Softwood Biomass to Ethanol Feasibility Study

Final Report: June 14, 1999

Merrick & Company Aurora, Colorado

ULDCOM

National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov

Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle

Contract No. DE-AC36-99-GO10337

Softwood Biomass to Ethanol Feasibility Study

Final Report: June 14, 1999

Merrick & Company Aurora, Colorado

NREL Technical Monitor: K. Kadam

Prepared under Subcontract No. AXE-8-18020-01

National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov

Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle

Contract No. DE-AC36-99-GO10337

This publication was reproduced from the best available copy Submitted by the subcontractor and received no editorial review at NREL

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: <u>mailto:reports@adonis.osti.gov</u>

Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: <u>orders@ntis.fedworld.gov</u> online ordering: <u>http://www.ntis.gov/ordering.htm</u>

Acknowledgments

This work was funded by the Bioconversion Element of the office of Fuels Development of the U.S. Department of Energy. As indicated below, this was a team effort with many individuals contributing to the endeavor.

Overall Project Management

Project Manager: Fran Ferraro, Merrick & Co.

Technical Monitor: Kiran Kadam, National Renewable Energy Laboratory (NREL)

Team Compositions

1

Compositions of teams making a contribution to various parts of the report are listed below:

Merrick & Co. (2450 S. Peoria Street, Aurora, CO 80014) Fran Ferraro, Mike Kraft, Kurt Penka (Simons Engineering-a consultant to Merrick), Jim Sharpe, and Dick Voiles

NREL (1617 Cole Boulevard, Golden, CO 80401-3393)

<u>Softwood Team</u> Kiran Kadam, Fred Keller, Quang Nguyen, Fannie Posey-Eddy, and Mel Tucker

<u>Process Engineering Team</u> Andy Aden and Bob Wooley

Industrial Partnership Development Team Mark Yancey

Wheelabrator Martell Inc. (Highway 49 & Ridge Road, Martell, CA 95654) Eric Selya

TABLE OF CONTENTS

Volume One

- 1. Executive Summary
- 2. Introduction
 - a. Work Scope
 - b. Assembly of Work Products
 - c. Engineering
 - d. Estimates
 - e. Future Work
- 3. Process Description
 - a. Block Flow Diagram
 - b. Wood Chip Preparation and Feed
 - c. 1st Stage Prehydrolysis
 - d. 1st Stage Hydrolysis
 - e. 1st Stage Flash and Separation
 - f. 2nd Stage Prehydrolysis
 - g. 2nd Stage Hydrolysis
 - h. 2nd Stage Flash and Separation
 - i. 1st Stage Neutralization and Fermentation
 - j. 2nd Stage Fermentation
 - k. Distillation
 - l. Dehydration
 - m. Lignin Separation and Water Handling
 - n. Boiler and Power Generation
- 4. Capital and Operating Cost
 - a. Summary
 - b. Pro Forma including:
 - Capital Cost
 - Operating Cost
 - Economic analysis
 - c. Equipment List with Costs including:
 - Unit equipment costs
 - Scaling factors
 - Installation factors

Appendices:

- Heat Optimization A.
- Β.
- Trip Reports1. High Plains Corp., York, NE2. Sierra Pacific, Martell, CA
- C. Plot Plans and Process Flow Diagrams
- Delta-T Report D.

1. EXECUTIVE SUMMARY

Merrick & Company has evaluated the economic potential for a Softwood Biomass to Ethanol Facility. A conceptual ethanol plant located in Martell California is economically attractive, particularly when co-located with an existing power generating facility. The plant, sized for an expected feed capacity of 800 dry tons per day converts the carbohydrates in forest product waste materials to ethanol and uses the lignin and residual carbohydrates to generate steam and electricity.

This report documents the results of design and project evaluation work sponsored by the National Renewable Energy Laboratory (NREL) and performed by Merrick & Company, Architects and Engineers (Merrick), between March, 1998 and March, 1999. This project is a continuation of an effort begun in 1998 to study various aspects of ethanol related projects. Merrick has used NREL data and guidance to further develop cost estimates for the two stage dilute acid hydrolysis process for the production of ethanol from softwood.

The Softwood to Ethanol Feasibility Study discussed in this report is an extension of previous, generic, softwood to ethanol studies. The co-located case is applied to a specific site owned by Wheelabrator near Martell, California. A large amount of potential feed material is available in the area and the site contains an existing solid waste fired boiler and power generating equipment.

The evaluation of a specific site allowed better definition of a realistic installation and project. Staff consultations and site visits led to the selection of the portions of the Martell site for evaluation and the determination of which equipment was available and suitable.

Project Evaluation

The work accomplished during this project includes: process designs, heat and material balances, process flow diagrams, equipment selection, capital and operating cost estimates, and market assessments for the ethanol product. The specific co-located plant at Martell was evaluated to identify specific modifications required to the equipment to fit the existing plant requirements. Similar processes developed for other types of biomass to ethanol conversion were relied upon for reference and guidance. Also, plants were visited to witness similar operations and the equipment selected for similar service. Resulting economic analyses, detailed in the remaining sections of this report, conclude that the conceptual ethanol plant at Martell is economically attractive.

Process flow diagrams, feed composition and preparation, and each of the unit operations, from 1st stage prehydrolysis through dehydration of the ethanol/water azeotrope, are described in detail in the report.

Both capital and operating/maintenance costs were developed for the Martell site. The costs and anticipated revenues are presented as pro forma financial statements, with accompanying sensitivity analyses for varying feedstock prices.

Additionally, capital and operating cost estimates were developed for a standalone, green field plant utilizing the same feed stock. The results are reported for comparison purposes.

Conclusions and Recommendations

A co-located softwood to ethanol plant in the Martell area is an economically attractive concept. The plant will be constructed for a total capital investment of approximately \$65 million. The economics are based on a total ethanol selling price of \$1.20 per gallon, after incorporating the various tax credits and discounts associated with long term market relationships. To minimize market risk, long-term contractual relationships must be established regarding the sale of the ethanol. This appears to be reasonable.

Incorporating depreciation results in annual project net revenues of approximately \$11.5 million. The resulting before-tax internal rate of return (IRR) is <u>about 36%</u> at 25% equity and 5% loan rate; the loan rate is lower than normal because of a subsidy available from the state of California.

Merrick recommends the following "next steps" in the development of this project:

- Establish a feedstock supply plan, exploring feedstock contracts and residue contracts.
- Establish an owner/operator organization for the ethanol facility to carry out further project development.
- Establish an updated project specification including more detailed and accurate feedstock composition and more definitive reuse of existing facilities. Update the project economic analysis: and
- Establish the financial basis regarding the project to ensure the economic evaluation is reasonable; and
- Set up market relationships that establish a contract basis for ethanol sales; and
- Confirm the utility cost to ensure the long term viability.

7

2. INTRODUCTION

a. SCOPE OF WORK

This report covers work performed during the period of May, 1998 through March, 1999. The objective of this work was to produce process designs, heat & material balances, process flow diagrams and capital & operating costs for two biomass to ethanol conversion plants. The biomass is assumed to be softwood forest thinnings.

One plant is stand-alone. That is, the lignin produced in the process is burned in a boiler which is a part of the plant design and produces the necessary power for the plant and sells excess power to the local grid. The cost of the boiler and turbine generator set are included in the cost estimate, as is the operating cost for this equipment. The boiler and turbine generator set are specifically sized to accommodate the lignin produced by the conversion plant.

The other plant considered is a plant located next to an existing Wheelabrator boiler and power generation facility that could easily be made capable of burning the lignin produced in the conversion process. The existing plant's boiler and generators are assumed to be adequate for burning the lignin residue. The existing forest waste feed system is partially diverted through the ethanol plant and returned as lignin residue to be mixed with the remaining forest waste feed stream. The capital and operating cost of the boiler and generator are not included in the estimate.

Additionally, the work scope included revising ASPEN PLUS models from previous NREL ethanol plant designs to conform with the softwood forest waste to ethanol designs. NREL developed the experimental data using softwood forest thinnings from the Quincy, CA area.

b. ASSEMBLY OF WORK PRODUCTS

This report collects the work of several organizations and individuals into coherent designs and cost estimates. Primary is the NREL work that established the basis and provided general processing methods.

Contributing organizations and individuals were:

- Ethanol handling and distillation Fred Varani
- Water treating and feed water treating Bob Hamilton
- Fermentation and associated processing Joe Ruocco
- Solids conveying and handling Kurt Penka
- Materials of construction Bruce Craig
- Aspen Plus simulation Vicky Putsche
- Heavy industrial practices and practicality Merrick & Company

Merrick & Company coordinated the overall effort subject to NREL review and direction.

c. ENGINEERING

Based on the information and guidance supplied by NREL, a process was modeled for the conversion of softwood biomass to ethanol.

NREL provided a block flow diagram of the previous process model. The new process development areas, prehydrolysis through fermentation were developed by NREL with Heavy Industrial (equipment selection and process heat integration) experience input by Merrick. NREL furnished Updated Process Flow Diagrams and an ASPEN PLUS model for the plant. The process areas other than hydrolysis and fermentation were used "as is" from the previous model.

Within this framework various alternatives were considered and appropriate selections were made. For example three large, decanting centrifuges (beer column bottoms centrifuge S-601) were selected over multiple small centrifuges because it was felt that the maintenance and operating ease were optimized. In many cases several types of equipment could feasibly perform the necessary function and decisions had to be taken as to the type of equipment to be used for the estimate basis. Reliability and proven performance in similar service were considered the fundamental criteria for equipment selection with cost, ease of operation and similar factors also considered.

Similar processes developed for other types of biomass to ethanol conversion were relied upon for reference and guidance. Also, plants were visited to witness similar operations (Please see the trip reports in the appendix).

Equipment reliability was considered very important throughout the process development. The startup and operation of any first generation plant is extremely difficult and subject to schedule delays. If equipment is selected which has been proven in similar service, weeks of time can be saved in achieving design flow rates.

Similar thinking was applied to the overall plant efficiency. It is clearly necessary to demonstrate optimized plant efficiency in the design so that the economics will truly reflect achievable results. But even here it was felt that plant operability and reliability were paramount. If, for example, heat integration is taken to its limits the plant start up sequence may become cumbersome. Also, exchanger design might push the experience limits of manufacturers. A balance of efficiency and practical design was pursued in process development.

9

Considerable process evolution occurred in the chip washing, acid impregnation and hydrolysis area during the course of the project. This report includes the cost for hydrolysis equipment supplied in NREL Report TP-580-26157 [by Wooley, R., M. Ruth, J. Sheehan, H. Majdeski and A. Galvez (1999). Lignocellulosic Biomass to Ethanol Process Design and Economics, Utilizing Co-current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis: Current and Futuristic Scenarios., National Renewable Energy Laboratory, Golden, Colorado.], and specific equipment pricing gathered by Merrick (see attached back-up data).

The plant design is based on 800 dtpd of biomass feed. Scaling of this design to other rates is practical if the rate is not too far different from the base rate. As the difference increases the associated risk of estimate inaccuracy increases. However, since the design is for commercial operation using equipment within the manufacturer's normal range of supply, the scaling risk is not exorbitant. Principal is the risk that a second (parallel) train of equipment will need to be added in some areas of the plant as the feed rate increases beyond the normal equipment size. The most appropriate equation for the scaling of costs to different throughputs was input to the estimated cost on an equipment-service by equipment-service basis based on flow rates provided by the Aspen Plus[™] model.

When an appropriate site is located, firm price equipment quotations should be obtained to confirm the current estimated pricing.

d. COST ESTIMATES

Estimates for the equipment are based on selected vendor quotations and scaled equipment costs from previous plant models. The previous Aspen Plus[™] plant models were a compilation of vendor quotations (for more specialized and complex equipment), and the ICARUS Process Evaluator program estimates (for common types of equipment, i.e., pumps, agitators, conveyors). The Aspen Plus[™] model determines the flow rates of the various process flow streams. The cost of the equipment is determined using a selected scaling stream mass flow rate. Scaling exponents are selected for equipment and the scaled cost is calculated using an NREL developed spreadsheet.

Section 4 contains complete pro formas for both the co-located and stand alone cases. Co-location has very decided cost advantages both in capital and operating costs.

e. FUTURE WORK

During the course of the investigation many items were encountered which deserve further definition and evaluation. Among the most important of those are:

- The means of physically moving a slurry of acid impregnated wood chips and water into the hydrolyzers should be evaluated further. Although there are manufacturers who will design a screw press to do this, the hydrolyzer pressure must be held by the plug of moist solids in the barrel of the press. One manufacturer indicated that the liabilities involved with a plug failure are too great and they will not manufacture this equipment item. Other manufacturers will include a blast shield around the press to deflect any sudden pressure releases. It is felt that a system similar to an air lock system but using steam rather than compressed air may have safety and reliability advantages while still sufficiently approximating a continuous flow system. Similar digester feeders are currently used in the paper and pulp industries with good results so this is a workable system that needs further study. NREL is currently investigating this operation and any modifications necessary will be incorporated in future designs.
- Simplification of the second stage hydrolysis equipment may be possible. Inline steam injection (steam gun), followed by a holding tank for residence time, may possibly replace the expensive second stage hydrolyzer. Heat distribution through the slurry is a potential problem.
- Consideration should be given to other potential host sites for a co-located plant.
- The transport of lignin from the centrifuges to the combustion chamber is deserving of further work as it is not yet defined in detail. One thought was to mix the wet lignin with wood chips so that the dewatering screw presses would be more effective.
- The cost estimate includes a chilled water system allowing fermentor operation at 30°C (86°F) even on hot summer days. A benefit evaluation of this system should be done to see if the few weeks of use each year justifies its cost.

3. PROCESS DESCRIPTION

a. BLOCK FLOW DIAGRAM

Following this section is a block flow diagram which illustrates the major processing steps and flow paths in the plant. It may be a useful reference drawing, along with the Process Flow Diagrams, when reading the process description.

b. WOOD CHIP PREPARATION

The selected design feed rate for the plant is 800 dtpd softwood biomass. The design feed is milled wood chips, generally with a 1/2 inch maximum dimension but containing some slivers that are 2 to 3 inches long.

Wood chips arrive at the site by truck and semi-trailer. Vehicles will be weighed with and without load on an above ground platform scale with a capacity of 100 tons. The vehicles are unloaded on a back-on type hydraulic dumper which can lift both truck and trailer to dump the load into a receiving hopper. The chips are metered out of the hopper onto a belt conveyor which in turn discharges to one of two stacker conveyors.

The stackers deliver the chips to the storage pile. The unloading system is designed to operate 12 hours a day, 5 to 7 days per week

Bulldozers move the chips to form a 40 foot high pile with an area of approximately 150,000 square feet which is equal to a 30 day supply for the processing plant. A second pile of equal dimensions, with additional stacker and reclaim conveyors, would be required to provide a 2 months supply. Two bulldozers are included regardless of inventory to allow for peak delivery periods, to provide for proper pile rotation and maintenance. It is anticipated that two operators may be required during trucking hours and one during other times.

The dozers are used also to push chips into and over one of two reclaim chain conveyors. Using one conveyor at a time chips are reclaimed and fed to the screening system by belt conveyor. A tramp iron magnet is provided to catch stray magnetic metal and a scalping screen removes gross oversize and foreign material ahead of the screening process.

The initial process step in producing ethanol from biomass benefits from raw material particles being fairly thin. Wood chips should be in the order of 3 to 5 millimeter thick or less so as to allow the process chemicals to penetrate the fibers quickly. Such thin chips result when wood is cut into relatively short lengths along the grain, or no more than 12 millimeter long. Wood species, seasonal factors, moisture content and other variables influence chip thickness. It has been

assumed that most incoming chips will be acceptable in thickness and do not require reprocessing.

All chips will pass over a thickness screen to screen out over-thick material. A roll screen with specially profiled roll surfaces is proposed for this step. Material rejected by the screen passes first through an air density separator which is a system that separates material by specific gravity. This eliminates any stones and other foreign objects which would damage downstream equipment. The over-thick chips are then introduced into a special chip slicer which cuts chips along the grain to a preset thickness. An alternate machine is a chip crusher which compresses chips to create fissures which allow more rapid penetration of the fiber by the process chemicals. The chip reclaim and screening system are designed to operate more or less continuously, or at least 20 hours per day.

In order to allow for equipment maintenance and to guard against breakdowns a storage silo is provided. The silo will hold approx. 55,000 cu.ft. of screened chips which is equal to 8 hours of plant operation. Chips are metered and conveyed to the process plant on a continuous, 24 hour basis.

Several process alternatives were considered. A fully automated chip storage and reclaim system was discussed which would not require either bulldozers or operators. Such a system can provide full inventory control and material turn-over and eliminates material break-down due to bulldozer action. Fiber loss and operating cost savings are the main advantages. Because of high capital cost this option was not pursued. Alternatives for fiber preparation were also considered. As a substitute for screening and slicing of chips the use of hammermills was discussed. Running all chips through such equipment would require high energy input and would unnecessarily degrade the material. However, hammermills could be further evaluated for use after screening and to replace a slicer.

c. 1st STAGE PREHYDROLYSIS

Chips enter the Acid Impregnator (M-201) along with sulfuric acid, recycle water and acidic recycle water from screw press S-201. The impregnator is a mechanical flight mixer/conveyor. The control point for this device is approximately 1% acid by weight leaving the impregnator. It operates at 20-50°C and atmospheric pressure.

Following the Impregnator is a Plug Screw Feeder (S-201), possibly of the Sunds type. An evaluation of similar devices which require less energy or have a better safety history is indicated. The screw press feeder compresses the wood chip mass to form a plug at the Hydrolyzer (R-201) inlet. The plug can withstand the 12

atmosphere pressure in the hydrolyzer vessel. The plug is split upon entry into the Hydrolyzer by a lance which also actuates to check back flow should the plug fail. Liquids from the Plug Screw Feeder are recycled to the Acid Impregnator. The plug entering the Hydrolyzer contains about 60% water.

d. 1st STAGE HYDROLYSIS

In the Hydrolyzer the pressure is increased to approximately 12 atmospheres. Steam is directly injected into the process so that the process temperature approaches the saturated steam temperature at processing pressure (190°C). A residence time of 3 minutes is required at these conditions to achieve the necessary reaction and prevent loss of carbohydrate by over-reaction. NREL developed the experimental data for the acid hydrolysis process using the QLG feedstock.

e. 1st STAGE FLASH AND SEPARATION

Hydrolyzer product enters a flash tank for cooling and conversion of oligomers to monomers. The First Stage Oligomer Flash Tank Reactor (T-203) will operate at 135°C and 3.0 atm. A residence time of one hour is required. Because the pressure in the Flash Tank is lower than in the Hydrolyzer, steam will be generated (flashed) in the tank. Approximately 9,000 kg/hr. of low pressure steam will be produced which can be used for other process heating requirements. Please refer to Appendix A.1.

Liquid from the 1st Stage Flash Tank is sent to the 1st Stage Low Pressure Flash Tank (T-204) which operates at one atmosphere and approximately 101°C. Only 10 to 15 minutes of residence time is required in this Flash Tank.

Following the flash steps a hot counter-current washer (Interstage Washer, W-203) recovers hemicellulosic sugars.

After washing, a screw press (S-203) reduces the water content to approximately 60% and this material is sent to the second stage of hydrolysis. The liquid stream from this press is recycled to the Interstage Washer.

f. 2nd STAGE PREHYDROLYSIS

The 40% solids stream from the screw press downstream of the Interstage Washer is feed for the 2nd Stage of the hydrolysis section. The material is fed directly to the 2nd Stage Acid Impregnator (M-204) which has nearly the same specification as the 1st Stage. However, acid concentration is increased to result in approximately 1.6 % in the 2nd Stage Hydrolyzer. The operating temperature is 50°C. Following the Impregnator is a Plug Screw Feeder (S-202 for the 2nd Stage

Hydrolyzer (R-202). This Feeder must raise the pressure to 22.5 atmospheres. Liquids from the Plug Screw Feeder recycle to the 2^{nd} Stage Acid Impregnator. The solids rich stream (40%) proceeds to Hydrolysis.

g. 2nd STAGE HYDROLYSIS

In the 2^{nd} Stage Hydrolyzer (R-202) the pressure is increased to approximately 22.5 atmospheres. Steam is directly injected into the process so that the process temperature approaches the saturated steam temperature at processing pressure (220°C). A residence time of 3 minutes is required at these conditions to achieve the necessary reaction.

h. 2nd STAGE FLASH

Hydrolyzer product enters the 2nd Stage Oligomer Flash Tank Reactor (T-205) for cooling and conversion of oligomers to monomers. The Flash Tank will operate at 135°C and 3.0 atm. A residence time of one hour is required. Because the pressure in T-205 is lower than the Hydrolyzer pressure, steam will be generated (flashed) in the tank. Approximately 11,000 kg/hr. of low pressure steam will be produced which can be used for other process heating requirements. Please refer to Appendix A.1.

Liquid from T-205 is sent to the 2^{nd} Stage Low Pressure Flash Tank (T-206) which operates at just over atmospheric pressure and approximately 101°C. T-206 is equipped with an agitator. Only 10 to 15 minutes of residence time is required in this Flash Tank. Lime is added in the 2^{nd} Stage Low Pressure Flash Tank.

From T-206 material proceeds directly to cooling and fermentation.

i. 1st STAGE NEUTRALIZATION AND FERMENTATION

First stage liquor from the Interstage Washer goes to the Neutralization Tank (T-209) where lime is added to raise the pH of the liquor to 4.5 pH. From T-209 liquor goes to S-222, Rotary Drum Filter for the removal of precipitates (gypsum, calcium oxalate, etc.) and other solids. This filter is a vacuum rotary drum type filter. Liquid from the filter is pumped (P-222 A/S) to H-201, Cooling Water Cooler and H-202, Chilled Water Cooler prior to entering the fermentors. Filtered solids are sent to offsite disposal.

Fermentation was assumed to consume the majority of the C5 and C6 sugars to produce ethanol. Commercial yeast with the ability to convert both C5 and C6 sugars should be available within the construction period of the facility.

All fermentors in the plant are large, low pressure, stainless steel vessels with conical bottoms and slow speed agitators. The 1st Stage Fermentors (F-300 & F301) operate in series. Temperature is controlled to 30°C with chilled water in external exchangers (H-300 & H-301) with continuous recirculation.

In the first fermentor yeast is propagated by air and corn steep liquor (CSL) injection. The yeast is adapted to the inhibitors in the liquor via a recycling loop in the first-stage fermentors. Enough yeast is produced to supply the needs of the second fermentor which does not have CSL or air injection.

Each fermentor has a residence time of 8 hours or a total of 16 hours for the 1st Stage.

j. 2nd STAGE FERMENTATION

The material leaving T-206, 2nd Stage Low Pressure Flash Tank, enters a chilled flight screw conveyor (C-201). The Chilled Slurry Screw Conveyor uses chilled water for the cooling medium. Temperature of the slurry will be 30°C leaving this conveyor which is the operating temperature of the fermentors. The cooled material is mixed with the fermentation product from the 1st Stage in the 2nd Stage Fermentors (F-302 & F-303). Sufficient yeast carries over from the first stage and there is no provision for CSL or air addition.

Second Stage fermentation consists of two continuous fermentors in series. Both fermentors are continuously agitated with slow speed mechanical mixers. Temperature is controlled with chilled water in external exchangers (H-302 & H303) with continuous recirculation. The recirculation pumps, P-302 & P-303 are of the progressive cavity type because of the high solids concentration.

Each fermentor has a residence time of 8 hours or a total of 16 hours for the 2^{nd} Stage.

Overall ethanol yield from in the 1^{st} stage fermentors and 2^{nd} stage combined is 90% of the six-carbon sugars entering the fermentors. Ethanol is also produced from the five-carbon sugars at 85% (in the near future it is assumed that a genetically engineered yeast or bacteria will be available commercially to ferment both the five and six carbon sugars) already mentioned earlier and on the next page. Both conversions are included in this model.

Off gas from all four fermentors is combined and washed in a counter-current water column, (T-512) before being vented to the atmosphere. The off gas is washed to recover ethanol and is not washed for air emissions control.

k. DISTILLATION

Distillation was addressed by NREL in a recent report. Refer to NREL Report TP-580-26157 [by Wooley, R., M. Ruth, J. Sheehan, H. Majdeski and A. Galvez (1999). Lignocellulosic Biomass to Ethanol Process Design and Economics, Utilizing Co-current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis: Current and Futuristic Scenarios., National Renewable Energy Laboratory, Golden, Colorado.]

I. DEHYDRATION

Dehydration was addressed by NREL in a recent report. Refer to NREL Report TP-580-26157 [by Wooley, R., M. Ruth, J. Sheehan, H. Majdeski and A. Galvez (1999). Lignocellulosic Biomass to Ethanol Process Design and Economics, Utilizing Co-current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis: Current and Futuristic Scenarios., National Renewable Energy Laboratory, Golden, Colorado.]

m. LIGNIN SEPARATION AND WATER HANDLING

Water recirculation and waste water treatment are addressed in a separate report, titled "Waste Water Treatment Options for the Biomass-to-Ethanol Process", October 22, 1998 by Merrick & Co.

Lignin separation is accomplished in three, large, solid bowl, decanting centrifuges. The lignin is further dewatered in a screw press. Additional work should done in this area to optimize the process performance.

n. BOILER AND POWER GENERATION

The lignin powered boiler, steam turbine and power generator were addressed in a previous report "Biomass To-Ethanol. Total Energy Cycle Analysis", NREL Subcontract RCN 213-185-01-00 final report, Radian Corporation, Austin, Tx, November 22, 1991.

It was assumed that the lignin to be burned will be 50% solids and 50% water.

Soft wood Biomass to Ethanol Feasibility Study Process Summary Table				
Riomass feedrate	800 BDT/day			
Dilute Acid Model:	G9810H			
Dilute Acid Model.	Feedstock Composition (% Dry Weight)			
Colluloso Glucan	39.0%			
Lemicellulose Clucan *	4.3%			
Nulan	7 4%			
	2.8%			
Arabinan	1.5%			
Manan	10.2%			
	28.6%			
	0.3%			
Acetale	0.0%			
ASII	5.0%			
	100.0%			
Total	100.078			
	Act Stage Acid Hydrolycis			
	10.1 atm (179 psia)			
Pressure				
Temperature				
Acid Concentration	<u></u>			
Residence Time	3 minutes			
Sugar Yields:	0.0%			
Glucose	70.20%			
Xylose	70.270			
Mannose	00.9%			
Galactose	01.1%			
Arabinose	90.0%			
	2nd Stage Acid Hydrolysis			
Pressure	22.4 atm (331 psi)			
Temperature	220 °C			
Acid Concentration	1.6%			
Residence Time	3 minutes			
Sugar Yields: % of material en	tering stg. 2.			
Glucose	00.0%			
Xylose	33.1%			
Mannose	84.3%			
Galactose	5.4%			
Arabinose	0.0%			

	Overal Hydrolysis Yield	
Glucose	60.0%	
Xylose	71.0%	
Mannose	89.3%	
Galactose	82.3%	
Arabinose	98.0%	
	Counter-Current Washing	
Sugar Recovery	96.9%	
Insoluble Solids lost to	0.0%	
Sugar Stream		
Insoluble Solids Recovered	98.0%	
in Stream to 2nd Stage		
Impregnator		
Wash Water Quantity	446 gpm	
	<u>Fermentation</u>	
1st Stage Fermentation		
Yield:		
Glucose> Ethanol	90.0%	
Xylose> Ethanol	85.0%	
Galactose>Ethanol	90.0%	
Mannose>Ethanol	90.0%	
Arabinose>Ethanol	0.0%	
Yield:		
Glucose> Ethanol	90.0%	
Xylose> Ethanol	85.0%	
Galactose>Ethanol	90.0%	
Mannose>Ethanol	90.0%	
Arabinose>Ethanol	0.0%	
	3	
Overall Fermentation Yield:	<u> </u>	
Glucose> Ethanol	90.0%	
Xylose> Ethanol	85.0%	
Galactose>Ethanol	90.0%	
Mannose>Ethanol	90.0%	
Arabinose>Ethanol	0.0%	
Overall Ethanol Yield	66 gallons per BDT feedstock	
Ethanol Production	20,100,000 gallons/year	
	* assumed 10% of glucan is from hemicellulose	
ř		

KAL

Deam Pr

JCCAD Pr

DECEND P

1

4. CAPITAL AND OPERATING COST

. .

The following table is a summary of the economic assumptions and performance of the co-located plant. The co-located summary is presented because it has a more favorable economic performance than the stand-alone plant. The economic performance is calculated using a pro-forma spreadsheet developed by Merrick & Company and the pro-forma is attached.

a. Economic Evaluation Summary Table

Economic Evaluation of Two Stage Acid Hydrolysis Softwood -to-Ethanol Process Table of Assumptions and Economic Performance;

Parameter	Base Case	
General Plant Data		
Plant Basis: Feedstock processed, dry metric t/yr	279,997	
Primary product	Fuel Ethanol	
Reference year of estimate	2000	
Plant location	California	
Plant life, years	20	
Plant on-stream factor, %	95.9	
Plant capacity, gal of formulated product per	20,098,616	
Economic Assumptions		
Construction period, years	1.5	
Startup period, months	1	
Ethanol selling price, \$/gal	\$1.20	
Owner equity financing, % of fixed capital	25%	
Loan term, years	15	
Number of annual compounding periods	1	
Nominal loan rate basis, %	5	
Process Data		
Feedstock		
Purchase cost, \$/ton (dry basis)	20	(delivered)
Transportation cost, \$/kg	0	(denvered)
Moisture content, wt.% total	48	
Plant Personnel Data		
Operator's hourly rate, \$	24.00	
Technician's hourly rate, \$	24.00	
Non-skilled laborer's hourly rate, \$	11.50	
Supervisor's hourly rate, \$	29.80	
Payroll overhead factor, %	35	
Operators/day	14	
Technicians/day	2	
Supervisors/day	2.	
Non-skilled laborers/day	9	
TOTAL O&M Labor Cost \$/vr	3.542.841	

CO-LOCATED CASE

Operating Utilities		
Electricity \$/yr (based on \$0.05/KW Hr)	\$2,728,320	
Water \$/yr (based on \$0.001/lb)	\$26,480	
Waste Water Treating \$/yr (based on \$0.002/lb)	\$79,440	
300 PSIG Steam (based on \$1.75/1000 lb)	\$972,405	
50 PSIG Steam (based on \$0.50/1000 lb)	\$203,742	
TOTAL Utilities	\$4,010,388	
Raw Materials		
TOTAL Raw Materials \$/yr	\$9,157,971	
Debt Service		
TOTAL Principal & Interest	\$6,781,997	
TOTAL OPERATING COST \$/yr	\$21,383,750	
Ethanol production cost \$/gal	\$1.00	
Product and Co-product Data		
Composition, %		
Ethanol	95	
Denaturant	4.6	
Water	0.4	
Selling price, \$/gal	\$1.20	
TOTAL Ethanol Sales (incl. tax credits)	\$24,118,339	
Electricity Produced, NET KW	0 for Co-	
	located	
Selling Price, \$/KW*hr	\$0.05	
TOTAL Electricity Sales, \$/year	\$0	
Energy Produced, NET MM BTU/Yr *	3,307,332	
Selling Price, \$/MM BTU **	\$1.25	
TOTAL BTU Sales, \$/year	\$4,532,508	
TOTAL FACILITY SALES	\$28,650,848	
Francia Parformance		
IDR %	260/	
Net capital investment MM®	2070 ¢64 808 641	
* Enorgy produced is in the form of the inter	ψ0 4 ,000,041	
" Energy produced is in the form of Lignin,		
algester off gas, and digester studge		
foodstook		
Teedstock		

21

.

