Contract with USDA–FS, Pacific Northwest Division - Regional Ecosystem Office

Development of 1:24,000-Scale Hydro Data Clearinghouse

Proposal to USDA–FS, Pacific Northwest Division

Regional Ecosystem Office

2.0 Technical Approach
for Development of 1:24,000-Scale Hydro Data Clearinghouse

Contract with USDA–FS, Pacific Northwest Division - Regional Ecosystem Office

Development of 1:24,000-Scale Hydro Data Clearinghouse

1:24000+ Scale Hydro Clearinghouse

System Documentation
The following document covers the system design, installation, and operation of a clearinghouse for multiple scales of hydro data. The initial data load consists of existing 1:100000 scale data, but this data will be replaced with 1:24000 scale or better data by contributing agencies. The 1:100,000 scale data is provided as a starting point, so new data submissions can easily comply with the requirement to use the same LLIDs (Unique feature ids based on latitude and longitude) and optionally the same measures in the 1:24000 scale data to be submitted.

Project Requirements

Environmental Systems Research Institute, Inc. (ESRI), developed this solution for a 1:24,000+ scale hydro clearinghouse for the Pacific Northwest Division of the USDA–Forest Service's Regional Ecosystem Office (REO). This clearinghouse supports multiple remote sites from various organizations simultaneously editing watercourse routes & events (WC), Waterbody regions (WB), waterbody shoreline routes & events (WS), and waterbody points (WP).

Requirements for this clearinghouse as identified by REO and understood by ESRI are as follows:

· The desired application will be deployed on an Internet server to a client having a web browser and a set of ArcInfo AMLs and menus to support checking out and checking in data.

· The client and server mix should be able to deliver hydro data and the related unique ID when requested for a geographic area.

· The system needs to support different scales of hydro data Note that the same ID for a given stream is intended to be used at various scales (i.e., the Columbia River will be assigned the same ID at 1:100,000 as at 1:24,000). Initial priority for layers is focused on 1:24,000 hydro data. Route measures will not necessarily correspond between 1:100000 and 1:24000+ scale data, but LLIDs should match.

· The application should be able to keep track of areas where editing or new data submission is being done by cooperating agencies, and prevent editing conflicts by allowing hydro data in a given area to be edited by only one agency at a time.

· Cooperating agencies may have slow network connections, so a checkout-check-in method must be used instead of direct on-line editing.

· Editing will be done by cooperating agencies using existing workstation ArcInfo methods and applications, so the data must be provided to the cooperating agencies in coverage format.

· The system can be used by interested parties to determine if hydro data in a specified geographic extent is "checked out" for work/editing and who is doing the work.

· The check-in process will include basic QA checks.

· Changes to the database are subject to review and quality assurance checks by the clearinghouse manager before final inclusion in the database

Deliverables

Deliverables for the project include the following:

Server

· SDE software and licensing.

· ArcIms software and licensing; Also MO IMS if necessary.

· Clearinghouse software to manage transaction control for hydro edits/update.

· Quality check software to aid the clearinghouse manager.

· Clearinghouse manager software to facilitate moving approved submissions from holding area to clearinghouse SDE layer.

· Software scripts necessary to generate initial tables and other database objects on REO SDE server.

Client

· Client application to facilitate query and retrieval from clearinghouse SDE server.

· The client application will format information retrieved from SDE clearinghouse into a set of coverages and event tables ready for use by existing conflation tools.

· The client will have a copy of the quality check software to perform many of the same QA/QC tests as the clearinghouse manager, thus reducing the probability of a rejected data submission.
Overall Architecture
The server component consists of a Spatial Database Engine™ (ArcSDE™) server, ArcInfo 8.x, an ArcIMS server, and related support software. A dll from MO IMS is used to fetch transaction ids. Client software consists of a Java-enabled web browser for data viewing and certain check-in/check-out operations. ArcInfo 7.2.x or 8.x can be used for editing, QA of the checked-out data, and other check-in/check-out operations.

The server tier stores a set of multi-scale Hydro layers. A “checkout status tracking” layer tracks areas checked out by clearinghouse editors. If an area is checked out, all topologies (point, route, region) and associated events for that area are checked out. This implementation meets the requirement of being able to store multiple scales of hydro data with the unique ID for a given feature being unique within each layer. In addition, a temporary holding area for submissions from client sites will be maintained. The clearinghouse server manager has the ultimate responsibility for approval or rejection of all submissions requested for inclusion in the official clearinghouse ArcSDE layers.

Data translation between Client and Server

The following hydro data is managed by the clearinghouse:

· wc -Watercourse routes (e.g. streams)

· Events on watercourses

· Lookup tables

· wb -Waterbody areas (e.g. lakes) stored as regions

· Lookup tables

· ws - Waterbody shorelines stored as routes

· Events on waterbody routes

· Lookup tables

· wp -Water points (e.g. springs)

· Relate table for water points

· Lookup tables

Refer to “Oregon and Washington State Framework; Clearinghouse Hydrography Data Dictionary; Physical Data Model” for details

The data is stored in ArcSDE on the server, but delivered to the user in coverage format. This translation is done according to the following table:

	Coverage feature class
	SDE layer

	wp (point)
	wp (point)

	wc (route.wc)
	wc (measured shape)

	wb (region.wb)
	wb_area (area)

	ws (route.ws)
	ws_route (measured shape)

· Event tables on the client are INFO tables; on the server they are Oracle tables.

· Domain lookup tables are stored as a single set of Oracle tables on the server, but these tables will be redundantly copied out as INFO tables into each coverage to which they apply. That way, the lookup tables are always available to the user of a coverage extracted from the clearinghouse.

· Sections of checked-in coverages are stored as event tables in ArcSDE. They are used to ensure that section breaks in the output coverage correspond to section breaks in the input coverage. The user never sees these tables in the extracted coverages. They are created on the fly when data is loaded, and deleted after the post-processing step when data is extracted. They do reside in the ArcSDE database, however. They are named wc_evt_section and wb_evt_section.

· There is an issue to be aware of with section event tables: Any editing of measures done directly on the ArcSDE data will be lost unless the section event table is also updated to reflect these changes. In ArcSDE, measures are stored on each vertex, and all measures not represented in the section event table are lost when data are extracted from the clearinghouse. As direct editing of the clearinghouse server is not currently supported, this is not currently a problem.

· In the future, things may change, and it may be desirable to convert from coverage editing to geodatabase editing. At that point, a decision must be made about section event tables. Options are:

· No longer use them. Dissolve sections using the methods prototyped in the utilities directory, subdirectory: section_dissolve. There will be many sections that cannot be dissolved because the single precision storage of measures in a coverage may produce too much rounding error to effectively discriminate legitimate measure/length ratio breakpoints.

· Create them on the fly in the geodatabase. . Write a program to operate against the more precisely stored geodatabase measures to detect measure/length ratio breakpoints and generate the section event table on the fly as routes are extracted to coverage format.

· See the word doc: “utilities\section_dissolve\tech_meeting notes 1_4 and 1_17_01.doc” for further discussion on this issue.

· Coordinate storage precision

<<<<<<<<Fill in: spatial reference, single precision measures, long route issue,(precision, long checkout (snake ate a possum) use for now, split if it just won’t work, yadda yadda yadda

Server design

The first part of this section is devoted to “housekeeping” issues, and the last part covers the transaction process flow.

Server logging
The server keeps a log of all significant events. This log is a valuable resource for monitoring server activity and troubleshooting. All lines are flagged with date, time and message type. Message types are:

User
A message logged by the clearinghouse manager, using the “Server Manager” menu.

Info
An informational message from the server

Warn
A warning from the server

Err
An error in data or server operation

Perr
A program logic error or other improper condition detected by the server code

The log is a text file named:

 \chse_exe\chse_server\etc\chse_server_log

Server Parameters
The server parameters are currently set in the class_initialize procedure of the ChseServer class in the manager.mxd ArcMap document.

As a stub for future enhancements, an empty parameter file has been created in

 \chse_exe\chse_server\etc\chse_server_log

Restarting the server after a crash
When the clearinghouse server is started by the clearinghouse manager, a lockfile is created to keep a second server from being started. This lockfile is located in:

 \chse_exe\chse_server\lockfiles\chse_server_lock.txt

If the server crashes, the lockfile may be still present. You will get as message to that effect. If so, delete it and restart.

Killing a hung server
Checkins and checkouts can take a long time to complete, so do not be surprised if the “Server Manager” menu interface appears to be hung. It is probably busy servicing a transaction. If you want to make sure the server stops at a the next good stopping point, and the “Server Manager” menu is not responding, make a file named:

 \chse_exe\chse_server\lockfiles\chse_server_request_shutdown.txt

The server checks for this file at every iteration, and stops itself if the file is present.

