%’z
=1 - E2 Cos¢p — £ sing + O F . (13)
In the last equation,p,; = —ihd/dx; and py, = ! panding the final transverse wave function in terms of the

—ifid/dx, are the transverse momentum operators, anchitial equilibrium orbit displacement, i.e.,
ps is the eigenvalue of both operatgrs; and p;». ( Ne o
i ion; = Ps — Ps)C
From Eq. (3), we can make the approximation; Yo (@) = |:1 4 \Ps 5 }X(m,pg(X), (14)

v(ps — p)/t + wg(n — n') with v = p,c?/E. Ex- K.p ax
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and introducing the notatiotp, — p!)p/h = I, we finally arrive at

elc [T% o 27 d ) vt
Wi = — | dre'™ ”)‘”"’f —¢exp[ll<¢ - ;ﬂf f dx1dxo X (x0) X (X2) Fi xn(x1) Xn(x2),  (15)

—27 2m
where we have dropped the subscript from all of | B U 0 S € 0?1t ) ¢
the transverse wave functions and defined a transverse pr| 1 p? I? p I?
operator () + x0)? B
1+ x0) ¢
Fi(t,xn,x ¢) = (1 + it 2L (1 4 iy 2226 T T } (23)
2 k k Kep2 Kep2

To evaluate the double integrals of the transverse
X G(t,x1,%2, )V (1,52, 4) . (16)  coordinates in Eq. (19), let us wrig, andx in Egs. (20),
From Ref. [2], the rate of change of the transversq22) and (23) in terms of the raising and lowering

quantum number is given by operators ¢ andat) of the harmonic oscillator
dn
E = Z Z(I’ll - n)Wf,- = Z Z(I’ll - n)Wf,- . (17) — Eswﬁh (a - aT)
n' Pj/ n' 1 px 202 B
The sum ovel can be first carried out by using the set of 27 (24)
relations, X — Xe = (a +ah).
D exp[iz<¢ - v—tﬂ — 276 <¢ - v—t> 2
7 p b p)’ Applying these operators to the transverse wave functions

Z il ex by constant terms have the selection mile= n, and thus

! have no contribution to the summation ovérdue to the
where §,(¢) is the periodicé function with periodicity — multiplying factor(n’ — n) in Eq. (19). Those generated
27r, and the prime means a derivative with respecito by terms proportional tQ . p.2, x1x2, px1X2, and pox;

. vt / vt (18) leads to three types of selection rules. Those generated
g — — || =276,|d — — |,
p P

Integration by parts ovep yields have the selection rule’ = n + 1, and are the lowest-
dn _ e’ S — ) ]”’ Jrein=nogt order terms in%i. Those generated byix3, x1x2pia,
dt  wh 4 —o andx; p,ix3 have the selection rule’ = n *+ 2, but they

are higher-order terms ifi and will be ignored. Thus,
X f f dx1dx) X (1) X () F xn (x1) xn(x2) , the summation overn’ can be greatly reduced by the
selection rulen’ = n + 1. Finally, the time integral can

(19)  pe performed using the residue technique in the complex

where 7 plane. After some lengthy but straightforward algebraic
; 3 ; 3 : ions, .
Froxim) — [ 1 - pac 0\, _ pxac 9 Gv. manipulations, we obtain
K.p? a¢ K.p? d¢ d 7 2e3
20 _”:__&(52_1),1
(20) dt 3 p2mc

and the derivative with respect tb is to be evaluated at 2 3 .
& = vt/p due to the delta functions in Eq. (18). + & expl 2\/35 ¢)

The Green’s function in Eq. (12) plays the role of pme  144¢
determining the major contribution of the time integral. where

Let us define a dimensionless time variable= c¢z/p and _ 553 NV 3
expand cog in the denominaztor of Eqg. (12) toﬁqbtain F(&§) = 55V3 + 3306 + 262v3 &~ + 300¢

F(§), (15)

G = [I(T,¢) _ ('xl - X2 _ X1 + X2 ¢2 p—z’ + 48\/554, (26)
P and ¢ = (p/vy)/B is the ratio of the radiation formation
(21) length over the reduced betatron wavelength= c/wg.
where I(r, ) = (1 — i€)? — ¢p> + ¢p*/12 = From Ref. [4], the normalized transverse emittasge

T(y ? + 7°/12) since¢ = vt/p. The time integral is of the beam is related to the average of the transverse

significant only whenr ~ ¢ ~ 1/y, orct ~ p/y (the  quantum leveh by ey = A.(n + 3). Thus, we have

radiation formation length). Thus, we can also expand d X

Eqg. (13) for smallg to obtain aen _ _Fb|:(§2 _ 1)<3N _ _v>
$* | papac®  (pa t po)c dt 2