Economic Evaluation Summary Table – CO-LOCATED CASE

Economic Evaluation of Two Stage Acid Hydrolysis Softwood-to-Ethanol Process Cash Flow Analysis

Parameter	\$ (millions)	Parameter	\$ (millions)
	Capit	al Costs	
Feedstock receiving (100)	3.249	Yard improvements, Civil/Structural	0.873
Materials processing (200)	13.291	OSBL utilities and service facilities	0
Fermentation (300)	5.095	Land	0
Distillation (500)	6.168	Indirect – Prorateable	1.611
Waste Water Treating (600)	10.123	Indirect – Process Development	0.920
Storage (700)	0.934	Field Expense	3.682
Boiler / Generation (800)	0.968	Home office constr. Fee	5.523
Utilities	5.324	Contingency	4.602
Purchased equipment	30.520	Startup, Permits, Fees	1.380
		Total fixed capital investment	63.808
Installed equipment	46.029	Working capital	1.058
		Net capital investment	64.808
		Financing, insurance, Misc.	5.586
		Financing, insurance, Misc. Total capital investment	5.586 7 0.394
Cash Flow Analysis Total annual income (sales of product & co-product) Annual manufacturing cost	28.650	Financing, insurance, Misc. Total capital investment NET Annual operating income	5.586 70.394 7.267
Cash Flow Analysis Total annual income (sales of product & co-product) Annual manufacturing cost (a) Raw materials	28.650 9.158	Financing, insurance, Misc. Total capital investment NET Annual operating income	5.586 70.394 7.267
<u>Cash Flow Analysis</u> Total annual income (sales of product & co-product) Annual manufacturing cost (a) Raw materials (b) Processing materials	28.650 9.158 0.0	Financing, insurance, Misc. Total capital investment NET Annual operating income	5.586 70.394 7.267
Cash Flow Analysis Total annual income (sales of product & co-product) Annual manufacturing cost (a) Raw materials (b) Processing materials (c) Utilities	28.650 9.158 0.0 4.010	Financing, insurance, Misc. Total capital investment NET Annual operating income	5.586 70.394 7.267
Cash Flow Analysis Total annual income (sales of product & co-product) Annual manufacturing cost (a) Raw materials (b) Processing materials (c) Utilities (d) Operating labor	28.650 9.158 0.0 4.010 0.836	Financing, insurance, Misc. Total capital investment NET Annual operating income	5.586 70.394 7.267
Cash Flow Analysis Total annual income (sales of product & co-product) Annual manufacturing cost (a) Raw materials (b) Processing materials (c) Utilities (d) Operating labor (e) Facility Lease	28.650 9.158 0.0 4.010 0.836 0	Financing, insurance, Misc. Total capital investment NET Annual operating income NET Operating cash flow	5.586 70.394 7.267 11.587
Cash Flow Analysis Total annual income (sales of product & co-product) Annual manufacturing cost (a) Raw materials (b) Processing materials (c) Utilities (d) Operating labor (e) Facility Lease (e) Labor related costs	28.650 9.158 0.0 4.010 0.836 0 0.73	Financing, insurance, Misc. Total capital investment NET Annual operating income NET Operating cash flow	5.586 70.394 7.267 11.587
Cash Flow Analysis Total annual income (sales of product & co-product) Annual manufacturing cost (a) Raw materials (b) Processing materials (c) Utilities (d) Operating labor (e) Facility Lease (e) Labor related costs (g) Plant overhead	28.650 9.158 0.0 4.010 0.836 0 0.73 2.060	Financing, insurance, Misc. Total capital investment	5.586 70.394 7.267 11.587
Cash Flow Analysis Total annual income (sales of product & co-product) Annual manufacturing cost (a) Raw materials (b) Processing materials (c) Utilities (d) Operating labor (e) Facility Lease (e) Labor related costs (g) Plant overhead (h) Sales related costs	28.650 9.158 0.0 4.010 0.836 0 0.73 2.060 0.041	Financing, insurance, Misc. Total capital investment NET Annual operating income NET Operating cash flow Annual cash income	5.586 70.394 7.267 11.587 4.806
Cash Flow Analysis Total annual income (sales of product & co-product) Annual manufacturing cost (a) Raw materials (b) Processing materials (c) Utilities (d) Operating labor (e) Facility Lease (e) Labor related costs (g) Plant overhead (h) Sales related costs (i) Balance on borrowed capital	28.650 9.158 0.0 4.010 0.836 0 0.73 2.060 0.041 52.795	Financing, insurance, Misc. Total capital investment NET Annual operating income NET Operating cash flow Annual cash income	5.586 70.394 7.267 11.587 4.806
Cash Flow Analysis Total annual income (sales of product & co-product) Annual manufacturing cost (a) Raw materials (b) Processing materials (c) Utilities (d) Operating labor (e) Facility Lease (e) Labor related costs (g) Plant overhead (h) Sales related costs (i) Balance on borrowed capital (j) Principal payment	28.650 9.158 0.0 4.010 0.836 0 0.73 2.060 0.041 52.795 3.262	Financing, insurance, Misc. Total capital investment NET Annual operating income NET Operating cash flow Annual cash income	5.586 70.394 7.267 11.587 4.806
Cash Flow Analysis Total annual income (sales of product & co-product) Annual manufacturing cost (a) Raw materials (b) Processing materials (c) Utilities (d) Operating labor (e) Facility Lease (e) Labor related costs (g) Plant overhead (h) Sales related costs (i) Balance on borrowed capital (j) Principal payment (k) Interest payment	28.650 9.158 0.0 4.010 0.836 0 0.73 2.060 0.041 52.795 3.262 3.519	Financing, insurance, Misc. Total capital investment	5.586 70.394 7.267 11.587 4.806

b. Pro Forma

The co-located facility assumes that a single owner would own and operate the ethanol facility and the bio-mass power plant.

The Martell California co-located site would be arranged as shown on the plot plan in relative close proximity to the current Wheelabrator 18 MW biomass power plant. The Ethanol plant would be located north and west of the chip pile conveyor - boiler buildings. The current chip conveyor would be diverted/interrupted to allow a separate chip stream to the ethanol processing unit. The processed lignin would return to this conveyor for transport to the boiler facility. It is our understanding that the lignin could be processed in the existing boiler with minor modifications.

A major advantage of co-location is the use of existing facilities and processes. These particular advantages for the Martell site are;

1. Decrease the capital expenditure of the ethanol plant. The Martell site will allow use of the existing chip handling equipment and surge piles (area 100).

2. Decrease the capital expenditure of the ethanol plant. The Martell site will allow use of the existing boiler equipment, condensate equipment and boiler feed water chemical treatment (area 800) to produce steam.

3. Decrease in operator/security/maintenance personnel as the combined sites can utilize some of the same work force. The Martell power facility is assumed to provide a majority of these personell.

4. Shared chemical and utility costs will allow more aggressive negotiation with utility companies and suppliers. The utility costs were estimated to be half of the selling price of electricity and steam. The co-located facility would allow shared pricing of the steam and electricity costs with the boiler facility because the "sale" of the utilities would be an internal cost between the Martell facility and the wholly/majority owned Biomass to Ethanol facility.

5. Reduced management and administration labor costs.

6. Shared maintenance personnel and facilities.

The pro forma utility prices have been discussed with the personnel at Martell and these costs should be accurate for a minimum of a year.

Indirect construction costs were modeled as a percentage of the capital equipment costs based on similar type of projects and engineering experience. The indirect portion of the capital construction costs is estimated based on the experience Merrick has gathered on similar size projects. The indirect costs are defined as follows:

- Prorated Includes fringe benefits, insurance, bonding, and overhead burdens. The prorated costs are adjusted to include the prorated costs of skid mounting equipment in a nearby industrial center.
- Process Development Includes final development of the specialized portions of the process that may require additional study or research.
- Field Expenses Normally this includes consumables, equip. rental, field services, temporary facilities, and supervision. The colocated site will have existing facilities that would be used for construction. The co-located site also has services (water, sewer, electric, phones, roadways, etc.) that would be used for construction. The co-located field expense was reduced since facilities and services are available.
- Home Office Construction Fee Includes detail engineering of the plant, purchasing of the equipment and bulks, and field construction support.
- Contingency Is an allowance for expected but undefined costs.
- Start-up, Permits, and Fees Includes plant commissioning, construction permits and fees.
- NOTE: Indirect costs that are not included in the capital costs include;
 - Owner supervisory personnel for engineering, construction and start-up.
 - Engineering/Construction overtime pay.
 - Owner/Engineering scope changes.

c. Estimate Assumptions

Co-located

- 1. There are no land acquisition costs included.
- 2. There are no off site costs included (e.g. public road improvements, extension of power, water, telephone services)
- 3. There is a source of qualified construction personnel within daily driving distance of the site.
- 4. There exists adequate roads, rail roads, ship docks to allow equipment deliveries.
- 5. The costs of obtaining air and water permits is not included.
- 6. Soils are adequate for conventional foundation design.

Stand-alone

- 1. There are no land acquisition costs included.
- 2. There are no off site costs included (e.g. public road improvements, extension of power, water, telephone services)
- 3. There is a source of qualified construction personnel within daily driving distance of the site.
- 4. There exists adequate roads, rail roads, ship docks to allow equipment deliveries.
- 5. The costs of obtaining air and water permits is not included.
- 6. Soils are adequate for conventional foundation design.

) C	CURRENT SITUATION:							
?	The Pro Forma models a <u>CO</u> Turbine, Generator system fo	<u>-LOCATED</u> Act or an 800 BDTC	d Hydrolysis E) plant	thanol plant wil	h a Com	bustion Re	eactor,	
	ETHANOL							
	The plant will convert wood o	hips to fuel are	ide ethanol util	izing acid hydr	niosis			
	Wood chip production levels	of	63.979	ka/hr (str 101)	produce	estimate	d total output in	
	equivalent kilograms of fuel of	urade ETOH	001010	7 144	ka/hr	=	60 009 600	kg / vear (str 515)
	equivalent hilograme er her g		,	2,393	gai/hr	=	20,098,616	gal / year
	The model assumes renewal and the small producer tax c \$1.20 per gallon or	of the ethanol redit of \$.10 per	excise tax crec gallon through \$0.40	lit of \$.54 per g a the year 2015 per kg and	allon to ti for a tota \$24,1 1	he blender al ethanol 18,339	value of p er year TOTA	L Ethanol sales
	LIGNIN							
	A Lignin coproduct is produc 9,269 kg/hr =	ed and used as 77,860 n	Combustion R netric ton / year	Reactor fuel ma r is produced fr Total beating w	terial. A om the p	total amou rocess and	Int of Lignin in t d valued at 11,4 235	he stream (str 601) i: 79 BTU/lb. MM BTU/br
	The water in the lignin stream	n must be vapo	rized at a net F	STU cost for the	stream	y ilyiin is (str 601)	Water Vanorize	wiwi bi o/ni wilis
	30.877 kg/hr =	259.367 n	netric ton/vear	is vaporized at	1.100 BT	U/lb loss	(34)	MM BTU/hr
	The remainin 7,972 k	g/hr of stream 6	01 has	18,46	2 BTU/k	g value =	147	MM BTU/hr
		0	Total I	heating value fi	om strea	m 601 is	348	MM BTU/hr
				-		LIGN	N Value/year =	\$3,652,150
	METHANE							
	The digester produces (strea	ım 615)	991	kg/hr Methane	e as boile	r fuel.	52,148	BTU/kg CH4
			To	tal heating valu	e from M	ethane is	52	MM BTU/hr
	Sale of METHANE	to the co-locate	d boiler based	on BIU value	of	\$2.00	MM BTU would	
-						MEIHAN	E value/year =	\$868,202
	The director produces (stress	m 622)	222	ka/br of oluda	o oo bail		. 0.054	DT11//6
	based on 9 845 btu/lb bioma	ee and 70% wa	tor in the slude	Kg/III OF Sludy			2,204	BTU/ka
	based on 5,645 blanb bloma	35 anu 7070 wa	fotal heating vo	je. Juo from sluda	o ís	-	4,505	MM RTI //br
			otal heating ve	alue nom sluug	6 13	SLUDG	iE Value/year =	• \$12,157
	Sale of these products to the	co-located boi	ler based on B	TU value to the	boiler is		\$4,532,508	per year
	Total projected facility sale	es would be	\$28,650,848	per year				
B	CAPITAL INVESTMENT ASSUMF	TIONS						
	1) Total capital investment							
	Civil Structural			872.83	3			
	Area 100			3,249,76	е 6			
	Area 200			13 291 41	4			
	Area 300			5 095 68	8			
	Area 500			6 168 26	5			
	Area 600			10 122 97	1			
	Area 700			934.98	1			
	Area 800			968.43	, ∩			
	Area 1000			5 324 70	е 6			
	Fixed Capital			\$46 029 05	4			
	INDIRECTS Prorateable	3 5%		\$1 611 01	7			
	Process Development	2.0%		\$920 58	1			
	Field Evonese	2.07% 8.0%		\$3 682 32	4			
	Home Office Constr. Fee	12.0%		\$5 523 48	- 6			
	Contingency	10.0%		\$4 602 Q0	5			
	Start-up Permits Fees	3.0%		\$1,380.87	2			
	Working Capital per estimate	9.070		\$1.058.40	- 1 1 mos	Raw met	s + 0.8M	
		- Iotal Plant Cost		\$64 808 64	1	- Naw mat		
	FEDERAL &	STATE GRANT	S	φυ τ ,000,04 ¢	ີ. ທ			
		Vet Canital Inv	estment	\$64 808 64	<u>,</u>			
					است.			
	Wartco4.xis			PF1 Page	7			

NREL 2 STAGE DILUTE SULFURIC ACID HYDROLOSIS - PRO FORMA

OPERATING COST ASSUMPTIONS	8,400 hr	/yr			
Utilities (Rates based on 20,098,616 g	al/yr produced) Amount/hr	Units	\$/unit	Cost /hr.	Total Cost /vr
Electricity	6,496	Kw-hr	\$0.050	\$325	\$2,728,320
City process water (str 713)	2,627	kg	\$0.001	\$3	\$26,480
Wastewater	2,627	kg	\$0.004	\$9	\$79,440
300 PSIG steam (1/2 of \$3.50/1000 lb)	30	mTon	\$3.859	\$116	\$972,405
50 PSIG steam (1/2 of \$1.00/1000 lb)	22	mTon	\$1.103	\$24	\$203,742
Total Utilities				\$477	\$4,010,388

<u>Raw</u>	Material	Costs

	<u>Amount/hr</u>	<u>Units</u>	<u>\$/unit</u>	<u>Cost /hr.</u>	<u>Total Cost /yr</u>
Wood Chips DRY (str 101less water)	33,333	kg	\$0.022	\$734.99	\$6,173,938
Sulfuric Acid (str 710)	1,008	kg	\$0.095	\$95.76	\$804,384
Calcium Oxide (Lime str 745)	705	kg	\$0.060	\$42.30	\$355,320
Ammonia (str 717/311)	451	kg	\$0.070	\$31.57	\$265,188
Corn Steep Liquor (str 735)	292	kg	\$0.051	\$14.89	\$125,093
Cellulase Complex	0	kg	\$3.000	\$0.00	\$0
Natural Gasoline (str 701)	342	kg	\$0.210	\$71.82	\$603,288
Diesel (str 723)	170	kg	\$0.330	\$56.10	\$471,240
WWT Chemicals	8	kg	\$3.630	\$29.04	\$243,936
CW Chemicals	6	kg	\$2.210	\$13.26	\$111,384
BFW Chemicals	0.5	kg	\$1.000	\$0.50	\$4,200
Total Raw Materials				\$1,090	\$9,157,971
Processing Material Costs					
	<u>Amount/hr</u>	<u>Unitş</u>	<u>\$/unit</u>	Cost /hr. Total Cost /yr	
Antifoam	0	kg	\$10.000	\$0	\$0
Total Processing Materials				\$0	\$0

Operations and Maintenance Cost		Total Cost /yr.
Supervisors	0.5 ea/day*	\$
Operators	1 ea/day*	\$
Laborers	6 ea/day*	\$
Maintenance	2 ea/day*	\$
Operations and Maintenance Cost	<u>s - HYDROLYSIS/FERMENTATION (area 200, 300, 500, 600)</u>	
Supervisors	1 ea/day	\$62,00
Operators	8 ea/day	\$400,00
Laborers	1 ea/day	\$24,00
Technicians	1 ea/day	\$50,00
Maintenance	2 ea/day	\$100,00
Operations and Maintenance Cost	s - POWER PLANT (area 800)	
Supervisors	0.5 ea/day*	\$
Operators	3 ea day*	\$
Laborers	2 ea/day*	\$
Technicians	1 ea/day*	\$
Maintenance	1 ea/day*	\$
Maintenance	2 ea/day	\$100,00
	* - Martell site personell operate the feed & boiler areas	
	Total Operations and maintenance labor costs	\$836,00
Other Operations and Maintenanc	e Costs	
Payroll Overhead	35% of operating labor	\$292,60
Maintenance Costs	2% of plant cost	\$920,581.0
Operating Supplies	0.25% of plant cost	\$115,072.6
Environmental	0.50% of plant cost	\$230,145.2
Local Taxes	1% of plant cost	\$460,290.5
Insurance	0.50% of plant cost	\$230,145.2
Overhead Costs	40% of labor, supervision,maint cost	\$334,40
A durate to the time O a sta	1% of annual sales (less tax credits)	· · · · · · · · · · · · · · · · · · ·
Administrative Costs	(\$82.40
Distribution and Sales	0.5% of annual sales (less tax credits)	\$82,40 \$41,20
Distribution and Sales	0.5% of annual sales (less tax credits)	\$82,4(\$41,20

D. OTHER MODEL ASSUMPTIONS

Average prevailing market price of fuel grade ETOH:\$0.40 pAssumes renewal of the ethanol excise tax credit of \$.54 per gallon1.20 pand the small producer tax credit of \$.10 per gallon through the year 2007				
and Alaska State Tax credit of \$.80 per gallon, \$.41 per gallon fue	el value includes \$.1	0 discount to	the blender.	
Price for Electricity Produced		\$0.050	per KWhr	
Price per million BTU		\$2.000	per MM BTU	
	DRY	50% WET		
Price paid for wood chip feedstock - dry basis	\$0.022	\$0.011	per kg	
	\$22.05	\$11.03	per metric tor	
	\$1.25		per MM BTU	
Plant on-stream factor		0.959		
Plant operating hours per year		8400		
Depreciable Life of Capital Equipment		15	years	
Average annual commodity escalation rate:		1.0%		
Average annual cost escalation rate:		3.0%		

1. There are no land acquisiton costs included.

2. There are no off site costs included (e.g. public road

improvements, extensions of power, water, telephone services)

- 3. There is a source of qualified construction personnel within daily driving distance of the site.
- 4. There exist adequate roads, rail roads or ship docks to allow equipment delivery.

5. The costs for air and water permits are not included.

6. Soils are adequate for conventional foundation designs.

NF Und	REL 2 STAGE DILUTE SULFURIC ACID HYDROLOSIS - PRO FORMA derlying Assumptions & Input Variables	Rev. 4 6/14/99
A.	CURRENT SITUATION:	
	The Pro Forma models a CO-LOCATED Acid Hydrolysis Ethanol plant with a Combustion Reactor, Turbine, Generator system for an 800 BDTD plant	
	ETHANOLThe plant will convert wood chips to fuel grade ethanol utilizing acid hydrolosis.Wood chip production levels of141,074lb/hr (str 101), produce estimated total output inequivalent kilograms of fuel grade ETOH15,753lb/hr132,321,168lb/hr2,393gal/hr=20,098,616gal / year	15)
	The model assumes renewal of the ethanol excise tax credit of \$.54 per gallon to the blender and the small producer tax credit of \$.10 per gallon through the year 2015 for a total ethanol value of \$1.20 per gallon or TOTAL ETHANOL SALES WOULD BE \$24,118,339 per year	
	LIGNIN	
	A Lignin coproduct is produced and used as Combustion Reactor fuel material. A total amount of Lignin in the stread 20,438 lb/hr = 85,840 ton / year is produced from the process and valued at 11,479 BTU/lb. Total heating value of dry lignin is 235 MM BTU/hr The water in the lignin stream must be vaporized at a net BTU cost for the stream (str 601). Water vaporized is 68,084 lb/hr = 285,952 ton/year is vaporized at 1,100 BTU/lb loss = (34) MM BTU/hr The remaini 17,578 lb/hr of stream 601 has 8,373 BTU/lb value = 147 MM BTU/hr Total heating value from stream 601 is 348 MM BTU/hr METHANE	m (str 601)
	The digester produces (stream 615) 2.185 lb/hr Methane as boiler fuel 23 650 BTU/lb CH4	
	Total heating value from Methane is 52 MM BTU/hr Sale of METHANE to the co-located boiler based on BTU value of \$2.00 MM BTU would	
	METHANE Value/year = \$868,202	
	DIGESTER SLUDGE	
	The digester produces (stream 623) 514 lb/hr of sludge as boiler fuel = 2,254 BTU/lb based on 9,845 btu/lb biomass and 70% water in the sludge. = 4,969 BTU/kg	
	Total heating value from sludge is 1 MM BTU/hr SLUDGE Value/year = \$12,157	
	Sale of these products to the co-located boiler based on BTU value to the boiler is \$4,532,508 per year	
	Total projected facility sales would \$28,650,848 per year	
В.	CAPITAL INVESTMENT ASSUMPTIONS	
	1) Total capital investment	
	Civil Structural 872,833	
	Area 100 3,249,766	
	Area 200 13,291,414 Area 300 5.095.688	
	Area 500 6,168,265	
	Area 600 10,122,971	
	Area 700 934,981	
	Area 800 968,430	
	Area 1000 5,324,706	
	INDIRECTS Prorateable 3.5% \$1 611 017	
	Process Development 2.0% \$920,581	
	Field Expense 8.0% \$3,682,324	
	Home Office Constr. Fee 12.0% \$5,523,486	
	Contingency 10.0% \$4,602,905	
	Star-up, remits, rees 5.0% \$1,300,872 Working Capital per estimate \$1,058,401, 1 mos Raw matter + 0.8M	
	Total Plant Cost \$64,808,641	
	FEDERAL & STATE GRANTS \$0	
	Net Capital Investment \$64,808,641	

Note: Indirect Capital Costs are adjusted to account for location specific construction issues.

NREL 2 STAGE DILUTE SULFURIC ACID HYDROLOSIS - PRO FORMA

C.

OPERATING COST ASSUMPTIONS	8,400	hr/yr			
Utilities (Rates based on 20,098,616	gal/yr produced)			
	<u>Amount/hr</u>	<u>Units</u>	<u>\$/unit</u>	<u>Cost /hr.</u>	<u>Total Cost /yr</u>
Electricity	6,496	Kw-hr	\$0.050	\$325	\$2,728,320
City process water	5,793	lb	\$0.001	\$3	\$26,480
Wastewater	5,793	lb	\$0.002	\$9	\$79,440
300 PSIG steam (1/2 of \$3.50/1000 lb	66	1000 lb	\$1.75	\$116	\$972,405
50 PSIG steam (1/2 of \$1.00/1000 lb)	49	1000 lb	\$0.50	\$24	\$203,742
Total Utilities	•	k.		\$477	\$4,010,388

Raw Material Costs							
	<u>Amount/hr</u>	<u>Units</u>	<u>\$/unit</u>	<u>Cost /hr.</u> 1	<u>Total Cost /yr</u>		
Wood Chips DRY (45% str 101)	73,499	ib	\$0.010	\$734.99	\$6,173,938		
Sulfuric Acid (str 710)	2,223	lb	\$0.043	\$95.76	\$804,384		
Calcium Oxide (Lime)	1,555	lb	\$0.027	\$42.30	\$355,320		
Ammonia (str 717/311)	994	lb	\$0.032	\$31.57	\$265,188		
Corn Steep Liquor (str 735)	644	lb	\$0.023	\$14.89	\$125,093		
Cellulase Complex	0	lb	\$1.361	\$0.00	\$0		
Natural Gasoline (str 701)	754	lb	\$0.095	\$71.82	\$603,288		
Diesel (str 723)	375	lb	\$0.150	\$56.10	\$471,240		
WWT Chemicals	18	lb	\$1.646	\$29.04	\$243,936		
CW Chemicals	13	lb	\$1.002	\$13.26	\$111,384		
BFW Chemicals	1	lb	\$0.454	\$0.50	\$4,200		
Total Raw Materials				\$1,090	\$9,157,971		
Processing Material Costs							
	<u>Amount/hr</u>	<u>Units</u>	<u>\$/unit</u>	<u>Cost /hr.</u>	<u>Total Cost /yr</u>		
Antifoam	0	lb	\$4.530	\$0	\$0		
Total Processing Materials				\$0	\$0		

co-located usunits

÷

Ŷ

Supervisors	0.5 ea/day	۸¢
Operators	1 ea/day	40 40
	6 ea/day	¢0
Maintenance	2 ea/day	\$0
Departions and Maintenance Cost		
Supervisore	1 op/dov	101 tea 000
Operators		\$02,000
		\$400,000
Tabbieis		\$24,000
Maintenance	2 ea/day	\$50,000 \$100,000
		\$100,000
Operations and Maintenance Cost	s - POWER PLANT (area 800)	
Supervisors	0.5 ea/day	\$(
Operators	3 ea day	\$(
Laborers	2 ea/day	\$
Technicians	1 ea/day	\$
Maintenance	1 ea/day	\$
Supervisors Operators Maintenance	0 ea/day 2 ea/day 2 ea/day	\$ \$100,00 \$100,00
	Total Operations and maintenance labor costs	\$836,00
Other Operations and Maintenanc	e Costs	
Payroll Overhead	35% of operating labor	\$292,60
Maintenance Costs	2% of plant cost	\$920,58
Operating Supplies	0.25% of plant cost	\$115,07
Environmental	0.50% of plant cost	\$230,14
Local Taxes	1% of plant cost	\$460,29
Insurance	0.50% of plant cost	\$230,14
Overhead Costs	40% of labor, supervision, maint cost	\$334,40
Administrative Costs	1% of annual sales	\$82,40
Distribution and Sales	0.5% of annual sales	\$41,20
Total O&M Costs		\$3 542 84
		\$0,04 <u>2</u> ,04

\$0.40 per kg

1.20 per gallon

D. OTHER MODEL ASSUMPTIONS

Average prevailing market price of fuel grade ETOH: Assumes renewal of the ethanol excise tax credit of \$.54 per gallon and the small producer tax credit of \$.10 per gallon

	DRY	50% WET	
Price for Lignin coproduct (DRY, 11,000 BTU/lb)	\$0.01	\$0.007	per ib
	\$27.50	\$13.75	per Ton
	\$1.25		per MM BTU
Price for Electricity Produced		\$0.050	per KWhr
Price per million BTU		\$2.000	per MM BTU
	DRY	50% WET	
Price for Electricity Produced\$0.01\$0.01\$27.50\$13.73\$1.25Price for Electricity Produced\$0.050Price per million BTU\$2.000Price paid for wood chip feedstock - dry basis\$0.010\$0.010\$0.001\$20.00\$10.00\$20.00\$10.	\$0.005	per lb	
	\$20.00	\$10.00	per ton
Plant on-stream factor		0.959	
Plant operating hours per year		8,400	
Depreciable Life of Capital Equipment		15	years
Average annual commodity escalation rate:		1.0%	
Average annual cost escalation rate:		3.0%	

1. There are no land acquisiton costs included.

2. There are no off site costs included (e.g. public road

improvements, extensions of power, water, telephone services)

3. There is a source of qualified construction personnel within daily driving distance of the site.

4. There exist adequate roads, rail roads or ship docks to allow equipment delivery.

5. The costs for air and water permits are not included.

6. Soils are adequate for conventional foundation designs.

NREL 2 STAGE DILUTE SULFURIC ACID HYDROLOSIS - PRO FORMA, Co-located

CASE 1: Produce Fuel Grade Ethanol								Martell Co	-located Plant										Rev. 4	6/14/99
Capital Investment:	month1	month2	month3	month4	month5	month6	month7	month8	month9	month10	month11	month12	month13	month14	month15	month16	month17	month18	TOTAL	
Total Fixed Capital Cost Instruction Financing & Fees @10% Iban Origination Fee @ 2.0% Legal Fees Builder's All Risk/General Liability Working Capital	\$3,500,000 1,296,173 40,000 50,000	\$3,500,000 29,167	\$3,500,000 58,333	\$3,500,000 87,500	\$3,500,000 116,667	\$3,500,000 145,833	\$3,500,000 175,000	\$3,500,000 204,167	\$3,500,000 233,333	\$3,500,000 262,500	\$3,500,000 291,667	\$3,500,000 320,833	\$3,500,000 350,000	\$3,500,000 379,167	\$3,500,000 408,333	\$3,500,000 437,500	\$3,500,000 466,667	\$5,308,641 233,333 0 0 0	\$64,808,641 4,200,000 1,296,173 40,000 50,000 0	
Total Capital Investment Required	\$4,886,173	\$3,529,167	\$3,558,333	\$3,587,500	\$3,616,667	\$3,645,833	\$3,675,000	\$3,704,167	\$3,733,333	\$3,762,500	\$3,791,667	\$3,820,833	\$3,850,000	\$3,879,167	\$3,908,333	\$3,937,500	\$3,966,667	\$5,541,974	\$70,394,814	
Operating Projection:	Year 1: <u>1999 / 2000</u>	Year 2: <u>2000/2001</u>	Year 3: 2001/2002	11,000 Year 4: 2002/2003	Year 5: 2003/2004	Year 6: 2004/2005	Year 7: 2005/2006	Year 8: 2006/2007	Year 9: 2007/2008	Year 10: 2008/2009	Year 11: 2006 / 2007	Year 12: 2007 / 2008	Year 13: <u>2008 / 2009</u>	Year 14: 2009 / 2009	Year 15: 2010 / 2011	Year 16: 2 <u>011 / 2012</u>	Year 17: 2012 / 2013	Year 18: 2013 / 2014	Year 19: <u>2014 / 2015</u>	Year 20: <u>2015 / 2016</u>
gal of fuel grade ethanol produced Contract sale price per gallon	20,098,616 \$1.100	20,098,616 \$1.111	20,098,616 \$1.122	20,098,616 \$1.133	20,098,616 \$1.145	20,098,616 \$1.156	20,098,616 \$1.168	20,098,616 \$1.179	20,098,616 \$1.191	20,098,616 \$1.203	20,098,616 \$1.215	20,098,616 \$1.227	20,098,616 \$1.240	20,098,616 \$1.252	20,098,616 \$1.264	20,098,616 \$1.277	20,098,616 \$1.290	20,098,616 \$1,303	20,098,616 \$1,316	20,098,616 \$1.329
Gross Annual Revenue Small Ethanol Producer Tax Credit	\$22,108,478	\$22,329,562	\$22,552,858	\$22,778,387	\$23,006,170	\$23,236,232	\$23,468,594	\$23,703,280	\$23,940,313	\$24,179,716	\$24,421,514	\$24,665,729	\$24,912,386	\$25,161,510	\$25,413,125	\$25,667,256	\$25,923,929	\$26,183,168	\$26,445,000	\$26,709,450
Total projected ethanol sales and credit	\$24.118.339	\$24.339.424	\$24.562.720	\$24.788.248	\$25.016.032	\$25,246,094	\$25.478.456	\$25.713.142	\$2,009,082 \$25.950.175	\$2,009,882 \$26.189.578	\$26,431,375	\$26.675.590	\$2,009,802 \$26,922,248	\$2,009,862 \$27.171,371	\$2,009,882 \$27.422.987	\$2,009,862 <u>\$27.677.118</u>	\$2,009,882 <u>\$27,933,790</u>	\$2,009,862 <u>\$28,193,030</u>	\$2,009,862 <u>\$28.454.861</u>	\$2,009,882 <u>\$28,719,311</u>
B Value of electricity	\$0.05	\$0.051	\$0.051	\$0.052	\$0.052	\$0.053	\$0.053	\$0.054	\$0.054	\$0.055	\$0.055	\$0.056	\$0.056	\$0.057	\$0.057	\$0.058	\$0.059	\$0.059	\$0.060	\$0.060
Gross Annual LIGNIN/BTU Revenue	\$4,532,508	\$4,577,834	\$4,577,834	\$4,577,834	\$4,577,834	\$4,577,834	\$4,577,834	\$4,577,834	\$4,577,834	\$4,577,834	\$4,577,834	\$4,577,834	\$4,577,834	\$4,577,834	\$4,577,834	\$4,577,834	\$4,577,834	\$4,577,834	\$4,577,834	\$4,577,834
Gross Sales and Credit	\$28,650,848	\$28,917,257	\$29,140,553	\$29,366,082	\$29,593,866	\$29,823,927	\$30,056,290	\$30,290,976	\$30,528,008	\$30,767,411	\$31,009,209	\$31,253,424	\$31,500,081	\$31,749,205	\$32,000,820	\$32,254,951	\$32,511,624	\$32,770,863	\$33,032,695	\$33,297,145
<u>Operating Expenses:</u> Utilities Raw Materials	4,010,388 9,157,971	4,130,699 9,249,551	4,254,620 9,342,046	4,382,259 9,435,467	4,513,727 9,529,821	4,649,138 9,625,120	4,788,613 9,721,371	4,932,271 9,818,585	5,080,239 9,916,770	5,232,646 10,015,938	5,389,626 10,116,097	5,551,314 10,217,258	5,717,854 10,319,431	5,889,389 10,422,625	6,066,071 10,526,852	6,248,053 10,632,120	6,435,495 10,738,441	6,628,560 10,845,826	6,827,417 10,954,284	7,032,239 11,063,827
Operation & Maintenance	3,542,841	3,649,127	3,758,600	3,871,358	3,987,499	4,107,124	4,230,338	4,357,248	0 4,487,965	U 4,622,604	0 4,761,282	ں 4,904,121	0 5,051,245	0 5,202,782	0 5,358,865	0 5,519,631	0 5,685,220	0 5.855.777	0 6.031.450	0 6.212.394
Property Tax @ 0.50% Book Value	351,974	330,371	308,768	287,165	265,563	243,960 4 330 576	222,357	200,754	179,151	157,548	135,945	114,342	92,740	71,137	49,534	49,534	49,534	49,534	49,534	49,534
Total Operating Expense	\$21,383,750	\$21,680,324	\$21,984,611	\$22,296,825	\$22,617,186	\$22,945,918	\$23,283,254	\$23.629.433	\$23,984,702	\$24,349,313	<u>4,320,576</u> \$24,723,527	\$25,107,612	\$25,501,845	\$25,906,509	<u>4,320,576</u> \$26 321 898	\$22 449 338	\$22 908 690	\$23 379 696	\$23 862 684	\$24 357 993
Net Operating Income	\$7,267,098	\$7,236,934	\$7,155,942	\$7,069,256	\$6,976,680	\$6,878,009	\$6,773,036	\$6,661,542	\$6,543,306	\$6,418,099	\$6,285,682	\$6,145,812	\$5,998,236	\$5,842,696	\$5,678,922	\$9,805,613	\$9,602,934	\$9,391,167	\$9,170,010	\$8,939,152
Net Operating Cash Flow	\$11,587,674	\$11,557,510	\$11,476,518	\$11,389,832	\$11,297,256	\$11,198,586	\$11,093,612	\$10,982,118	\$10,863,883	\$10,738,675	\$10,606,258	\$10,466,388	\$10,318,812	\$10,163,272	\$9,999,498	\$9,805,613	\$9,602,934	\$9,391,167	\$9,170,010	\$8,939,152
CASE 1: Hypothetical Financing Scenarios:																				
CASE 1A: 100% Debt Financing Amortization	Year 1:	Year 2:	Year 3:	Year 4:	Year 5:	Year 6:	Year 7:	Year 8:	Year 9:	Year 10:	Year 11:	Year 12:	Year 13:	Year 14:	Year 15:	Year 16:	Year 17:	Year 18:	Year 19:	Year 20:
Interest Rate	<u>1999 / 2000</u>	2000/2001	2001/2002	2002/2003	2003/2004	<u>2004/2005</u>	2005/2006	2006/2007	2007/2008	2008/2009	20 06 / 2 007	2007 / 2008	2008/2009	2009 / 2009	2010 / 2011	2011/2012	2012/2013	2013/2014	2014/2015	<u>2015/2016</u>
Net Operating Cash Flow (from above)	11,587,674	11,557,510	11,476,518	11,389,832	11,297,256	11,198,586	11,093,612	10,9 82,1 18	10,863,883	10,738,675	10,606,258	10,466,388	10,318,812	10,163,272	9,999,498	9,805,613	9,602,934	9,391,167	9,170,010	8,939,152
Debt interest	3,519,741	3,356,628	3,185,359	3,005,527	2,816,704	2,618,439	2,410,261	2,191,675	1,962,158	1,721,167	1,468,125	1,202,431	923,453	630,526	322,952	0	0	0	0	0
Debt Principal	3,262,257	3,425,370	3,596,638	3,776,470	3,965,293	4,163,558	4,371,736	4,590,323	4,819,839	5,060,831	5,313,872	5,579,566	5,858,544	6,151,472	6,459,045	(0)	(0)	(0)	(0)	(0)
l otal Debt Service	6,781,997	6,781,997	6,/81,997	6,781,997	6,781,997	6,781,997	6,781,997	6,781,997	6,781,997	6,781,997	6,781,997	6,781,997	6,781,997	6,781,997	6,781,997	0	0	0	0	0
Net Cash Flow after Debt Service	4,805,676	4,775,512	4,694,521	4,607,835	4,515,259	4,416,588	4,311,614	4,200,121	4,081,885	3,956,677	3,824,260	3,684,390	3,536,815	3,381,274	3,217,501	9,805,613	9,602,934	9,391,167	9,170,010	8,939,152
Debt Service Coverage Ratio	1.71	1.70	1.69	1.68	1.67	1.65	1.64	1.62	1.60	1.58										
Total Pre-tax Net Cash Flow (20 yrs)	<u>\$108,918,805</u>																			