Internet map server setup
Refer to the following file:

chse_exe\chse_server\doc\web_client\install_notes.txt

FTP setup
An FTP server must be installed for the clearinghouse server to work. The data contributors can all connect with the same username and password. Currently this is hydroftp/hydroftp. Anonymous FTP is not recommended for the hydro transaction incoming FTP directories, to discourage hackers. Individual user accounts are not necessary, since the incoming FTP directories are regularly cleaned out while the server is running. There is little chance that data contributors will inadvertently “step on” each others’ incoming data due to timing and naming conventions, and malicious behavior on the part of data contributors is not anticipated.

The FTP root directory can be anywhere on the system, as long as the NT account which runs the clearinghouse server software can create, delete, and copy all files and folders in its subdirectory. This subdirectory must be named chse_ftp.

These directories should be read/write to the hydroftp user, and invisible to anonymous:

chse_ftp\sc24000\incoming\checkin_covs

Used for checkin data submission

chse_ftp\sc24000\incoming\checkout_polys

Used for checkout polygon submission

This directory should be readonly to hydroftp and invisible to anonymous:

chse_ftp\sc24000\outgoing\checkout_covs

Used for checkout data download

In a future enhancement, the checkout status map coverage and the hydro data will be posted on an FTP directory for download by anyone. These directories should be readonly by hydroftp and anonymous FTP. The current plan for the location of these directories is:

chse_ftp\sc24000\outgoing\hydro_data

Used for readonly download of latest hydro data

chse_ftp\sc24000\outgoing\statusmap

Used for readonly download of the STATUSMAP coverage, showing the

current status of checkouts

Email setup
The clearinghouse server sends mail to the clearinghouse manager and to users who contribute data. There is an enhancement request to send automatic email to users when checkout or checkin activity occurs in their area of interest. The clearinghouse server does not receive any mail. All incoming mail goes to the clearinghouse manager.

The clearinghouse manager’s email address is the return address of all mail sent by the clearinghouse server. This address is set as a server parameter. See the “ Server Parameters” section of this document for more information.

Any mail protocol that supports MAPI should work. The server was written and tested against Microsoft Outlook using an Exchange server.

If Outlook is not running when the server starts, MAPI will automatically connect. This requires the operator to click OK to a “connect” messagebox popped up by Outlook.

Registering clearinghouse clients
A client must be registered in the EDITORS table to do any checkouts or checkins. The REO clearinghouse manager is responsible for maintaining this table, using the “Editor Manager” menu. The clients do not need their own Oracle or NT accounts, as they are not required to connect directly. If they do have Oracle or NT accounts, they MUST NOT have write access to any clearinghouse tables, ArcSDE layers, folders, or files, except as outlined in the “FTP Setup” section of this document. These data should be modified ONLY by the clearinghouse server software, or corrupt transactions may result!

All modifications to clearinghouse data must be done by the clearinghouse server, to maintain “long transaction” integrity. If users have write permission, they might inadvertently connect directly and corrupt the database.

 Table EDITORS:

Name Null? Type

 --- --------

 EDITOR_ID NOT NULL NUMBER(6)

 USERNAME NOT NULL VARCHAR2(30)

 PASSWORD NOT NULL VARCHAR2(30)

 FULL_NAME VARCHAR2(25)

 ORGANIZATION VARCHAR2(20)

 ADDRESS1 VARCHAR2(50)

 ADDRESS2 VARCHAR2(50)

 ADDRESS3 VARCHAR2(50)

 PHONE VARCHAR2(20)

 EXTENSION VARCHAR2(6)

 FAX VARCHAR2(20)

 EMAIL NOT NULL VARCHAR2(50)

Tracking transactions
As transactions progress through the workflow, they are tracked in a series of Oracle tables. Major steps are also logged to the Server Log, described in the “Server Logging” section of this document.

Each transaction consists roughly of a checkout, data download, edit, data upload, and checkin or abort. Each transaction gets one row in the TRANSACTION table.

 Table: TRANSACTION

Name Null? Type

 --- --------

 TRANSACTION_ID NOT NULL NUMBER(10)

 EDITOR_ID NUMBER(6)

 TRANSACTION_TYPE VARCHAR2(10)

 START_TIME DATE

 DEADLINE DATE

 FINISH_TIME DATE

 TRANSACTION_STEP VARCHAR2(20)

 TRANSACTION_VERIFY NUMBER(8)

As the transaction progresses, entries are added to the TRANSACTION_HISTORY table. This table is used to record the progress of the transaction, to ensure that steps are not omitted or repeated, even though the server may have been stopped and restarted. This table can also be used for general transaction status information.

Table: TRANSACTION_HISTORY

Name Null? Type

 --- -------- ----------

 TRANSACTION_STEP_ID NOT NULL NUMBER(10)

 TRANSACTION_ID NUMBER(10)

 SUBMISSION_ID VARCHAR2(14)

 TRANSACTION_STEP VARCHAR2(20)

 STEP_DONE_TIME DATE

 STEP_COMMENTS VARCHAR2(250)

The TRANSACTION_STEP column in the TRANSACTION_HISTORY table records events as the transaction progresses. These events are defined in the TRANSACTION_STEP_DESC table:

Table: TRANSACTION_STEP_DESC

 Name Null? Type

 --- -------- -----------

 STEP_ORDER NUMBER(10,6)

 TRANSACTION_STEP NOT NULL VARCHAR2(20)

 STEP_DESCRIPTION VARCHAR2(250)

Contents of Table: TRANSACTION_STEP_DESC

STEP_ORDER TRANSACTION_STEP

---------- --------------------

STEP_DESCRIPTION

 1 TRANS_START

Transaction was started and a transaction number assigned

 2 CKOUT_POLY_RECV

Checkout polygon received

 9 CKOUT_POLY_REJECT

Checkout polygon was rejected because it overlapped an already checked-out area; mail sent to user

 3 CKOUT_DATA_POST

Checkout data posted to outgoing ftp dir and mail sent to user

 4 CKIN_DATA_RECV

Checkin data received at incoming FTP dir

 5 CKIN_PROCESSED

Checkin processed

 6 CKIN_REJECT_AUTO

Checkin rejected automatically by server, mail sent to user

 6 CKIN_REJECT_MANAGER

Checkin rejected after review by manager, mail sent to user

 7 CKIN_DATA_POST

Checkin data posted to the database

 9 CKIN_ACCEPT

Checkin accepted, mail sent to user

 9 ABORT_BY_USER

Transaction was aborted by the user, mail sent to user

 9 ABORT_BY_MGR

Transaction was aborted by clearinghouse manager, mail sent to user

 A view named TRANSACTION_VIEW joins the transaction tracking tables for convenience.

View: TRANSACTION_VIEW

Name Null? Type

 --- -------- ----------

 TRANSACTION_ID NOT NULL NUMBER(10)

 EDITOR_ID NUMBER(6)

 TRANSACTION_TYPE VARCHAR2(10)

 START_TIME DATE

 DEADLINE DATE

 FINISH_TIME DATE

 TRANSACTION_STEP VARCHAR2(20)

 STEP_ORDER NUMBER(10,6)

The checkout polygons are kept in an ArcSDE polygon layer named STATUSMAP. When an area is checked-out, a polygon is added to this layer to lock the checked-out area. When the transaction is checked-in or aborted, this polygon is dated and flagged as inactive. Inactive polygons can overlap. Active polygons cannot overlap. The client can point at an existing polygon to see who has the area checked-out, when it was checked-out, etc.

This layer joins to the TRANSACTION_VIEW view to associate the area being checked out to the status of the transaction. Only polygons with a TRANSACTION_STEP value less than 9 lock areas from edits by other users. Other polygons represent completed or aborted transactions from the past.

ArcSDE Layer: STATUSMAP

-Registered with the geodatabase, NOT Registered as versioned

Name Null? Type

 --- -------- ----------

 TRANSACTION_ID NUMBER(10)

 SHAPE NUMBER(9)

 OBJECTID NOT NULL NUMBER(9)

A script creates these tables, along with constraints and sequences. This script is named:

 \chse_exe\chse_server\sde_scripts\define_trans_tables18.sql

Note: use the highest number. The “18” in the name indicates that it is the seventeenth version of this script. If a more recent version is available, use it!

This script also creates four tables that keep track of LLIDs

They are:

wb_llid

ws_llid

wc_llid

wp_llid

All four tables have nearly identical formats.