1
v —+2 4
2 2 exp(—2+/3
Y 22 E E - AC%F@)} (27)
+ 0(%2). (22)
p wherel', = 2e¢2y3/(3p%mc) is the damping constant due

We can further expand the Green’s function to the bending field. Equation (27) describes the general
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result of radiation (anti-)damping (the first term) and o ; ; ; ; .
quantum excitation (the second term) in this combined-
function system. The relative amount of radiation damping
and quantum excitation, as well as the natural emittance '
(if any), can be determined by a single dimensionless,
parameteg, which is a measure of the radiation formation € 10*
length in units of the reduced betatron wavelength.
In normal synchrotrons and storage rings, the radiatiorx , .

cRation

formation length is much shorter than the reduced betatr0|§ T
wavelength, ie.,p/y < B or ¢ <1, and Eq. (27) 2
becomes 8 10°
T

dey A 553 0l

— =T - = |+ X

di ”KSN 2 ) 963 ]

A 55v/3 3 10° ' ' ' ' '
- Fb[(‘(’w o 7) T A 963 |’ (28) ° radigi?on formati1on Iength/:ésduced bet:tron Wavezlésngth ?

FIG. 1. Quantum excitation rate in units Bf A, predicted by
where » = p/B is the betatron tune for the simple (a) the quasiclassical model, i.e., the second term of Eq. (28),

system. The first term of Eq. (28) is antidamping insteacgggo(ﬁétpee;rﬂuoinélg.n(;ng?hamcal perturbation approach, i.e., the
of damping because the combined-function system studied

here has a negative horizontal damping partition number
g bing p becomes comparable to the reduced betatron wavelength

(Jy = —1) [3]. However, the second term of Eq. (28) . h iical directi In addii e that all of th
gives the same quantum excitation rate as that using tHQb € vertical direction. in aadition, we note that all of the
ove results can be extended to alternating-gradient and

guasiclassical model in a smooth storage ring [3]. a ; o N
In the opposite limit, wherg — o (a straight focusing separated-function systems when longitudinal variations

. of both bending and focusing fields are short compared
fgggg:gl[owe have/y > f or ¢ > 1; Bq. (27) then with the radiation formation length. Thus, the electrons

in such lattices will damp instead of antidamp in the hori-
dey X zontal direcf[ion, and the natural transverse emittance may
— —bez(sN - C) = —FC(SN - —C>, (29) be substantially reduced because of the enhancement of ra-
diation damping and the suppression of quantum excitation
due to very strong focusing. In Ref. [6], we have provided
wherel', = I',¢% = 2r,K /3mc is the damping rate due preliminary lattice considerations on a focusing-dominated
to the focusing field, and, = ¢?/mc? is the classical damping ring based on the results obtained in this Letter,
electron radius. As expected, no quantum excitation igind discussed some limiting effects to the ultimate emit-
induced, and the fundamental emittandg/2 can be tance of an intense electron beam. Generation of ultralow
reached in the ideal focusing channel [4]. emittance electron beams is an interesting subject in its
In the intermediate regime where the radiation for-own right, and the effects discussed here may have poten-
mation length is on the order of the reduced betatrorial applications in novel accelerators or light sources.
wavelength(p/y ~ B), the rate of quantum excitation is  This work is supported by Department of Energy,
exponentially suppressed according to Eqg. (27) and startSontract No. DE-AC03-76SF00515.
to depart from the result based on the quasiclassical model
(Fig. 1). A physical interpretation can be given as fol-
lows: The transverse energy levels of the electron are well[1] K. Robinson, Phys. Re\l11, 373 (1958).
separated as a result of the strong focusing force. Radiaf2] A.A. Sokolov and I.M. Telnov,Synchrotron Radiation
tive transition to higher transverse levels becomes impos- _ (Pérgamon, New York, 1968).
sible for the electron with almost all photon emissions, and (3 ,\l\/llo Slgrld?wsganford Linear Accelerator Center Report
Q(relci(;gr:t;fe?#'antum excitation is suppressed by the focusm% Z. Huang, P. Chen, and R.D. Ruth, Phys. Rev. L&t

. L . . 1759 (1995).
Although the vertical motion is omitted from our sim- [5] R.D. Ruth, Stanford Linear Accelerator Center Report

plified model, it can be included in our analysis without No. SLAC-PUB-4103 1986.
difficulty. It is clear that quantum excitation to the ver- [6] z. Huang and R.D. Ruth, “Proceedings of the 7th Work-

tical emittance will be similarly suppressed by the ver- shop on Advanced Accelerator Concepts, Lake Tahoe,
tical focusing force when the radiation formation length 1996,” Report No. SLAC-PUB-7369 (to be published).

dt 2
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