-

X X

×
CASE 1B: 100% Cash Financing	Year 0:	Year 1:	Year 2:	Year 3:	Year 4:	Year 5:	Year 6:	Year 7:	Wartell Co-	loc àiteat P lant	Year 10:	Year 11:	Year 12:	Year 13:	Year 14:	Year 15:	Year 16:	Year 17:	Year 18:	Year 19:	Year 20:
Net Cash Flow	(70,394,814)	11,587,674	11,557,510	11,476,518	11,389,832	11,297,256	11,198,586	11,093,612	10,982,118	10,863,883	10,738,675	10,606,258	10,466,388	10,318,812	10,163,272	9,999,498	9,805,613	9,6 02,934	9,391,167	9,170,010	8,939,152
ptal Pre-tax Net Cash Flow (20 yrs) IRR Payback Period (Pre-tax; undiscount	@ 100% CASH ed)	<u>\$140,253,952</u> 14.71% <u>(6.1)</u> y	years		<u>2</u>																
CASE 1C: Combined Equity & Debt Fir Equity Portion Debt Portion	nancing \$17,598,703 \$52,796,110	Amortization Interest Rate			yrs																
	Year 0: <u>1997/1998</u>	Year 1: <u>1999 / 2000</u>	Year 2: 2000/2001	Year 3: 2001/2002	Year 4: 2002/2003	Year 5: 2003/2004	Year 6: <u>2004/2005</u>	Year 7: 2005/2006	Year 8: 2006/2007	Year 9: 2007/2008	Year 10: 2008/2009	Year 11: 2006 / 2007	Year 12: 2007 / 2008	Year 13: <u>2008 / 2009</u>	Year 14: 2009 / 2009	Year 15: 2010 / 2011	Year 16: 2011 / 2012	Year 17: <u>2012 / 2013</u>	Year 18: 2013 / 2014	Year 19: 2014 / 2015	Year 20: <u>2015 / 2016</u>
Net Operating Cash Flow	0	11,587,674	11,557,510	11,476,518	11,389,832	11,297,256	11,198,586	11,093,612	10,982,118	10,863,883	10,738,675	10,606,258	10,466,388	10,318,812	10,163,272	9,999,498	9,805,613	9,602,934	9,391,167	9,170,010	8,939,152
Debt Interest Debt Principal Total Debt Service		2,639,806 2,446,693 5,086,498	2,517,471 2,569,027 5,086,498	2,389,020 2,697,479 5,086,498	2,254,146 2,832,352 5,086,498	2,112,528 2,973,970 5,086,498	1,963,829 3,122,669 5,086,498	1,807,696 3,278,802 5,086,498	1,643,756 3,442,742 5,086,498	1,471,619 3,614,879 5,086,498	1,290,875 3,795,623 5,086,498	1,101,094 3,985,404 5,086,498	901,824 4,184,675 5,086,498	692,590 4,393,908 5,086,498	472,894 4,613,604 5,086,498	242,214 4,844,284 5,086,498	0 (0) 0	0 (0) 0	0 (0) 0	0 (0) 0	0 (0) 0
Net Cash Flow	(17,598,703)	6,501,176	6,471,012	6,390,020	6,303,334	6,210,758	6,112,087	6,007,114	5,895,620	5,777,384	5,652,177	5,519,760	5,379,890	5,232,314	5,076,774	4,913,000	9,805,613	9,602,934	9,391,167	9,170,010	8,939,152
Debt Service Coverage Ratio	X 1 1 1	2.28	2.27	2.26	2.24	2.22	2.20	2.18	2.16	2.14	2.11	2.09	2.06	2.03	2.00	1.97	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Total Pre-tax Net Cash Flow (20 yrs)		<u>\$116,752,592</u>																			
Internal Rate of Return (IRR Pre-Tax	;)	<u>36%</u>																			

-

IRR vs Ethanol Selling Price Co-located

Martco4.xis

PF1 PAGE 11

Martco4.xls

PF1 PAGE 12

.

IRR vs Electricity Cost Co-located

Martco4.xis

PF1 PAGE 13

IRR vs Capital Invested Co-located

PF1 PAGE 14

Martco4.xls

IRR vs Ethanol Conversion Co-located

Martco4.xls

PF1 PAGE 15

OPERATING						
CASH	RATE OF	FEED PRICE	ETHANOL	ELECTRICITY		
FLOW \$	RETURN	DRY \$/TON	SALE \$/GAL	SALE \$/KW		
3,783,398	#NUM!	20.000	0.80	0.05	• .	
4,788,328	2%	20.000	0.85	0.05		
5,793,259	7%	20.000	0.90	0.05		
6,798,190	11%	20.000	0.95	0.05		
7,803,121	17%	20.000	1.00	0.05		
8,808,052	22%	20.000	1.05	0.05		
9,812,982	27%	20.000	1.10	0.05		
10,817,913	33%	20.000	1.15	0.05		
11,822,844	38%	20.000	1.20	0.05		BASE CASE
			· · · · · · · · · · · · · · · · · · ·		in Stranger	
13,026,762	45%	12.500	1.20	0.05		
12,625,456	43%	15.000	1.20	0.05		
12,224,150	40%	17.500	1.20	0.05		
11,822,844	38%	20.000	1.20	0.05		
11,421,538	36%	22.500	1.20	0.05		
11,020,232	34%	25.000	1.20	0.05		
				· · · · · · · · · · · · · · · · · · ·	-	
13,459,836	47%	20.000	1.20	0.02		
12,914,172	44%	20.000	1.20	0.03		
12,368,508	41%	20.000	1.20%	0.04		
11,822,844	38%	20.000	1.20	0.05		
11,277,180	35%	20.000	1.20	0.06		
10,731,516	32%	20.000	1.20	0.07		
10,185,852	29%	20.000	1.20	0.08		
9,640,188	26%	20.000	1.20	0.09	-	
	10.701				%	CAPITAL INVEST
11,822,844	105%	20.000	1.20	0.05	50%	(35,197,407)
11,822,844	83%	20.000	1.20	0.05	60%	(42,236,888)
11,822,844	67%	20.000	1.20	0.05	70%	(49,276,370)
11,822,844	55%	20.000	1.20	0.05	80%	(56,315,851)
11,822,844	46%	20.000	1.20	0.05	90%	(63,355,332)
11,822,844	38%	20.000	1.20	0.05	100%	(70,394,814)
11,822,844	32%	20.000	1.20	0.05	110%	(77,434,295)
11,822,844	27%	20.000	1.20	0.05	120%	(84,473,776)
11,822,844	23%	20.000	1.20	0.05	130%	(91,513,258)
11,822,844	20%	20.000	1.20	0.05	140%	(98,552,739)
11,822,844	1/%	20.000	1.20	0.05	150%	(105,592,220)

% EQUITY	25%	
LOAN TERM	15	YEARS
Interest Rate	5.0%	

gal per ton Ethanol Produced

,

Martco4.xls

(·

c. Equipment List

Please see the following pages.

	54 C
Softv.	Jost

.....

NREL SOFT	NOOD 800	DTPD CASE (CO-LOCATED)											
Equipment L	.ist/Cost (Model G9810H-1)											
			Quantity	Capacity	Size	1	Cost	Install.	Total	Unit	Total	Scaling	
Section	Equip. No	Description	Reqd.	Each	Each	Unit Cost	Source	Factor	Cost	Installation	Installation	Factor	Spares
A100	C-101	Chip conveyor to storage	0			\$0			\$0	\$0	\$0		
Wood Chip	C-102	Chip stackers	0			\$0			\$0	\$0	\$0		
Feed Handling	C-103	Reclaim conveyor	0			\$0			\$0	\$0	\$0		
	C-104	Conveyor to screening	1			\$240,713	K Penka	1.75	\$240,713	\$180,535	\$421,248	0.3	
	C-105	Conveyor to chip silo	1			\$209,315	K Penka	1.75	\$209,315	\$156,986	\$366,301	0.3	
	C-106 .	Chip conveyor to process	1			\$209,315	K Penka	1.75	\$209,315	\$156,986	\$366,301	0.3	
	C-107	Lignin conveyor to BF conveyor	1			\$250,000	Est.	1.75	\$250,000	\$187,500	\$437,500	0.3	
	M-101	Truck scale	0			\$0			\$0	\$0	\$0		
	M-102	Truck dumper	0			\$0			\$0	\$0	\$0		
	M-103	Chip receiving hopper	0			\$0		l	\$0	\$0	\$0		
	M-104	Bulldozer	0			\$0		[\$0	\$0	\$0		
	M-105	Tramp iron magnet	1		· · · ·	\$8,000	K Penka	1.75	\$8,000	\$6,000	\$14,000	0	
	M-106	Air density separation system	1			\$86,306	K Penka	1.75	\$86,306	\$64,730	\$151,036	0.5	
	M-107	Chip slicer	1			\$136,915	K Penka	1.75	\$136,915	\$102,686	\$239,601	0.6	
	M-108	Chip silo	1			\$383,363	K Penka	1.75	\$383,363	\$287,522	\$670,885	0.6	
	M-109	Vibrating silo discharger	1			\$78,493	K Penka	1.75	\$78,493	\$58,870	\$137,363	0.3	
	M-110	Silo discharge feeder	1			\$31,397	K Penka	1.75	\$31,397	\$23,548	\$54,945	0.3	
	M-111	Belt scale	1			\$5,233	K Penka	1.75	\$5,233	\$3,925	\$9,158	0.3	
	S-101	Disc scalping screen	1			\$26,164	K Penka	1.75	\$26,164	\$19,623	\$45,787	0.3	
	S-102	Chip thickness screen	1			\$115,123	K Penka	1.75	\$115,123	\$86,342	\$201,465	0.3	
	S-103	Chip screen system chutes	1			\$54,766	K Penka	1.75	\$54,766	\$41,075	\$95,841	0.6	
	T-101	Rainwater collection and settling system	1			\$21,906	Est.	1.75	\$21,906	\$16,430	\$38,336	0.6	
		AREA 100 TOTAL							\$1,857,009		\$3,249,766	· · ·	

NREL SOFT	NOOD 80	0 DTPD CASE (CO-LOCATED)	1					 					
Equipment L	ist/Cost	(Model G9810H-1)											
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	Quantity	Capacity	Size		Cost	Install.	Total	Unit	Total	Scaling	
Section	Equip. N	lo Description	Reqd.	Each	Each	Unit Cost	Source	Factor	Cost	Installation	Installation	Factor	Spares
A200	A-206	Sterilization Tank Agitator	1			\$13,497	ICARUS	1.20	\$13,497	\$2,699	\$16,196	0.51	
Hydrolysis and	A-209	Overliming Tank Agitator	1			\$16,573	ICARUS	1.30	\$16,573	\$4,972	\$21,545	0.51	
lime addition	C-201	Screw conveyor	1			\$10,866	ICARUS	1.30	\$10,866	\$3,260	\$14,126	0.78	
	C-222	Gypsum conveyor				\$1,789	ICARUS	1.30	\$1.789	\$537	\$2,326	1	
	C-225	Lime solids feeder	1			\$3,407	ICARUS	1.30	\$3,407	\$1,022	\$4,429	0.6	
	C-226	Lime conveyor	1			\$1,195	ICARUS	1.3	\$1,195	\$359	\$1,554	1	
· · · · · · · · · · · · · · · · · · ·	H-201	Fermentation feed cooler	2			\$169,550	ICARUS	1.30	\$339,100	\$50,865	\$440,830	1	
	H-202	Fermentation feed chiller	2			\$119,554	ICARUS	1.30	\$239,108	\$35,866	\$310,840	1	
	M-201	Acid impregnator no.1	2			\$350,000	VENDOR	1.30	\$700,000	\$105,000	\$910,000		
	M-204	Acid impregnator no.2	2			\$350,000	VENDOR	1.30	\$700,000	\$105,000	\$910,000		
	M-224	Lime unloading pit	1			\$13,280	ICARUS	1.75	\$13,280	\$9,960	\$23,240	0.71	
	P-201	Sulfuric acid pump	1			\$6,516	ICARUS	2.80	\$13,032	\$11,729	\$18,245	0.79	1
	P-209	Neutralized hydrolyzate slurry pump	1			\$16,245	ICARUS	2.80	\$32,490	\$29,241	\$45,486	0.79	1
	P-222	Neutralized hydrolyzate liquor pump	1			\$16,673	ICARUS	2.80	\$33,346	\$30,011	\$46,684	0.79	1
	P-223	Pneumatic lime unloader	1			\$54,057	ICARUS	1.40	\$54,057	\$21,623	\$75,680	0.5	
	R-201	First stage hydrolysis reactor	1			\$210,430	VENDOR	1.30	\$210,430	\$63,129	\$273,559	0.6	
	R-202	Second stage hydrolysis reactor	1			\$174,230	VENDOR	1.30	\$174,230	\$52,269	\$226,499	0.6	
	S-201	First stage pre-reactor screw press	1			\$1,564,000	VENDOR	1.30	\$1,564,000	\$469,200	\$2,033,200		
	S-202	Second stage pre-reactor screw press	1			\$1,976,000	VENDOR	1.30	\$1,976,000	\$592,800	\$2,568,800		
	S-203	Inter stage pre-reactor screw press	2			\$1,500,000	VENDOR	1.30	\$3,000,000	\$450,000	\$3,900,000		
	S-205	Acid vent desicant filter	1			\$547	ICARUS	1.60	\$547	\$328	\$875	0.6	
	S-222	Rotary drum filter	1			\$106,645	VENDOR	2.00	\$106,645	\$106,645	\$213,290	0.39	
	T-201	Sulfuric acid process storage tank	1			\$4,066	ICARUS	1.40	\$4,066	\$1,626	\$5,692	0.71	
	T-203	Blowdown tank #1 (Oligomer)	1			\$21,557	ICARUS	1.20	\$21,557	\$4,311	\$25,868	0.93	
	T-204	First stage low pressure flash tank	1			\$19,423	ICARUS	2.60	\$19,423	\$31,077	\$50,500	0.93	
	T-205	Second stage flash tank (Oligomer)	1			\$13,894	ICARUS	2.50	\$13,894	\$20,841	\$34,735	0.71	
	T-206	Second stage low pressure flash tank	1			\$11,432	ICARUS	2.50	\$11,432	\$17,148	\$28,580	0.71	
	T-209	Overliming tank	1			\$55,422	ICARUS	1.40	\$55,422	\$22,169	\$77,591	0.71	
	T-2220	Lime storage bin	1			\$77,726	ICARUS	1.30	\$77,726	\$23,318	\$101,044	0.46	
·	W-203	Inter stage washer	2			\$350,000	VENDOR	1.30	\$700,000	\$105,000	\$910,000		
		AREA 200 TOTAL							\$10,107,112		\$13,291,414		

Softw. Jost

		1.2.
1	۰.	
Soft		Cost
•••••		

277.

NREL SOFT	WOOD 800	DTPD CASE (CO-LOCATED)											
Equipment L	_ist/Cost	(Model G9810H-1)											
			Quantity	Capacity	Size		Cost	Install.	Total	Unit	Total	Scaling	
Section	Equip. No	Description	Reqd.	Each	Each	Unit Cost	Source	Factor	Cost	Installation	Installation	Factor	Spares
A300									-				
Production	A-300	First stage #1 fermenter agitator	2			\$19,341	VENDOR	1.40	\$38,682	\$7,736	\$54,155	0.51	
Fermentation	A-301	Second stage #1 fermenter agitator	2			\$17,249	VENDOR	1.35	\$34,498	\$6,037	\$46,572	0.51	
	A-302	First stage #2 fermenter agitator	2			\$18,804	VENDOR	1.50	\$37,608	\$9,402	\$56,412	0.51	
	A-303	Second stage #2 fermenter agitator	2			\$18,804	VENDOR	1.35	\$37,608	\$6,581	\$50,771	0.51	
	F-300	1st Stage fermenter No. 1	1			\$294,847	VENDOR	2.80	\$294,847	\$530,725	\$825,572	1	
	F-301	2nd Stage fermenter No. 1	1			\$208,573	VENDOR	2.80	\$208,573	\$375,431	\$584,004	1	
	F-302	1st Stage fermenter No. 2	1			\$308,815	VENDOR	2.80	\$308,815	\$555,867	\$864,682	1	
	F-303	2nd Stage fermenter No. 2	1			\$315,678	VENDOR	2.80	\$315,678	\$568,220	\$883,898	1	
	H-300	First stage #1 fermenter heat exchanger	1	1.1.1.2.1.2.	and the second	\$426,000	ICARUS	2.80	\$428,000	\$786,800	\$1,192,800	0.78	
	H-301	Second stage #1 fementer heat exchange	XX 1897		Section 20	\$20,000	CARUS	2,50	\$20,000	\$30,000	xxXXX \$50,000 xxXX	0.78	
	H-302	First stage #2 fermenter heat exchanger	S 18 8	22.02.000 S		\$9,100	ICARUS	2.80	\$9,100	\$18,380	\$25,480	0.78	
	H-303	Second stage #2 fermenter heat exchange				\$31,455	ICARUS	2.40	\$31,455	\$44,037	\$75,492	0.78	
	H-304	Distillation feed preheater	1			\$161,363	VENDOR	1.80	\$161,363	\$129,090	\$290,453	0.83	
	P-300	First stage #1 fermenter pump	1 1 1			\$5,574	ICARUS	3.00	\$5,674	\$11,148	\$16,722	0.79	
	P-301 12	Second stage #1 fermenter pump.	84 4 ee			\$7,086	ICARUS	2.20	\$7,086	\$8,503	\$15,589	0.79	
	P-302	First stage #2 fermenter pump	1			\$7,086	ICARUS	2.90	\$7,086	\$13,463	\$20,549	0.79	
	P-303	Second stage #2 termenter pump	(1)			\$7,086	ICARUS	2.50	\$14,172	\$10,629	\$17,715	0.79	1
	P-304	Yeast recycle pump	1	6.000		\$7,086	ICARUS	3.50	\$7,086	\$17,718	\$24,801	0.79	
									64 065 224		E ODE CCO		
		AREA JUU IUTAL				Į			\$1,900,201		40,090,000		

di la			<u>.</u>
Softw		2	Jost

NREL SOFT	VOOD 800	DTPD CASE (CO-LOCATED)					1						
Equipment L	ist/Cost (Model G9810H-1)											
a i anno an			Quantity	Capacity	Size		Cost	Install.	Total	Unit	Total	Scaling	
Section	Equip. No	Description	Reqd.	Each	Each	Unit Cost	Source	Factor	Cost	Installation	Installation	Factor	Spares
A100	C-101	Chip conveyor to storage	0		•	\$0			\$0	\$0	\$0		
Wood Chip	C-102	Chip stackers	0			\$0			\$0	\$0	\$0		
Feed Handling	C-103	Reclaim conveyor	0			\$0			\$0	\$0	\$0		
	C-104	Conveyor to screening	1			\$240,713	K Penka	1.75	\$240,713	\$180,535	\$421,248	0.3	
	C-105	Conveyor to chip silo	1			\$209,315	K Penka	1.75	\$209,315	\$156,986	\$366,301	0.3	
	C-106	Chip conveyor to process	1			\$209,315	K Penka	1.75	\$209,315	\$156,986	\$366,301	0.3	
	C-107	Lignin conveyor to BF conveyor	1			\$250,000	Est.	1.75	\$250,000	\$187,500	\$437,500	0.3	1
	M-101	Truck scale	· 0			\$0	-		\$0	\$0	\$0		
	M-102	Truck dumper	0			\$0			\$0	\$0	\$0		. 1
	M-103	Chip receiving hopper	0			\$0			\$0	\$0	\$0		i I
	M-104	Bulldozer	0			\$0			\$0	\$0	\$0		
	M-105	Tramp iron magnet	1			\$8,000	K Penka	1.75	\$8,000	\$6,000	\$14,000	0	
	M-106	Air density separation system	1			\$86,306	K Penka	1.75	\$86,306	\$64,730	\$151,036	0.5	
	M-107	Chip slicer	1			\$136,915	K Penka	1.75	\$136,915	\$102,686	\$239,601	0.6	. 1
	M-108	Chip silo	1			\$383,363	K Penka	1.75	\$383,363	\$287,522	\$670,885	0.6	
	M-109	Vibrating silo discharger	1			\$78,493	K Penka	1.75	\$78,493	\$58,870	\$137,363	0.3	
	M-110	Silo discharge feeder	1			\$31,397	K Penka	1.75	\$31,397	\$23,548	\$54,945	0.3	
	M-111	Belt scale	1			\$5,233	K Penka	1.75	\$5,233	\$3,925	\$9,158	0.3	
	S-101	Disc scalping screen	1			\$26,164	K Penka	1.75	\$26,164	\$19,623	\$45,787	0.3	
	S-102	Chip thickness screen	1			\$115,123	K Penka	1.75	\$115,123	\$86,342	\$201,465	0.3	
	S-103	Chip screen system chutes	1			\$54,766	K Penka	1.75	\$54,766	\$41,075	\$95,841	0.6	1
	T-101	Rainwater collection and settling system	1			\$21,906	Est.	1.75	\$21,906	\$16,430	\$38,336	0.6	
		AREA 100 TOTAL							\$1,857,009		\$3,249,766		

~

- 1	٠,

NREL SUFIN		DIPD CASE (CO-LOCATED)	and a state of the									/	
Equipment Li	st/Cost (Model G9810H-1)											
			Quantity	Capacity	Size		Cost	Install.	Total	Unit	Total	Scaling	
Section	Equip. No	Description	Reqd.	Each	Each	Unit Cost	Source	Factor	Cost	Installation	Installation	Factor	Spares
A200	A-206	Sterilization Tank Agitator	1			\$13,497	ICARUS	1.20	\$13,497	\$2,699	\$16,196	0.51	ĺ
Hydrolysis and	A-209	Overliming Tank Agitator	1			\$16,573	ICARUS	1.30	\$16,573	\$4,972	\$21,545	0.51	
lime addition	C-201	Screw conveyor	1			\$10,866	ICARUS	1.30	\$10,866	\$3,260	\$14,126	0.78	
	C-222	Gypsum conveyor	1			\$1,789	ICARUS	1.30	\$1,789	\$537	\$2,326	1	
	C-225	Lime solids feeder	1			\$3,407	ICARUS	1.30	\$3,407	\$1,022	\$4,429	0.6	
1 10	C-226	Lime conveyor	1			\$1,195	ICARUS	1.3	\$1,195	\$359	\$1,554	1	1
	H-201	Fermentation feed cooler	2			\$169,550	ICARUS	1.30	\$339,100	\$50,865	\$440,830	1	
	H-202	Fermentation feed chiller	2			\$119,554	ICARUS	1.30	\$239,108	\$35,866	\$310,840	1	ĺ
	M-201	Acid impregnator no.1	2			\$350,000	VENDOR	1.30	\$700,000	\$105,000	\$910,000	[1
	M-204	Acid impregnator no.2	2			\$350,000	VENDOR	1.30	\$700,000	\$105,000	\$910,000		
	M-224	Lime unloading pit	1			\$13,280	ICARUS	1.75	\$13,280	\$9,960	\$23,240	0.71	
	P-201	Sulfuric acid pump	1			\$6,516	ICARUS	2.80	\$13,032	\$11,729	\$18,245	0.79	1
	P-209	Neutralized hydrolyzate slurry pump	1	1		\$16,245	ICARUS	2.80	\$32,490	\$29,241	\$45,486	0.79	1
	P-222	Neutralized hydrolyzate liquor pump	1			\$16,673	ICARUS	2.80	\$33,346	\$30,011	\$46,684	0.79	1
	P-223	Pneumatic lime unloader	1			\$54,057	ICARUS	1.40	\$54,057	\$21,623	\$75,680	0.5	l l
	R-201	First stage hydrolysis reactor	1			\$210,430	VENDOR	1.30	\$210,430	\$63,129	\$273,559	0.6	
	R-202	Second stage hydrolysis reactor	1			\$174,230	VENDOR	1.30	\$174,230	\$52,269	\$226,499	0.6	
	S-201	First stage pre-reactor screw press	1			\$1,564,000	VENDOR	1.30	\$1,564,000	\$469,200	\$2,033,200		ļ.
	S-202	Second stage pre-reactor screw press	1			\$1,976,000	VENDOR	1.30	\$1,976,000	\$592,800	\$2,568,800		i i
	S-203	Inter stage pre-reactor screw press	2			\$1,500,000	VENDOR	1.30	\$3,000,000	\$450,000	\$3,900,000		
	S-205	Acid vent desicant filter	1			\$547	ICARUS	1.60	\$547	\$328	\$875	0.6	
	S-222	Rotary drum filter	1			\$106,645	VENDOR	2.00	\$106,645	\$106,645	\$213,290	0.39	
	T-201	Sulfuric acid process storage tank	1			\$4,066	ICARUS	1.40	\$4,066	\$1,626	\$5,692	0.71	
	T-203	Blowdown tank #1 (Oligomer)	1			\$21,557	ICARUS	1.20	\$21,557	\$4,311	\$25,868	0.93	
· · · · · · · · · · · · ·	T-204	First stage low pressure flash tank	1			\$19,423	ICARUS	2.60	\$19,423	\$31,077	\$50,500	0.93	
	T-205	Second stage flash tank (Oligomer)	1			\$13,894	ICARUS	2.50	\$13,894	\$20,841	\$34,735	0.71	
	T-206	Second stage low pressure flash tank	1			\$11,432	ICARUS	2.50	\$11,432	\$17,148	\$28,580	0.71	
	T-209	Overliming tank	1			\$55,422	ICARUS	1.40	\$55,422	\$22,169	\$77,591	0.71	
	T-2220	Lime storage bin	1			\$77,726	ICARUS	1.30	\$77,726	\$23,318	\$101,044	0.46	
	W-203	Inter stage washer	2			\$350,000	VENDOR	1.30	\$700,000	\$105,000	\$910,000		
· .		AREA 200 TOTAL	;						\$10,107,112		\$13.291.414		

•

Soft

Jost

NREL SOFT	NOOD 800	DTPD CASE (CO-LOCATED)											
Equipment L	.ist/Cost	(Model G9810H-1)	1										
			Quantity	Capacity	Size	+	Cost	Install.	Total	Unit	Total	Scaling	
Section	Equip. No	o Description	Reqd.	Each	Each	Unit Cost	Source	Factor	Cost	Installation	Installation	Factor	Spares
A300						 . 							
Production	A-300	First stage #1 fermenter agitator	2			\$19.341	VENDOR	1.40	\$38,682	\$7,736	\$54,155	0.51	
Fermentation	A-301	Second stage #1 fermenter agitator	2			\$17,249	VENDOR	1.35	\$34,498	\$6,037	\$46,572	0.51	
	A-302	First stage #2 fermenter agitator	2			\$18,804	VENDOR	1.50	\$37,608	\$9,402	\$56,412	0.51	
	A-303	Second stage #2 fermenter agitator	2			\$18,804	VENDOR	1.35	\$37,608	\$6,581	\$50,771	0.51	
	F-300	1st Stage fermenter No. 1	1			\$294,847	VENDOR	2.80	\$294,847	\$530,725	\$825,572	1	
	F-301	2nd Stage fermenter No. 1	1			\$208,573	VENDOR	2.80	\$208,573	\$375,431	\$584,004	1	
	F-302	1st Stage fermenter No. 2	1			\$308,815	VENDOR	2.80	\$308,815	\$555,867	\$864,682	1	
	F-303	2nd Stage fermenter No. 2	1			\$315,678	VENDOR	2.80	\$315,678	\$568,220	\$883,898	1	
	H-300	First stage #1 fermenter heat exchanger	1			\$426,000	ICARUS	2.80	\$426,000	\$768,800	\$1,192,800	0.78	
	H-301	Second stage #1 fermenter heat exchange	est a j 1 par lu	- statud		\$20,000	ICARUS	2.50	\$20,000	\$30,000	\$50,000	0.78	
	H-302	First stage #2 fermenter heat exchanger	1.			\$9,100	ICARUS	2.80	\$9,100	\$16,380	\$25,480	0.78	
	H-303	Second stage #2 fermenter heat exchange	1			\$31,455	ICARUS	2.40	\$31,455	\$44,037	\$75,492	0.78	
	H-304	Distillation feed preheater	1			\$161,363	VENDOR	1.80	\$161,363	\$129,090	\$290,453	0.83	
	P-300	First stage #1 fermenter pump	ee de tra	n Ngga kanga	12 de la com	\$5,574	ICARUS	3.00	\$5,574	\$11,148	\$16,722	0.79	
	P-301	Second stage #1 fermenter pump	1	1997) (1996) 1997)		\$7,086	ICARUS	2.20	\$7,086	\$8,503	\$15,589	0.79	
	P-302	First stage #2 fermenter pump	1 (1)			\$7,086	ICARUS	2.90	\$7,088	\$13,463	\$20,549	0.79	
	P-303	Second stage #2 fermenter pump	. 1 .			\$7,086	ICARUS	2.50	\$14,172	\$10,629	\$17,715	0.79	1
	P-304	Yeast recycle pump	., <u>1</u>			\$7,086	ICARUS	3.50	\$7,086	\$17,715	\$24,801	0.79	
		AREA 300 TOTAL							\$1,965,231		\$5,095,668		

NREL SOFTW	OOD 800	DTPD CASE (CO-LOCATED)	1										
Equipment Lis	t/Cost (Model G9810H-1)											
Section	Equip. No	Description	Quantity Reqd.	Capacity Each	Size Each	Unit Cost	Cost Source	Install. Factor	Total Cost	Unit Installation	Total Installation	Scaling Factor	Spares
	D-501	Beer Column	1			\$371,000	VENDOR	2.10	\$371,000	\$408,100	\$779,100	0.78	
	D-502	Rectification Column	1			\$242,679	VENDOR	2.10	\$242,679	\$266,947	\$509,626	0.78	
A500	E-501	1st Effect Evaporator	2			\$214,404	ICARUS	2.10	\$428,808	\$235,844	\$900,497	0.68	
Beer Distillation,	E-502	2nd Effect Evaporator	1			\$214,391	ICARUS	2.10	\$214,391	\$235,830	\$450,221	0.68	
Rectification, and	E-503	3rd Effect Evaporator	2			\$214,391	ICARUS	2.10	\$428,782	\$235,830	\$900,442	0.68	
Dehydration	H-501	Reboiler	1			\$78,129	ICARUS	2.10	\$78,129	\$85,942	\$164,071	0.68	1
	H-502	Reboiler	1			\$13,881	ICARUS	2.10	\$13,881	\$15,269	\$29,150	0.68	· .
	H-504	Overhead Condenser	1			\$4,937	ICARUS	2.10	\$4,937	\$5,431	\$10,368	0.68	
	H-505	Overhead Condenser	1			\$42,405	ICARUS	2.10	\$42,405	\$46,646	\$89,051	0.68	
	H-512	Feed/Bottoms Exchanger	1			\$22,043	ICARUS	2.10	\$44,086	\$24,247	\$46,290	0.68	1
	H-517	Evaporator Condenser	2			\$59,797	ICARUS	2.10	\$119,594	\$65,777	\$251,147	0.68	1
	M-503	Ethanol Dehydration Package	1			\$1,291,368	ICARUS	1.00	\$1,291,368	\$0	\$1,291,368	0.7	
	P-501	Bottoms Pump	1			\$51,163	ICARUS	2.80	\$102,326	\$92,093	\$143,256	0.79	1
	P-503	Reflux Pump	1			\$340	ICARUS	2.80	\$680	\$612	\$952	0.79	1
	P-504	Bottoms Pump	1			\$4,386	ICARUS	2.80	\$8,772	\$7,895	\$12,281	0.79	1
	P-505	Reflux Pump	1			\$4,196	ICARUS	2.80	\$8,392	\$7,553	\$11,749	0.79	1
	P-511	1st Effect Pump	2			\$22,943	ICARUS	2.80	\$45,886	\$41,297	\$128,481	0.79	
	P-512	2nd Effect Pump	2			\$23,722	ICARUS	2.80	\$47,444	\$42,700	\$132,843	0.79	
	P-513	3rd Effect Pump	2			\$23,381	ICARUS	2.80	\$46,762	\$42,086	\$130,934	0.79	
	P-514	Condensate Pump	1			\$10,747	ICARUS	2.80	\$21,494	\$19,345	\$30,092	0.79	1
	P-515	Scrubber Bottoms Pump	1			\$1,254	ICARUS	2.80	\$1,254	\$2,257	\$3,511	0.79	
	T-503	Overhead Receiver	1			\$1,030	ICARUS	2.10	\$1,030	\$1,133	\$2,163	0.93	
	T-505	Overhead Receiver	1			\$21,519	ICARUS	2.10	\$21,519	\$23,671	\$45,190	0.72	
	T-512	CO ₂ Scrubber	1			\$50,230	ICARUS	2.10	\$50,230	\$55,253	\$105,483	0.78	
		AREA 500 TOTAL		-					\$3,635,849	· · · · · · ·	\$6,168,265		