In the SQL script, they are created using these SQL commands:

create table wb_llid(TRANSACTION_ID NUMBER(10), wb_llid_nr varchar2(13));

create table ws_llid(TRANSACTION_ID NUMBER(10), ws_llid_nr varchar2(13));

create table wc_llid(TRANSACTION_ID NUMBER(10), wc_llid_nr varchar2(13));

create table wp_llid(TRANSACTION_ID NUMBER(10), wp_llid_nr varchar2(13));

Then you must use ArcCatalog to register these four tables with the geodatabase, and register them as versioned. This adds a column called OBJECTID to each table.

Do NOT register the other transaction tables with the geodatabase!

ArcSDE data loads
The server needs a set of ArcSDE layers and tables, comprising the Hydro Framework database design. These layers and tables include:

The STATUSMAP layer. This layer is a polygon layer with one user-defined field named TRANSACTION_ID defined as double with a precision of 10 and a scale of 0.

This layer should be registered with the geodatabase, but NOT registered as versioned.

The four Data layers: WC, WS, WB, and WP

The event tables

The relate table

The lookup tables

The crossreference tables

For a complete list, refer to: “Oregon and Washington State Framework; Clearinghouse Hydrography Data Dictionary; Physical Data Model”

These data loads should be done using the ArcCatalog GUI, using the same format as the development server, Moose.

The above layers and tables, with the exception of the STATUSMAP layer should be registered with the geodatabase and registered as versioned.

The spatial reference for all five Arcsde layers should be as follows, except that only the WS and WC layers should have M (measure) units.

[image: image1.png]Y ArcCatalog - Database Connectionsihydrol on moose.sde\hydrol.we.

=18l x]

Fle Edi View Go Tooks Help

NEEIELES

SN\

Locator, [0 Comestersyaot onmecrerd
Stlesheet. [F501] o &' |
iy e
|
i COUNTIES e

hyciol test_weedi_toute_we
YDROT.TRANSACTION
{YDROT.TRANSACTION_HISTOR
HYDRO1. TRANSACTION_STEP_|
IYDROT.TRANSACTION_VIEW
ekl wb

HYDRO1.WB_LLID

2y hyehol wb_lid_rel

ekl wh_ut_fe_input_cd
hydrol.wb_lut_fe_intp_cd

hycio we_evt_fi_hst

2y hyehol we_evt_fi_hst_rel
hycho we_evt_fi_ype
2y hyol we_evt_fi_type_rel
hycol we_evt_In_type.
2y hyefol we_evt_In_type_rel
hyco we_evt_name

By hyol we_evt_name_rtel
hychol we_evt_nf

2y hyelol we_evt_nf_rel
hycol we_evt_section
2y hyefol we_evt_section_rel
hycho we_evt_stm_flow
By hyeol we_evt_stm_flow_rel

K S|

il Soatil Roterence Poperties =]

Cootdinate System | %Y Domain| M Domain|

Name: [GCS_Notth_American_ 1983

Detail:

[Ris:

|abbreviaton:

[Remarks:

|Anguler Uri: Degres (0.01745325251334325)

[Fiime Meridian: Greenwich (1 000000000000000000)

IDatum: D_North Ameican_1383

Spheroid. GRS_1380

Semimsjor s 6378137.000000000000000000
Semiminor Avis £356752.31414035€100000000
Inverse Flatering 238 257222101000020000

Select Select 3 predeined coordinate system.

Iport & coordinate system and /Y. 2 and M
Impt domains fom an eristing geodatasel (e.0..
————— feature dataset, featurs class,rastr).

New -] Create anew coordinate system.

Editthe propertes o the curentl selected

ool coordnate system.
Clear Sels the coardinate system to Unknown.
Saveds.. | Save the coordinate systemto afile.

oK Gl

Displays the propetiss of the selected tem

R Start| (3 Evploring - C:\hart..| B overviews doc

|] Dsfine_trans_tabl... | [I - Mictosott 0... | 54 Buiing a reltiors... [& ArcCatalog - D.

[BRITES 731pM

[image: image2.png]Y ArcCatalog - Database Connectionsihydrol on moose.sde\hydrol.we.

=18l x]

Fle Edi View Go Tooks Help

NEEIELES

Basw

Location

Styleshest

[Database Comnectionsthydiol on moose.sde

S ek

hyciol test_weedi_toute_we
YDROT.TRANSACTION
{YDROT.TRANSACTION_HISTOR
HYDRO1. TRANSACTION_STEP_|
IYDROT.TRANSACTION_VIEW
ekl wb

HYDRO1.WB_LLID

2y hyehol wb_lid_rel

ekl wh_ut_fe_input_cd
hydrol.wb_lut_fe_intp_cd

hycio we_evt_fi_hst

2y hyehol we_evt_fi_hst_rel
hycho we_evt_fi_ype
2y hyol we_evt_fi_type_rel
hycol we_evt_In_type.
2y hyefol we_evt_In_type_rel
hyco we_evt_name

By hyol we_evt_name_rtel
hychol we_evt_nf

2y hyelol we_evt_nf_rel
hycol we_evt_section
2y hyefol we_evt_section_rel
hycho we_evt_stm_flow
By hyeol we_evt_stm_flow_rel

K S|

[2 ot on mosse |

hyehol COUNTIES

oo |

Name

il Soatil Roterence Poperties =]

O

The coardinale range, o domain esent of the fealure class s
dependent upon the miimum X &Y, maimum X &Y. and Precision
values. The Precision s the numbe of system unts pe urit of measure,

and therefor specifes the degree of resoluton

MinX: 200} Maxx: [200
Miny: 200 Many. [200
Precision: [53887031125

2]

)

Displays the propetiss of the selected tem

R Start| (3 Evploring - C:\hart..| B overviews doc

B]

] Inbo - Microsoft 0.

4 Buiding a elations... [& ArcCatalog - D.

[BRITES 737pM

[image: image3.png]Y ArcCatalog - Database Connectionsihydrol on moose.sde\hydrol.we.

=18l x]

Fle Edi View Go Tooks Help

NEEIELES

Basw

hyciol test_weedi_toute_we
YDROT.TRANSACTION
{YDROT.TRANSACTION_HISTOR
HYDRO1. TRANSACTION_STEP_|
IYDROT.TRANSACTION_VIEW
ekl wb

HYDRO1.WB_LLID

2y hyehol wb_lid_rel

ekl wh_ut_fe_input_cd
hydrol.wb_lut_fe_intp_cd

hycio we_evt_fi_hst

2y hyehol we_evt_fi_hst_rel
hycho we_evt_fi_ype
2y hyol we_evt_fi_type_rel
hycol we_evt_In_type.
2y hyefol we_evt_In_type_rel
hyco we_evt_name

By hyol we_evt_name_rtel
hychol we_evt_nf

2y hyelol we_evt_nf_rel
hycol we_evt_section
2y hyefol we_evt_section_rel
hycho we_evt_stm_flow
By hyeol we_evt_stm_flow_rel

K S|

Locator, [0 Comestersyaot onmecrerd
Stlesheet. [F501] o &' |
iy e
|
i COUNTIES e

il Soatil Roterence Poperties =]

CoorateSysem| 7 Damin M o |

The coardinale range, o domain esent of the fealure class s
dependent upon the i M, mainum M, and Precison values. The
Frecision is the number of systern it per urt of measte, and therefore

specifes the degree of resolan.
Min Max 5959 95959359595

Precision: ~[195225 785309081

oK Gl

Displays the propetiss of the selected tem

R Start| (3 Evploring - C:\hart..| B overviews doc

B]

5] Inbos - Mictasolt 0. | |54 Buiding a relatins... [& ArcCatalog - D.

[BRITES 7:3pM

Relationship Classes

A relationship class must be created for each relate table and LLID table.

The following list shows the tables and their corresponding relationship classes.

[image: image4.png]HYDROT.TRANSACTION <

{YDROT.TRANSACTION_HISTOF

HYDRO1. TRANSACTION_STEP_|

HYDRO1. TRANSACTION_VIEW

ekl wb

HYDRO1.WB_LLID

2y hyehol wb_lid_rel

hychotwh_lut__input_cd

hydro.wb_lut_fe_intp_cd

hydiol we.

hycho we_evt_fi_hst

2y hyehol we_evt_fi_hst_rel

hycho we_evt_fi_ype

2y hyol we_evt_fi_type_rel

hycol we_evt_In_type.

2y hyefol we_evt_In_type_rel

hyco we_evt_name

By hyol we_evt_name_rtel

hychol we_evt_nf

2y hyelol we_evt_nf_rel

hycol we_evt_section

2y hyefol we_evt_section_rel

hycho we_evt_stm_flow

By hyehol we_evt_stm_flow_rel

HYDRO1WE_LLID

L byl we_lid_rel

hydiol we_test2

] hyekol wp.

