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1 Theory of FMCW Radar Waveforms

1.1 Introduction

The current -20 dB bandwidth formula for FMCW within the ITU is the following:
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The current -40 dB bandwidth for FMCW is the following: 
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Where Fo is the carrier frequency, and Bc is the total chirp deviation.  The Fo term in (2) seems to provide for carrier drift within the -40 dB formula, so the formulas indicate that the FMCW waveform is “brickwall”, at least down to the -40 dB bandwidth.  

There is concern internationally that the bandwidth formulas are too narrow especially for applications whose center frequency is in the HF range.
  In addition, it is irregular to include frequency tolerance in a bandwidth formula.
  Unfortunately the origin of these formulas is unknown.  

This paper develops the theory of the FMCW waveform, evaluates current bandwidth formulas, and proposes a methodology to find appropriate bandwidth formulas.

1.2 FMCW Signal

There may be different forms of the FMCW waveform.  The one we consider in this section is linear FM where the flyback portion is also chirped.  This waveform is conceptually a normalized linear periodic signal m(t) which is frequency modulated onto a carrier.  
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Figure 1.  Sawtooth waveform showing non-zero flyback.  Period is τ + tfb.

Figure 1 depicts the frequency deviation of the waveform under consideration.  If tfb = τ the resulting signal may be called “triangular” FMCW.  If the ratio of tfb/τ is small, or zero, the waveform might be called “sawtooth”.  

m(t) is frequency modulated onto a carrier such that the maximum excursions about the carrier will be ±0.5Bc, as shown in the following.  Thus the FMCW signal’s frequency varies linearly over a range of Bc centered on the carrier, chirping up in frequency in a time of τ, and chirping back down again in a time of tfb.  A critical consideration in this analysis is that the signal is constant envelope.  Any amplitude weighting would affect the spectrum, and must be considered in a separate analysis.
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Figure 2.  FMCW is a carrier whose frequency varies linearly between Fo ± 0.5Bc in time τ

To facilitate the analysis we break this signal down into the convolution of two waveforms as shown in the following Figures 3a and 3b:

[image: image5.emf]-1

0

1

time

amplitude

τ

t

fb


Figure 3a
       (
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Figure3b.  A forward and return chirp convolved with a sequence of delta functions

Using the properties of the Fourier analysis we know that the spectrum of Figure 1 will be the spectrum of Figure 3a multiplied by the spectrum of Figure 3b.  Since the spectrum of a series of delta functions in time separated by period T is a series of delta functions in frequency separated by 1/T, the resultant will be the Fourier Transform of Figure 3a as a function of line spectra spaced by 1/(τ+tfb).  Thus we only need to analyze Figure 3a.

Figure 3a consists of a forward and return chirp both spanning the same frequency range, but at different rates (Hz/s).  We condense these into one figure (see Figure 4) where the forward chirp occurs between –τ and 0, and the return chirp occurs from 0 to tfb.  

The following is a general expression of the voltage versus time waveform x(t) for FM modulation, where m(λ) varies between ±1:
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Figure 4.  m(λ) truncated to an interval –τ ≤ λ ≤ tfb
Performing the integration of (3) for a positive chirp (using Figure 4) gives the following:
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Differentiating the argument of (4) with respect to time shows the instantaneous frequency
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Applying -τ ≤ t ≤ 0 to (5) shows that the frequency varies between Fo – 0.5Δω/π and Fo + 0.5Δω/π.  Since we want it to vary between ±0.5Bc, this means that Δω = πBc.  The final form for the positive chirp is the following:
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where –τ ≤ t < 0

For the negative chirp it is:
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where 0 ≤ t < tfb
The sampled output of (7) can be appended to that of (6) to give one period of the voltage sequence x(n).  

1.3 Implementing Continuous Phase (CP) FMCW

The FMCW waveform is continuous frequency because of the chirped flyback.  Also, referring to Figure 4, the waveform is continuous-phase (CP) across the high frequency chirp transition because of the way the equations are written; but there is not necessarily phase continuity across the lower end.  Because it has been suggested that phase discontinuities will broaden the spectrum, this section derives adjustments to FMCW that will force phase continuity across the periodic waveform.  The power spectrum of the equations of section 1.2, after adjustment for differing amounts of phase discontinuity according to the equations of this section, can be examined to see if, and by how much, spectrum is improved through CP.

The derivation is straightforward and begins by setting the arguments of (6) and (7) equal to each other.
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The 2πn term is added because adding any integer multiple of 2π does not change the value of a sine wave.  The ( term is added for analyzing the non-continuous-phase (NCP) case to ensure that phase differences are the same across different waveform periods.
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Figure (12) shows that CP (corresponding to ( = 0) is achieved simply by ensuring that the product of center frequency and waveform period is an integer.  For computer analyses, setting Fo to 0 is the simplest way to achieve CP.  For NCP, (12) allows one to fix the amount of phase discontinuity so we can compare resulting X dB bandwidths across a number of different waveform periods.  This also allows one to research whether bandwidths change depending on the amount of phase discontinuity.  One might guess that smaller phase discontinuities would lead to smaller bandwidths.