	•
Softw Cost	

Section	Equip. No	Description	Quantity Reqd.	Capacity Each	Size Each	Unit Cost	Cost Source	Install. Factor	Total Cost	Unit Installation	Total Installation	Scaling Factor
600	A-602	Equalization Basin Agitator	1			\$19,894	ICARUS	1.20	\$19,894	\$3,979	\$23,873	0.51
ignin Separation	A-606	Anaerobic Digestor Agitator	4	• • • • • • • • • •		\$30,300	ICARUS	1.20	\$121,200	\$24,240	\$145,440	0.51
Wastewater	A-608	Aerobic Digestor Aerator	16			\$31,250	VENDOR	1.40	\$500,000	\$200,000	\$700,000	38°S 1
reatment	A-630	Recycled Water Tank Agitator	1			\$3,311	VENDOR	1.30	\$3,311	\$993	\$4,304	0.51
	C-601	Lignin Wet Cake Screw	1			\$12,456	ICARUS	1.40	\$12,456	\$4,982	\$17,438	0.78
	C-614	Aerobic Sludge Screw	1			\$2,466	ICARUS	1.40	\$2,466	\$986	\$3,452	0.78
	H-602	Anaerobic Digestor Feed Cooler	1			\$175,000	ICARUS	2.10	\$175,000	\$192,500	\$367,500	0.68
	M-604	Nutrient Feed System	1			\$31,400	VENDOR	2.58	\$31,400	\$49,612	\$81,012	1
	M-606	Biogas Handling System	1			\$11,702	VENDOR	1.68	\$11,702	\$7,957	\$19,659	0.6
	M-612	Filter Aid Addition System	1			\$3,000	VENDOR	1.20	\$3,000	\$600	\$3,600	1
	P-602	Anaerobic Digestor Feed Pump	2			\$6,568	ICARUS	2.80	\$13,136	\$23,645	\$36,781	0.79
	P-606	Aerobic Digestor Feed Pump	2			\$6,179	ICARUS	2.80	\$12,358	\$22,244	\$34,602	0.79
	P-608	Aerobic Sludge Recycle Pump	1			\$4,686	ICARUS	2.80	\$4,686	\$8,435	\$13,121	0.79
	P-610	Aerobic Sludge Pump	1			\$4,686	ICARUS	2.80	\$4,686	\$8,435	\$13,121	0.79
	P-611	Aerobic Digestion Outlet Pump	2			\$6,157	ICARUS	2.80	\$12,314	\$22,165	\$34,479	0.79
	P-614	Sludge Filtrate Recycle Pump	2			\$2,568	ICARUS	2.80	\$5,136	\$9,245	\$14,381	0.79
	P-616	Treated Water Pump	2			\$6,150	ICARUS	2.80	\$12,300	\$22,140	\$34,440	0.79
	P-630	Recycle Water Pump	2			\$738	ICARUS	2.80	\$1,476	\$2,657	\$4,133	0.79
	S-600	Bar Screen	1	·		\$90,468	VENDOR	1.20	\$90,468	\$18,094	\$108,562	0.6
	S-601	Beer Columns Bottom Centrifuge	3			\$659,550	VENDOR	1.20	\$1,978,650	\$395,730	\$2,374,380	0.6
•	S-614	Aerobic Sludge Belt Filter Press	3			\$650,223	VENDOR	1.80	\$650,223	\$520,178	\$1,170,401	
	T-602	Equilization Basin	1			\$245,733	VENDOR	1.42	\$245,733	\$103,208	\$348,941	0.51
	T-606	Anaerobic Digestor	4		•	\$881,081	VENDOR	1.04	\$3,524,324	\$140,973	\$3,665,297	0.51
	T-608	Aerobic Digestor	1			\$635,173	VENDOR	1.00	\$635,173	\$0	\$635,173	23- 1
	T-610	Clarifier	1			\$122,335	VENDOR	1.96	\$122,335	\$117,442	\$239,777	0.51
	T-630	Recycle Water Tank	1			\$6,146	VENDOR	1.40	\$6,146	\$2,458	\$8,604	0.745
	XXX	Flare	in al la cal	na the second		\$13,000	VENDOR	1.58	\$13,000	\$7,500	\$20,500	1
		AREA 600 TOTAL					-	· · ·	\$8.212.573		\$10,122,971	

NREL SOF	TWOOD 80	0 DTPD CASE (CO-LOCATED)							·····]		
Equipmen	t List/Cost	(Model G9810H-1)											
Section	Equip. N	o Description	Quantity Reqd.	Capacity Each	Size Each	Unit Cost	Cost Source	Install. Factor	Total Cost	Unit Installation	Total Installation	Scaling Factor	Spares
A700	A-701	In-line Ethanol Denaturant Mixer	1			\$1,202	ICARUS	1.00	\$1,202	\$0	\$1,202	0.48	
Storage	P-701	Ethanol Product Pump	2			\$3,718	ICARUS	2.80	\$11,154	\$20,077	\$31,231	0.79	1
	P-703	Sulfuric Acid Pump	1		-	\$5,430	ICARUS	2.80	\$10,860	\$19,548	\$30,408	0.79	1
	P-704	Firewater Pump	1			\$8,659	ICARUS	2.80	\$17,318	\$31,172	\$48,490	0.79	1
	P-706	Ammonia Pump	1			\$2,344	ICARUS	2.80	\$4,688	\$8,438	\$13,126	0.79	1
	P-708	Diesel Pump	1			\$6,100	ICARUS	2.80	\$12,200	\$21,960	\$34,160	0.79	1
	P-710	Gasoline Pump	1	1		\$2,118	ICARUS	2.80	\$4,236	\$7,625	\$11,861	0.79	1
	P-720	CSL Pump	1			\$1,895	ICARUS	2.80	\$3,790	\$6,822	\$10,612	0.79	1
	T -701	Ethanol Product Storage Tank	2			\$101,922	VENDOR	1.40	\$203,844	\$81,538	\$285,382	0.85	ł
	T-703	Sulfuric Acid Storage Tank	1			\$33,094	ICARUS	1.20	\$33,094	\$6,619	\$39,713	0.51	l
	T-704	Firewater Storage Tank	1	[[\$102,111	VENDOR	1.40	\$102,111	\$40,844	\$142,955	0.85	í
	T-706	Ammonia Storage Tank	1			\$144,058	ICARUS	1.40	\$144,058	\$57,623	\$201,681	0.72	1
	T-708	Diesel Storage Tank	1			\$14,400	ICARUS	1.40	\$14,400	\$5,760	\$20,160	0.51	1
ſ	T-710	Gasoline Storage Tank	1			\$26,739	ICARUS	1.40	\$26,739	\$10,696	\$37,435	0.51	I
	T-720	CSL Storage Tank	1			\$18,975	ICARUS	1.40	\$18,975	\$7,590	\$26,565	0.79	
		AREA 700 TOTAL							\$608,669	-	\$934,981		1

Soft. Cost

Softw_ = Cost

 2	

.

•

Fauinment Li	st/Cost (Model G9810H-1)										-	
Section	Equip. No	Description	Quantity Reqd.	Capacity Each	Size Each	Unit Cost	Cost Source	Install. Factor	Total Cost	Unit Installation	Total Installation	Scaling Factor	Spares
A800	H-811	BFW Preheater	0			\$0			\$0	\$0	\$0		
Boiler Feed	M-802	Combustion Airfan	0	į į		\$0	-		\$0	\$0	\$0		
Drying,	M-803	Fluidized Bed Combustion Reactor	0			\$0			\$0	\$0	\$0		
Combustor &	M-804	Combustion Gas Baghouse	0			\$0			\$0	\$0	\$0		
Turbo Generator	M-811	Turbine/Generator	Ū,		·	\$0			\$0	\$0	\$0		
· · · · · · · · · · · · · · · · · · ·	M-820	Demineralizer	0			\$0			\$0	\$0	\$0		
	M-822	Condensate Polisher	0	1		\$0			\$0	\$0	\$0		
	M-830	Hydrazine Addition Package	1			\$11,156	ICARUS	1.40	\$11,156	\$4,462	\$15,618	0.6	
	M-832	Ammonia Addition Package	1			\$11,156	ICARUS	1.40	\$11,156	\$4,462	\$15,618	0.6	
	M-834	Phosphate Addition Package	1			\$11,156	ICARUS	1.40	\$11,156	\$4,462	\$15,618	0.6	
	P-804	Condensate Pump	2			\$3,395	ICARUS	4.00	\$6,790	\$20,370	\$27,160	0.79	
	P-811	Turbine Condensate Pump	0			\$0			- \$0	\$0	\$0		
	P-824	Deaerator Feed Pump	0			\$0			\$0	\$0	\$0		
	P-826	BFW Pump	0			\$0	ĺ		\$0	\$0	\$0		
	P-828	Blowdown Pump	0			\$0			\$0	\$0	\$0		
	P-830	Hydrazine Transfer Pump	1			\$1,042	ICARUS	4.00	\$1,042	\$3,126	\$4,168	0.79	
	T-804	Condensate Collection Tank	1			\$3,257	ICARUS	4.00	\$3,257	\$9,771	\$13,028	0.71	
	T-824	Condensate Surge Drum	1			\$11,741	ICARUS	3.00	\$11,741	\$23,482	\$35,223	0.72	
	T-826	Deaerator	0			\$0			\$0	\$0	\$0		
	T-828	Blowdown Flash Drum	0			\$0			\$0	\$0	\$0		
	T-830	Hydrazine Drum	1			\$4,249	ICARUS	4.00	\$4,249	\$12,747	\$16,996	0.93	
		Misc. Transformers	1			\$250,000	EST	1.50	\$250,000	\$125,000	\$375,000		
		Misc. Piping	1			\$300,000	EST	1.50	\$300,000	\$150,000	\$450,000		
		AREA 800 TOTAL							\$310,547		\$968,430		

NREL SOFTW	NREL SOFTWOOD 800 DTPD CASE (CO-LOCATED)												
Equipment Lis	st/Cost (Model G9810H-1)							· · · ·				
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1			Quantity	Capacity	Size		Cost	Install.	Total	Unit	Total	Scaling	
Section	Equip. No	Description	Reqd.	Each	Each	Unit Cost	Source	Factor	Cost	Installation	Installation	Factor	Spares
11000	1 1010	Charlinghing Tank Asiletas				640 504		4.20	¢10.504	C4 054	\$47 FEE	0.51	
A TOUU	A-1018					\$13,504	ICARUS	1.30	\$13,504	\$4,051	\$17,555	0.51	
Cooling Water &	A-1020					\$13,504	ICARUS	1.30	\$13,504	\$4,051	\$17,555	0.51	
Instrument Air	H-1010	vvater Sterilizer	1			\$1,501	ICARUS	1.40	\$1,501	\$600	\$2,101	0.08	
	M-1002		1	1		\$814,399	ICARUS	1.20	\$814,399	\$162,880	\$977,279	0.78	
	M-1004	Plant Air Compressor	2			\$44,012	ICARUS	1.30	\$132,036	\$39,611	\$1/1,64/	0.34	
	M-1006	Permenter Air Compressor Package	2			\$380,151	ICARUS	1.30	\$1,140,453	\$342,136	\$1,482,589	0.34	1
	M-1008	Chilled Water Package	3	.		\$380,000	ICARUS	1.20	\$1,140,000	\$228,000	\$1,368,000	0.8	
	P-1002	Cooling vvater Pump				\$156,935	ICARUS	2.80	\$313,870	\$564,966	\$878,836	0.79	1
	P-1010	Sterile Water Pump	2	· · · · · · · · ·		\$2,101	ICARUS	2.80	\$4,202	\$7,564	\$11,766	0.79	
	P-1012	Make-up Water Pump	1			\$4,535	ICARUS	2.80	\$9,070	\$16,326	\$25,396	0.79	1
	P-1014	Process Water Circulating Pump	2			\$5,188	ICARUS	2.80	\$15,564	\$28,015	\$43,579	0.79	1
	P-1016	CIP/CS Supply Pump	2			\$2,801	ICARUS	2.80	\$5,602	\$10,084	\$15,686	0.79	
	P-1018	CIP/CS Return Pump	* <u>2</u>			\$2,802	ICARUS	2.80	\$5,604	\$10,087	\$15,691	0.79	
	S-1004	Instrument Air Dryer	1			\$7,777	ICARUS	1.30	\$15,554	\$4,666	\$20,220	0.6	1
	T-1004	Plant Air Receiver	1			\$6,721	ICARUS	1.30	\$6,721	\$2,016	\$8,737	0.72	
	T-1005	Instrument Air Receiver	q			\$0	ICARUS	0.00	\$0	\$0	\$0		and the second
	T-1010	Process Water Tank	1			\$13,206	ICARUS	1.40	\$13,206	\$5,282	\$18,488	0.71	
e e e erane an eran	T-1014	Process Water Tank	1			\$119,645	ICARUS	1.40	\$119,645	\$47,858	\$167,503	0.51	
	T-1016	Sterile Rinse Water Tank	1			\$13,206	ICARUS	1.40	\$13,206	\$5,282	\$18,488	0.71	
	T-1018	Sterilization Tank	1			\$29,013	ICARUS	1.40	\$29,013	\$11,605	\$40,618	0.71	
	T-1020	Cleaning Tank	1			\$16,407	ICARUS	1.40	\$16,407	\$6,563	\$22,970	0.71	
·		AREA 1000 TOTAL							\$3,823,061		\$5,324,705		
	-	· · · · · · · · · · · · · · · · · · ·					ł			ľ			
		AREA 100 Through 1000 TOTAL							\$30,520,051	· · · ·	\$45,156,202		

-

CURRENT SITUATION:

The Pro Forma models a STAND ALONE Acid Hydrolysis Ethanol plant with a Combustion Reactor, Turbine, Generator system for an 800 BDTD plant

ETHANOL

Į.

pin en p

The plant will convert wood	d chips to fuel gr	ade ethanol util	izing acid hydrol	osis.		
Wood chip production leve	is of	63,979	kg/hr (str 101),	produce estimation	ated total output in	
equivalent kilograms of fue	eigrade ETOH		7,144	kg/hr. =	60,009,600	kg / year (str 515)
			2,393	gai/hr =	20,098,616	gal / year
The model assumes renew	val of the ethanol	excise tax cred	lit of \$.54 per ga	llon to the blen	der	
and the small producer tax	credit of \$.10 pe	r gailon through	the year 2015 f	for a total ethar	ol value of	
\$1.20 per gallon or	r	\$0.40	per kg and	\$24,118,339	per year TOTA	L Ethanol sales
ELECTRICITY						
The electricity from heatin	ig value is	8,514	KW, based on t	the Aspen net o	output (after plant)	oower consumption).
Electricity value based o	n		\$0.050	per KWhr is	\$3,575,880	per year
		TOTAL ELECT	RICITY SALES	WOULD BE	\$3,575,880	per year
Total projected facility s	ales would be	\$27.694,219	per vear (less	waste heat va	lue)	
		,,			,	
B. CAPITAL INVESTMENT ASSUM	IPTIONS					
1) Total capital investment						
Civil Structural			1,110,167			
Area 100			5,734,766			
Area 200			13,291,414			
Area 300			5,095,688			
Area 500			6,168,265			
Area 600			10,122,971			
Area 700			934,981			
Area 800			16,960,299			
Area 1000			5,324,705			
Fixed Capital			\$64,743,256			
INDIRECTS Prorateable	3.5%		\$2,266,014			
Process Development	t 2.0%		\$1,294,865			
Field Expense	8.0%		\$5,179,460			
Home Office Constr. Fee	12.0%		\$7,769,191			
Contingency	10.0%		\$6,474,326			
Start-up, Permits, Fees	3.0%		\$1,942,298			
Working Capital per estimation	ate		\$1,228,805	1 mos Raw m	natis. + O&M	,
	Total Plant Cos	t i	\$90,898,215	—		
FEDERAL 8	& STATE GRANT	S	\$0			
	Net Capital Inv	estment	\$90,898,215			

NREL 2 STAGE DILUTE SULFURIC ACID HYDROLOSIS - PRO FORMA

Rev. 4 6/14/99

PERATING COST ASSUMPTIONS	8,400 hr	/yr			
Utilities (Rates based on 20,098,616	gal/yr produced)				
	Amount/hr	<u>Units</u>	<u>\$/unit</u>	<u>Cost /hr.</u>	<u>Total Cost /yr</u>
Electricity**	0	Kw-hr	\$0.050	\$0	\$0
City process water (str 713)	2,627	kg	\$0.001	\$3	\$26,480
Wastewater	2,627	kg	\$0.004	\$9	\$79,440
300 PSIG steam (\$3.50/1000 lb)**	0	mTon	\$7.718	\$0	\$0
50 PSIG steam (\$1.00/1000 lb)**	0	mTon	\$2.205	\$0	\$0
Total Utilities				\$13	\$105,921

** - Net Electricity and steam consumption are zero cost in this model.

Raw Material Costs

al an

<u> </u>	Amount/hr	<u>Units</u>	<u>\$/unit</u>	<u>Cost /hr.</u>	<u>Total Cost /yr</u>
Wood Chips DRY (str 101less water)	33,333	kg	\$0.022	\$734.99	\$6,173,938
Sulfuric Acid (str 710)	1,008	kg	\$0.095	\$95.76	\$804,384
Calcium Oxide (Lime str 745)	705	kg	\$0.060	\$42.30	\$355,320
Ammonia (str 717/311)	451	kg	\$0.070	\$31.57	\$265,188
Corn Steep Liquor (str 735)	292	kg	\$0.051	\$14.89	\$125,093
Cellulase Complex	0	kg	\$3.000	\$0.00	\$0
Natural Gasoline (str 701)	342	kg	\$0.210	\$71.82	\$603,288
Diesel (str 723)	170	kg	\$0.330	\$56.10	\$471,240
WWT Chemicals	8	kg	\$3.630	\$29.04	\$243,936
CW Chemicals	6	kg	\$2.210	\$13.26	\$111,384
BFW Chemicals	0.5	kg	\$1.000	\$0.50	\$4,200
Total Raw Materials				\$1,090	\$9,157,971
Processing Material Costs					
	<u>Amount/hr</u>	<u>Units</u>	<u>\$/unit</u>	Cost /hr. Total Cost /yr	
Antifoam	0	kg	\$10.000	\$0	\$0
Total Processing Materials				\$0	\$0

Rev. 4 6/14/99

Operations and Maintenance Costs	s - DRY HANDLING (area 100)	Total Cost /yr.
Supervisors	0.5 ea/day	\$31,000
Operators	1 ea/day	\$50,000
Laborers	6 ea/day	\$144,000
Maintenance	2 ea/day	\$100,000
	ı	
Operations and Maintenance Cost	<u>s - HYDROLYSIS/FERMENTATION (area 200, 300, 500, 600)</u>	
Supervisors	1 ea/day	\$62,000
Operators	8 ea/day	\$400,000
Laborers	1 ea/day	\$24,000
Technicians	1 ea/day	\$50,000
Maintenance	2 ea/day	\$100,000
Operations and Maintenance Cost	s - POWER PLANT (area 800)	
Supervisors	0.5 ea/day	\$31.000
Operators	3 ea day	\$150,000
Laborers	2 ea/day	\$48,000
Technicians	1 ea/day	\$110,000
Maintenance	1 ea/day	\$50,000
Operations and Maintenance Cost	<u>s - Utilities (area 700, 1000)</u>	
Supervisors	0 ea/day	\$0
Operators	2 ea/day	\$100,000
Maintenance	2 ea/day	\$100,000
	Total Operations and maintenance labor costs	\$1,550,000
Other Operations and Maintenanc	e Costs	
Payroll Overhead	35% of operating labor	\$542,500
Maintenance Costs	2% of plant cost	\$1,294,865.12
Operating Supplies	0.25% of plant cost	\$161,858.14
Environmental	0.50% of plant cost	\$323,716.28
Local Taxes	1% of plant cost	\$647.432.56
Insurance	0.50% of plant cost	\$323.716.28
Overhead Costs	40% of labor, supervision maint cost	\$620.000
Administrative Costs	1% of annual sales (less tax credits)	\$82.404
Distribution and Sales	0.5% of annual sales (less tax credits)	\$41,202
Total O&M Costs		\$5,587,695

Martpf4.xls

к,

\$0.40 perkg

1.20 per gallon

D. OTHER MODEL ASSUMPTIONS

verage prevailing market price of fuel grade ETOH: Assumes renewal of the ethanol excise tax credit of \$.54 per gallon and the small producer tax credit of \$.10 per gallon through the year 2007 and \$.56 per gallon fuel value includes \$.10 discount to the blender.

\$0.050 per KWhr Price for Electricity Produced DRY 50% WET \$0.022 \$0.011 per kg Price paid for wood chip feedstock - dry basis \$22.05 \$11.03 per metric ton 0.959 Plant on-stream factor 8400 Plant operating hours per year 15 years Depreciable Life of Capital Equipment 1.0% Average annual commodity escalation rate: 3.0% Average annual cost escalation rate:

1. There are no land acquisiton costs included.

2. There are no off site costs included (e.g. public road improvements, extensions of power, water, telephone services)

3. There is a source of qualified construction personnel within daily driving distance of the site.

3. There exist adequate roads, rail roads or ship docks to allow equipment delivery.

5. The costs for air and water permits are not included.

6. Soils are adequate for conventional foundation designs.

Rev. 4 6/14/99

(- 1) (- 1)	NREL 2 STAGE DILUTE SULFURIC A Underlying Assumptions & Input Variab	ACID HYDROLOSIS - PRO Les	O FORMA			Rev. 4 6/14/99
	A. CURRENT SITUATION:					
	The Pro Forma models a S Turbine, Generator system	TAND ALONE Acid Hydro for an 800 BDTD plant	olysis Ethanol pla	ant with a Comb	ustion Reactor,	
	FTHANOL					
	The plant will convert wood	chips to fuel grade ethar	nol utilizing acid h	nvdrolosis.		
	Wood chip production level	s of 141,074	lb/hr (str 101),	produce estima	ted total output i	n
	equivalent kilograms of fue	I grade ETOH	15,753	lb/hr	132,321,168	lb / year (str 515)
			2,393	gal/hr =	20,098,616	gal / year
	The model assumes renew and the small producer tax \$1.20 per gallon or	al of the ethanol excise ta credit of \$.10 per gallon th TOTAL ETHANOL SAL	ix credit of \$.54 p brough the year 2 .ES WOULD BE	ber gallon to the 2015 for a total \$24,118,339	blender ethanol value of per year	
	ELECTRICITY					
	The electricity from heating	g value is 8,514	4 KW, based on	the Aspen net	output (after plan	t power consumption).
	cycle power generation. E	lectricity value based on	\$0.050	per KWhr is	\$3,575,880	per year
		TOTAL EL	ECTRICITY SAL	ES WOULD BE	\$3,575,880	per year
	Total projected facility sa B. CAPITAL INVESTMENT ASSUMP	lies would \$27,694,215	9 per year			
$\sum_{i=1}^{n} x_i ^2$	1) Total capital investment					
	Civil Structural		1,110,167			
	Area 100		5,734,766			
	Area 200		13,291,414			
	Area 300		5,095,688			
	Area 500		6,168,265			
	Area 600		10,122,971			
	Area 700		934,981			
	Area 800		16,960,299			
	Area 1000		5,324,705			
	Fixed Capital		\$64,743,256			
	INDIRECTS Prorateable	3.5%	\$2,266,014			
	Process Development	2.0%	\$1,294,865			
	Field Expense	8.0%	\$5,179,460			
	Home Office Constr. Fee	12.0%	\$7,769,191			
	Contingency	10.0%	\$6,474,326			
	Start-up, Permits, Fees	3.0%	\$1,942,298			
	Working Capital per estima	ate	\$1,228,805	_1 mos Raw m	atis. + O&M	
		Total Plant Cost	\$90,898,215			
	FEDERAL &	STATE GRANTS	\$0	-1		
	Ľ	Net Capital Investment	\$90,898,215	_]		

Note: Indirect Capital Costs are adjusted to account for location specific construction issues.

NREL 2 STAGE DILUTE SULFURIC ACID HYDROLOSIS - PRO FORMA

Rev. 4 6/14/99

		141	ALL 2 STAGE DIEUTE SULFUNIC ACI	-
	ŕ			
		C.	OPERATING COST ASSUMPTIONS	

8,400 hr/yr

Utilities (Rates based on 20),098,616 gal/yr produced)				
	<u>Amount/hr</u>	<u>Units</u>	<u>\$/unit</u>	<u>Cost /hr.</u>	<u>Total Cost /yr</u>
Electricity**	0	Kw-hr	\$0.050	\$0	\$0
City process water	5,793	lb	\$0.001	\$3	\$26,480
Wastewater	5,793	lb	\$0.002	\$9	\$79,440
300 PSIG steam (\$3.50/100	0 lb)** 0	1000 lb	\$3.500	\$0	\$0
50 PSIG steam (\$1.00/1000	0 (b)** 0	1000 lb	\$1.000	\$0	\$0
Total Utilities				\$13	\$105,921

** - Net Electricity and steam consumption are zero cost in this model.

Raw Material Costs					
	<u>Amount/hr</u>	<u>Units</u>	<u>\$/unit</u>	<u>Cost /hr.</u>	<u>Total Cost /yr</u>
Wood Chips DRY (45% str 101)	73,499	lb	\$0.010	\$734.99	\$6,173,938
Sulfuric Acid (str 710)	2,223	lb	\$0.043	\$95.76	\$804,384
Calcium Oxide (Lime)	1,555	lb	\$0.027	\$42.30	\$355,320
Ammonia (str 717/311)	994	lb	\$0.032	\$31.57	\$265,188
Corn Steep Liquor (str 735)	644	lb	\$0.023	\$14.89	\$125,093
Cellulase Complex	0	lb	\$1.361	\$0.00	\$0
Natural Gasoline (str 701)	754	lb	\$0.095	\$71.82	\$603,288
Diesel (str 723)	375	lb	\$0.150	\$56.10	\$471,240
WWT Chemicals	18	lb	\$1.646	\$29.04	\$243,936
CW Chemicals	13	lb	\$1.002	\$13.26	\$111,384
BFW Chemicals	1	lb	\$0.454	\$0.50	\$4,200
Total Raw Materials				\$1,090	\$9,157,971
Processing Material Costs					
	<u>Amount/hr</u>	<u>Units</u>	<u>\$/unit</u>	<u>Cost /hr.</u>	<u>Total Cost /yr</u>
Antifoam	0	lb	\$4.530	\$0	\$0
Total Processing Materials				\$0	\$0

•

Stand Alone - usunits

Rev. 4 6/14/99

		Total Cost /yr.
Supervisors	0.5 ea/day	\$31,000
Operators	1 ea/day	\$50,000
Laborers	6 ea/day	\$144,000
Maintenance	2 ea/day	\$100,000
perations and Maintenance Cost	s - HYDROLYSIS/FERMENTATION (area 200, 300, 500, 600)	
Supervisors	1 ea/day	\$62,000
Operators	8 ea/day	\$400,000
Laborers	1 ea/day	\$24,000
Technicians	1 ea/day	\$50,000
Maintenance	2 ea/day	\$100,000
perations and Maintenance Cost	s - POWER PLANT (area 800)	
Supervisors	0.5 ea/day	\$31,00
Operators	3 ea day	\$150,00
Laborers	2 ea/day	\$48,00
Technicians	1 ea/day	\$110,00
Maintenance	1 ea/day	\$50,00
Supervisors	U ea/day	\$
operators	2 ea/day	\$100,00
Operators Maintenance	2 ea/day 2 ea/day	\$100,00 \$100,00
Maintenance	2 ea/day 2 ea/day Total Operations and maintenance labor costs	\$100,00 \$100,00 \$1,550,00
Operators Maintenance	2 ea/day 2 ea/day Total Operations and maintenance labor costs	\$100,00 \$100,00 \$1,550,00
Operators Maintenance <u>Dther Operations and Maintenanc</u> Payroll Overhead	2 ea/day 2 ea/day Total Operations and maintenance labor costs <u>e Costs</u> 35% of operating labor	\$100,00 \$100,00 \$1,550,00 \$542,50
Operators Maintenance <u>Other Operations and Maintenance</u> Payroll Overhead Maintenance Costs	2 ea/day 2 ea/day Total Operations and maintenance labor costs <u>ee Costs</u> 35% of operating labor 2% of plant cost	\$100,00 \$100,00 \$1,550,00 \$542,50 \$1,294,86
Operators Maintenance Dther Operations and Maintenance Payroll Overhead Maintenance Costs Operating Supplies	2 ea/day 2 ea/day Total Operations and maintenance labor costs <u>ee Costs</u> 35% of operating labor 2% of plant cost 0.25% of plant cost	\$100,00 \$1,550,00 \$1,550,00 \$542,50 \$1,294,86 \$1,294,86 \$161,85
Deperators Maintenance Dther Operations and Maintenance Payroll Overhead Maintenance Costs Operating Supplies Environmental	2 ea/day 2 ea/day Total Operations and maintenance labor costs <u>ee Costs</u> 35% of operating labor 2% of plant cost 0.25% of plant cost 0.50% of plant cost	\$100,00 \$100,00 \$1,550,00 \$542,50 \$1,294,86 \$1,294,86 \$161,85 \$323.71
Deperators Maintenance Dther Operations and Maintenance Payroll Overhead Maintenance Costs Operating Supplies Environmental Local Taxes	2 ea/day 2 ea/day Total Operations and maintenance labor costs : <u>e Costs</u> 35% of operating labor 2% of plant cost 0.25% of plant cost 0.50% of plant cost 1% of plant cost	\$100,00 \$100,00 \$1,550,00 \$1,550,00 \$1,294,86 \$1,294,86 \$161,86 \$323,71 \$647,43
Deperators Maintenance Dther Operations and Maintenance Payroll Overhead Maintenance Costs Operating Supplies Environmental Local Taxes Insurance	2 ea/day 2 ea/day Total Operations and maintenance labor costs 22 Costs 35% of operating labor 2% of plant cost 0.25% of plant cost 0.50% of plant cost 1% of plant cost 0.50% of plant cost	\$100,00 \$100,00 \$1,550,00 \$1,550,00 \$1,294,86 \$161,85 \$323,71 \$647,43 \$323,71
Deperators Maintenance Dther Operations and Maintenance Payroll Overhead Maintenance Costs Operating Supplies Environmental Local Taxes Insurance Overhead Costs	2 ea/day 2 ea/day Total Operations and maintenance labor costs 20 Costs 35% of operating labor 2% of plant cost 0.25% of plant cost 0.50% of plant cost 1% of plant cost 0.50% of plant cost 40% of labor, supervision maint cost	\$100,00 \$100,00 \$1,550,00 \$1,550,00 \$1,294,86 \$12,294,86 \$161,85 \$323,71 \$647,43 \$323,71 \$647,43 \$323,71 \$620,00
Dther Operations and Maintenance Dther Operations and Maintenance Payroll Overhead Maintenance Costs Operating Supplies Environmental Local Taxes Insurance Overhead Costs Administrative Costs	2 ea/day 2 ea/day Total Operations and maintenance labor costs 20 Costs 35% of operating labor 2% of plant cost 0.25% of plant cost 0.50% of plant cost 1% of plant cost 0.50% of plant cost 1% of plant cost 40% of labor, supervision,maint cost 1% of annual sales	\$100,00 \$100,00 \$1,550,00 \$1,550,00 \$1,294,86 \$161,85 \$323,7' \$647,41 \$323,7' \$620,00 \$82,40
Differ Operations and Maintenance Differ Operations and Maintenance Payroll Overhead Maintenance Costs Operating Supplies Environmental Local Taxes Insurance Overhead Costs Administrative Costs Distribution and Sales	2 ea/day 2 ea/day Total Operations and maintenance labor costs 2005 2007	\$100,00 \$100,00 \$1,550,00 \$1,550,00 \$1,294,86 \$161,86 \$323,71 \$647,43 \$323,71 \$647,43 \$323,71 \$642,40 \$82,40 \$41,20
Dther Operations and Maintenance Dther Operations and Maintenance Payroll Overhead Maintenance Costs Operating Supplies Environmental Local Taxes Insurance Overhead Costs Administrative Costs Distribution and Sales	2 ea/day 2 ea/day Total Operations and maintenance labor costs 35% of operating labor 2% of plant cost 0.25% of plant cost 0.50% of plant cost 1% of plant cost 0.50% of plant cost 40% of labor, supervision,maint cost 1% of annual sales 0.5% of annual sales	\$100,00 \$100,00 \$1,550,00 \$1,550,00 \$1,294,86 \$161,85 \$323,71 \$647,43 \$323,71

D. OTHER MODEL ASSUMPTIONS

Average prevailing market price of fuel grade ETOH:\$0.40 per kgAssumes renewal of the ethanol excise tax credit of \$.54 per gallon1.20 per gallonand the small producer tax credit of \$.10 per gallon through the year 20071.20 per gallonand \$.56 per gallon fuel value and includes \$.10 discount to the blender.1.20 per gallon

	DRY	50% WET	
Price for Electricity Produced		\$0.050	per KWhr
	DRY	50% WE1	
Price paid for wood chip feedstock - dry basis	\$0.010	\$0.005	per lb
	\$20.00	\$10.00	per ton
Plant on-stream factor		0.959	
Plant operating hours per year		8,400	
Depreciable Life of Capital Equipment		15	years
Average annual commodity escalation rate:		1.0%	
Average annual cost escalation rate:		3.0%	

- 1. There are no land acquisiton costs included.
- 2. There are no off site costs included (e.g. public road improvements, extensions of power, water, telephone services)

3. There is a source of qualified construction personnel within daily driving distance of the site.

- 4. There exist adequate roads, rail roads or ship docks to allow equipment delivery.
- 5. The costs for air and water permits are not included.
- 6. Soils are adequate for conventional foundation designs.