HYDRO1.WP_LLID

Ly hydiol wp_lid_rel

hycol.wp_tel_fti_hst

2 ol wp_rei_histrel
hydiolws

hycho ws_ev_fi_hst
2y hyeol ws_evt_fe_hst_rel
hycho ws_evt_section
2y hyeol ws_evit_section_rel
hyioT.ws_evt_sl_type.
Zy hydrol ws_ev_s_type_rel
HYDRO1WS_LLID

Ry hyeol ws_lid_rel

Covets | Prion] Hetdaa]

Name

L Tspe

R Start| (3 Evploring - C:\hart..| B overviews doc

B]

5] Inbos - Mictasolt 0. | |54 Buiding a relatins... [& ArcCatalog - D.

G B@ITES 749pm

The relationship classes follow two patterns:

· event/relate table

· LLID table

Here is an example of an event/relate table’s relationship class:

[image: image5.png]HYDROT.TRANSACTION <

{YDROT.TRANSACTION_HISTOF

HYDRO1. TRANSACTION_STEP_|

HYDRO1. TRANSACTION_VIEW

ekl wb

HYDRO1.WB_LLID

2y hyehol wb_lid_rel

hychotwh_lut__input_cd

hydro.wb_lut_fe_intp_cd

hyciol we.

hyehol we_evt_ft_hst

2y hyehol we_evt_fi_hst_rel

hycho we_evt_fi_ype

2y hyol we_evt_fi_type_rel

hyciol we_evt_In_type.

2 hyefol we_evt_In_type_rel

hycio we_evt_name

By hyol we_evt_name_rtel

hychol we_evt_nf

2y hyelol we_evt_nf_rel

hycol we_evt_section

2y hyefol we_evt_section_rel

hycho we_evt_stm_flow

By hyehol we_evt_stm_flow_rel

HYDRO1WE_LLID

L byl we_lid_rel

hydiol we_test2

] hyekol wp.

HYDRO1.WP_LLID

Ly hydiol wp_lid_rel

hycol.wp_tel_fti_hst

2 ol wp_rei_histrel
hydiolws

hycho ws_ev_fi_hst

2y hyeol ws_evt_fe_hst_rel
hycho ws_evt_section
2y hyeol ws_evit_section_rel
hyioT.ws_evt_sl_type.
Zy hydrol ws_ev_s_type_rel |
HYDRO1WS_LLID
Ry hyeol ws_lid_rel

Name

Covets | Prion] Hetdaa]

[z]x]

] s |

None e

T Conposts

Cudvaty 1M

Notfcaior: Boh

[Ot Tabl/Featu Closs

Noe e

Fimayker WELLD_NR

FoonKer: WELLD_NR

(Destnsion Tl Fegtue Closs

None sl

e

Fomme ceciliim

et ceciim

Cance 0

SDE Relationship Class selected

R Start| (3 Evploring - C:\hart..| B overviews doc

B]

] Inbo - Microsoft 0.

4 Buiding a elations... [& ArcCatalog - D.

G B@ITED s1apm

[image: image6.png]HYDROT.TRANSACTION <

{YDROT.TRANSACTION_HISTOF

HYDRO1. TRANSACTION_STEP_|

HYDRO1. TRANSACTION_VIEW

ekl wb

HYDRO1.WB_LLID

2y hyehol wb_lid_rel

hychotwh_lut__input_cd

hydro.wb_lut_fe_intp_cd

hyciol we.

hyehol we_evt_ft_hst

2y hyehol we_evt_fi_hst_rel

hycho we_evt_fi_ype

2y hyol we_evt_fi_type_rel

hyciol we_evt_In_type.

2 hyefol we_evt_In_type_rel

hycio we_evt_name

By hyol we_evt_name_rtel

hychol we_evt_nf

2y hyelol we_evt_nf_rel

hycol we_evt_section

2y hyefol we_evt_section_rel

hycho we_evt_stm_flow

By hyehol we_evt_stm_flow_rel

HYDRO1WE_LLID

L byl we_lid_rel

hydiol we_test2

] hyekol wp.

HYDRO1.WP_LLID

Ly hydiol wp_lid_rel

hycol.wp_tel_fti_hst

2 ol wp_rei_histrel
hydiolws

hycho ws_ev_fi_hst

2y hyeol ws_evt_fe_hst_rel
hycho ws_evt_section
2y hyeol ws_evit_section_rel
hyioT.ws_evt_sl_type.
Zy hydrol ws_ev_s_type_rel |
HYDRO1WS_LLID
Ry hyeol ws_lid_rel

Name

oot | roven] Mermdoa]

L Tspe

Relat

Class Propet

enerl Rules |

Olign Table/Feature Class sublypes:

Code

Desciption

|- Origin Cardinaity

0

hyciol we.

Destination Table/Feature Class sublypes:

L <o i e i)
Gt e

i s
| o |

Code

Desciption

- Destinaton Cardinaity

Oo

hydol we_evi_in_type

L i i e i)
aesetericaEo

i s
| o |

Cance

0

Displays the propetiss of the selected tem

R Start| (3 Evploring - C:ar.. | B averviewsB.doc

[8 Dsievans o,

IG5 I - Microsatt 0. 54 Buiing a relatons... [ArcCatalog - .

[BRQTES A s17em

Here is an example of an LLID table’s relationship class:

[image: image7.png]HYDROT.TRANSACTION <

{YDROT.TRANSACTION_HISTOF

HYDRO1. TRANSACTION_STEP_|

HYDRO1. TRANSACTION_VIEW

ekl wb

HYDRO1.WB_LLID

2y hyehol wb_lid_rel

hychotwh_lut__input_cd

hydro.wb_lut_fe_intp_cd

hyciol we.

hyehol we_evt_ft_hst

2y hyehol we_evt_fi_hst_rel

hycho we_evt_fi_ype

2y hyol we_evt_fi_type_rel

hycol we_evt_In_type.

2y hyefol we_evt_In_type_rel

hyco we_evt_name

By hyol we_evt_name_rtel

hychol we_evt_nf

2y hyelol we_evt_nf_rel

hycol we_evt_section

2y hyefol we_evt_section_rel

hycho we_evt_stm_flow

By hyehol we_evt_stm_flow_rel

HYDRO1WE_LLID

L byl we_lid_rel

hydiol we_test2

] hyekol wp.

HYDRO1WP_LLID

welol.wp_rel fi_hst

2 ol wp_rei_histrel
hydiolws

hycho ws_ev_fi_hst
2y hyeol ws_evt_fe_hst_rel
hycho ws_evt_section
2y hyeol ws_evit_section_rel
hyioT.ws_evt_sl_type.
Zy hydrol ws_ev_s_type_rel |
HYDRO1WS_LLID
Ry hyeol ws_lid_rel

Name

Covets | Prion] Hetdaa]

[z]x]
] s |

None ot i o

T sinpl
Cudvaity 141
Notiicatior: None [no messages piopagated)
P —

Noe HYORDTWP_LLID

Finayker WRLLD_NR

FoonKer: WRLLLID_NR
(Destnsion Tl Fegtue Closs

None e
e

Fomt wal

backwad HYDROTMPLLD

Cance 0

Displays the propetiss of the selected tem

R Start| (3 Evploring - C:ar.. | B averviewsB.doc

[8 Dsievans o,

IG5 I - Microsatt 0. 54 Buiing a relatons... [ArcCatalog - .

G BRQTES A sisrm

[image: image8.png][T om0 TRANSACTION =]
{YDRD1 TRANSACTION HisTor | | [Name [Te 1

HYDRD1 TRANSACTION STEP_|
HYDRD1 TRANSACTION VIEW
e Rela
HYDRD1 WB_LLID
2 yckol vl el

ot b iput_cd
et b it _cd

oot | roven] Mermdoa]

Class Propet

enersl (A

Olign Table/Feature Class sublypes:

a hydroT.we Code. Description EEEEy

T ot ve_ev_i_ht

By hydrol.we_evt_he_hst_rel 0 HYDROLWP_LLID il SDEE\’yhthe‘vange ciessaoiaed
o we_evt_yps San s

B kol we_ev_i_ype_rel i Max
o we_evtin_ype = =
2 byl we_ev_in_type._tel [0 = =
o we_ev_name

2 kol we_evt_name_el
o we_evt it

2 ycko we_evt_itrel
o we_ev_secton
2 ko we_evt_secton el
o we_eu_stm_fon e
2 kol we_ev_sim_fon el ey
HYDRD1 WE_LLID LIS e e e g e
By hydrol.we_lid_rel AN oIS

Destination Table/Feature Class sublypes:

|- Destinaton Cardinaty

hydiol we_test2
] hyekol wp.