Rev. 4 6/14/99

Stand Alone Plant

NREL 2 STAGE DILUTE SULFURIC ACID HYDROLOSIS - PRO FORMA, Stand Alone

SE 1: Produce Fuel Grade Ethanol

)

Capital Investment:		month1	month2	month3	month4	month5	month6	month7	month8	month9	month10	month11	month12	month13	month14	month15	month16	month17	month18	TOTAL	
Total Fixed Capital Cost Construction Financing & Fees @10%		\$5,500,000	\$5, 500,000 45,833	\$5,500,000 91,667	\$5,500,000 137,500	\$5,500,000 183,333	\$5,500,000 229,167	\$5,500,000 275,000	\$5,500.000 320,833	\$5,500,000 366,667	\$5,500,000 412,500	\$5,500,000 458,333	\$5,500,000 504,167	\$5,500,000 550,000	\$5,500,000 595,833	\$5,500,000 641,667	\$5,500,000 687,500	\$5,500,000 733,333	(\$2,601,785) 366.667	\$90,898,215 6.600,000	
Loan Orgination Fee @ Legal Fees Builder's All Risk/General Liability Working Capital	2.0%	1∖817,964 40,000 50,000																	0	1,817,964 40,000 50,000	
Total Capital Investment Required		\$7,407,964	\$5,545,833	\$5,591,667	\$5,637,500	\$5,683,333	\$5,729,167	\$5,775,000	\$5,820,833	\$5,866,667	\$5,912,500	\$5,958,333	\$6,004,167	\$6,050,000	\$6,095,833	\$6,141,667	\$6,187,500	\$6,233,333	(\$2,235,118)	\$99,406,179	
					11,000																
Operating Brainstian		Year 1:	Year 2:	Year 3:	Year 4:	Year 5:	Year 6:	Year 7:	Year 8:	Year 9:	Year 10:	Year 11:	Year 12:	Year 13:	Year 14:	Year 15:	Year 16:	Year 17:	Year 18:	Year 19:	Year 20:
operating Projection.		19997 2000	2000/2001	2001/2002	2002/2003	<u>2003/2004</u>	2004/2005	<u>2005/2006</u>	<u>2006/2007</u>	2007/2008	2008/2009	<u>2006 / 2007</u>	<u>2007 / 2008</u>	2008/2009	<u> 2009 / 2009</u>	2010/2011	<u>2011 / 2012</u>	2012/2013	<u>2013 / 2014</u>	2014/2015	<u>2015/2016</u>
gal of fuel grade ethanol produced		20,098,616	20,098,616	20,098,616	20,098,616	20,098,616	20,098,616	20,098,616	20,098,616	20,098,616	20,098,616	20,098,616	20,098,616	20,098,616	20,098,616	20,098,616	20,098,616	20,098,616	20,098,616	20,098,616	20,098,616
Gross Annual Revenue		\$22 108 478	\$22 329 562	\$1.122 \$22 552 858	\$1.133 \$20 779 297	\$1.145	\$1,156	\$1.168	\$1.179	\$1.191	\$1.203	\$1.215	\$1.227	\$1.240	\$1.252	\$1.264	\$1.277	\$1.290	\$1.303	\$1.316	\$1.329
Small Ethanol Producer Tax Credit		422,100,170	<i>422,025,002</i>	ΨZZ,35Z,056	422,110,301	\$23,000,170	\$23,230,232	⊅∠3,468, 394	\$23,703.280	\$23,940,313	\$24,179,716	\$24,421,514	\$24,665,729	\$24,912,386	\$25,161,510	\$25,413,125	\$25,667,256	\$25,923,929	\$26,183,168	\$26,445,000	\$26,709,4 50
@ \$0.1000 per gallon		\$2,009,862	\$2,009,862	\$2,009,862	\$2,009,862	\$2,009,862	\$2,009,862	\$2,009,862	\$2,009.862	\$2,009,862	\$2,009,862	\$2,009,862	\$2,009,862	\$2,009,862	\$2,009,862	\$2,009,862	\$2,009,862	\$2,009,862	\$2,009,862	\$2,009,862	\$0
Total projected ethanol sales and credit		<u>\$24,118.339</u>	<u>\$24.339.424</u>	<u>\$24.562.720</u>	<u>\$24,788,248</u>	<u>\$25.016.032</u>	<u>\$25.246.094</u>	<u>\$25,478,456</u>	<u>\$25,713,142</u>	<u>\$25.950.175</u>	<u>\$26.189.578</u>	<u>\$26.431,375</u>	<u>\$26,675,590</u>	<u>\$26.922.248</u>	\$ <u>27.171.371</u>	<u>\$27.422.987</u>	<u>\$27.677.118</u>	<u>\$27,933,790</u>	<u>\$28,193,030</u>	\$28,454,861	<u>\$26.709.450</u>
B Value of electricity		\$0.05	\$0.051	\$0.051	\$0.052	\$0.052	\$0.053	\$0.053	\$0.054	\$0.054	\$0.055	\$0.055	\$0.056	\$0.056	\$0.057	\$0.057	\$0.058	\$0.059	\$0.059	\$0.060	\$0.080
Gross Annual Electricity Revenue		\$3,575,880	\$3,611,639	\$3,647,755	\$3,684,233	\$3,721,075	\$3,758,286	\$3,795,869	\$3,833,827	\$3,872,166	\$3,910,887	\$3,949,996	\$3,989,496	\$4,029,391	\$4,069,685	\$4,110,382	\$4,151,486	\$4,193,001	\$4,234,931	\$4,277,280	\$4,320,053
Gross Sales and Credit		\$27,694,219	\$27,951,063	\$28,210,475	\$28,472,481	\$28,737,107	\$29,004,380	\$29,274,325	\$29,546,969	\$29,822,340	\$30,100,465	\$30,381,371	\$30,665,086	\$30,951,639	\$31,241,056	\$31,533,368	\$31.828.603	\$32,126,791	\$32,427,960	\$32 732 141	\$31 029 502
Operating Expenses:																,			402,127,000	\$52,102,141	<i>401,020,002</i>
Utilities		105,921	109,098	112,371	115,742	119,215	122,791	126,475	130,269	134,177	138,202	142,348	146,619	151,018	155,548	160,214	165.021	169.972	175 071	180 323	185 732
Raw Materials		9,157,971	9,249,551	9,342,046	9,435,467	9,529,821	9,625,120	9,721,371	9,818,585	9,916,770	10,015,938	10,116,097	10,217,258	10,319,431	10,422,625	10,526,852	10,632,120	10,738,441	10,845,826	10,954,284	11,063,827
Operation & Maintenance		5 587 695	5 755 326	0 5 007 095	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Property Tax @ 0.50% Book Value		497.031	466 731	5,927,965 436 432	6,105,825	6,289,000	6,4/7,670	6,672,000	6,872,160	7,078,325	7,290,674	7,509,395	7,734,676	7,966,717	8,205,718	8,451,890	8,705,447	8,966,610	9,235,608	9,512,676	9,798,057
Depreciation		6,059,881	6.059.881	6.059.881	6.059 881	6 059 881	6 059 881	6 059 881	204,935 6 059 881	254,636	224,330 6 059 881	6 059 881	163,737	133,438	103,139	72,839	72,839	72,839	72,839	72,839	72,839
Total Operating Expense		\$21,408,498	\$21.640.587	\$21,878,716	\$22 123 048	\$22 373 750	\$22,630,995	\$22,894,961	\$23 165 830	\$23 443 789	\$23,729,032	\$24,021,759	\$24,202,470	0,039,001	6,059,881	6,059,881	0	0	0	0	0
С.		,		\$21101 0,1 10	<i>422, 120,040</i>	Ψ22,070,700	φ 22,000,99 0	φ 22,05 4,501	\$25,105,050	φ 23,443,70 9	\$23,729,03Z	φ 24,021,75 0	\$24,322,172	\$24,630,484	\$24,946,911	\$25,271,676	\$19,575,427	\$19,947,862	\$20,329,344	\$20,720,122	\$21,120,455
Net Operating Income		\$6,285,721	\$6,310,476	\$6,331,759	\$6,349,433	\$6,363,357	\$6,373,384	\$6,379,364	\$6,381,140	\$6,378,552	\$6,371,433	\$6,359,613	\$6,342,914	\$6,321,154	\$6,294,145	\$6,261,692	\$12,253,177	\$12,178,929	\$12,098,616	\$12,012,019	\$9,909,047
Net Operating Cash Flow		\$12,345,602	\$12,370,357	\$12,391,640	\$12,409,314	\$12,423,238	\$12,433,265	\$12,439,245	\$12,441,021	\$12,438,433	\$12,431,314	\$12,419,494	\$12,402,795	\$12,381,035	\$12,354,026	\$12,321,573	\$12,253,177	\$12,178,929	\$12,098,616	\$12,012,019	\$9,909,047
CASE 2: Hypothetical Financing Scenarios:																					
CASE 2A: 100% Debt Financing																					
Amortization		Year 1:	Year 2:	Year 3:	Year 4:	Year 5:	Year 6:	Year 7:	Year 8:	Year 9:	Year 10:	Year 11:	Year 12:	Year 13:	Year 14:	Year 15:	Year 16:	Year 17:	Year 18:	Year 19:	Year 20:
Interest Rate		<u>1999 /2000</u>	2000/2001	2001/2002	2002/2003	2003/2004	2004/2005	2005/2006	2006/2007	2007/2008	2008/2009	<u>2006 / 2007</u>	2007 / 2008	2008 / 2009	2009 / 2009	2010/2011	2011/2012	2012/2013	2013/2014	2014/2015	<u>2015 / 2016</u>
Net Operating Cash Flow (from above)		12,345,602	12,370,357	12, 391,640	12,409,314	12,423,238	12,433,265	12,439,245	12,441,021	12,438,433	12,431,314	12,419,494	12,402,795	12,381,035	12,354,026	12,321,573	12,253,177	12,178,929	12,098,616	12,0 12,0 19	9,9 09,047
Debt Interest		4,970,309	4,739,973	4,498,121	4,244,176	3,977,534	3,697,560	3,403,587	3,094,915	2,770,810	2,430,500	2,073,174	1,697,982	1,304,030	890,380	456.049	0	0	n	0	Δ
Debt Principal		4,606,710	4,837,045	5,078,898	5,332,842	5,599,484	5,879,459	6,173,432	6,482,103	6,806,208	7,146,519	7,503,845	7,879,037	8,272,989	8,686,638	9,120,970	(0)	(0)	(0)	(i)	0
Total Debt Service		9,577,019	9,577,019	9,577,019	9,577,019	9,577,019	9,577,019	9,577,019	9,577,019	9,577,019	9,577,019	9,577,019	9,577,019	9,577,019	9,577,019	9,577,019	0	0	0	0	0
Net Cash Flow after Debt Service		2,768,583	2,793,338	2,814,621	2,832,295	2,846,219	2,856,247	2,862,226	2,864,002	2,861,414	2,854,295	2,842,475	2,825,776	2,804,017	2,777,007	2,744,555	12,253,177	12,178,929	12,098,616	12,012,019	9,9 09,047
Debt Service Coverage Ratio		1.29	1.29	1.29	1.30	1.30	1.30	1.30	1.30	1.30	1.30										
Total Pre-tax Net Cash Flow (20 yrs)		<u>\$100,798,858</u>																			

6/1**4/99**

Rev. 4

Stand Alone Plant

NSE 2B: 100% Cash Financing	Year 0:	Year 1:	Year 2:	Year 3:	Year 4:	Year 5:	Year 6:	Year 7:	Year 8:	Year 9:	Year 10:	Year 11:	Year 12:	Year 13:	Year 14:	Year 15:	Year 16:	Year 17:	Year 18:	Year 19:	Year 20:
Net Cash Flow	(99,406,179)	12,345,602	12.370,357	12,391,640	12,409,314	12,423,238	12,433,265	12 ,439,245	12.441.021	12,438,433	12,431,314	12,419,494	12,402,795	12,381,035	12,354,026	12,321,573	12,253,177	12,178,929	12,098,616	12,012,019	9,909,047
Total Pre-tax Net Cash Flow (20 yrs) IRR @ 100% C/ Payback Period (<i>Pre-tax; undiscount</i>	ASH ed)	<u>\$145.047.960</u> , 10.8% <u>(8.1)</u> y	ears																		
, CASE 2C: Combined Equity & Debt Fi	nancing				<u></u>								·								

Equity Portion Debt Portion	\$24,851,545 \$74,554,635	Amortization Interest Rate			yrs																
	Year 0: <u>1997/1998</u>	Year 1: <u>1999 / 2000</u>	Year 2: 2000/2001	Year 3: <u>2001/2002</u>	Year 4: 2002/2003	Year 5: 2003/2004	Year 6: 2004/2005	Year 7: 2005/2006	Year 8: 2006/2007	Year 9: 2007/2008	Year 10: 2008/2009	Year 11: 2006 / 2007	Year 12: 2007 / 2008	Year 13: 2008 / 2009	Year 14: 2009 / 2009	Year 15: <u>2010 / 2011</u>	Year 16: 2011 / 2012	Year 17: 2012 / 2013	Year 18: 2013 / 2014	Year 19: <u>2014 / 2015</u>	Year 20: 2015 / 2016
Net Operating Cash Flow	0	12,345,602	12,370,357	12,391,640	12,409,314	12,423,238	12,433,265	12,439,245	12,441,021	12,438,433	12,431,314	12,419,494	12,402,795	12,381,035	12,354,026	12,321,573	12,253,177	12,178,929	12,098,616	12,012,019	9,909,047
Debt Interest Debt Principal Total Debt Service		3,727,732 3,455,032 7,182,764	3,554,980 3,627,784 7,182,764	3,373,591 3,809,173 7,182,764	3,183,132 3,999,632 7,182,764	2,983,151 4,199,613 7,182,764	2,773,170 4,409,594 7,182,764	2,552,690 4,630,074 7,182,764	2,321,187 4,861,577 7,182,764	2,078,108 5,104,656 7,182,764	1,822,875 5,359,889 7,182,764	1,554,880 5,627,884 7,182,764	1,273,486 5,909,278 7,182,764	978,022 6,204,742 7,182,764	667,785 6,514,979 7,182,764	342,036 6,840,728 7,182,764	0 (0) 0	0 (0) 0	0 (0)	(0) 0	0 (0)
Net Cash Flow	(24,851,545)	5,162,838	5,187,593	5,208,876	5,226,550	5,240,474	5,250,501	5,256,481	5,258,257	5.255,669	5,248,550	5,236,730	5,220,031	5,198,271	5,171,262	5,138,809	12,253,177	12,178,929	12,098,616	12.012.019	9.909.047
Debt Service Coverage Ratio		1.72	1.72	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.72	1.72	1.72	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Total Pre-tax Net Cash Flow (20 yrs)		<u>\$111.861.134</u>																			
Internal Rate of Return (IRR Pre-Tax)	<u>21%</u>																			

-

APPENDIX A

HEAT OPTIMIZATION

HEAT OPTIMIZATION OBJECTIVE

The softwood, biomass to ethanol process requires a great deal of heat transfer. In prehydrolysis and hydrolysis heat is added to the process. In flash and fermentation heat is withdrawn from the process. In distillation both heating and cooling are needed. In some cases heat transfer can be directly from process stream to process stream thus minimizing the amount of utility heating and cooling required.

Obviously much thought must be given to energy efficiency of the process and the amount of heat exchange equipment required. An evaluation of the potential for heat integration and efficiency was made to identify the probable need for the utility systems required to maintain heat balance.

DESCRIPTION

Heating and cooling requirements were calculated based on the Aspen model flow rates, temperatures and pressures with certain simplifying assumptions. These heat duties were compared in size and temperature level in order to find heat exchange matches which could enhance the energy efficiency of the process. Assumptions that were taken are:

- 1. Stream composition was simplified to "water" and "other than water."
- 2. Liquid water heat capacity was taken as 1.0 BTU/lb.- ^oF at all temperature levels in the process.
- 3. The heat capacity of "Other than water" was taken to be 0.3 BTU/lb.- ^oF at all temperature levels within the process.
- 4. All steam was considered to be saturated and steam tables were used to establish energy content.
- 5. Heat losses to the atmosphere due to insulation inadequacies were ignored.
- 6. Heat exchange equipment along with transfer coefficients were not defined at this stage.

Calculation results are graphically presented on the attached sheet.

CONCLUSIONS

Although the amount of heating required by the process and the amount of cooling required by the process are nearly the same, the temperature levels limit the amount of heat integration that can be accomplished. Major heat transfer duties are discussed below:

1st and 2nd Stage Hydrolysis

Hydrolysis requires the input of heat at a high temperature level. The temperature requirement exceeds the temperature of any of the process streams needing heat removal. Additionally, heat input at the Hydrolyzers is by the direct injection of steam. Hydrolysis heat must be supplied by high pressure steam.

Beer Column Reboiler

Similarly, this reboiler requires heat at a high temperature level and must therefore use high pressure steam for the heat source.

Preheat Exchanger and Rectifier Reboiler

Flash steam from Flash Tanks 1A and 2A contain nearly enough heat for these services and at nearly a high enough temperature level. It is believed that the flash steam can be supplemented with high pressure steam in order to make it usable in these services.

At least two methods of accomplishing the high pressure steam supplement are foreseen. First, there is the traditional method of using all the flash steam heat in one exchanger(s) and following this with a separate "trim" exchanger using high pressure steam.

A second method which may save significant exchanger cost is to use high pressure steam as motive steam in an ejector that takes suction on the flash steam. The discharge steam would be fixed at a pressure high enough to provide a thermal driving force for the required heat exchange. This method saves exchanger cost but is less flexible. Turn down situations would need to be evaluated during detail engineering.

Pre-steamer (Note that the prehydrolysis system has been simplified and there is no longer a presteamer in the process)

Flash steam from Flash Tanks 1B and 2B, if supplemented with high pressure steam (as described above) could effectively supply this service. Since the Presteamer uses direct heat injection the heat source must be steam.

#1 Washer

It is recommended that a feed/discharge exchanger be used to heat wash water supply and cool wash water discharge. Additional heating of the supply may be necessary.

Additional integration of heat usage can certainly be done but will need to be carefully evaluated as multiple exchangers may be required. Increased capital cost will need to be justified by the utility savings.

It may be prudent to consider air cooled exchangers rather than water cooled for the Rectifier reflux and possibly the Beer Column reflux (if suspended solids can be adequately handled in the header boxes).

The first and second stage coolers, upstream of the fermentors, are large cooling loads that currently are supplied by cooling water.

The fermentors have large cooling loads which are shown on the flow diagrams as being supplied by chilled water. It may be best to continue this design as it provides good control and reliability of cooling for the fermentors.

NREL

INPUT		
REMOVA	L	
ļ		
190	200	210

 $\sim \sim j$

NREL

}

_				
		——— г		
<u> </u>				
H		JVAL		
-				
-				
	+			
	+			
	+			
80)	190	200	210
	1		1	

NREL

INI	PUT		
RE	MOVAL		
-			
-+			
Ì			
-+			
80	190	200	210
APPENDIX B

TRIP REPORTS

1. HIGH PLAINS CORPORATION, YORK, NE

DATE:	May 1, 1998		
PROJECT:	NREL Softwood to H	Ethanol	PROJ. NO.: 19013104
LOCATION:	High Plains Corp. E	thanol Plant -	York, Nebraska
ATTENDEES:	Kiran Kadam	NREL	
	Quang Nguyen	NREL	
	Joe Ruocco	Merrick	
	Fran Ferraro	Merrick	
	Dick Voiles	Merrick	
	Rochelle Dageforde	High Plains	

The plant is a 100,000 gal/day design for the production of ethanol from corn or milo. Feed grain is delivered to the plant via truck. Of the approximately 40 million gallons/year production capability, up to 18 million gallons can be treated to Industrial Grade ethanol. The plant employs about 65 people:

- 5 people in administration
- less than 40 people in operations
- about 20 people in maintenance

High Plains has the capability to store up to 4.5 days of feed in 4 silos. They also use a single day bin to feed 3 hammermills that grind up to 45,000 bushels/day. The mills have dust control cyclones and a baghouse with pulse-jet cleaning of the bags. Recovered dust is added to the ground feed and travels with it. There are one Champion mill and two Schutte mills, each with screens on the outlet to control particle size of the grind. The grind is to a coarse flour. This is conveyed in an elevated screw conveyor system at the top of the pipe rack with access walkway on one side of the conveyor(s). Their conveyors were made by Caldwell of Kearney, NE. Following milling, recycle water from multiple sources (backset), ammonia for pH control and an α -amylase are added in a slurry tank which operates at about 150 °F. Next this slurry is pumped and mixed with steam in an eductor to bring the temperature to 225-250°F. The eductor discharges to the top of the cook tube or hydroheater which has a 20 minute residence time. The slurry is then pumped to the Flash Tank and flashed at a slight vacuum (the source of the vacuum is the Rectifier Tower overhead vacuum system) and the temperature falls to 190°F.

Glucoamylase is added to the slurry which is then held in liquifaction tanks (horizontal tanks having three mixers in each tank) and fed to the presaturator where sulfuric acid is added. There is a flash going into the second liquifaction tank and the presaturator operates at 150° F. A side stream is taken for the production of yeast in a separate vessel.

Yeast is propagated for 8 hours and is used for two life cycles. The consumption of purchased yeast is only about 5 boxes per month (a box looked to be about 30 to 40 lbs.). They changed from Red Star yeast to Alltech All Yeast Super Start recently. Propagator yeast strength is 300 to 400 million cells per liter. From the Presaturator the mixture proceeds to the Sat Tank where it has a 20 minute residence time. From the Sat tank material goes through spiral heat exchangers (Scrolls) to reduce the temperature from 150 to 85°F. There are actually 9 spiral exchangers - three parallel trains having three exchangers in series in each train.

The fermentors are 50 feet in diameter by 50 feet tall and have a 720,000 gal working volume in each. Fermentors go through a 60 hour cycle - 20 hours to fill, 20 hours residence and 20 hours to empty and CIP. During filling, at 10% full and 50% full, yeast is added from the yeast propagators. Fermentors have 64 loops of cooling coils in each. A batch normally is fermented to 13% alcohol. At about 14% alcohol the yeast dies in the fermentation. Gas evolved from the fermentors is scrubbed (counter-current) with water to remove particulates and soluble emissions and then vented to the atmosphere. The tanks upstream of the fermentors have atmospheric vents and do not require scrubbing.

A fermentor can become "hung" because, typically, the temperature got too high and killed the yeast. The fermentor is still pumped to the distillation section but it is high in sugar content and low in alcohol. When this material is recycled to the start of the process, the operators will reduce the amount of feed grain to compensate for the sugar already in the stream.

Fermentors can become contaminated with lactobacillus or acetobacter. If this happens (and it is experienced up to a few times per year) the fermentor is shocked with penicillin or virginmycin.

There are three fermentors and a fourth 720,000 gal vessel which functions as a surge vessel between fermentation and distillation. This surge vessel is called the Beer Well once its contents are about 13% alcohol.

Distillation is conventional having a Beer or Stripping Column with water and alcohol overhead and solids and water out the bottom. Stripper overhead feeds the middle of the Rectifier.

Rectifier overhead goes to mol sieve dryers (3 operating and one regen.) having an 8 min. cycle time. Changes in feed stock to the plant tend to affect the quantity of fusel oils produced but not the place where they concentrate in the tower.

This plant also has an industrial alcohol distillation unit which produces higher purity alcohol than required for fuels. It is fed with a stream taken from the second or third tray

in the top of the Rectifier. Water is added as a wash/stripping agent and the alcohol redistilled and dried.

Slurry from the Beer column bottoms is fed to evaporators which concentrate the stream to a syrup. The syrup feeds Sharples horizontal decanter type centrifuges and then goes to gas fired rotary dryers (kiln type). Solid product is used for animal feed. When a fermentor becomes hung it is still sent to the beer column and the bottoms becomes richer in sugars. Since the stillage is recycled to the slurry tank these sugars are recovered. During this time the grain is cut back in the fermentors because of the additional sugars in the recycle. It is necessary to disinfect the syrup tank with sodium bisulfite after one of these episodes.

Condensate from the evaporators having 1500 to 2000 mg/liter COD is feed to anaerobic digestion. Anaerobic digestion (methanators) consists of 4 - 30,000 gal. fiberglass vessels, in parallel, which provide 6 hours of residence time. Methanators are sized for 2 gal/sq.ft./min. of liquid flow. They are designed for 90 % COD reduction to less than 200 mg/liter COD and have only 3% sludge in the treated water. They operate at 95°F and use caustic for pH control. The patented or proprietary devices in methantors are the devices in the top which allow gas and liquid out but retain the beads. Nutrients must be added to the methanators. A feed/effluent plate and frame exchanger cools the feed from 140°F to 110°F before a trim cooler (water cooled plate and frame exchanger) cools it to the 95°F operating temperature.

Methanator liquid output goes to aeration ponds, then a pump, clarifier and into the city sewage system. The clarifier is a conventional circular, cone bottomed type with scrapers on the cone. Bottoms are returned to the aeration pond and water goes over a weir to the city sewer.

General plant items:

- The three highest maintenance items in the plant are:
 - 1. The mixers on the liquifaction tanks. If pH or enzyme concentration gets out of range, there is a sharp rise in viscosity which leads to mixer bushing failures, motor/drive overload and other problems. These mixers have bottom (steady) bushings.
 - 2. The centrifuges due to normal wear.
 - 3. The dryers and conveyors.
- Cooling tower blowdown is not treated but goes directly to the city sewers.
- Chilled water is provided by York self contained mechanical refrigeration machines. They are only needed in the summer. Normal chilled water temperature is 55°F.
- Total water usage (recycle and fresh) is 20 gal/bushel of feed. Most is for cooling tower makeup.
- The control system is Johnson Yokogawa.

- The centrifuges and most centrifugal pumps are driven by variable speed electric motors.
- Seven streams feed water to the Recycle Tank 25% of the evaporator condensate, most of the stillage (Beer Column Bottoms) and all of the Rectifier Column Bottoms go to this tank. From the Recycle Tank water is sent to the evaporators or to the Cook Tube.

2. SIERRA PACIFIC INDUSTRY, MARTELL, CA

DATE:	May 19, 1998	
PROJECT:	NREL Softwood to	Ethanol PROJ. NO.: 19013104
LOCATION:	Martell Cogenerati	<u>on Plant - Martell, California</u>
ATTENDEES:	Kiran Kadam	NREL
	Mark Yancey	NREL
	Fran Ferraro	Merrick
	Bob Hamilton	Merrick
	Eric Selya	Wheelabrator Martell Inc.
	Alan Jacobson	TSS Consultants, Inc.
	Matt Turner	Pinnacle Environmental Solutions
	Dick Magnum	Amador County
	Frank Jerauld	Conservation District

The Martell site is located at the Sierra Pacific Industry lumber mill in Martell, California. The generating station produces 18 MW of electricity while burning variable amounts of agricultural wastes, municipal wastes, and forest trimmings with an average moisture content of 40-45%. The lignin residue from an ethanol plant could be burned in the boiler if the moisture content were similar. It is possible to obtain 11,500 BTU/dry LB lignin. The generating station capacity y is 140,000 dry tons per year of biomass and the station pays \$15-\$25 per DTPD for biomass delivered to the site. They receive an average of 17 DTPD per truck and 50 trucks per day. This translates into 140,000 dry tons per year and could be increased to 45,000 acres per year at 10 tons per acre. There are existing utilities and infrastructure available at the Martell site that could potentially benefit an adjacent ethanol plant.

- Steam. The boiler generates 200,000 lbs/hr of steam at 900 psig. Extraction steam is available at 180-200 psig and 85-100 psig. Currently the power generating station supplies 20,000 lbs/hr at 180-200 psig to an adjacent particleboard plant. More export steam is available. The generating station has condensate polishers to remove corrosion products from the return condensate. It was estimated the cost of steam would be \$2 -\$4 /1000 lbs (use \$4 for 200# and \$2 for 50#). The generating station has two 5-day scheduled outages during the year. A few emergency outages are expected. This translates to 93% to 94% availability. A small package-type boiler may be necessary to ensure an uninterrupted steam supply for an ethanol plant. This plant is looking to modify a backup of gas firing for the boilers in the future.
- The generating station currently sells power to the grid at \$0.05 /kW-hr. Further investigation would be necessary to determine if a power purchase agreement could be developed for an adjacent ethanol plant. During is off

peak electric time, the plant sends steam for evaporation. Greenpower warrants \$0.01 per kWh more than brown power.

- Cooling Water. The generating station utilizes a cooling tower for heat rejection operating at about 4 cycles of concentration. Summer operation includes use for dust suppression. This system could provide cooling water to an adjacent ethanol plant. The match would be good since there is less load on the cooling towers when steam is exported. The cooling tower is sized for turbogenerator operation at up to 18 MW of power generation without steam export (full condensing).
- Demineralized Water. Boiler makeup at the generating station is produced in parallel cation/anion demineralizers. There is some excess capacity in these units to provide demineralized water to an adjacent plant. However, additional storage would be required to allow production and storage of demineralized water during off-peak generating periods.
- Fire Protection. An perimeter loop is used for fire protection at the Martell site. This loop could be extended to an ethanol plant. There are minor fires that occur in the fuel pile therefore hose and water cannons are available and the chip storage is manned 24 hours per day.
- Site Security. Security in the area has not been a problem. However, the site is fenced and protected with a gated entrance. This same security could be extended to an adjacent facility.
- Rail Car Access. Rail car access is available at the Martell site and could serve an ethanol plant located there.
- Feed Receiving and Handling. This plant has the ability to handle a temporary fluctuation in the feed to 50% greater than normal feed without any modifications. If it is desired to operate at 75 100% over the normal feed, the hours would have to be extended and a second dump could be used.
- Fuel Preparation. Fuel to the power generating station is ground/milled to minus 3-inch. An ethanol plant would need minus ½-inch. However, it may be possible for the power generating station to provide feed stock to an ethanol plant by selectively sorting and screening the biomass. This plant does not have any fines problem with wood. They only have silt problems. Agricultural wastes such as prunings and nut shells are used as fuel along with urban pellets, sander dust, saw dust and forest thinnings. These fuels are made up of approximately 40-45% moisture. A two to three week excess supply of fuel is stored before summer.
- Water Supply. Ditch water is supplied to the power generating station in a 6inch main through Sierra Pacific. Storage is in a holding pond. Although specific quantities were not discussed, adequate water for an ethanol plant was judged to be available. A 2 inch potable water system (from Johnson City) is in place as well. There is currently 75 GPM treatment capacity for makeup water.

- Wastewater Treatment. The power generating station has no large-scale wastewater treatment. Cooling tower blowdown, boiler blowdown, and neutralized demineralzer wastes are mixed in a (settling) pond prior to discharge. Any process wastewater generated by an ethanol plant would have to be treated separately. However, the existing rainfall runoff/detention pond system for the power generating station could probably be expanded to accommodate an adjacent ethanol plant.
- Siting. Sierra Pacific owns the power generating station site and the surrounding property. There has been industrial activity on the property for decades. Except for the typical California permitting procedures, no unusual siting problems are anticipated.
- Air Emissions. Multiple cyclones and electrostatic precipitator(s) are used on the exhaust to control particulate matter. NOx control is achieved by controlling the combustion air. The plant is currently monitored over a 3 hour average window. A 24 hour window is presently requested. This is due to the fact that the water cooled stationary grate must be cleaned 1-3 times per shift to remove the slag and sand in the process. When it is cleaned, air is allowed into the process and thereby causes inefficiencies and problems.
- Transfer of Wood from Piles to Site. Currently an underground conveyor is used to transport the wood from the piles which lie below a large overhead conveyor. This conveyor is 45 feet above the ground. The whole process is able to "store" up to 90 days worth of fuel on 5.38 acres. An underground recovery system will soon be changed to an overpile recovery system. This is due to the fact that it takes 12 hours to remove wood from the underground system so that it can be repaired if any problems occur.

APPENDIX C

PROCESS FLOW DIAGRAMS

																	•.						
COMPONENT	UNITS	101	202	212	223	225	227	1	1				- <u>r</u>										
Total Flow	ko/br	63.979	642	46.537	104 561	37.895	366	+										- <u> </u>					
Insoluble Solids	%	52.1%	0.0%	40,00%	12.5%	1.8%	0.0%										· .	<u> </u>					
Soluble Solids	%	0.0%	0.0%	0.07	0.0%	0.0%	0.0%	+	+				+						_		1		
Temperature	C	20	20	74	20	20	20				•+••	_			···			-					
Pressure	atm	1.00	1.00	3.00	100	1.00	1.00		+			·							_		L	ļ	
Vapor Fraction		0.00	0.00	0.00	0.00	0.00	0.00			+					·								
Ethanot	ka/br	0.00	0.00	41	0.00		0.00	+													<u> </u>	L	
Water	ko/br	30.646	45	46 156	69.827	36.835	26			· · · ·	+								ļ		ļ		
Glucose (SS)	ka/hr			+0.100	00,027	00,000	+	1		+									1		<u> </u>		
Mannose (SS)	ka/hr	·				0	· · ·		+	+								+			Ì	L	
Xvlose (SS)	ka/br				0	0										+					ļ	ļ	1
Other Sugars (SS)	ka/hr		<u> </u>	0	n n	, o					+			·			-			-	L	ļ	L
Cellobiose (SS)	kg/hr						+	1	<u> </u>					+		· [ļ	ļ	L
Glucose Oligomers (SS)	ka/hr				i	<u>†</u>	1		+	+				<u> </u>			·		· · · · ·		L	ļ	
Xylose Oligomers (SS)	ka/hr					1	1	+	<u> </u>								+		+			ļ	ļ
Other Oligomers (SS)	ka/hr					1			+					+		·		·					
Corn Steep Liquor (SS)	kg/hr		h	59		+	1	1	1					+				<u> </u>					
Others (Soluble Solids)	ka/hr						-	1	†		+			+			+				ļ		L
Extractives	kg/hr						†		1	·	+			+				·{·			ļ		ļ
Acetic Acid	kg/hr			151	0	0		1	1	1	1	1	1	+			+					 	
Sulfuric Acid	kg/hr		597		721	380	341	1			1					+	·	+	· ····	<u> </u>	<u> </u>		<u> </u>
Furfural	kg/hr			14	0	0	[1	+	·	· · · · · · · · · · · · · · · · · · ·						+		ļ	ļ	
HMF	kg/hr			112	0	0	1	1					1	<u> </u>			<u>+</u>	<u> </u>	+		L	ļ	
Carbon Dioxide	kg/hr					1	1	1	1	1			1						<u> </u>		ļ		
Methane	kg/hr					1	[1	1					<u> </u>	+	1	<u> </u>				ļ		
Oxygen	kg/hr					1	<u> </u>	1		1		1				+	 		+				·
Nitrogrn	kg/hr					l		[1	1		1		+			·				
Ammonia	kg/hr					· · · · · · · · · · · · · · · · · · ·		1			1	1				1	<u> </u>						
NH4)H	kg/hr					1		1		1	1	1	1	 	+	<u> </u>				<u> </u>		ļ	
Others	kg/hr			3				1				1	1	1	·{		f	<u> </u>	<u> </u>				
Cellulose (IS)	kg/hr	14,248			14,539	291			1		1	1	1	t		+		ł	<u> </u>	<u></u>			
Mannan (IS)	kg/hr	3,356			3,425	68	1	1		1		1	<u> </u>		+					 			
Galactan (IS)	kg/hr	921			940	19				1	1	1	1	1			+						
Xylan (IS)	kg/hr	2,435			2,485	50				1				1	1				 				
Arabinan (IS)	kg/hr	494			504	10						1	1			·····	<u> </u>		i				
Yeast (IS)	kg/hr									1			1		1	· · · · · · · · · · · · · · · · · · ·	<u> </u>		<u> </u>				
Biomass (IS)	kg/hr									1	1		1			1	†		{				
Extract Solids (IS)	kg/hr	1,645			1,679	34				1	1			†			<u> </u>		+	<u> </u>			
Lignin (IS)	kg/hr	9,411			9,603	192				1	1			[<u> </u>	<u></u>			
Gypsum (IS)	kg/hr			1									1	1	†	1	t	<u> </u>	ł				
Ca(OH)2 (IS)	kg/hr										1					1	I						
Others (insoluble Solids)	kg/hr	823			839	17							1			1	1		<u> </u>				
Enthelpy Flow (millions)	Kcal/hr	-182.0	-1.3	-173.3	-333.4	-141.8	-0.8				1					1	1		<u> </u>				
Average Density	g/mi	0.478	2.191	0.946	1.425	0.983	2.191									1							
											_										<u></u>		