Min Max
HYDRQTWP_LLID [0 = =

ol wp_rel_f_hst
2y hydrolwp_rel_fe_hst_rel
et e
ool we_ov et
2 ol we_evi e
il we_ov_secton
2 ol ws_evisecton el
ool we_ov o el |
% hycol.ws_evi_sl_type_rel pu
FDRO1 Ws_LUID
2 ot we el

0

Displays the propetiss of the selected tem

- R ® . ®m

IG5 Inbo - Microsott 0. 54 Buiing a relatons... [ArcCatalog - D_.| | BAQEMH M a16rM

Client transaction process

The process flow for data checkout, editing, and checkin is described by tracking a typical transaction. This process involves actions by the client, and responses by the server. The overall transaction process consists of the following major steps:

· User identifies self and starts a transaction

· User submits a checkout polygon covering desired area of work

· Server locks the area

· Server verifies checkout and extracts data to edit

· User copies data from server and edits the data

· User tests data

· User submits data

· Server recieves and tests data

· Clearinghouse Manager accepts submission and posts changes, or rejects submission, in anticipation of a re-submission by the user, or aborts whole transaction.

· Server releases the lock on the area

These basic steps are detailed in the following sample transaction flow between a clearinghouse client and the clearinghouse server. Some of the steps are performed using a web browser as the client, and some are performed using a client-side ArcInfo AML application supplied as part of this contract.

User identifies self and starts a transaction

· The user connects a Java-enabled web browser (Internet Explorer or Netscape) to the clearinghouse web site.

[image: image9.png]2l http://moose/website/k24_htm2/vbcall/hydro_htm - Microsoft Intemet Explorer provided by ESRI

[€1 o/ imonse/websterk2s_rim2ivbealihycio.him

Get FTP Transaction Numher
User Name

Password

· The user selects “Select Watershed(s) on Map” or “Get FTP Transaction Number”

If the user selected “Select Watershed(s) on Map”:

· The following page is displayed:
[image: image10.png]A ArclMS 3.0

rosoft Interet Explorer provided by ESRI MEIE

| Bo £t Vow Fowies Lods ok
E LD E £/
B a0 n_Home | Seach oy | il R Disouss
ks [0 it /moooe/weste/k24_n2lviener AT Houci 2203 D220iower =] @60 ||tk

- K Legend
Q [[] HvoROLSTATUSMAP
aQ [] wvorowHue

« O

[=

w

Hydro

g resied i Al 3. - Copyrigt () 1996.2000 ESRI o ® @i

[Check out an area to edit by clicking on watersheds j

1. Click the “Select” button.
[2. Click on the map to select one or more watersheds.
I3. Click “Submit” to check out your watersheds to ed.

21 Viap: 124,48, 48.22 - Image: 391 , 152 - ScaleFactr 0.0015302833723653563
ghiStart|) Exploing - .. | B overviewsdo.| £] Defin_rans_t. |] nbos- Mictoso. | 54 Buiing a relai.| AvcCatabog -D...[ETArcIMS 3.0

· The user hits the “Select” button, then clicks on one watershed that is not red. Red indicates a checked-out area.

· If the user selects a second point, a line is drawn.

· If the user selects three or more points, a polygon is drawn.

· All watersheds under the point, line, or polygon are selected.

· The user hits the “submit” button

· A form pops up requiring the user to enter a username and password.

· The user is notified on the screen and by email of the transaction id.

· The watersheds are merged into a single polygon. This polygon is written to a coverage, named c<transaction_id> (example: transaction 356’s checkout polygon coverage would be named c356, and its export file would be named c356.e00). This coverage is exported, and placed in the hydro_ftp\sc24000\checkout_covs directory.

· An “end flag” file is then placed in the hydro_ftp\sc24000\checkout_covs directory. This is a signal file signifying that the file transfer of the main file is complete. The end flag file is named e<transaction_id>.txt (e.g. e356.txt)

· This file will be processed by the Clearinghouse Server to check out data, as described in the step after next.

If the user selected “Get FTP Transaction Number”:

· The user enters a username and password, and clicks “GO!”.

· The user will use ArcInfo offline to create a polygon coverage containing one polygon defining the area the user wants to edit. This coverage must be clean, without label errors, containing one real polygon and the universe polygon. It must be double precision, and stored in decimal degrees, NAD83. It must have a valid PRJ file. Any attributes will be ignored. Then the user will export and FTP this polygon coverage to the server.

· The name of the coverage must be c<transaction_id> and it’s export file must be named c<transaction_id>.e00.

· The user is instructed to then FTP an “end flag” file to the hydro_ftp\sc24000\checkout_covs directory. This is an empty file which signifies that the file transfer of the main file is complete. The end flag file is named e<transaction_id>.txt (e.g. e356.txt)

· An AML named FTP_CHECKOUT_POLY.AML is provided to automate this process.

Server verifies checkout and extracts data to edit

· In either case, an export file and an “end flag” file show up in the hydro_ftp\sc24000\incoming\checkout_polys directory. This is the queue of pending checkouts. The server periodically scans this directory, and looks for files that have finished uploading, as signified by the presence of an “end flag” file.

· A directory, named t<transaction_id> (e.g. t356), is created in the hydro_server\sc24000\transactions directory. Only the server has access to this directory.

· This event is logged in the transaction table.

· The export file is imported to a coverage named edit_boundary and validated:

· One contiguous polygon

· The export file name is the same name as transaction to which it applies

· The server compares the polygon to the checkout polygon layer.

· If there is no overlap with active transaction polygons, then this polygon is added to the STATUSMAP layer, with an attribute identifying its transaction_id

· If it fails, mail is sent to the client, explaining the problem. The transaction is aborted. This event is logged in TRANSACTION_HISTORY as CKOUT_POLY_REJECT, and the transaction is closed with a disposition of CKOUT_POLY_REJECT in the TRANSACTION table.

· The user must now go back to the web site and start a totally new transaction

· The transaction is closed

· If the checkout succeeded, the following sequence of events occurs:

· The checkout polygon is inserted into the statusmap layer

· In a future version, a new statusmap coverage is extracted to the hydro_server\sc24000\statusmap directory, showing the areas for active transactions only. These polygons are non-overlapping. This coverage is exported and placed in the hydro_server\sc24000\statusmap directory. The readme.txt file is placed in the hydro_server\sc24000\statusmap directory, indicating that the new statusmap.e00 is ready for download. These readme.txt files are used in several places in this system. A readme.txt file in this system serves two purposes:

· It documents the purpose of the data in its directory, as well as contextual information such as date/time, transaction id, and username.

· Its presence serves as a signal that the other data in the directory is not in the process of being copied, because the readme.txt file is always copied into the directory last.

· The directory hydro_server\sc24000\transactions\t<transaction_id>\checked_out is populated with checked-out data for this transaction. The following coverages and tables are extracted from the SDE database and stored here:

· wc – watercourse routes are extracted if they fall completely within the checkout polygon. Event table rows are extracted if the LLID matches the extracted stream route.

· wb - waterbody regions are extracted if they fall completely within the checkout polygon.

· ws - waterbody shoreline routes are extracted if they fall completely within the checkout polygon. Event table rows are extracted if their LLIDs match the extracted waterbody shoreline routes’ LLIDs.

· Note: Event tables have same root name as the coverage, so they copy with the coverage.

· wp - Water Points

· Rows from the water point relate table are extracted if their LLIDs match extracted water points

· Now we have four coverages of extracted data, and one coverage containing the checkout polygon.

· Now waterbodies, shorelines, and watercourses that touch but are not completely within the checkout polygon are exported as background coverages named wb_back, ws_back, and wc_back, respectively. No background coverage is needed for water points, since a point has zero dimensions and physically cannot fall partially within the checkout polygon.

· When the user sends back edits, we need all 4 export files back, even if changes were not made. The contents of these coverages will totally replace the extracted features, regardless of how few, if any, edits were made.

· LLID tables are populated with ids of all features and event/relate rows checked out.

· hydroqa.aml (quality assurance) is run against the checked-out data. If errors are detected, the transaction proceeds anyway. Data will be checked on insert, so errors in the database are not anticipated. However, if the database is populated using a batch load, or if the clearinghouse manager chooses to load data with known errors, or if additional QA/QC tests are implemented in the future, it is conceivable that there will be data in the server that does not pass the QA/QC tests. This step helps the prospective editor be aware of problems that may be encountered.