		20	2			7				
							<u>}</u>	A20.	3	>
	·	·				ĀĊ	CID I	MPREC M-20	GNATOR 4	
	· · · · · · · · · · · · · · · · · · ·					SC	rew S	PRES A2	S S-2	⊃1 >
						SC	Z REW	PRES	S S-20) 01
								A2	.02 <	7
							<u> </u>			2
	·									
Ea No	Equipment Many		- m_1_	10	10	1-			THE COMPANY]
M-201 S-205	1st Stage Impregnator (M- Acid Vent Desicant Filter	202LO)		1 1	0 0	Equipme	эк туре	· · · · · ·	mat const.	
T-201 P-201	Sulfuric Acid Process Stora Sulfuric Acid Pump	ige Tank		1	0					
			<u></u>	ļ	<u> </u>				<u> </u>	
		~~~~~		<u> </u>						
		· · · · · · · · · · · · · · · · · · ·								
VER CE	SCRIPTION	DATE			l. <u></u>		A14-97-0			
A	TAL MERRICK DESIGN	10/98	∢°	>	NR		ENER	GY LABO	RATORY	
				В	iotechr	NOIOGY C	enter	For Fuel	a And Che	micals
				1st	STAC	JION GE AC	AZU XID II	MPRE	<u>SNATION</u>	
		<b></b>	w9810d.x	ls i		PFD-	-P30	0-A2	01	٨





Insoluble Solids	%	0.0%	0.0%	0.0%	1.8%	0.0%	50.6%	32.9%	0.0%	50.0%	21.8%	26.4%	100.0%	0.0%	54.2%	0.0%	67.34		+				
Soluble Solids	%	0.0%	0.0%	0.0%	0.3%	0.0%	0.2%	0.2%	0.0%	0.2%	16.7%	20.2%	0.0%	0.0%	41.6%	0.0%	37.3%		+	+		+	
Temperature	C	20	135	135	80	101	84	80	321	80	220	135	20	101	101	106	40.9%				+	-{	+
Pressure	atm	1.00	3.00	2.98	0.49	1.00	0.55	0.49	23.00	0.49	22.51	2.98	1.00	0.27	0.27	0.27	0.27		4		- <del> </del>	<u> </u>	+
Vapor Fraction		0.00	1.00	1.00	0.00	1.00	0.46	0.00	1.00	0.00	0.00	0.00	0.00	1.00	0.00	1.00	0.27				+	+	
Ethanol	kg/hr			1	1	1	1	2		1	1	0		0	0.00	1.00	- 0.00				+		+
Water	kg/hr	45	8,850	10,212	26,734	8,307	24,605	51,385	12.811	24.650	36,940	26,728	0	26 272	410	53.641	410			+	· <del> </del>	<u> </u>	+
Glucose (SS)	kg/hr		1	1	0	1	0	0		0	9.510	9.510	<u> </u>		9.976	33.041	410	+					- <u> </u>
Mannose (SS)	kg/hr	1	1	1	46	1	43	89		43	117	117	1		117	+	9,976	÷	- <del> </del>	+		+	+
Xylose (SS)	kg/hr		0	0	28	0	26	53		26	39	39	†	0	70	<u> </u>	1 10			+		- <del> </del>	+
Other Sugars (SS)	kg/hr		0	0	21	0	19	40		19	30	30		<u> </u>	30		39		+		+		+
Cellobiose (SS)	kg/hr			1	1	1	1	2 .		1	453	453	1	†	453	<u> </u>	462	+		+	+		<u> </u>
Glucose Oligomers (SS)	kg/hr		1	1	0	1	0	1		0	428	428			9	1	433		+		+	- <del> </del>	+
Xytose Oligomers (SS)	kg/hr		0	1	0	1	0	0		0	0	0	1	<u> </u>	0		+			+	<u> </u>	+	
Other Oligomers (SS)	kg/hr		1	T	1		1						1					<u> </u>		+	+		+
Corn Steep Liquor (SS)	kg/hr		1	0	1	1	1	3		1	1	1	1	1					+		+	+	┥───
Others (Soluble Solids)	kg/hr		1	[	1	T	1							f	<u>+</u>	<u> </u>		<u> </u>	<u> </u>		+	+	╉━───
Extractives	kg/hr			1		1	1			r						<u> </u>		ļ			+	+	┿━━━━
Acetic Acid	kg/hr		28	1	11	27	10	21		10	10	9		9	1	65			<u> </u>	<u> </u>	+	<u> </u>	<u> </u>
Sulfuric Acid	kg/hr	597	0	0	653	0	4	1,254		602	602	602		4	598		<u> </u>	<u> </u>	+		<u> </u>		<u> </u>
Furforal	kg/hr	1		103	1	I	1 1	1		1	178	75		69	5	173				+	+	<u>↓</u>	┿━━━
HMF	kg/hr	1	1	808	4	T	4	8		4	1,393	584		543	42	1 351	12				<u> </u>	<u>+</u>	
Carbon Dioxide	kg/hr		1	0	0	T	0	1		0	0	0		0	0	1.551	42	ļ	<u> </u>	+	<u> </u>	┣━━━━━	┝───
Methane	kg/hr			· · · · · · · · · · · · · · · · · · ·		1										·			+	+	<b></b>	+	<del> </del>
Oxygen	kg/har		1	0	0		0	0		0	0	0		0		0				+	<u> </u>	<u> </u>	<u> </u>
Nitrogm	kg/hr			0	0		0	0		0	0			<u>`</u>		0				+	ł	<u> </u>	<u> </u>
Ammonia	kg/hr			0	0	1	0	0		0	0	0		-0	0			ļ		╆────		<u> </u>	
NH4)H	kg/hr		T			1											· · · · ·			<u>+</u>		<u> </u>	<u> </u>
Others	kg/hr			0	3		3	6		3	3	3	———	1	2					+	ł'		<u> </u>
Cellulose (IS)	kg/hr		1	1	291		14,265	14,556		14,265	3,424	3,424			3 4 2 4	'	2 424		+		<u> </u> '	[!]	<u> </u>
Mannan (IS)	kg/hr		T		9		426	435		426							3,724						
Galactan (IS)	kg/hr				4		173	177		173	164	164			164		164				<u>├</u> '		<u> </u>
Xylan (IS)	kg/hr		l	······	15		726	740	·····	726	469	469			469		460			<u>+</u> '	<u>├</u> '	f'	<u> </u>
Arabinan (IS)	kg/hr				0		10	10	•	10	10	10			10		10			<b> </b> '	<b>├</b> ─────′	<b>├</b> /	
Yeast (IS)	kg/hr																			<b>∤</b> ′	<u> </u>	<b>├</b> '	<u> </u>
Biomass (IS)	kg/hr																		<u> </u>	<b> </b> '	<u>├────</u> ┘	∲'	l
Ediraci Solids (IS)	kg/hr																	. <u></u>		<u> </u>	<u>├</u> /	<u>↓</u> /	<u> </u>
Lignin (IS)	kg/hr				193		9,458	9,651		9,458	9,458	9,458			9.458		0.459			<u>↓</u> ′	l	<u>├</u> /	<u> </u>
Gypsum (IS)	kg/hr		[		0		5	5		5	5	5			5		1.054		ŧ	<b>├</b> ────┘	j/	┟────┛	····-
Ca(OH)2 (IS)	kg/hr												452				1,004		ļ	<b>⊦</b> ′		j/	<u> </u>
Others (Insoluble Solids)	kg/hr				6		298	304		298	298	298			298		298			<b>├</b> ────┘	j	jJ	L
Enthalpy Flow (millions)	Kcal/hr	-1.3	-28.0	-32.6	-102.3	-26.4	-131.4	-247.9	-39.3	-145.5	-184.8	-152.3	-1.4	-83.6	-55.5	-170.6	-57.8			<u> </u>	r	┟ <b></b> ┦	
Average Density	g/mi	2.191	0.002	0.002	0.972	0.001	0.777	1.148	0.009	0.473	0.688	0.744		0.000	1.359	0.000	0472			<u>↓</u> /	<del> </del>	ł	<b></b>





······································					]
					-512
^				-	[-512
<b>406</b>		· · · ·		$\rightarrow$	502
					SCRUBBER
				002	SCRUBBER
<i>•</i> •					
120				F30	02
				$\rightarrow$ as	302 > I
			2nd	STAGE FI	ERMENTATION
Eq. No. Equipment Name A-300 1st Stage Fermentor Agitator No. 1	R	eq. Spare	Equipm	ent Type	Mat Const.
A-301 1st Stage Fermentor Agitator No. 2 F-300 1st Stage Fermentor No. 1		1 0 1 0			
F-301 1st Stage Fermentor No. 2 H-300 1st Stage Fermentor Cooler No. 1		1 0 1 0			
H-301 1st Stage Fermentor Cooler No. 2 P-300 1st Stage Fermentor Recirculation Pu	TO NO. 1	1 0			
P-301 1st Stage Fermentor Recirculation Pu P-304 Yeast Recycle Pump	10 No. 2	$\begin{array}{c c}1 & 1\\1 & 1\end{array}$			
M-1006 Fermentor Air Compressor Package		1 1	Centrifu	gai	CS
			+		
			1		
			1		
VER DESCRIPTION DATE A INITIAL MERRICK DESIGN 10/98			221	NATIONAL F	RENEWABLE
	<b>*</b>	Biotect	nology (	Center For Fu	els And Chemicals
			SECT	ON A300	
	SOLIDS	FREE	PROD	UCTION FE	TO1
	w9810d.xls	5 1	- PF	u-rjuu-a	



COMPONENT	UNITS	251	306	320	323	326	328	3338	501	502	520	551		ļ		L			1				
Total Flow	kg/hr	55.237	136,070	114,872	25,960	4,763	136,070	0	141.594	141,594	55,237	5,524			I	L							
Insoluble Solids	%	0.0%	11.0%	0.0%	57.3%	0.0%	11.0%	0.0%	10.5%	10.5%	0.0%	0.0%			<u>↓</u>	ļ							
Soluble Solids	%	0.0%	1.9%	1.7%	40.9%	0.0%	1,9%	0.0%	1.8%	1.8%	0.0%	0.0%			<u> </u>	ļ					L		
Temperature	C	106	32	32	37	32	32		95	32	67	31	ļ	1	L						1		
Pressure	atm	0.27	1.00	1.00	0.27	1.00	1.00	1.00	4.00	0.90	0.27	0.90				<u> </u>							
Vapor Fraction		1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.77	0.00	ļ			L							
Ethanoi	kg/hr	1	7,061	2,325	0	87	7,061		7,187	7,187	1	126	L										
Water	kg/hr	53,641	106,771	106,463	410	91	106,771		112,158	112,158	53,641	5,387			<u> </u>	L						l	
Glucose (SS)	kg/hr		853		9,976		853		853	853							1				<u> </u>		
Mannose (SS)	kg/hr		49	438	117		49		49	49			ļ		<u> </u>		L						
Xylose (SS)	kg/hr	0	51	303	39		51		51	51	0	<u> </u>	Į				1						
Other Sugars (SS)	kg/hr	0	621	711	30		621		621	621	0		<u> </u>	<u> </u>		I					L		
Cellobiose (SS)	kg/hr		534	81	453		534		534	534			L		I	L							
Glucose Oligomers (SS)	kg/hr		27	18	9		27		27	27			ļ	<u> </u>									
Xylose Oligomers (SS)	kg/hr	0	3	3	0		3		3	3	0		ļ	.l									
Other Oligomers (SS)	kg/hr													<u> </u>		1		1					
Corn Steep Liquor (SS)	kg/hr	1	387	388	0	0	387		388	388	1	11											
Others (Soluble Solids)	kg/hr													1									
Extractives	kg/hr		2,112	2,112			2,112		2,112	2,112			·										
Acetic Acid	kg/hr	65	757	757	11	0	757		757	757	65	1			<u> </u>	-							
Sulfuric Acid	kg/hr	4									. 4	l											
Furfural	kg/hr	173	43	38	5	0	43		44	44	173	0											
HMF	kg/hr	1,351	337	297	42	2	337		341	341	1,351	4	ļ										
Carbon Dioxide	kg/hr	0	162	120	0	4,566	162		167	167	0	5	<u> </u>										
Methane .	kg/hr												ļ		ļ								L
Oxygen	kg/hr	0	0	0		9	0		0	0	0	0	ļ		L								
Nitrogrn	kg/hr	0	0	0		0	0		0	0.	0	0		<u> </u>				l			L		
Ammonia	kg/hr	0	0	8	0	7	0		1	1	0	0	L	L		L							
NH4)H	kg/hr												ļ			<u> </u>				l			
Others	kg/hr	1	1,377	763	2	0	1,377		1,377	1,377	1	0	ļ		<u> </u>								
Cellulose (IS)	kg/hr		3,424		3,424		3,424		3,424	3,424			Į			ļ				L			
Mannan (IS)	kg/hr													L						L			
Galactan (IS)	kg/hr		164		164		164		164	164			ļ										
Xylan (IS)	kg/hr		469		469		469		469	469			<u> </u>										
Arabinan (IS)	kg/hr		10		10		10		. 10	10			ļ	<u> </u>									
Yeast (IS)	kg/hr		45	45			45		45	45			ļ	l									
Blomass (IS)	kg/hr												ļ										
Extract Solids (IS)	kg/hr												<u> </u>										
Lignin (IS)	kg/hr		9,458		9,458		9,458		9,458	9,458			1										
Gypsum (IS)	kg/hr		1,057	3	1.054		1.057		1,057	1,057			ļ										
Ca(OH)2 (IS)	kg/hr												L	1						1			
Others (Insoluble Solids)	kg/hr		298		298		298		298	298													
Enthalpy Flow (millions)	Kcal/hr	-170.6	-465.1	-416.5	-57.8	-10.1	-465.1		-477.9	•485.7	-178.4	-20.6	l	L	L								
Average Density	g/mi	0.000	0.879	0.994	0.472	0.002	0.879	0.000	0.825	0.812	0.000	0.982	1	L	L	L							

																								¢
						-					 													
					<u>. H–5</u>	<u>12</u> (QH51)	2	 1			 			<u>D-5</u>	01				<u> </u>				CWR	¢1
	H-30	<u>)4</u> )2			501			518			  					<u>H–</u>	501			, C	ws		<u>504</u>	
													Ŀſ	p steam		QRDSOI	595				<u></u>	-503		
												WP501	]	<u></u>	594	-				WP.	503			
				V							 	<u>P-501</u>		••••••••••••••••••••••••••••••••••••••							P-503			¢1
											 		·	•		<b></b>			<u>,</u>	<u> </u>	•	•••••		-
	COM PONENT Total Flow Insoluble Solids	UNITS kg/hr %	501 141,594 10.5%	506 141,594 10,5%	508 170 0.0%	510 18,609 0.0%	518 122,815 12,2%	518A 122,815 12.2%	594 19,926 0.0%	595 19,926 0.0%				 										
	Soluble Solids Temperature	% C	1.8% 95	1.8% 100	0.0%	0.2%	2.0%	2.0%	0.0%	0,0%	 													
	Pressure Vapor Fraction	atm	4.00	4.76	1.86	1.93	2.10 0.00 54	2.10 0.00 54	4.42	4.42 0.00					<u> </u>	<u> </u>								
	Water Glucose (SS)	kg/hr kg/hr	112,158	112,158	7	11,188 0	100,963 853	100,963 853	19,926	19,926	 													1
	Mamose (SS) Xylose (SS)	kg/hr kg/hr	49	49	0	0	49 51	49 51																
	Other Sugars (SS) Cellobiose (SS)	kg/hr kg/hr	621 534	621 534	0	0	621 534	621 534								·								Б О
	Glucose Oligomers (SS) Xylose Oligomers (SS)	kg/hr kg/hr	27 3	27	0	0	27	27 3																E H
	Other Oligomers (SS) Corn Steep Liquor (SS)	kg/hr kg/hr	388	388	0	39	349	349			 					<u></u>								P
	Extractives	kg/hr kg/hr	2,112	2,112	0	0	2,112	2,112		·····		· · · · · · · · · · · · · · · · · · ·							•					E
	Sulfuric Acid	kg/hr	44	44	0	23	20	20																┢
	HM F Carbon Dioxide	kg/hr kg/hr	341	341	0	182 24	158	158			 													╞
	Methane	kg/hr kg/hr	0	0	0	0									<u> </u>									╞
	Nitrogrn Ammonia	kg/hr kg/hr	0	0	0	0	0	0																╞
	NH4)H Others	kg/hr kg/hr	1,377	1,377	0	1	1,376	1,376					· ·											╞
	Cellulose (IS) Mannan (IS)	kg/hr kg/hr	3,424	3,424			3,424	3,424																E
	Galactan (IS) Xylan (IS)	kg/hr kg/hr	164 469	164 469			164 469	164 469																E
`	Arabinan (IS) Yeast (IS)	kg/hr kg/hr	10 45	10 45			10 45	10 45			 													F
	Biomass (IS) Extract Solids (IS)	kg/hr kg/hr									 													ľ
	Lignin (IS) Gypsum (IS)	kg/hr kg/hr	9,458 1,057	9,458 1,057			9,458 1,057	9.458 1,057			 													╠
	Ca(OH)2 (IS) Others (Insoluble Solids)	kg/hr kg/hr	298	298			298	298																╞
	Enthalpy Flow (millions)	Kcal/hr	-477.9	-477.2	-0.4	-44,1	-422.6	-423.3	-62.8	-72.9					· · · · · ·			1						11-

		2	EV	APORATIC	N	
2			EV#			
0	 	 REC	TIFIC	0-502 A502 ation co		
08	 · .		> ⊤(	A502 SCRUE	BER	





×						VENT TO ATMOSPHERE
			\$15			T-701
					Т	TO ETHANOL STORAGE
Eq. No. M-503	Equipment Name Molecular Sieve			Req.	Spare 0	Equipment Type Mat Const. PACKAGE CS
		· · · · · · · · · · · · · · · · · · ·				
VER DES	Cription AL Merrick Design	DATE 10/98	K		NR Biotech SEC	NATIONAL RENEWABLE ENERGY LABORATORY hnology Center For Fuels And Chemicals CTION A500
			w9810a	E I.xis	HAN	IOL DEHYDRATION PFD-P300-A503 A



											666	600	5344	626	610	1		r			1	<u> </u>	
COMPONENT	UNITS	211	518A	525	526	527	528	529	530	531	532	533	534A	535	610				l			<u> </u>	·
Total Flow	kg/hr	46,537	1	46,537	122,815	103,696	19,119	19,119	24,808	16,406	16,406	8,626	16,182	16,182	51./0/			·					
Insoluble Solids	%	0.0%	0.0%	0.0%	12.2%	14.4%	0.0%	0.0%	0.9%	0.0%	0.0%	2.6%	0.0%	0.0%	0.0%		•				ļ		
Soluble Solids	%	0.1%	0.0%	0.1%	2.0%	2.3%	0.3%	0.3%	2.4%	0.0%	0.0%	5.9%	0.0%	0.0%	0.1%	<u> </u>			ļ				
Temperature	С	74	25	74	117	86	86	86	70	70	/0	63	03	0.00	74				ļ				
Pressure	atm	3.00	4.00	3.00	2.10	0.59	0.59	0.60	0.30	0.30	0.31	0.21	0.21	0.23	2.00					••••••••••		ļ	
Vapor Fraction		0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00			<u> </u>	ļ				
Ethanol	kg/hr	41		41	54	15	39	39	1	0	0	6.665	18.070	1 16 070	61 296			<u> </u>					
Water	kg/hr	46,156		46,156	100,963	82,090	18,873	18,873	21,644	16,333	10,333	5,565	10,079	10,079	51,205	<u> </u>	······	h					
Glucose (SS)	kg/hr		·		853	853			L														
Mannose (SS)	kg/hr				49	49			23			23			ļ				<u> </u>				
Xylose (SS)	kg/hr				51	51			24			24							ļ		<u> </u>		
Other Sugars (SS)	kg/hr	0		0	621	621	0	0	287			287	<u> </u>	·			· · · · · ·				ļ		
Cellobiose (SS)	kg/hr				534	534			247			247			<u> </u>			ļ	<u> </u>				
Glucose Oligomers (SS)	kg/hr				27	27	•		12			12						ļ					
Xylose Oligomers (SS)	kg/hr			L	3	3			1			11									ļ		
Other Oligomers (SS)	kg/hr																		<u> </u>		<u> </u>		
Corn Steep Liquor (SS)	kg/hr	59		59	349	284	65	65							00				1				
Others (Soluble Solids)	kg/hr											4 4 9 9			ļ				<u> </u>	<u> </u>	ļ		
Extractives	kg/hr				2,112	2,112			1,426			1,426			4 6 8				Ļ	ļ			·····
Acetic Acid	kg/hr	151		151	720	688	32	32	279	39	39	183	96	90	100				<u> </u>	<u> </u>			
Sulfuric Acid	kg/hr																						
Furfural	kg/hr	14		14	20	8	12	12	1	3	3	0	1		10			ļ					
HMF	kg/hr	112		112	158	62	96	96	5	24	24	0	4	4	123				ļ				
Carbon Dioxide	kg/hr										<u> </u>						·	ļ	<u> </u>	<u> </u>			
Methane	kg/hr		1									· · · · · · · · · · · · · · · · · · ·						<b> </b>	<u></u>	<b> </b>	<u> </u>		
Oxygen	kg/hr													ļ					L	ł	[		
Nitrogra	kg/hr				0											<u> </u>		<b></b>	ļ	<u> </u>	ļ		
Ammonia	kg/hr														<u> </u>		-		<u> </u>		ļ		
NH4)H	kg/hr												L						1	ļ	1		
Others	kg/hr	3		3	1,376	1,375	1	1	636	1	1	634	2	2	<u> </u>				ļ	<u> </u>			
Cellulose (IS)	kg/hr				3,424	3,424	l		51			51			ļ				L		ļ		
Mannan (IS)	kg/hr															<u> </u>		l	ļ				
Galactan (IS)	kg/hr				164	164			2			2						ļ	ļ	<u> </u>			
Xylan (iS)	kg/hr				469	469	ļ		7						<u> </u>	<u> </u>			l	<u> </u>	ļ		
Arabinan (IS)	kg/hr				10	10	l		.0			0			<u> </u>	<u> </u>					ļ		
Yeast (IS)	kg/hr				45	45			1			1			ļ			L		ļ	ļ		
Biomess (IS)	kg/hr							·							<b></b>			ļ	<u> </u>		ļ		
Extract Solids (IS)	kg/hr														<u> </u>	<u> </u>							
Lignin (IS)	kg/hr				9,458	9,458			142			142			<u> </u>			ļ			<u>.</u>		
Gypsum (IS)	kg/hr				1,057	1,057			16			16	· · · · · · · · · · · · · · · · · · ·								·		
Ca(OH)2 (IS)	kg/nr			l					ļ									ļ	<b> </b>				
Others (Insoluble Solids)	kg/hr				298	298			4			4			102 6				l	<b></b>			
Enthalpy Flow (millions)	Kcal/hr	-173.3	0.0	-173.3	-423.3	+356.5	-60.4	-70.8	-86.5	-52.2	-61.2	-26.1	-51.5	-60.5	-192.3	<u> </u>		ļ	L		ļ		
Average Density	g/ml	0.946	0.003	0.946	0.993	1.030	0.000	0.934	0.987	0.000	0.949	1.073	0.000	0.956	0.940	L	·	t	L	L	l		
	the second s															and the second s							



		· · · · ·			
VER	DESCRIPTION	DATE		NATIONAL RENEWABLE	
۸	NITIAL MERRICK DESIGN	10/98	SN €	ENERGY LABORATORY	
-		· · · · · · · · · · · · · · · · · · ·	Biotec	hnology Center For Fuels And C	hemica
			SE E	CTION A500 VAPORATOR	
			w9810d.xis	PFD-P300-A504	1



![](_page_93_Figure_0.jpeg)

								_
		615			· ~		<u>1-803</u>	_
06		<u> </u>				∢	A801	$\rangle$
J					2	 т		/
06_						1	O BUILER	
			CWD					
		_		•			11 204	
		(	$\overline{}$	618	<del>ب</del> (		M-601	~
	₽	-{ ¹ QH	606		<u> </u>	∢	A603	$\rightarrow$
	4	$\wedge$			2	T		~
<u>P-6</u>	0 <u>6</u> CWS	Ś.	200			'n	IGESTION	
		<u>H-</u>	506					
							~	
							·	-
						$\rightarrow$		$\geq$
					4			~
						1	TO LANDFIL	L
· ·	· .							
	•							
Eq. No	Equipment Name			Ren	Some	Four	ment Type	Mat Const.
A-602	Equalization Basin Agitato	r		3	0	FIXED	-PROP	A285C
A-606 H-602	Anaerobic Agitator Anaerobic Digestor Feed C	Cooler		$\frac{1}{1}$		FIXED	TUBE	A285C
H-606	Aerobic Digestor Feed Co	oler		i	0	SHELL	TUBE	CS
M-604 M-606	Biogas Handling System			1	0	PACK	AGE	ICS
P-602	Anaerobic Reactor Feed P	ump		2	1	CENT		CS
F-806 S-800	Aerobic Digestor Feed Pur Bar Screen	np	<u></u>	1	0	SCRE	RIFUGAL	CS
T-602	Equalization Basin			1	0	FLAT	BTM-STORAGE	A285C
1-000	Anadiouic Digestor			<u> </u>	Ľ		OIM-SIURAGE	12000
				<u> </u>	<u> </u>			
,		· · · · · · · · · · · · · · · · · · ·						
				-				<u> </u>
						<u> </u>		<b> </b>
	l							
VER DES	CRIPTION	DATE	4	4			NATIONAL RE	NEWABLE
A INIT	al merrick design	10/98		۲	NR		ENERGY LA	BORATORY
	······		~ ~	<b>F</b>	lictech	πology	Center For Fu	els And Chemicais
	·	+			SECT	TION	A600	
	·		ļ	AN	IAER	OBIC	DIGESTION	<u> </u>
		<b> </b>	w9810	d.xl	S	I P	FD-P300-	A602 A

![](_page_94_Figure_0.jpeg)

								TO	T-10 A902 PROC	14 2 ESS V	
									IN	ILET	
	23	, (	<u>WC614</u> C_614	Ð					M- A8 UDGE	803 01 TO E	
		:	· .								
	q. N	0.	Equipment Name			Req.	Spare	Едиіртнепі Туре	3	Mat Con	st.
-[^	-608	8	Aerobic Digestor Agitator			2	0	FIX ED-PROP		CS	
Ê	-614	4	Sludge Screw			-	0	SCREW		CS	
Цĭ	-60	8	PSA O2 Generator				ŏ	PACKAGE		CS	
-M	-61	4	Belt Filter Press (5 pieces)			1	0	ROTARY DRU	M	A285C	
	610	<u>}</u>	Waste Activated Sludge Pur	mp mo		2	1	CENTRIFUGAL	<u> </u>	CS CS	
P	612	2									· · ·
	611										]
5	614	;	Potable Water Pump			2	1	CENTRIFUGAL		cs	
Ţ.	603		Aerobic Digestor			1	0	CONCRETE-ST	ORAGE	CONCRE	TE
Ļ	610		Clarifier			2	0	CLARIFIER		CONCRU	ITE
-+		-									
1											
		_									
t											
┢						├				<u>├</u> -	
			······································								
1											
		DE	scription Tal. Merrick Design	DATE 10/98	A A		NR:	NA EN nology Center	TIONAL R ERGY LAE For Fue	ENEWABL BORATOR	E Y Shemicala
⊐F	-						SEC	CTION AG	00		
╢		_			w9810	AE d.xls	ROE	PFD-P	<u>stion</u> 300-/	4603	A

![](_page_95_Figure_0.jpeg)

a. No.	Equipment Name	Reg.	Spare	Equipment Type	Mat Const.			
4-701	In-line Ethanol / Denaturant Mixer	1	10	1	1			
-701	Ethanoi Product Pump	2	1 1	CENTRIFUGAL	cs			
-703	Sulfuric Acid Pump	1	11	CENTRIFUGAL	SS304			
-704	Firewater Pump	1	1	CENTRIFUGAL	cs			
-706	Ammonia Pump	1	1	CENTRIFUGAL	cs	•••••		
-708	Diesel Pump		1	CENTRIFUGAL	CS			
-710	Gasoline Pump	1	1	CENTRIFUGAL	CS	·····		
-720	CSL Pump	1	1	CENTRIFUGAL	CS			
-701	Ethanol Product Storage Tank	2	1	FLAT-BTM-STORAGE	A285C			
-703	Sulfuric Acid Storage Tank	1	0	FLAT-BTM-STORAGE	SS316			
-704	Firewater Storage Tank	1	0	FLAT-BTM-STORAGE	A285C			
-706	Ammonia Storage Tank	2	0	HORIZONTAL-STORAGE	A515			
-708	Diesel Storage Tank	1	0	FLAT-BTM-STORAGE	A285C			
-710	Gasoline Storage Tank	1	0	FLAT-BTM-STORAGE	A285C			
-720	CSL Storage Tank	1	0	HORIZONTAL-STORAGE	A285C			
				[				
		- <b></b>		NATIONAL REP	NEWABLE			
A	AL MERIOLX DESIGN 10/100	-l - ∢ >>	NR	ENERGY LABO	<b>JRATURY</b>			
				ningi Caster For Fuelt	- And Cher	nicola		
<u> </u>			Sloteen			Inverse		
		-	Ş	SECTION A700				
		4		STORAGE				
		<u></u>						
			5	PFD-P300-A701 A				

![](_page_96_Figure_0.jpeg)

![](_page_97_Figure_0.jpeg)

L.									
						<del>~ -</del>			
						$\rightarrow$			>
						VENT	г то	ATMOS.	
							м	907	
<u> </u>							M-	-003	-
				. <u> </u>		<	A٤	301 <	
									'N
						0010		London	
			•				c	-600	ľ
WP828		(8)	21)			<u> </u>	3-	-000	
			<u> </u>			Ż	A6(	)2	>
P_828							TC	TWW C	
1-020									
				$\wedge$			H-	-811	
				¢13/	<b>&gt;</b>	7	Δ8	301	>
						<u> </u>	7.0		
						TO	BFW	PREHEAT	ER
									-
<ol> <li>Equipment Name</li> <li>Demineratizer</li> <li>Condensate Polisher</li> </ol>			Reg. 2 2	Spare 0	Equipn PACK/ PACK/	nent Typ NGE NGE	e	Mat Const.	
Condensate Pump Deasrator Feed Pump			2	0	CENT			CS CS	
BFW Pump Blavdown Pump			2	0	CENT	RIFUGAL	L.	CS CS	
Condensate Collection Tank			1	0	VERTI	CAL-VE	SSEL VESSEL	A285C	
Deearator			1	0	HORIZ	ONTAL-	VESSEL	A515	
Blowdown Flash Drum			<u> </u>	0	NURIZ		vessel		
								+	
								-	
			<b>—</b>						
DESCRIPTION	DATE					N		RENEWARI	
INITIAL MERRICK DESIGN	10/98		*	NZ		ε	NERGY	LABORATORY	-
				Biotech	inology	Cente	r For F	uels And Ch	emicals
	]			S	ECTI	ON /	1800	COADATI	
		BC	JLE	r 11	.cv T -	MAIL	<u>.                                    </u>	LCCC	
					* *			10/1/2	

•

![](_page_98_Figure_0.jpeg)

																	•.					
COMPONENT	UNITS	1040	1041	1042	1044	1045	1049	1050	1051	1						1						
Total Flow	ka/hr	7 242 360	102,795	0	30,618	7,242,360	93,450	257,317	257,317							1						
Insoluble Solids	%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%		1	1						I				
Soluble Solids	1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%													
Temperature	C	37	28	28	28	28	28	4	8													
Pressure	atm	4.08	1.00	1.00	1.00	4.08	0.04	4.08	4.08						I						·	
Vapor Fraction	-	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00													
Ethanol	kg/hr				1													L		[		
Water	kg/hr	7,242,360	102,795	0	30,618	7,242,360	93,450	257,317	257,317													
Glucose (SS)	kg/hr																			1		
Mannose (SS)	kg/hr												1		<u> </u>					I		
Xylose (SS)	kg/hr														<u> </u>	L	1		L	 		k
Other Sugars (SS)	kg/hr												L		<u> </u>							
Cellobiose (SS)	kg/hr									L			<u> </u>	L	<b></b>		ļ		L	 ļ	L	ļ
Glucose Oligomers (SS)	kg/hr				1			-			ļ	l	ļ	L	ļ	ļ	ļ	l	ļ	 ļ	ļ	ļ
Xylose Oligomers (SS)	kg/hr											L	ļ		ļ				l		ļ	
Other Oligomers (SS)	kg/hr										L				<u> </u>	ļ				 1		
Corn Steep Liquor (SS)	kg/hr											1	L		ļ				l			
Others (Soluble Solids)	kg/hr										L		<u> </u>	ļ	<u> </u>	ļ	L		L	 L		ļ
Extractives	kg/hr									L	L		L		L	L		L	L	 		ļł
Acetic Acid	kg/hr											ļ	ļ		Ļ	<u> </u>		l	L	 		
Sulfuric Acid	kg/hr													L		<u> </u>	ļ		L	 		·
Furfural	kg/hr				I						L				ļ				L		l	
HMF	kg/hr										l	L	<u> </u>	L		<u> </u>	L	ļ		 		1
Carbon Dioxide	kg/hr										L	ļ			L				·	 ļ		4 <b>I</b>
Methane	kg/hr									ļ	<u> </u>	Į					<u> </u>		ļ	 		<b>↓ </b>
Oxygen	kg/hr										L	ļ			ļ		L	1		 		<b>↓</b>
Nitrogra	kg/hr									ļ	ļ	L		····	ļ		ļ		ļ	 <u> </u>		<b>↓</b>
Ammonia	kg/hr					ļ					ļ	Į			<u> </u>				ļ	 		<u> </u> [
NH4)H	kg/hr					ļ					Ļ	ļ		-	ļ	<u> </u>	ļ			 ļ		<b>↓</b> [
Others	kg/hr				<u> </u>					L	l				ļ	<u> </u>			ļ	 		
Cellulose (IS)	kg/hr			·	ļ									ļ		<u> </u>			ļ			ĮĮ
Mannan (IS)	kg/hr				ļ				ļ		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<del> </del>		<u> </u>		 {·		<b>∤</b> ₿
Galactan (IS)	kg/hr										<u> </u>	<u> </u>						ļ	ļ	 		<b>├</b>
Xylan (IS)	kg/hr											ļ			<u></u>				. <u></u>	 		<u>├</u> ┣
Arabinan (IS)	kg/hr										<u> </u>			ļ		<u> </u>	<u> </u>			 		
Yeast (IS)	kg/hr	I		L	ļ						<u> </u>		+			<del> </del>	<u> </u>	<u> </u>		 <u> </u>	<u> </u>	<u>├</u>
Biomass (IS)	kg/hr																····-			 [		
Extract Solids (IS)	kg/hr	L		ļ											<u> </u>		<u> </u>	·····	<u> </u>	 		t
Ugnin (IS)	kg/hr	L									<u> </u>	+			<u>↓</u>	t	h		<u> </u>			t
Gypsum (IS)	kg/hr				<u> </u>				···	<b> </b>	<u> </u>	·			<u> </u>	·				 		<u>├</u>
CalUH)2 (IS)	kg/hr				<u> </u>					ł	<u> </u>	<del> </del>	·		+	<u> </u>			···	 		·
Conters (Insoluble Solids)	kg/hr				115.0	.27411.4	-209.5	.070 5	.078.6		<u> </u>	<u> </u>	<u>+</u>		<u> </u>	1	<u> </u>			 		
Carleipy Flow (millions)	Kcal/hr	-27350.5	-389.1	0.0	0.001	0.991	0.000	1014	1 0 10		<u> </u>	t	+			†		I		 		<u>├</u> [
raverage Density	ið/ur	0.982	0.991	0.941	0.331	1. 0.351	0.000	1.014		<u> </u>	1	1						I				
		-													14.4							•

![](_page_99_Figure_1.jpeg)

![](_page_99_Figure_2.jpeg)

![](_page_99_Figure_3.jpeg)

_____

	·	ſ				ument air	R N	
<u>WS1004</u> <u>S-1004</u>			T-10	005	,	-		
						PLANT R SYSTEM	>	
Eq. No.         Equipment Name           M-1002         Cooling Tower System           M-1004         Plant Air Compressor           M-1008         Chilled Water System           M-1008         Chilled Water System           P-1002         Cooling Water Pumps           S-1004         Instrument Air Dryer           T-1004         Plant Air Receiver           T-1005         Instrument Air Receiver           M-1006         Fermentor Air Compressor F           M-1008         Chilled Water Package	^j ackag e		Req. 1 1 1 1 1 1 2 1	Spare 0 0 1 0 0 0 1 0	Equipment 1 INDUCED-C RECIPROC CENTRIFUC PACKAGE HORIZONT/ HORIZONT/ CENTRIFUC	ype DRAFT ATING SAL AL-VESSEL AL-VESSEL SAL SAL	M at Const. GALVSTEEL CS CS CS CS CS CS CS CS	
VER DESCRIPTION	DATE 10/98	×		NR: Biotech	nology Cer	NATIONAL RE ENERGY LAB Inter For Fue	NEWABLE IORATORY IN And Chu	emicals
		COOLIN w9810	G W/ d.xl	NTER F	PFD-	NSTRUMEN	901	TEMS A

![](_page_100_Figure_0.jpeg)

![](_page_101_Figure_0.jpeg)

COM PONENT	UNITS	1008	1009	1014	1016		T	1		1		T	1	r	·····		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	······	· · · · · · · · · · · · · · · · · · ·		
Total Flow	kg/hr	63	63	63	63	1					+		+	·					ļ				
Insoluble Solids	1%	0.0%	0.0%	0.0%	0.0%	1			1			+	•	<u> </u>			+		ļ	ļ			
Soluble Solids	%	0.0%	0.0%	0.0%	0.0%	1				<u> </u>		+		f		+	·		<u> </u>	·	1		
Temperature	С	20	121	20	20				1	1		+	+		<u> </u>	·			ļ	ļ	<u> </u>		
Pressure	atm	1.00	1.00	1.00	1.00					·	+		<u> </u>	<u> </u>	<u> </u>			4	ļ	<u> </u>	1		
Vapor Fraction		0.00	1.00	0.00	0.00		1	-	1								l						
Ethanol	kg/hr					1	1		1		<u> </u>	+	+			+	ļ		<u> </u>	<u> </u>			
Water	kg/hr	63	63	63	63	1	1			+	+		+	<u> </u>	<u> </u>		<u> </u>	ļ	-		I		
Glucose (SS)	kg/hr				1		1	1	1		<u> </u>		ł	<u> </u>	<u> </u>	· [	+	<u> </u>			ļ	L	
Mannose (SS)	kg/hr					1	1	1							<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>			
Xylose (SS)	kg/hr							1	1	1	1		· · · · · ·	<u> </u>							L		
Other Sugars (SS)	kg/hr					1	1	1		T	1	1	<u> </u>	·	<u> </u>		<u> </u>	<u> </u>		L			
Cellobiose (SS)	kg/hr							T	1	1	1	1	<u></u>						ļ		ļ		
Glucose Oligomers (SS)	kg/hr					T	1	1			· · · · · · · · · · · · · · · · · · ·	1	1								<u> </u>		
Xylose Oligomers (SS)	kg/hr					1	1	-	1	1	1	·	<u> </u>		<u> </u>	<u> </u>		ł	ļ		<u> </u>		
Other Oligomers (SS)	kg/hr					1	1	1	1	1	1	1				<u> </u>		l		ļ	ļ		
Corn Steep Liquor (SS)	kg/hr					1	1	1		1	1	+	<u> </u>				ļ	1					
Others (Soluble Solids)	kg/hr					1	1	1			t	†				ł					L		
Extractives	kg/hr				1	1	1			1		<u> </u>							ļ		L		
Acetic Acid	kg/hr					1	1				1	<u> </u>				<u> </u>	<u> </u>	· · · · ·	L		ļ		
Sulfuric Acid	kg/hr					1	1	1		1	1	ł											
Furfural	kg/hr							1		1						<u> </u>							
HMF	kg/hr						1	1	1		·												
Carbon Dioxide	kg/hr										<u> </u>												
Methane	kg/hr					[		1						· · · ·									
Oxygen	kg/hr										<u>†</u>												
Nitrogrn	kg/hr						1																
Ammonia	kg/hr						1																
NH4)H	kg/hr											h											
Others	kg/hr										l												
Cellulose (IS)	kg/hr					[																	
Mannan (IS)	kg/hr					1																	
Galactan (IS)	kg/hr					i																	
Xylan (IS)	kg/hr																						
Arabinan (IS)	kg/hr																						
Yeast (IS)	kg/hr		i																				
Biomass (IS)	kg/hr		1	1																			
Extract Solids (IS)	kg/hr			1																			
Lignin (IS)	kg/hr																						
Gypsum (IS)	kg/hr			1																			
Ca(OH)2 (IS)	kg/hr			i																			
Others (insoluble Solids)	kg/hr																						
Enthalpy Flow (millions)	Kcal/hr	-0.2	-0.2	-0.2	-0.2																		
Average Density	g/ml	0.998	0.001	0.998	0.998																		
															<u></u>				1		1		

# **APPENDIX D**

### **CHIP HANDLING REPORT**

#### Ethanol Process - Wood Chip Handling Area Description - 800 ODT/D Production Level

Wood chips arrive at the site by truck and semi-trailer. Vehicles will be weighed with and without load on an above ground platform scale with a capacity of 100 tons. The vehicles are unloaded on a back-on type hydraulic dumper which can lift both truck and trailer to dump the load into a receiving hopper. The chips are metered out of the hopper onto a belt conveyor which in turn discharges to one of two stacker conveyors. The stackers deliver the chips to the storage pile. The unloading system is designed to operate 12 hours a day, 5 to 7 days per week

Bulldozers move the chips to form a 40 foot high pile with an area of approximately 150,000 square feet which is equal to a 30 day supply for the processing plant. A second pile of equal dimensions, with additional stacker and reclaim conveyors, would be required to provide a 2 months supply. Two bulldozers are included regardless of inventory to allow for peak delivery periods, to provide for proper pile rotation and maintenance. It is anticipated that two operators may be required during trucking hours and one during other times.

The dozers are used also to push chips into and over one of two reclaim chain conveyors. Using one conveyor at a time chips are reclaimed and fed to the screening system by belt conveyor. A tramp iron magnet is provided to catch stray magnetic metal and a scalping screen removes gross oversize and foreign material ahead of the screening process.

The initial process step in producing ethanol from biomass benefits from raw material particles being fairly thin. Wood chips should be in the order of 3 to 5 millimeter thick or less so as to allow the process chemicals to penetrate the fibers quickly. Such thin chips result when wood is cut into relatively short lengths along the grain, or no more than 12 millimeter long. Wood species, seasonal factors, moisture content and other variables influence chip thickness. It has been assumed that most incoming chips will be acceptable in thickness and do not require reprocessing.

All chips will pass over a thickness screen to screen out overthick material. A roll screen with specially profiled roll surfaces is proposed for this step. Material rejected by the screen passes first through an air density separator which is a system that separates material by specific gravity. This eliminates any stones and other foreign objects which would damage downstream equipment. The overthick chips are then introduced into a special chip slicer which cuts chips along the grain to a preset thickness. An alternate machine is a chip crusher which compresses chips to create fissures which allow more rapid penetration of the fiber by the process chemicals. The chip reclaim and screening system are designed to operate more or less continuously, or at least 20 hours per day.

In order to allow for equipment maintenance and to guard against breakdowns a storage silo is provided. The silo will hold approx. 55,000cu.ft. of screened chips which is equal to 8 hours of plant operation. Chips are metered and conveyed to the process plant on a continuous, 24 hour basis.

Several process alternates were considered. A fully automated chip storage and reclaim system was discussed which would not require either bulldozers or operators. Such a system can provide full inventory control and material turn-over and eliminates material break-down due to bulldozer action. Fiber loss and operating cost savings are the main advantages. Because of high capital cost this option was not pursued. Alternates for fiber preparation were also considered. As a substitute for screening and slicing of chips the use of hammermills was discussed. Running all chips through such equipment would require high energy input and would unnecessarily degrade the material. However, hammermills could be further evaluated for use after screening and to replace a slicer.

11:

5					
CLIENT: PROJECT: AREA:	EQUIPMENT LIST Merrick Engineering Ethanol Process - Chip Handling Area 2			PROJECT NO.: DATE:	E188 23-Jun-98
EQUIP NO	EQUIPMENT ITEMS DESCRIPTION	HP	RPM	EQUIP COST	REMARKS
LAST ROW 81	PAGE TOTALS	20 810	MTRS HP	3,208,000	
24	Leggen ( , , , , , , , , , , , , , , , , , ,	<b></b>	L <u></u>		
25	Truck Scale, incl. Data Processing Equipment			50,000	100 ton Capacity, pitless type
26	Truck Dumper			160,000	Truck plus Trailer, Phelps Ind. or eq.
27	Motor	60		11.5	
28	Motor	60	)		
29	Chip Receiving Hopper			140,000	
30					
31	Motor	30	)	· .	
32	Chip Conveyor to Storage			260,000	42" Belt x 530 ft. lg. w. fixed tripper
33	Motor	60	)		
34	No.1 Chip Stacker			95,000	42" Belt x 130 ft. lg.
	CLIENT: PROJECT: AREA: EQUIP NO LAST ROW 81 24 25 26 27 28 29 30 30 31 31 32 33 34	EQUIPMENT LIST         EQUIPMENT ITEMS         PROJECT: Ethanol Process - Chip Handling         AREA: Area 2       EQUIPMENT ITEMS         EQUIP       DESCRIPTION         LAST ROW       81         PAGE TOTALS       24         25       Truck Scale, incl. Data Processing         Equipment       26         7       Motor         28       Motor         30       31         31       Motor         32       Chip Conveyor to Storage         33       Motor         34       No.1 Chip Stacker	EQUIPMENT LIST         CLIENT: Merrick Engineering         PROJECT: Ethanol Process - Chip Handling         AREA: Area 2         EQUIPMENT ITEMS         EQUIPMENT ITEMS         EQUIP MENT ITEMS         EQUIP MENT ITEMS         EQUIP MENT ITEMS         EQUIPMENT ITEMS         EQUIP MENT ITEMS         EQUIPMENT ITEMS         EQUIP MENT ITEMS         EQUIP MENT ITEMS         EQUIP MENT ITEMS         EQUIP MENT ITEMS         Area 2         20         NO       DESCRIPTION       HP         PAGE TOTALS       810         24         25       Truck Scale, incl. Data Processing         27       Motor       60         28       Motor       60         29       Chip Receiving Hopper       30       30       31       Motor       30       32       Chip Conveyor to Storage       33       Motor       60       34       No. 1 Chip Stacker       60	EQUIPMENT LIST         CLIENT: Merrick Engineering         PROJECT: Ethanol Process - Chip Handling         AREA: Area 2         EQUIPMENT ITEMS         EQUIP         NO       DESCRIPTION       HP       RPM         LAST ROW       20 MTRS         81       PAGE TOTALS       810       HP         24       25       Truck Scale, incl. Data Processing       810       HP         26       Truck Dumper       60       60         28       Motor       60       60         29       Chip Receiving Hopper       30       31         31       Motor       30       30         32       Chip Conveyor to Storage       60         33       Motor       60         34       No.1 Chip Stacker       60	EQUIPMENT LIST     PROJECT NO.:       CLIENT: Merrick Engineering     PROJECT NO.:       PROJECT: Ethanol Process - Chip Handling     DATE:       AREA: Area 2     EQUIP       EQUIP     DESCRIPTION       HP     RPM       COST     20 MTRS       81     PAGE TOTALS       90000     PAGE TOTALS <t< td=""></t<>

E188.EQ_, Page 1

	EQUIPMENT LIST					
CLIENT: PROJECT: AREA:	Merrick Engineering Ethanol Process - Chip Handling Area 2			PROJ	ECT NO.: 1 DATE: 1	E188 23-Jun-98
EQUIP	EQUIPMENT ITEMS			E	QUIP	
NO 35	DESCRIPTION	H.P 20	RPM	(	COST	REMARKS
36	No.2 Chip Stacker	20			9 <b>5</b> ,000	42" Belt x 130 ft.
37	Motor	20				
38	No.1 Bulldozer c/w Chip Blade				350,000	
39	No.2 Bulldozer c/w Chip Blade			11. <del>;</del>	350,000	
40	No.1 Chip Reclaim Conveyor				110,000	Chain Conveyor, ft. lg.
41	Motor	30				
42	No.2 Chip Reclaim Conveyor				110,000	Chain Conveyor, ft. lg.
43	Motor	30				
44	Conveyor to Screening System				230,000	30" Belt x 620 f
45	Motor	50				
46	Tramp Iron Magnet				8,000	,

9	S					
-		EOUIPMENT LIS	T			
	CLIENT:	Merrick Engineering Ethanol Process - Chin Handling	-		PROJECT NO.: DATE:	E188 23-Jun-98
	AREA:	Area 2				25 Juli 70
		EQUIPMENT ITEMS		-		[
	EQUIP				EQUIP	
	NO	DESCRIPTION	HP	RPI	COST	REMARKS
	47	Disc Scalping Screen			25,000	For Trash Removal
	18	Motor	10			
	40	WOOD	10	×		
	49	Motor	10			
	50	Chip Thickness Screen			110,000	Acrowood Roll Screen
	51	Motor	10			11.p
	52	Motor	10			
	53	Air Density Separation System			80,000	0 Acrowood
	54	Motor, Blower	125			
	55	Motor, Feeder	10			
	56	6 Chip Slicer or Cracker (Option)			125,00	0 Acrowood
	57	' Motor	150			
	58	Chutes, Chip Screen System			50,00	0 Allowance

#### E188.EQ_, Page 3
-		EQUIPMENT LIST				
	CLIENT: PROJECT: AREA:	Merrick Engineering Ethanol Process - Chip Handling Area 2			PROJECT NO. DATE	: E188 : 23-Jun-98
	EQUIP NO	EQUIPMENT ITEMS DESCRIPTION	HP	RPM	EQUIP COST	REMARKS
	59	Building, Chip Screen System, incl. 3 floor levels w, equipment support steel and access platforms		I		50' x 50' 70' high, partially enclosed, w. buildings
	60	Conveyor to Chip Silo			200,00	0 30" Belt x 420 ft. lg.
	61	Motor	50	•		
	62	Chip Silo, erected, foundation not incl.			350,00	0 Concrete, 40' dia' x 90' high, 8 hrs storage (55,000 cu.ft.)
	63	Vibrating Silo Discharger			75,00	00
194 yr	64	Motor	10	)		
	65	Feeder, Silo Discharge			30,00	00 Screw
	66	5 Motor	1	5		
	67	7 Chip Conveyor to Process			200,0	00 30" Belt x 400 ft.lg.
	6	8 Motor	5	0		
	6	9 Belt Scale			5,0	000
()*	7	0				

S

### E188.EQ_, Page 4

	EQUIPMENT LIST				
CLIENT:	Merrick Engineering			PROJECT NO .:	E188
PROJECT:	Ethanol Process - Chip Handling			DATE:	23-Jun-98
AREA:	Area 2			·	
EOUID	EQUIPMENT ITEMS			FOUR	
NO	DESCRIPTION	нр	RPM	EQUIP	DEMADK
, <b>1</b>					
72					
					i
73	х.				
-74					
75					
, 5					
76					
77					
78					
79					
80					
81					

S





## CALCULATION SHEET

P.O. BOX 1286, ATLANTA, GEORGIA, U.S.A. 30301, 404-370-3200

	SHEET	' NO	1 F188	F
nalasti ta mastang kaning ta litin kana mping tang kanang sisang manang si	JOB N	0		1
······				
		••••••••••••••••••••••••••••••••••••••		
		-		
		:		
ETHANOL PLA		~		
800 BOT/DAY	ULIN	G		
CONCEPTUAL S	TEF	PLAN		
5CALE  "=10'	JL	INE	998_	
			-	
		· ·		
		1		
		: • •		
Y11				1

433

#### IRR vs Ethanol Selling Price Stand Alone





ing ing second



PF2 PAGE 12





# **IRR vs Electricity Price**

1



#### IRR vs Capital Invested Stand Alone



OPERATING						
CASH	RATE OF	FEED PRICE	ETHANOL	ELECTRICITY		
FLOW \$	RETURN	DRY \$/TON	SALE \$/GAL	SALE \$/KW		
4,306,155	#DIV/0!	20.000	0.80	0.05	-	
5,311,086	#NUM!	20.000	0.85	0.05		
6,316,017	1%	20.000	0.90	0.05		
7,320,948	4%	20.000	0.95	0.05		
8,325,879	7%	20.000	1.00	0.05		
9,330,809	11%	20.000	1.05	0.05		
10,335,740	14%	20.000	1.10	0.05		
11,340,671	18%	20.000	1.15	0.05		
12,345,602	22%	20.000	1.20	0.05		BASE CASE
		······		*****	etin ind	
14,660,829	30%	12.500	1.20	0.05		
13,889,086	27%	15.000	1.20	0.05		
13,117,344	25%	17.500	1.20	0.05		
12,345,602	22%	20.000	1.20	0.05		
11,573,859	19%	22.500	1.20	0.05		
10,802,117	16%	25.000	1.20	0.05		
					-	
10,200,074	14%	20.000	1.20	0.02		
10,915,250	16%	20.000	1.20	0.03		
11,630,426	19%	20.000	1.20	0.04		
12,345,602	22%	20.000	1.20	0.05		
13,060,778	24%	20.000	1.20	0.06		
13,775,954	27%	20.000	1.20	0.07		
14,491,130	30%	20.000	1.20	0.08		
15,206,306	33%	20.000	1.20	0.09	_	
					-%	CAPITAL INVEST
12,345,602	71%	20.000	1.20	0.05	50%	(49,703,090)
12,345,602	54%	20.000	1.20	0.05	60%	(59,643,708)
12,345,602	42%	20.000	1.20	0.05	70%	(69,584,326)
12,345,602	33%	20.000	1.20	0.05	80%	(79,524,943)
12,345,602	27%	20.000	1.20	0.05	90%	(89,465,561)
12,345,602	22%	20.000	1.20	0.05	100%	(99,406,179)
12,345,602	17%	20.000	1.20	0.05	110%	(109,346,797)
12,345,602	14%	20.000	1.20	0.05	120%	(119,287,415)
12,345,602	11%	20.000	1.20	0.05	130%	(129,228,033)
12,345,602	9%	20.000	1.20	0.05	140%	(139,168,651)
12,345,602	7%	20.000	1.20	0.05	150%	(149,109,269)

% EQUITY LOAN TERM YEARS Interest Rate

•

Equipment	iet/Cost (M	odel G9810H-1)											
Lyuipment L			Quantity	Canacity	Size		Cost	Install.	Total	Unit	Total	Scaling	
Section	Fauin No	Description	Read	Each	Each	Unit Cost	Source	Factor	Cost	Installation	Installation	Factor	Spa
													. =
100	C-101	Chip conveyor to storage	1			\$260,000	K Penka	1.75	\$260,000	\$195,000	\$455,000	0	
Vood Chip	C-102	Chip stackers	2			\$95,000	K Penka	1.75	\$190,000	\$71,250	\$332,500	0	
eed Handling	C-103	Reclaim conveyor	2			\$110,000	K Penka	1.75	\$220,000	\$82,500	\$385,000	0	
ooca	C 104	Conveyor to screening	1			\$240 713	K Penka	1 75	\$240 713	\$180,535	\$421 248	03	
	C 105	Conveyor to screening	1			\$209 315	K Penka	1.75	\$209 315	\$156,986	\$366.301	0.3	
	C 105	Chin convoyer to process	1			\$209,315	K Penka	1 75	\$209,315	\$156,986	\$366 301	0.3	
	C-107	Lignin conveyor to BE conveyor	1			\$250,000	Fst	1.75	\$250,010	\$187,500	\$437 500	03	
	M-101	Thick scale	1			\$50,000	K Penka	1.75	\$50,000	\$37,500	\$87 500	0	
	M-102	Truck dumper	1			\$160,000	K Penka	1.75	\$160,000	\$120,000	\$280,000	o	
	M-102	Chin receiving hopper	1		· ·	\$140,000	K Penka	1.75	\$140,000	\$105,000	\$245,000	Ö	
	M-104	Bulldozer	2		· · ·	\$350,000	K Penka	1.00	\$700,000	\$0	\$700.000	1	
	M-105	Tramp iron magnet	1			\$8,000	K Penka	1.00	\$8 000	\$6,000	\$14,000	o	
•	M-106	Air density separation system	1			\$86,306	K Penka	1 75	\$86 306	\$64 730	\$151,036	0.5	
	M-107	Chip slicer	1			\$136,915	K Penka	1.75	\$136,915	\$102,686	\$239,601	0.6	
· · · ·	M-108	Chip silo	1			\$383 363	K Penka	1.75	\$383,363	\$287,522	\$670,885	0.6	
	M-109	Vibrating silo discharger	1			\$78 493	K Penka	1 75	\$78,493	\$58,870	\$137,363	0.3	
	M-110	Silo discharge feeder	1			\$31,397	K Penka	1.75	\$31,397	\$23,548	\$54,945	0.3	
	M-111	Belt scale	1			\$5,233	K Penka	1.75	\$5,233	\$3,925	\$9,158	0.3	
	S-101	Disc scalping screen	1		·· -	\$26,164	K Penka	1.75	\$26,164	\$19,623	\$45,787	0.3	
	S-102	Chip thickness screep	1			\$115,123	K Penka	1.75	\$115,123	\$86,342	\$201,465	0.3	
· · · · - · · ·	S-103	Chip screen system chutes	1			\$54,766	K Penka	1.75	\$54,766	\$41,075	\$95,841	0.6	
	T-101	Rainwater collection and settling system	1			\$21,906	Est.	1.75	\$21,906	\$16,430	\$38,336	0.6	
		AREA 100 TOTAL							\$3,577,009		\$5,734,766		
200	A-206	Sterilization Tank Agitator	1			\$13,497	ICARUS	1.20	\$13,497	\$2,699	\$16,196	0.51	
drolysis and	A-209	Overliming Tank Agitator	1			\$16,573	ICARUS	1.30	\$16,573	\$4,972	\$21,545	0.51	
e addition	C-201	Screw conveyor	1	1		\$10,866	ICARUS	1.30	\$10,866	\$3,260	\$14,126	0.78	
	C-222	Gypsum conveyor	1			\$1,789	ICARUS	1.30	\$1,789	\$537	\$2,326	1	
	C-225	Lime solids feeder	1			\$3,407	ICARUS	1.30	\$3,407	\$1,022	\$4,429	0.6	
	C-226	Lime conveyor	1			\$1,195	ICARUS	1.3	\$1,195	\$359	\$1,554	1	
	H-201	Fermentation feed cooler	2			\$169,550	ICARUS	1.30	\$339,100	\$50,865	\$440,830	1	
	H-202	Fermentation feed chiller	2			\$119,554	ICARUS	1.30	\$239,108	\$35,866	\$310,840	1	
	M-201	Acid impregnator no.1	2			\$350,000	VENDOR	1.30	\$700,000	\$105,000	\$910,000		
	M-204	Acid impregnator no.2	2		•••••	\$350,000	VENDOR	1.30	\$700,000	\$105,000	\$910,000		
	M-224	Lime unloading pit	1			\$13,280	ICARUS	1.75	\$13,280	\$9,960	\$23,240	0.71	
	P-201	Sulfuric acid pump	1			\$6,516	ICARUS	2.80	\$13,032	\$11,729	\$18,245	0.79	
	P-209	Neutralized hydrolyzate slurry pump	1			\$16,245	ICARUS	2.80	\$32,490	\$29,241	\$45,486	0.79	
	P-222	Neutralized hydrolyzate liquor pump	1			\$16,673	ICARUS	2.80	\$33,346	\$30,011	\$46,684	0.79	
	P-223	Pneumatic lime unloader	1			\$54,057	ICARUS	1.40	\$54,057	\$21,623	\$75,680	0.5	
	R-201	First stage hydrolysis reactor	1			\$210,430	VENDOR	1.30	\$210,430	\$63,129	\$273,559	0.6	
	R-202	Second stage hydrolysis reactor	1			\$174,230	VENDOR	1.30	\$174,230	\$52,269	\$226,499	0.6	
	S-201	First stage pre-reactor screw press	1	1		\$1,564,000	VENDOR	1.30	\$1,564,000	\$469,200	\$2,033,200		
	S-202	Second stage pre-reactor screw press	1			\$1,976,000	VENDOR	1.30	\$1,976,000	\$592,800	\$2,568,800		
	S-203	Inter stage pre-reactor screw press	2			\$1,500,000	VENDOR	1.30	\$3,000,000	\$450,000	\$3,900,000		
	S-205	Acid vent desicant filter	1	10 47 <b>11 10 10 10</b>		\$547	ICARUS	1.60	\$547	\$328	\$875	0.6	
	S-222	Rotary drum filter	1			\$106,645	VENDOR	2.00	\$106,645	\$106,645	\$213,290	0.39	1
	T 201	Sulfurio acid process storage tank	•••••••••••••••••••••••••••••••••••••••			\$4.066	ICARUS	1 40	\$4,066	\$1.626	\$5 692	0.71	

Softi. Cost

. -



. ----



NREL SOFTW	VOOD 800 D	TPD CASE (STAND ALONE)	<u> </u>							· · · · · · ·			
Equipment Li	st/Cost (Mo	odel G9810H-1)			<b>.</b>								
			Quantity	Canacity	Size	-	Cost	Install.	Total	Unit	Total	Scaling	
Section	Equip No.	Description	Read	Each	Each	Unit Cost	Source	Factor	Cost	Installation	Installation	Factor	Spares
Bechon	T_203	Blowdown tank #1 (Oligomer)	1			\$21 557	ICARUS	1 20	\$21 557	\$4.311	\$25,868	0.93	
	T-204	First stage low pressure flash tank				\$19.423	ICARUS	2.60	\$19.423	\$31 077	\$50 500	0.93	
	T 205	Second stage flash tank (Oligomer)	1 1	•		\$13,894		2.50	\$13,894	\$20 841	\$34 735	0.71	
	T 206	Second stage low pressure flash tank	· · · · · ·			\$11 432	ICARUS	2 50	\$11,432	\$17 148	\$28,580	0 71	
	T-200	Overliming tank	1			\$55.422	ICARUS	1.40	\$55.422	\$22 169	\$77 591	0 71	
	T-200	Lime storage bin	1			\$77 726	ICARUS	1 30	\$77 726	\$23,318	\$101 044	0.46	
	W-203	Inter stage washer	2			\$350,000	VENDOR	1.30	\$700,000	\$105,000	\$910,000		
									\$10 107 112		\$13 291 414		
								-	<i>v</i> 10,101,112		••••,2••,,•••		
A300													
Production	A-300	First stage #1 fermenter agitator	2			\$19,341	VENDOR	1.40	\$38,682	\$7,736	\$54,155	0.51	
Fermentation	A-301	Second stage #1 fermenter agitator	2			\$17,249	VENDOR	1.35	\$34,498	\$6,037	\$46,572	0.51	
	A-302	First stage #2 fermenter agitator	2			\$18,804	VENDOR	1.50	\$37,608	\$9,402	\$56,412	0.51	
	A-303	Second stage #2 fermenter agitator	2			\$18,804	VENDOR	1.35	\$37,608	\$6,581	\$50,771	0.51	
	F-300	1st Stage fermenter No. 1	1			\$294,847	VENDOR	2.80	\$294,847	\$530,725	\$825,572	1	
	F-301	2nd Stage fermenter No. 1	1			\$208,573	VENDOR	2.80	\$208,573	\$375,431	\$584,004	1	
	F-302	1st Stage fermenter No. 2	1			\$308,815	VENDOR	2.80	\$308,815	\$555,867	\$864,682	1	
	F-303	2nd Stage fermenter No. 2	1	-		\$315,678	VENDOR	2.80	\$315,678	\$568,220	\$883,898	1	
	H-300	First stage #1 fermenter heat exchanger	and the			\$426,000	ICARUS	2.80	\$428,000	\$768,800	\$1,192,800	0.78	
1	H-301	Second stage #1 formenter, heat exchange	1		na etdi	\$20,000	ICARUS	2.50	\$20,000	\$30,000	\$50,000	0.78	
	H-302	First stage #2 fermenter heat exchanger	S. 1 1			\$9,100	ICARUS	2.80	\$9,100	\$16,380	\$25,480	0.78	
	H-303	Second stage #2 fermenter heat exchange	1			\$31,455	ICARUS	2.40	\$31,455	\$44,037	\$75,492	0.78	
	H-304	Distillation feed preheater	1		1. A. A.	\$161,363	VENDOR	1.80	\$161,363	\$129,090	\$290,453	0.83	
	P-300	First stage #1 fermenter pump	1.1	s i se		\$5,574	ICARUS	3.00	\$5,574	\$11,148	\$16,722	0.79	
	P-301	Second stage #1 fermenter pump	દે તે <b>ણ 1</b> કરવ			\$7,086	ICARUS	2.20	\$7,086	\$8,503	\$15,588	0.79	
	P-302	First slage #2 fermenter pump	1			\$7,086	ICARUS	2.90	\$7,086	\$13,463	\$20,549	0.79	
	P-303	Second stage #2 fermenter pump	1			\$7,088	ICARUS	2.50	\$14,172	\$10,629	\$17,716	0.79	1
	P-304	Yeast recycle pump	1	·····		\$7,086	ICARUS	3.50	\$7,086	\$17,715	\$24,801	0.79	
	· · · · · · · · ·	AREA 300 TOTAL							\$1,965,231		\$5,095,668		-
	D-501	Beer Column	1			\$371.000	VENDOR	2.10	\$371.000	\$408,100	\$779,100	0.78	
· · · · · · · · · · · · · · · · · · ·	D-502	Rectification Column	1			\$242.679	VENDOR	2.10	\$242.679	\$266.947	\$509.626	0.78	
A500	F-501	1st Effect Evaporator	2			\$214,404	ICARUS	2.10	\$428,808	\$235,844	\$900,497	0.68	· · · -
Beer Distillation	E-502	2nd Effect Evaporator	1			\$214.391	ICARUS	2,10	\$214.391	\$235.830	\$450.221	0.68	
Rectification and	E-503	3rd Effect Evaporator	2			\$214 391	ICARUS	2.10	\$428,782	\$235.830	\$900,442	0.68	
Dehydration	H-501	Reboiler	1			\$78 129	ICARUS	2.10	\$78,129	\$85,942	\$164.071	0.68	
	H-502	Repoiler		· · · · · ·		\$13 881	ICARUS	2.10	\$13.881	\$15,269	\$29,150	0.68	
	H-504	Overhead Condenser	1			\$4 937	ICARUS	2.10	\$4,937	\$5,431	\$10 368	0.68	
	H-505	Overbead Condenser	1			\$42 405	ICARUS	2.10	\$42,405	\$46,646	\$89.051	0.68	
	H-512	Feed/Bottoms Exchanger	, <b>1</b>			\$22.043	ICARUS	2 10	\$44.086	\$24 247	\$46 290	0.68	1
	H-517	Evaporator Condenser	2			\$59 797	ICARUS	2.10	\$119 594	\$65 777	\$251 147	0.68	:
	M-503	Ethanol Debydration Package	1			\$1 291 368	ICARUS	1.00	\$1 291 368	\$0	\$1 291 368	0.7	
	P-501	Bottoms Dump	1	л. — н.		\$51 163	ICARUS	2.80	\$102 326	\$92.093	\$143 256	0.79	1
	P-503	Reflux Pump	1			\$340	ICARUS	2.00	\$680	\$612	\$952	0.79	1
	P-504	Bottoms Pump	1			\$4 386	ICAPILS	2.00	\$8 772	\$7 895	\$12 281	0.70	
	P-505	Reflux Pump	1			\$4 106	ICAPILIS	2.00	\$8 392	\$7 553	\$11 749	0.73	
	D 511	1st Effect Dump	2			\$22 043		2.00	\$45,886	\$41 297	\$128 481	0.79	
[	P-311	List Ellect Entlinh	4			922,940	IUARUS	2.00	\$40,000	φ <del>4</del> 1,231	φ120,401	0.19	

i:/process/3104/estimate/Equip.xls

NREL SOFTW	VOOD 800 D	TPD CASE (STAND ALONE)				1							
Equipment Li	st/Cost (M	odel G9810H-1)							1				
Equipinon Er	,		Quantity	Canacity	Size		Cost	Install	Total	Unit	Total	Scaling	
Section	Equip No.	Description	Read	Each	Each	Unit Cost	Source	Factor	Cost	Installation	Installation	Factor	Spar
Section	D 512	2nd Effect Dump	2	Lacii		\$23 722	ICARUS	2 80	\$47 444	\$42 700	\$132 843	0 79	
	D 513	3rd Effect Pump	2	+		\$23,381	ICARUS	2.80	\$46 762	\$42,086	\$130,934	0.79	-
	P-515	Condensate Rumn	1	ł		\$10 747	ICARUS	2.00	\$21.494	\$19 345	\$30,092	0.79	. 1
	D 515	Condensate Fump	1			\$1.254	ICARUS	2.00	\$1 254	\$2 257	\$3.511	0.79	
	P-515	Scrubber Bottoms Pump				\$1,234	ICARUS	2.00	\$1,254	\$2,257	\$0,011	0.75	
	T-503	Overhead Receiver	1			\$1,030	ICARUS	2.10	\$1,030	\$1,133	\$2,103	0.93	
	T-505	Overhead Receiver	1		)	\$21,519	ICARUS	2.10	\$21,519	\$23,671	\$45,190	0.72	
	T-512	CO ₂ Scrubber	1		]	\$50,230	ICARUS	2.10	\$50,230	\$55,253	\$105,483	0.78	
		AREA 500 TOTAL							\$3,635,849		\$6,168,265		
A600	A-602	Equalization Basin Agitator	1		•	\$19,894	ICARUS	1.20	\$19,894	\$3,979	\$23,873	0.51	
Lignin Separation	A-606	Anaerobic Digestor Agitator	4	Na ama		\$30,300	ICARUS	1.20	\$121,200	\$24,240	\$145,440	0.61.	
& Wastewater	A-608	Asrobic Digestor Asrator	16		1. A.	\$31,250	VENDOR	1.40	\$500,000	\$200,000	\$700,000	1 a C 1	
Treatment	A-630	Recycled Water Tank Agitator	1	1	**************************************	\$3.311	VENDOR	1.30	\$3.311	\$993	\$4,304	0.51	
	C-601	Lignin Wet Cake Screw	1			\$12 456	ICARUS	1.40	\$12,456	\$4,982	\$17.438	0.78	
	C-614	Aerobic Sludge Screw				\$2 466	ICARUS	1 40	\$2,466	\$986	\$3,452	0.78	
	H.607	Apparatio Digestor Feed Cooler	at a star se	1		\$175,000	ICARUS	2.10	\$175.000	\$192 500	\$367 500	0.68	
	M-604	Nutrient Feed System	1	1		\$31,400		2 58	\$31,400	\$49.612	\$81.012	1	
	M 606	Biogas Handling System				\$11 702	VENDOR	1.68	\$11 702	\$7 957	\$19,659	0.6	
	M 612	Eiller Aid Addition System				\$3,000	VENDOR	1.00	\$3,000	\$600	\$3,600	1	
	N-012	Finer Ald Addition System	1			\$5,000	ICAPUS	2.20	\$13,136	\$23.645	\$36 781	0.79	
	P-602	Anaerobic Digestor Feed Pump	2			\$0,300	ICARUS	2.60	\$13,130	\$23,043	\$30,701	0.75	
	P-606	Aerobic Digestor Feed Pump	2			\$6,179	ICARUS	2.80	\$12,300	\$22,244	\$34,002	0.79	·· ·
	P-608	Aerobic Sludge Recycle Pump	1 1			\$4,686	ICARUS	2.80	\$4,686	\$8,435 \$2,435	\$13,121	0.79	
	P-610	Aerobic Sludge Pump	1			\$4,686	ICARUS	2.80	\$4,686	\$8,435	\$13,121	0.79	
	P-611	Aerobic Digestion Outlet Pump	. 2			\$6,157	ICARUS	2.80	\$12,314	\$22,165	\$34,479	0.79	
	P-614	Sludge Filtrate Recycle Pump	2			\$2,568	ICARUS	2.80	\$5,136	\$9,245	\$14,381	0.79	
	P-616	Treated Water Pump	2			\$6,150	ICARUS	2.80	\$12,300	\$22,140	\$34,440	0.79	
	P-630	Recycle Water Pump	2			\$738	ICARUS	2.80	\$1,476	\$2,657	\$4,133	0.79	
	S-600	Bar Screen	1			\$90,468	VENDOR	1.20	\$90,468	\$18,094	\$108,562	0.6	
	S-601	Beer Columns Bottom Centrifuge	3			\$659,550	VENDOR	1.20	\$1,978,650	\$395,730	\$2,374,380	0.6;	
	S-614	Aerobic Studge Belt Filter Press	1.1			\$650,223	VENDOR	1.80	\$650,223	\$520,178	\$1,170,401	0.72	
	T-602	Equilization Basin	1			\$245,733	VENDOR	1.42	\$245,733	\$103,208	\$348,941	0.51	
· · · · · · · · · · · · · · · · · · ·	T-606	Anaerobic Digestor	4	· · · · · ·		\$881,081	VENDOR	1.04	\$3,524,324	\$140,973	\$3,665,297	0.51	
÷• •	11-608	Aerobic Digestor	1			\$635,173	VENDOR	1.00	\$635,173	\$0 .	\$635,173	1.00	
	T-610	Clarifier	1		a anna an	\$122.335	VENDOR	1.96	\$122,335	\$117,442	\$239,777	0.51	
	T-630	Recycle Water Tank	1			\$6,146	VENDOR	1.40	\$6,146	\$2,458	\$8,604	0.745	
	xxx	Flare	1	1		\$13,000	VENDOR	1.58	\$13,000	\$7,500	\$20,500	1	
		AREA 600 TOTAL					-		\$8,212,573		\$10,122,971		
A700	A-701	In-line Ethanol Denaturant Mixer	1			\$1,202	ICARUS	1.00	\$1,202	\$0	\$1,202	0.48	-
Storage	P-701	Ethanol Product Pump	2			\$3,718	ICARUS	2.80	\$11,154	\$20,077	\$31,231	0.79	1
	P-703	Sulfuric Acid Pump	1			\$5,430	ICARUS	2.80	\$10,860	\$19.548	\$30,408	0.79	1
	P-704	Firewater Pump	1			\$8,659	ICARUS	2.80	\$17,318	\$31,172	\$48,490	0.79	···· i
	P-706	Ammonia Pump	1			\$2 344	ICARUS	2.80	\$4,688	\$8 438	\$13 126	0.79	i
	P-708	Diesel Rump				\$6 100		2.00	\$12 200	\$21 060	\$34 160	0.70	
	D 710	Casoline Bump				\$2,118	ICAPLIE	2.00	\$12,200	\$7 625	\$11 861	0.79	
	D 720					Ψ2,110 \$1 90E		2.00	¢7,200	\$6,020 \$6,000	\$10.610	0.13	
	18-720	USL PUID	1 1			31,695	I IGARUS I	2.80	33.790	30.022	210.012	0.79	

Soft.

Jost





NREL SOFTW	/OOD 800 D	TPD CASE (STAND ALONE)											
Equipment Li	et/Cost (M	odel G9810H-1)											
Equipinent Li	SUCOSE (IM	odel 6501011-1)	Quantity	Connaitu	Sizo	1	Cost	Install	Total	Unit	Total	Scaling	
Paatian	L. Equip No.	Deparintian	Bond	Each	Fach	Unit Cost	Fourse	Eactor	Cost	Installation	Installation	Factor	Snaros
Section	Equip. No.	Ethonal Draduat Starage Taak	Requ.	Each	Edun	¢101.022	VENDOR	1 40	¢202.944	\$91 539	\$285 382	0.85	Opares
	1-701	Ethanol Product Storage Tank	2			\$101,922	VENDOR	1.40	\$203,044 \$22.004	\$01,000 \$6,610	\$200,002	0.00	
	1-703	Sulturic Acid Storage Tank				\$33,094	ICARUS	1.20	\$33,094	\$0,019 \$40,944	\$39,713 \$142.055	0.51	
	1-704	Firewater Storage Lank	. ]			\$102,111	VENDOR	1.40	\$102,111	\$40,644	\$142,955	0.05	
	1-705	Ammonia Storage Tank				\$144,058	ICARUS	1.40	\$144,058	357,623	\$201,661	0.72	
	1-708	Diesel Storage Tank	1			\$14,400	ICARUS	1.40	\$14,400	\$5,760	\$20,160	0.51	
	T-710	Gasoline Storage Tank	1			\$26,739	ICARUS	1.40	\$26,739	\$10,696	\$37,435	0.51	
	T-720	CSL Storage Tank	1			\$18,975	ICARUS	1.40	\$18,975	\$7,590	\$26,565	0.79	
		AREA 700 IOTAL							\$608,669		\$934,981	-	
A800	H-811	BFW Preheater	1			\$8,108	ICARUS	3.87	\$8,108	\$23,294	\$31,402	0.68	
Boiler Feed	M-802	Combustion Airfan	1			\$1,731,651	ICARUS	1.40	\$1,731,651	\$692,660	\$2,424,311	0.79	
Drying,	M-803	Fluidized Bed Combustion Reactor	1			\$9,631,760	ICARUS	1.00	\$9,631,760	\$0	\$9,631,760	0.7	
Combustor &	M-804	Combustion Gas Baghouse	1			\$520,020	ICARUS	1.13	\$520,020	\$69,683	\$589,703	0.6	
Turbo Generator	M-811	Turbine/Generator	1			\$2,849,458	ICARUS	1.15	\$2,849,458	\$433,118	\$3,282,576	0.76	
	M-820	Demineralizer	2			\$95,819	ICARUS	1.20	\$191,638	\$38,328	\$229,966	0.6	
· · ·	M-822	Condensate Polisher	2			\$54.357	ICARUS	1.20	\$108,714	\$21,743	\$130,457	0.6	
	M-830	Hydrazine Addition Package	1			\$11,156	ICARUS	1.40	\$11,156	\$4,462	\$15,618	0.6	
	M-832	Ammonia Addition Package	1			\$11,156	ICARUS	1,40	\$11,156	\$4,462	\$15,618	0.6	
	M-834	Phosphate Addition Package	1			\$11,156	ICARUS	1.40	\$11,156	\$4,462	\$15,618	0.6	
	P-804	Condensate Pump	2			\$3,395	ICARUS	4.00	\$6,790	\$20,370	\$27,160	0.79	
· · -	P-811	Turbine Condensate Pump	2			\$1.847	ICARUS	4.00	\$3,694	\$11.082	\$14,776	0.79	
	P-824	Deaerator Feed Pump	2			\$4 347	ICARUS	4.00	\$8,694	\$26,082	\$34,776	0.79	
	P-826	BEW Pump	2	· 1		\$110 526	VENDOR	1 50	\$221.052	\$110.526	\$331,578	0.79	
	P-828	Blowdown Pump	2			\$2 282	ICARUS	4 00	\$4 564	\$13 692	\$18 256	0 79	
÷ 1	P-830	Hydrazine Transfer Pump	1			\$1 042	ICARUS	4 00	\$1 042	\$3 126	\$4,168	0.79	
	T-804	Condensate Collection Tank	1		•••••	\$3 257	ICARUS	4 00	\$3 257	\$9 771	\$13 028	0.71	
	T-824	Condensate Surge Drum		†		\$11 741	ICARUS	3.00	\$11 741	\$23,482	\$35,223	0.72	
	T-826	Deserator	1			\$20,315	ICARUS	4 00	\$20,315	\$60.945	\$81 260	0.72	
	T-828	Blowdown Elash Drum	+	· -··· ·		\$4.012	ICARUS	4.00	\$4.012	\$12,036	\$16.048	0.12	
	T-830	Hydrazine Drum	1			\$4,012		4.00	\$4 249	\$12,000	\$16,996	0.93	
	1-000		·			ψτ,2τ5		4.00	Ψ-,,,	¥12,171	<b>10,000</b>	0.00	
		AREA 800 TOTAL							\$15,364,227		\$16,960,299		
A1000	A-1018	Sterilization Tank Agitator	1 1			\$13.504	ICARUS	1.30	\$13,504	\$4,051	\$17,555	0.51	
Cooling Water &	A-1020	Cleaning Tank Agitator	1			\$13.504	ICARUS	1.30	\$13,504	\$4,051	\$17,555	0.51	
Instrument Air	H-1010	Water Sterilizer	1			\$1.501	ICARUS	1 40	\$1 501	\$600	\$2,101	0.68	
	M-1002	Cooling Tower System	1			\$814 399	ICARUS	1 20	\$814 399	\$162 880	\$977 279	0.78	
	M-1004	Plant Air Compressor	2			\$44 012	ICARUS	1.30	\$132,036	\$39.611	\$171 647	0.34	1
	M-1006	Fermenter Air Compressor Package	2			\$380 151	ICARUS	1 30	\$1 140 453	\$342 136	\$1.482.589	0.34	1
	M-1008	Chilled Water Package	3			\$380,000	ICARUS	1 20	\$1 140 000	\$228 000	\$1,368,000	0.8	
	P-1002	Cooling Water Pump	1			\$156 935	ICARLIS	2 80	\$313 870	\$564 966	\$878 836	0.79	1
	P-1010	Sterile Water Pump	2			\$2 101	ICARUS	2.80	\$4 202	\$7 564	\$11,766	0.79	- '
	P-1012	Make-un Water Pump	1			\$4 535	ICARUS	2.00	\$9.070	\$16.326	\$25 396	0.10	1
	P-1014	Process Water Circulating Pump	2			\$5 188	ICARUS	2.00	\$15 564	\$28.015	\$43 579	0.79	1
	P-1016	CIP/CS Supply Pump	, <u>∠</u>		eria merezi	\$2.801	ICAPLIS	2.00	\$5 602	\$10.084	\$15 686	0.79	··· '
	P-1018	CIP/CS Return Pump	2			\$2,001	ICAPLIC	2.00	\$5,602	\$10,004	\$15,600	0.79	e
	S-1004	Instrument Air Dryer				\$7 777	ICAPI IC	1 20	\$15 55A	\$4 666	\$20,220	0.19	
	7.1004		1			\$1,111 \$6,701	ICARUS	1.30	\$10,004 \$6,701	\$2.016	\$9.737	0.0	····
6	1*1004	Fiant All Receiver	1			J0,7∠1	IUARUS	1.30	φ0,/∠I	φ2,010	40,131	0.72	





NREL SOFT	<b>FWOOD 800 D</b>	TPD CASE (STAND ALONE)											
Equipment	List/Cost (M	odel G9810H-1)											Ι.
			Quantity	Capacity	Size	4	Cost	Install.	Total	Unit	Total	Scaling	I
Section	Equip. No.	Description	Reqd.	Each	Each	Unit Cost	Source	Factor	Cost	Installation	Installation	Factor	Spares
	T-1005	Instrument Air Receiver	1	tin time to the second		\$0	ICARUS	0.00	\$0	\$0	\$0	Secondaria and a success	
	T-1010	Process Water Tank	1			\$13,206	ICARUS	1.40	\$13,206	\$5,282	\$18,488	0.71	Ι.
	T-1014	Process Water Tank	1			\$119,645	ICARUS	1.40	\$119,645	\$47,858	\$167,503	0.51	
	T-1016	Sterile Rinse Water Tank	1			\$13,206	ICARUS	1.40	\$13,206	\$5,282	\$18,488	0.71	l
	T-1018	Sterilization Tank	1	1		\$29,013	ICARUS	1.40	\$29,013	\$11,605	\$40,618	0.71	1
	T-1020	Cleaning Tank	1			\$16,407	ICARUS	1.40	\$16,407	\$6,563	\$22,970	0.71	
		AREA 1000 TOTAL							\$3,823,061		\$5,324,705		
						· · · · · ·						- · · ·	
		AREA 100 Through 1000 TOTAL							\$47,293,731		\$63,633,070		

The balance profiling barders for all provided by averages 1 for an encourse, building the time to meaking interactions, examples of the providence of the contrast of the balance balance balance and contrast to the balance	REPORT DO	CUME	NTATION PA	GE		Form Approved OMB No. 0704-0188			
	The public reporting burden for this collection of gathering and maintaining the data needed, an collection of information, including suggestions should be aware that notwithstanding any other currently valid OMB control number. <b>PLEASE DO NOT RETURN YOUR FO</b>	information d completing for reducing provision of <b>RM TO TH</b>	is estimated to average g and reviewing the colle the burden, to Departm law, no person shall be <b>IE ABOVE ORGANI</b>	1 hour per response, in action of information. S lent of Defense, Execu subject to any penalty IZATION.	cluding the tim end comments tive Services for failing to c	ne for reviewing instructions, searching existing data sources, s regarding this burden estimate or any other aspect of this and Communications Directorate (0704-0188). Respondents comply with a collection of information if it does not display a			
4. TITLE AND SUBTITLE     Softwood Biomass to Ethanol Feasibility Study     Final Report: June 14, 1999     Softwood Biomass to Ethanol Feasibility Study     Final Report: June 14, 1999     Softwood Biomass to Ethanol Feasibility Study     Softwood Biomass to Ethanol Feasibility Study     Softwood Biomass     Softwood     Softwood Biomass     Softwood     Software to Ethanol Feasibility Study discussed in this report is an extension or previous, generic, software to     software to Ethanol Feasibility Study discussed in this report is an extension or previous, generic, software to     software to Ethanol Feasibility Study discussed in this report is an extension or previous, generic, software to     softwood     Softwood	1. <b>REPORT DATE</b> ( <i>DD-MM-YYYY</i> ) August 200	2. RE Fi	EPORT TYPE nal Subcontract	Report	_	3. DATES COVERED (From - To) March 1998-March 1999			
Intel RepOrt: Joine 14, 1999       So. GRANT NUMBER         So. GRANT NUMBER       Sc. PROGRAM ELEMENT NUMBER         Metrick & Company       Sd. PROJECT NUMBER NREL/SR-510-27310         So. GRANT NUMBER       NREL/SR-510-27310         So. GRANT NUMBER       NREL/SR-510-27310         So. GRANT NUMBER       NREL/SR-510-27310         So. GRANT Royal Road Springfield, VA 22161       SD. GRANT NUMBER NREL Technical Monitor: K. Kadam         Startment of Commerce 5238 Port Royal Road Springfield, VA 22161       SD. GRANT NUMBER NREL Technical Monitor: K. Kadam         Startment of Commerce 5238 Port Royal Road Springfield, VA 22161       SD. GRANT NUMBER NEL Colliant of an effort begun 198 to study various aspects of the two degin and project evaluation work which is a continuation of an effort begun 198 to study various aspects of the stand related projects. Metrick has used NREL data and guidance to further develop cost estimates aspects of the stand ediute actin typorolysis project as an exte	4. TITLE AND SUBTITLE Softwood Biomass to Ethand Final Peport: June 14, 1999	ol Feasib	oility Study		5a. CON DE-	AC36-99-GO10337			
6. AUTHOR(\$) Metrick & Company       6. PROJECT NUMBER NREL/SR-510-27310         7. PERFORMING ORGANIZATION NAME(\$) AND ADDRESS(E\$) Metrick & Company Aurora, Colorado       8. PERFORMING ORGANIZATION METRICk & Company Aurora, Colorado         9. SPONSORING/MONITORING AGENCY NAME(\$) AND ADDRESS(E\$) National Renewable Energy Laboratory 1617 Cole Bivd. Golden, CO 80401-3393       10. SPONSORIMONITOR'S ACRONYM(\$) NREL         11. SPONSORING/MONITORING AGENCY NAME(\$) AND ADDRESS(E\$) National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161       11. SPONSORING/MONITORING AGENCY REPORT NUMBER NREL/SR-510-27310         12. DISTRIBUTION AVAILABILITY STATEMENT National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161       11. SPONSORING/MONITORING AGENCY REPORT NUMBER NREL/SR-510-27310         13. SUPPLEMENTARY NOTES NREL Technical Monitor: K. Kadam       14. ABSTRACT (Maximum 200 Words) This report documents the results of design and project evaluation work which is a continuation of an effort begun 1998 to study various aspects of ethanol related projects. Metrick has used NREL data and guidance to further develop cost estimates for the two stage dilute acid hydrolysis process for the production of ethanol from softwoor The Software to Ethanol Feasibility Study discussed in this report is an extension or previous, generic, software to ethanol studies.         15. SUBJECT TERMS Metrick & Company; biomass; ethanol; softwood       18. NUMBER (P FAGES (P FAGES )       18. NAME OF RESPONSIBLE PERSON (P FAGES )					5b. GRANT NUMBER				
					5c. PRO	OGRAM ELEMENT NUMBER			
	<ol> <li>AUTHOR(S) Merrick &amp; Company</li> </ol>				5d. PRO NRE	D <b>JECT NUMBER</b> EL/SR-510-27310			
					5e. TAS BBC	<b>к NUMBER</b> 04.7610			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Metrick & Company Aurora, Colorado       8. PERFORMING ORGANIZATION REPORT NUMBER AXE-8-18020-01         9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401-3393       10. SPONSOR/MONITOR'S ACRONYM(S) NREL.         11. SPONSOR/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401-3393       10. SPONSOR/MONITOR'S ACRONYM(S) NREL.         12. DISTRIBUTION AVAILABILITY STATEMENT National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161       NREL/SR-510-27310         13. SUPPLEMENTARY NOTES NREL Technical Monitor: K. Kadam       NREL Technical Monitor: K. Kadam         14. ABSTRACT (Maximum 200 Words) This report documents the results of design and project evaluation work which is a continuation of an effort begun 1998 to study various aspects of ethanol related projects. Merrick has used NREL data and guidance to further develop cost estimates for the two stage dilute acid hydrolysis process for the production of ethanol from softwoor The Software to Ethanol Feasibility Study discussed in this report is an extension or previous, generic, software to ethanol studies.         15. SUBJECT TERMS Merrick & Company; biomass; ethanol; softwood       11. NUMBER OF ABSTRACT Unclassified       11. LIMITATION OF ABSTRACT Unclassified       11. LIMITATION OF ABSTRACT Unclassified       11. LIMITATION OF ABSTRACT Unclassified       11. LIMITATION OF ABSTRACT Unclassified       11. LIMITATION DIAMERE (Include area code)					5f. WOF	RK UNIT NUMBER			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401-3393       10. SPONSOR/MONITOR'S ACRONYM(S) NREL         11. Sponsoring/MONITORING AGENCY REPORT NUMBER NREL/SR-510-27310       11. SPONSORING/MONITORING AGENCY REPORT NUMBER NREL/SR-510-27310         12. DISTRIBUTION AVAILABILITY STATEMENT National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161       NREL         13. SUPPLEMENTARY NOTES NREL Technical Monitor: K. Kadam       NREL Technical Monitor: K. Kadam         14. ABSTRACT (Maximum 200 Words) This report documents the results of design and project evaluation work which is a continuation of an effort begun 1998 to study various aspects of ethanol related projects. Merrick has used NREL data and guidance to further develop cost estimates for the two stage dilute acid hydrolysis process for the production of ethanol from softwood The Software to Ethanol Feasibility Study discussed in this report is an extension or previous, generic, software to ethanol studies.         15. SUBJECT TERMS Merrick & Company; biomass; ethanol; softwood       18. NUMBER OF ABSTRACT Unclassified       19. ABSTRACT Unclassified       19. ABSTRACT Unclassified	<ol> <li>PERFORMING ORGANIZATION N Merrick &amp; Company Aurora, Colorado</li> </ol>	AME(S) A	ND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER AXE-8-18020-01			
Golden, CO 80401-3393       11. SPONSORING/MONITORING AGENCY REPORT NUMBER NREL/SR-510-27310         12. DISTRIBUTION AVAILABILITY STATEMENT National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161       NREL/SR-510-27310         13. SUPPLEMENTARY NOTES NREL Technical Monitor: K. Kadam       NREL Yes an extension of an effort begun 1998 to study various aspects of ethanol related projects. Merrick has used NREL data and guidance to further develop cost estimates for the two stage dilute acid hydrolysis process for the production of ethanol from softwoor The Software to Ethanol Feasibility Study discussed in this report is an extension or previous, generic, software to ethanol studies.         16. SUBJECT TERMS Merrick & Company; biomass; ethanol; softwood       17. LIMITATION OF ABSTRACT Unclassified       18. NUMBER OF PAGES       19a. NAME OF RESPONSIBLE PERSON OF ABSTRACT UL	<ol> <li>SPONSORING/MONITORING AGE National Renewable Energy 1617 Cole Blvd</li> </ol>	ENCY NAI Laborat	ME(S) AND ADDRES Ory	SS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S) NREL			
12. DISTRIBUTION AVAILABILITY STATEMENT National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161         13. SUPPLEMENTARY NOTES NREL Technical Monitor: K. Kadam         14. ABSTRACT (Maximum 200 Words) This report documents the results of design and project evaluation work which is a continuation of an effort begun 1998 to study various aspects of ethanol related projects. Merrick has used NREL data and guidance to further develop cost estimates for the two stage dilute acid hydrolysis process for the production of ethanol from softwood The Software to Ethanol Feasibility Study discussed in this report is an extension or previous, generic, software to ethanol studies.         15. SUBJECT TERMS Merrick & Company; biomass; ethanol; softwood       17. LIMITATION OF ABSTRACT Unclassified       18. NUMBER OF PAGES       19a. NAME OF RESPONSIBLE PERSON (Include area code)	Golden, CO 80401-3393					11. SPONSORING/MONITORING AGENCY REPORT NUMBER NREL/SR-510-27310			
13. SUPPLEMENTARY NOTES NREL Technical Monitor: K. Kadam         14. ABSTRACT (Maximum 200 Words) This report documents the results of design and project evaluation work which is a continuation of an effort begun 1998 to study various aspects of ethanol related projects. Merrick has used NREL data and guidance to further develop cost estimates for the two stage dilute acid hydrolysis process for the production of ethanol from softwood The Software to Ethanol Feasibility Study discussed in this report is an extension or previous, generic, software to ethanol studies.         15. SUBJECT TERMS Merrick & Company; biomass; ethanol; softwood       17. LIMITATION OF ABSTRACT Unclassified       18. NUMBER OF PAGES       19a. NAME OF RESPONSIBLE PERSON         19b. TELEPONE NUMBER (Include area code)	<ol> <li>DISTRIBUTION AVAILABILITY ST National Technical Information U.S. Department of Commer 5285 Port Royal Road Springfield, VA 22161</li> </ol>	<b>ATEMEN</b> on Servi ce	т се						
14. ABSTRACT (Maximum 200 Words)         This report documents the results of design and project evaluation work which is a continuation of an effort begun 1998 to study various aspects of ethanol related projects. Merrick has used NREL data and guidance to further develop cost estimates for the two stage dilute acid hydrolysis process for the production of ethanol from softwood The Software to Ethanol Feasibility Study discussed in this report is an extension or previous, generic, software to ethanol studies.         15. SUBJECT TERMS         Merrick & Company; biomass; ethanol; softwood         16. SECURITY CLASSIFICATION OF:       17. LIMITATION OF ABSTRACT         a. REPORT       b. ABSTRACT         Unclassified       c. THIS PAGE         Unclassified       c. THIS PAGE         UL       18. NUMBER         19b. TELEPONE NUMBER (Include area code)	13. SUPPLEMENTARY NOTES NREL Technical Monitor: K.	Kadam							
15. SUBJECT TERMS Merrick & Company; biomass; ethanol; softwood         16. SECURITY CLASSIFICATION OF: a. REPORT       17. LIMITATION OF ABSTRACT       18. NUMBER OF ABSTRACT       19a. NAME OF RESPONSIBLE PERSON         Unclassified       Unclassified       Unclassified       UL       19b. TELEPONE NUMBER (Include area code)	<ol> <li>ABSTRACT (Maximum 200 Words, This report documents the re 1998 to study various aspect develop cost estimates for th The Software to Ethanol Fea ethanol studies.</li> </ol>	esults of ts of etha te two st tsibility S	design and proje anol related proje age dilute acid h Study discussed	ect evaluation w ects. Merrick ha nydrolysis proce in this report is	vork whick as used N ess for the an extens	h is a continuation of an effort begun in IREL data and guidance to further production of ethanol from softwood. sion or previous, generic, software to			
16. SECURITY CLASSIFICATION OF:       17. LIMITATION OF ABSTRACT       18. NUMBER OF PAGES       19a. NAME OF RESPONSIBLE PERSON         a. REPORT       b. ABSTRACT       c. THIS PAGE       UL       19b. TELEPONE NUMBER (Include area code)	15. SUBJECT TERMS Merrick & Company; biomas	s; ethan	ol; softwood						
16. SECURITY CLASSIFICATION OF:       17. LIMITATION OF ABSTRACT       18. NUMBER OF PAGES         a. REPORT       b. ABSTRACT       c. THIS PAGE       UL         Unclassified       Unclassified       UL       19b. TELEPONE NUMBER (Include area code)									
Unclassified Unclassified Unclassified UL 19b. TELEPONE NUMBER (Include area code)	16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS	S PAGE	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME C	OF RESPONSIBLE PERSON			
	Unclassified Unclassified Uncl	assified	UL		19b. TELEPC	DNE NUMBER (Include area code)			

Standard Form 298 (Rev.	8/98
Prescribed by ANSI Std. Z39.18	