· The error report is generated as a file named hydro_server\sc24000\transactions\t<transaction_id>\checked_out\checkout_errors.txt

· This error report file is copied to hydro_ftp\sc24000\outgoing\checkout_covs\t<transaction_id>\checkout_errors.txt for the user to download.

· This event logged to transactions table

· The eight coverages that were extracted are exported directly to the hydro_ftp\sc24000\outgoing\checkout_covs\t<transaction_id> directory. Once the last coverage has been exported to this directory, a readme.txt file is placed there, to signal the user that the files are ready to download.

· Mail sent to client that the checked-out data is ready to download

· CHECKOUT_DATA_POST is logged to the TRANSACTION_HISTORY table

User copies data from server and edits the data

· The user gets email that the data for their transaction is ready to download.

· The user runs hydrocheckout.aml, and enters the transaction id (e.g. t356) and FTP password. This AML does these things:

· Creates a subdirectory named the transaction id (e.g.t356)

· FTPs the eight .e00 files into this directory

· Imports the .e00 files

· Leaves the .e00 files in place in case the coverages are inadvertently corrupted by the user

· FTPs the checkout_errors.txt file into this directory, which is an error report on the checked-out data. This error report was generated by the server when the data was extracted. The user can create a similar report by running hydroqa on the checked-out data. It is provided as a reference to compare against the error report that will be generated by hydroqa.aml immediately prior to checkin.

· The user edits the wc, wp, ws, and wb coverages, using the edit_boundary, wb_back, ws_back, and wc_back coverages as background coverages.

· The user can employ any tools at their disposal to edit these coverages. Examples are SRT and STEVE. These tools are being modified to comply with data model changes resulting from the integration of data from Oregon framework partners, Washington framework partners, and Federal partners.

· The coverages can be edited in place, or copied for editing in another workspace. The only requirement is that when the edits are ready to be checked in, the final changed coverages must copied back to this workspace under the original names of wc_checkin, wp_checkin, ws_checkin, and wb_checkin. This directory is the staging area for final QA/QC and checkin.

· All edits must fall within the edit_boundary coverage

· The user should not modify the edit_boundary, wc_back, ws_back and wb_back coverages.

· The user is responsible for making sure the features line up properly between the wc, wp, and wb coverages

· The user is responsible for ensuring that features snap properly to the background coverages.

· The user is also responsible for ensuring that wb, wp, ws, and wc features line up properly with each other.

· LLID is an id value that is an encoded long/lat value for a point on each feature. The decoded long/lat for all LLID values created for new features must fall within the edit_boundary polygon. This ensures that two editors do not simultaneously create the same LLID for different features.

· LLID values do not need to be unique between the wc, wb, ws, and wp coverages. LLIDs must be unique within each coverage.

· Other QA rules are documented below. The above rules are listed here to clarify the roles of the edit_boundary, wc_back, ws_back, and wb_back coverages.

User tests data

· The client runs hydroqa.aml on the edited data, and corrects any errors detected.

· The reason for this step is to avoid frustration and wasted time from multiple submissions and rejections. The user can test the data locally instead. Since the data will be clean before it is sent to the clearinghouse, rejected submissions should not be common.

User submits data

· Now client FTPs edits back to the server by running hydrocheckin.aml. This AML exports the four edit coverages only. The other coverages are not supposed to be edited anyway, so there is no point in sending them back to the server.

· An error report is run immediately prior to FTPing the export files to the server. Depending on the severity of the errors, and whether these errors are problems which were inherited when the data was checked out in the first place, the clearinghouse manager may or may not decide to allow this data back into the clearinghouse.

· The error report is written to a file called checkin_errors.txt. If the checkin is aborted and retried later, the error report will be overwritten by the next checkin. There will be two error reports in the directory:

· Checkout_errors.txt – downloaded error report on checked-out data

· Checkin_errors.txt – locally generated error report on data for last attempted checkin.

· Note: the user can run hydroqa.aml anytime they want, and name the error files anything they want. These two files are just the ones that automatically show up when the user checks out or checks in data. Their purpose is to report the error status of the data that was checked out and checked back in.

Server receives and tests data

· The server is constantly polling the hydro_ftp\sc24000\incoming\checkin_covs directory. When it encounters a subdirectory called t<transaction_id> (e.g. t356), it checks in that directory for a file named readme.txt. This is a signal file whose presence indicates that the client has finished populating this directory.

· The server now checks the transaction table and that the transaction_id refers to an open transaction that is ready for data submission. If not, then:

· If any data shows up in the checkout_polys or checkin_covs directories that refers to prevoiusly active, currently dead transaction ids, (e.g. if the transaction id can be found in the transaction table), it is archived in hydro_server\sc24000\transactions\t<trans_id>\rejected\<date_time>, and mail is sent to the owner of the dead transaction.

· If any data shows up in the checkout_polys or checkin_covs directories that refers to nonexistent transaction ids, (e.g. if the transaction id cannot be found in the transaction table), it is stored in hydro_ftp\sc24000\wastebasket, and mail is sent to ther clearinghouse manager. This directory can be cleaned up by the clearinghouse manager as desired.

· Files older than a month may be deleted from the wastebasket directory. The only reason the files are not deleted outright is to provide a mechanism for recovering from an error in transaction management that resulted in the submitted data being thrown away.

· If the transaction is valid:

· the server moves the export files to a <date_time> directory in the hydro_server\sc24000\transactions\t<transaction_id>\submitted directory, then it deletes the hydro_ftp\sc24000\incoming\checkin_covs\ t<transaction_id> directory.

· A CKIN_DATA_RECV code is added to the transaction_history table.

· Mail is sent to the client confirming receipt of the data.

· The server runs hydroqa.aml, and posts the report in hydro_server\sc24000\transactions\t<transaction_id>\submitted\<date_time>checkin_errors.txt

· Mail is sent to the clearinghouse manager, informing him that data has been submitted.

· A CKIN_PROCESSED code is added to the transaction_history table.

Clearinghouse Manager accepts submission and posts changes, or rejects submission, in anticipation of a re-submission by the user, or aborts whole transaction.

· The clearinghouse manager reviews the checkin_errors.txt file, displays the data on the screen for a quick check, and decides whether to accept or reject the submission. Comments are added to the checkin_errors.txt file, if desired.

· If the submission is rejected:

· Mail is automatically sent to the user explaining why the submission was rejected.

· The data is moved to hydro_server\sc24000\transactions\t<transaction_id>\rejected\<date_time>

· A CKIN_REJECT code is added to the transaction_history table

· The clearinghouse manager should generally contact the user directly, and explain the problem.

· If the submission is accepted:

· Mail is automatically sent to the user verifying that the submission was accepted.

· A CKIN_ACCEPT code is added to the transaction_history table

· An SDE version named <transaction_id> is created. Database changes are made to this version.

· The SDE logfile created at checkout time is used to delete all features or rows that were checked out.

· The checked-in features and rows are inserted into this version.

· This version is reconciled against the default version. No conflicts should occur. If so, urgent error mail is sent to the clearinghouse manager.

· This version is posted to the default version

· The checkout polygon is marked and dated as retired from the statusmap layer. This area is now ready for new edits.

· A CKIN_ACCEPT code is added to the transaction_history table

Quality assurance tests
An AML named hydroqa.aml is provided to perform quality assurance of the data. It calls other AMLs. These AMLs do these things:

Overall functionality:

· Print the version when hydroqa is run without arguments

· Print out usage when hydroqa is run without arguments

· Save any &amlpath and &menupath settings and reset for this application, then restore on exit.

· Check to see that all component parts for the full QA are present. If not, print message and bail out. No report is created with this.

· Print the version of hydroqa.aml on the report, so discrepancies which are due to different versions of hydroqa.aml can be reconciled. This could be important if a user gets a clean report from his version of hydroqa.aml, but the clearinghouse manager’s report shows errors.

· The report tags error lines:

· Prefix lines with $$ as a special character so the report can be parsed by a program.

· Next char is F = fatal, E = error, W = warning, or M = Message

· <err_no> = error number (a lookup table of Error descriptions is provided)

· <obj_type> = the type of object having the problem (event, wc route, wp point, relate table row, etc)

· <feature id> if applicable

· description of the problem (from the lookup table of error numbers)

Specific tests:

· Directory structure
· Coverage and subclass names
· Topology
· Precision
· Projection
· Table names
· Table definitions
· Item names

· Event table/relate table names and definitions
· All features fall inside checked-out boundary.
· Unique LLID

· A point made from the decoded LLID falls in the checkout

· LLIDs only have to be unique within a coverage type (WC, WB, WS, WP).
· All arcs must be represented in a route. This is handled automatically by the server, so it does not need to be verified
· All WC arcs run downstream (i.e. the opposite direction from the route) – This is also handled automatically by the server, so it is not tested.
Special handling of domain lookup tables

Every domain consisting of a set of discrete values such as FTR_SRC_CD will be copied out to the user as a lookup table.

These domain lookup tables are not to be modified by the user: changes to these tables will not be loaded back into the clearinghouse. Changes to these tables can only be made directly by the clearinghouse manager. Furthermore, codes should not be changed or deleted by the clearinghouse manager, because that would invalidate existing data that uses these codes. Codes should only be added to domain lookup tables.

These tables can be used by the QA software to ensure that invalid codes are not entered. When run on the client, there is no way to ensure that the tables have not been modified. So final QA on the server will be run using domain lookup tables supplied by the server, not the ones that were sent back with the checkin coverages.

The tables are stored in one place on the clearinghouse DBMS server, but they are copied out using the above format and exported with the coverages as they are checked out.

General operating rules

· All mail from client goes to clearinghouse manager. The server only sends mail. It does not receive mail.

· The server constantly polls the hydro_ftp\sc24000\incoming\checkout_polys directory and the hydro_ftp\sc24000\incoming\checkin_covs directory.

· If any data shows up in the checkout_polys or checkin_covs directories that refers to prevoiusly active, currently dead transaction ids, (e.g. if the transaction id can be found in the transaction table), it is archived in hydro_server\sc24000\transactions\t<trans_id>\rejected\<date_time>, and mail is sent to the owner of the dead transaction.

· If any data shows up in the checkout_polys or checkin_covs directories that refers to nonexistent transaction ids, (e.g. if the transaction id cannot be found in the transaction table), it is stored in hydro_ftp\sc24000\wastebasket, and mail is sent to ther clearinghouse manager. This directory can be cleaned up by the clearinghouse manager as desired.

· The event tables are named <cov>.<table>_evt in the coverage/info format, but these names are translated to remove the dot(“.”) before insertion into SDE, to comply with ORACLE naming rules

Directory structure

The following section presents a layout of the directory structure of a clearinghouse for 1:24000 and other scale hydro data. Example transaction 356 is shown. Note that no single transaction could actually have files in all these locations at the same time. This diagram shows the directory layout, and is not an illustration of the transaction process.

FTP Directory:

· chse_ftp

· sc24000

· incoming

· checkin_covs

· t356

· checkin_errors.txt

· wc_checkin.e00

· wb_checkin.e00

· ws_checkin.e00

· wp_checkin.e00

· readme.txt

· checkout_polys

· c356.e00

· c356.txt

· outgoing

· checkout_covs

· t356

· wc.e00

· wb.e00

· ws.e00

· wp.e00

· wc_back.e00

· wb_back.e00

· ws_back.e00

· edit_boundary.e00

· checkout_errors.txt

· readme.txt

· statusmap

· statusmap.e00

· readme.txt

· hydro_data

· wc.e00

· wb.e00

· ws.e00

· wp.e00

· readme.txt

· aml

· unix

· hydroqa.tar

· nt

· hydroqa.zip

· wastebasket

· 20010209110748

· 20010208124429

Clearinghouse server directory:

· chse_exe

· chse_server

· aml

· help

· reference

· temporary_covs

· bin

· managerxxx.mxd

· doc

· overviewxx.doc

· notes – assorted notes, not directly related

· web_client – readme & help files for web interface

· etc

· chse.defs

· chse_server_log.txt

· internet

· cov

· huc

· info

· readme.txt

· MO_web

· Temp

· checkoutpoly.aml

· test_checkoutpoly.aml

· lockfiles

· chse_server_lock.txt

· to_start_server_after_a_crash.txt

· to_stop_server.txt

· sde_scripts

· Define_trans_tables18.sql

· SDE_layer_parameters.txt

· sde_setup.txt

· utilities

· Useful things not used by server

· sc24000

· statusmap

· statusmap (future version)

· info

· transactions

· t356

· checked_out

· t356

· wc

· wb

· ws

· wp

· wc_back

· wb_back

· ws_back

· edit_boundary

· info

· c356.e00

· checkout_errors.txt

· readme.txt

· submitted

· 20010210345426

· t356

· edit_boundary

· wc

· wb

· ws

· wp

· edit_boundary.e00

· wc.e00

· wb.e00

· ws.e00

· wp.e00

· info

· client_checkin_errors.txt

· server_checkin_errors.txt

· readme.txt

· 20010209223213

· t356

· edit_boundary

· wc

· wb

· ws

· wp

· edit_boundary.e00

· wc.e00

· wb.e00

· ws.e00

· wp.e00

· info

· client_checkin_errors.txt

· server_checkin_errors.txt

· readme.txt

SDE layers and tables

· statusmap

· huc

· wc

· wb

· ws

· wp

· event tables

· relate tables

· lookup tables
· transactions table

· editors table

· transaction_history table

Enhancements
With any system, there are opportunities for improvement or desired enhancements. The following list is provided to assist REO in planning for ongoing improvement of the Clearinghouse server.

· Additional quality assurance tests. This version of the server and client comes with basic QA to determine that all coverages are present, and that they have the correct precision, projection, and topology. Additionally, the attribute tables, relate tables, and event tables must have the correct layout and item definitions. The QA tests further verify that features all fall completely inside the edit boundary polygon. Furthermore, it determines that all LLID values are unique within the checkout polygon, and the positions represented by decoded LLID values all fall inside the checkout polygon. A framework for adding additional QA routines is provided. Numerous QA AMLs are available from the hydro partners, including Washington DNR (Travis Butcher, Washington Dept of Ecology (Dan Saul), REO (http://www.reo.gov/hydro/cgm) and others. The code for many of these tests has already been written. Two approaches can be taken for incorporating these programs: Standardize them into the clearinghouse AML system, or simply run them and incorporate their reports by concatenating them to the main report. The first approach would result in a more standardized report that would be easier to interpret. The second method would be cheaper to implement, and easier to incorporate updates from contributing agencies. QA enhancement requests are:

· QA requiring the comparison of “before” and “after” coverages.

· Verify that no streams were deleted in the editing process. This request is from the BLM (Dan Wickwire). It has not been determined if the same test is required for the other hydro layers.

· Verify that the route measures at stream confluences have not shifted during editing. This requirement is optional for conversion from 1:100000 data to 1:24000+ data, but it is not optional for the editing of 1:24000+ scale data. An untested AML has been written by Washington DNR (Charlie Ware) to do this test. It is named CHECK_MEAS.AML. A copy has been included in the AML directory.

· Verify that section event tables extracted from the clearinghouse cover all portions of routes to be extracted. This test would be run on the server only. If the stored section event tables are incomplete for some reason, routes or portions of routes would be lost in the extracted data. Routes are rebuilt from section events. Any routes or portions of routes not covered by section events would not get rebuilt. Two cases that could result in missing section events are:

· Route editing or creation without using the clearinghouse server application to check in or check out data.

· A bug or crash of the clearinghouse server application that results in section event records not being stored.

· QA that can be done on a single coverage. Verify that:

· All code values are present in the corresponding lookup tables
· All required fields are populated
· All required event records are present

· Features edgematch to the background coverage
· No watercourse (WC) routes cross each other except canals

· Braids may touch at the upstream ends, but they do not cross

· The downstream end of each watercourse route must connect cleanly. No over- or under- shoots, within a tolerance.

· All watercourse routes have ascending measures upstream

· All route measures are unique within shoreline (WS) and watercourse (WS) routes, and monotonically increasing

· Events fall at least partly on a route. An event may have a measure value of 9999, meaning that the event goes to end of a route, even if the route is extended later.
· There is at least one metadata event for each route, each time it is edited
· Waterbody (WB) areas must be single-part and non-overlapping
· Shoreline (WS) routes having a default shoreline code of “Y” must be coincident with the boundary of one or more waterbody regions
· Each waterbody region must be routed with shoreline routes having a default shoreline code of “Y”. These routes cannot overlap with other default shoreline routes.
· There is no restriction on the placement of shoreline routes having a default shoreline code of “N”

· Extensive documentation. This system comes with a system design, installation, and operation document, help files, and code comments. There are other forms of documentation that may be useful:

· Data submittal guide. During the data design meetings, the need for a data submittal guide was discussed to help participants create data that adheres to the standards. This guide would include such topics as routing rules, feature-level metadata standards, etc

· User guide for the QA AMLs, web interface, and FTP client.

· System operations manual

· Process flow diagrams

· System architecture diagrams

· Program architecture diagrams

· Detailed installation guide

· Bulletproof the server. The server logs all significant events both to transaction tables and to a log file. It keeps copies of all extracted and submitted data. It stores the data in Oracle. It uses a temporary ArcSDE version during checkin to avoid creating incomplete and corrupt data during a failed checkin. Server errors are reported to the clearinghouse manager via email. Still, more bulletproofing can be done. The ChseServer class has two methods named BeginTrans and EndTrans. These methods are called before and after each major transaction processing step. Currently, these methods do nothing. The plan is that BeginTrans will create a persistent record that a transaction step has been started, and EndTrans will remove this persistent record when the step finishes. When the server starts up, it will check for a crash by looking for data created by BeginTrans. If it finds this data, it will know the transaction number and transaction step that failed. It will enter recovery mode and redo or undo the step that failed. After coding these methods, the server should be tested by deliberately crashing it during various transaction steps to verify that it can successfully recover.

· Enhanced security features.

· Each transaction comes with a validation code. This code is a random number which could be used to ensure that data submitted to the incoming FTP site actually originated with the owner of the transaction. Currently, only the transaction id is used for this purpose, and the transaction ids are public. To implement this feature, the incoming transactions would be required to have the validation code in their readme.txt files.

· Encrypt passwords. Currently, editor passwords are kept in an unencrytped column in the EDITORS table. These passwords are only used by the Clearinghouse server. They are not OS or database passwords, so they do not represent a security hole in that regard. The risk is that someone could masquerade as a data editor if they got a password. They would probably be detected quickly, as Email is sent to each editor whenever they check in or check out data.

· Data browsing website. The web pages delivered with this application have limited usefulness to people who are not involved in the editing process. A website that showcases the clearinghouse data could be a valuable contribution to data dissemination by REO as a node in the Geography Network.

· Event data display. Display of event data at this website is also an enhancement to be considered. A method of pre-calculating event locations would make events display quickly.

· Data download server. Various approaches could be used here, including nightly exports of the data, either as a single huge export file, or broken down by watershed. An on-demand database query and sownload would also be an option here. Some users may want to download a copy of some data for a project, but there is a danger here that they might try to submit changes to this data, thus potentially stepping on someone else’s edits. This “readonly” web site should be carefully positioned to data editors so they do not “end run” the transaction process by editing data they copied from this “readonly” web site.

· Some of these “readonly” pages would be useful to editors as well as browsers:

· Checked-out areas

· Query of editing history by location – just the checkout boundary polygons

· Note about feature history: We are currently keeping a separate version for each completed transaction. These versions can be used to display historical data. As these transactions can have a lot of data, the system performance may degrade over time, necessitating a policy change whereby old versions are deleted. Therefore, it would be unwise to promise the ability to display and query historical data until the system has been in operation long enough to determine the feasibility.

· A feature to detect non-unique LLIDs even if they are inaccurately placed. The system currently checks for unique LLIDs by determining if the LLIDs are unique within the checkout polygon, and verifying that each LLID is derived from a Longitude, Latitude value that falls inside the checkout polygon. This method works if the data are perfect. An enhancement is proposed to make it work with imperfect data. Two forms of imperfect data are anticipated:

· 1. LLIDs in the 1:100,000 data were generated from features in the NAD27 datum, even though the features themselves are stored in Decimal Degrees in the NAD83 datum. In this clearinghouse server implementation, this was used as the standard, so all LLIDs are projected from NAD27 to a temporary point coverage in the NAD83 datum for testing to verify that they fall inside the checkout polygon. This projection results in a shift of about 100 meters. If data are submitted with LLIDs generated in the NAD83 datum, they may fall outside the checkout polygon in some cases, resulting in the detection of a spurious data error by the server. If LLIDs of features in bordering data describe points that fall inside the checkout polygon, there is a small probability that a legitimate feature created inside the checkout polygon will have this same LLID, thus resulting in a condition of non-unique LLIDs in the database.

· 2. As data are conflated from 1:100000 to 1:24000+, a feature may move away from the point represented by its LLID. The same alpha and beta errors described above may occur in this case.

· A solution to this problem could involve the checking out of a buffer zone around the checkout polygon, and the generation of a separate list of LLIDs for features in this buffer zone. No features could be added that fall inside this buffer zone. It would be for LLID uniqueness only. LLIDs would need to:

· Be within a tolerance of their respective features.

· Be unique within the checkout polygon AND the buffer zone.

· Eliminate the need for the storage of section event tables. The system currently stores the sections of the two route layers (WS and WC) as events. This is done so that the same sections will result in data checked out as existed on the data that were checked in. The default condition is that a separate section results between each pair of vertices. Attempts to dissolve sections in the coverage data model will not work without using these section event tables due to precision issues. Routes longer than 1000 km are anticipated with vertex spacing as close as 1 m are anticipated. Measures are stored in the coverage as single precision floating point numbers. Any reasonable “length-measure ratio” section dissolve tolerance on this data would be subject to too much rounding error to be effective. The measures are stored much more precisely in ArcSDE, however. The section breakpoints could be derived in ArcSDE, before the coverage is exported. A section event table could be derived on the fly as the data are extracted, then used the same way section event tables are currently used to process output data. The advantage here is that geodatabase tools could be used to edit routes directly. Under the current system, only coverage editing can be done, because of the need to preserve section breakpoints as section event tables.

· Submit planned checkin date at checkout time, and implement a system of email reminders. Currently, the checkout date and a deadline date are stored. The deadline is calculated as checkout date + one week. The two specific enhancements are a flexible system for assigning deadlines, and a system of email reminders for overdue transactions.

· Add a comment box on checkout polygons so people can query to find out why an edit is being done. This would require the addition of a comment field to the transaction table, modification of the three user interfaces that create transactions, and an enhancement to the web interface for displaying checked out areas. This enhancement was requested by Andrew Kinney of the Thurston Geodata Center.

· Set up a system whereby stakeholders can be automatically notified by email when transaction activity occurs in their areas of interest. This could be a useful tool for multiple data custodians to keep track of activity in their overlapping areas of responsibility. This could be implemented with a multipart polygon layer with 1 row for each person to be notified. The multipart polygon would cover their area of interest. Each major transaction event such as checkout, data submission, transaction post, or transaction abort would generate email when it happened in their area of interest. It would probably be simplest to join this layer to the EDITORS table, and add a field indicating the editor’s role (editor, data custodian, interested party, etc.) only certain roles could actually edit data. This enhancement was requested by Diane Ransford of the Siauislaw national forest.

· Add the ability to check out portions of long routes that fall outside the checkout polygon. Currently, all features to be edited must fall inside the checkout polygon. To edit a small area with a 1000 km route passing through it, the user has two choices:

· Don’t edit it

· Create a checkout polygon that includes the area of interest with long, skinny protrusions that surrounds the long route. This polygon could be created by buffering the long river, and merging the buffer polygon with the area of interest polygon. The resulting checkout polygon would resemble a snake that ate a rabbit.

One proposed method is to split features that cross the checkout polygon, give the parts to different editors, and merge the parts when the data are checked in. This method will take a considerable amount of programming effort, because it lowers transaction granularity from the feature level to the sub-feature level. It also poses unsolved technical issues. For example, what happens to the events when two people are editing the same long route? Events often span long portions of routes, and changes to event measures can cause the events to change position along the route, sliding them into the other editor’s territory. Also, it is unclear how to assign events to different editors using this method. For example, WC_EVT_NAME typically spans the entire route. In a split feature scenario, which editor is allowed to edit this event? It would be very difficult to allow two people to work on the same long route without the possibility of edits to the measures causing conflicts on the event the data, and it is unclear how events spanning long reaches of the route can be shared between different editors.

Here is an alternate approach for long route management that only allows one editor on each route: The user checks out a reasonably sized polygonal area of data using the standard method. Then, in the same transaction, the user types in the LLIDs of one or more long routes that pass through the polygonal checkout area. These LLIDs are added to a list of a special checked out long routes, so that nobody else will edit them. This list of LLIDs and user IDs of people editing them would be maintained on the server as an Oracle table. When the user checks in his data, an integrity check is done to verify that no geometry changes were made to the long route except where the route falls inside the checkout polygon. Thus, features edited in other transactions can still snap to the long route in a background coverage. The user can make any event changes necessary. This appears to be the only practical way to guarantee that editors do not conflict with each other on a long route without checking out a polygonal area that completely surrounds the route. It works because only one person is editing a route at a time, and they are not making geometry changes that would cause snapping problems for other editors.

2-

Revised Jan 12 2000

2-

Revised 8/11/99

2-

Revised Jan 12 2000