Figure 5 and Figure 6 show a single period of an FMCW waveform as implemented by (6) and (7), where the center frequency is adjusted according to (12) to achieve NCP and CP, respectively.
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Figure 5.  Example of phase discontinuity across periods
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Figure 6.  Fo adjusted according to (12) to achieve phase continuity

1.4 Rectangular FM chirp

It may be helpful to note that the FMCW waveform is the same as a rectangular FM pulse whose duty cycle is set to 100%.  Figure 7 shows a rectangular pulse centered at 10 MHz, which chirps up a total of 10 MHz in 1 μsec, and down again in 1 μsec, with a duty cycle of less than 100%.  Figure 8 shows how FMCW is formed simply by raising the same signal to a 100% duty cycle.  In the frequency domain the continuous function of the Fourier Transform of a single pulse is sampled with frequency elements spaced apart by the PRF, ensuring that one of them coincides with the fundamental frequency.  When this is done different patterns emerge in the spectrum depending on the PRF (see Figure 9).  Although the spectrum appearance varies with duty cycle, the envelope of rectangular FM pulse spectrum is independent of duty cycle unless the duty cycle is exactly equal to 100%.
  This is due to the effect of pulsing on the FM chirp, which convolves the spectrum with that of the pulse shape.  This effect abruptly goes away when the signal is no longer pulsed and indicates that the FM pulse bandwidth formulas cannot converge (with increasing duty cycle) to those we choose for FMCW.
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Figure 7.  A forward and return chirp convolved with a sequence of delta functions
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Figure 8.  Delta function spacing matches width of forward and return chirp
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Figure 9.  Spectrum of triangular FM rectangular pulse with varying duty cycles

1.5 Sample Spectrums

Following are spectrum plots using the equations in this paper.  Section 1.5.1 shows the effects of using differing amounts of phase discontinuity with reference to (12).  The graphs show the discontinuity as a fraction of 2π radians, as shown in (13).  For a given set of FMCW parameters, the broadest spectrum occurs when ( approaches π.  As expected, by the time ( reaches 2π the spectrum returns to the CP case.  Section 1.5.2  shows the effect of varying the ratio of flyback to forward chirp time.  As expected the broadest spectrum occurs when the flyback is zero, with the narrowest spectrum occurring when flyback and forward chirp times are equal.  The curves are distinguished from each other by color, but they are also distinguished with the order of the curves in the legend being the same as those in the plot.
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1.5.1 Samples using different amounts of phase discontinuity
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Figure 10
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Figure 11
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Figure 12
[image: image27.png]=
m
o T NuN
s \\
Fe AT
-100 | E—— 1
10t 1t el

‘omalized frequency, MHz




Figure 13
[image: image28.png]vt
i Vv
‘ T ¢/=0.001:blue
‘ o
Wl n
| I —
, L
El
g 80
£ 1
"

‘omalized frequency, MHz




Figure 14
1.5.2 Samples using different flyback ratios
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Figure 15
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Figure 16
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Figure 17
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Figure 18

The figures in section 1.5.2 lead to a few observations.  The spectrum of FMCW is a non-linear function of the phase discontinuity (() between periods with the spectrum being narrowest when ( is an even integer multiple of π, and broadest at odd integer multiples of π.  For all cases of NCP the spectrum eventually rolls off at 20 dB/decade.  Thus out-of-band (OOB) spectral advantages of unfiltered FMCW are not realized unless the signal is CP.  For the CP cases the spectrum roll-off is 60 dB/decade for all tfb/τ ratios except for 0, in which case it is 40 dB/decade.  Absolute bandwidths decrease with increasing tfb/τ up to a value of unity.  The spectrum drop from the chirp edge is steeper with higher Bcτ products, particularly with higher τ.  Since current bandwidth formulas predict that FMCW is very steep they appear to be assuming that Bcτ and τ are large.

1.6 Evaluation of Current Bandwidth Formulas

This section looks at theoretical FMCW based on the FFT in comparison with the current bandwidth formulas.  The plots of this section are based on FFTs generated from 120 different combinations of FMCW parameters.  The chirps ranged from 10 kHz to 100 MHz over a span of 100 nanoseconds to 1 second, and tfb ranged from 0 to 100% of τ.  

1.6.1 -20 dB Bandwidth

This subsection shows plots of the -20 dB bandwidth versus τ, and several plots of different chirp widths.  Each plot contains the ITU formula (called “RSEC20”) along with 4 curves of flyback time as a percentage of τ (e.g. “10%tfb/tau” indicates the curve where tfb is fixed at 10% of τ).  The plots also specify either “Phi = 0Pi” or “Phi = 1Pi” indicating either CP or 180 degree phase discontinuity, respectively.
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Figure 19a
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Figure 19b
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Figure 20a
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Figure 20b
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Figure 21a
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Figure 21b
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Figure 22a
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Figure 22b
[image: image41.emf]FMCW 20 dB Bandwidth,  Bc = 100 MHz,  Phi = 0Pi
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Figure 23a
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Figure 23b
1.6.2 -40 dB Bandwidths

This subsection shows the plots of the -40 dB bandwidth versus τ, and plots of different chirp widths.  Each plot contains the ITU formula (called “RSEC40”) along with 4 curves of flyback time as a percentage of τ (e.g. “100%tfb/tau” indicates the curve where tfb is as long as τ).  The plots also specify either “Phi = 0Pi” or “Phi = 1Pi” indicating either CP or 180 degree phase discontinuity, respectively.  In the application of (12) Fo was picked to be as close to 1 GHz as possible, and the RSEC40 curve was based on 1 GHz.  Fs could vary from curve to curve but was limited so that M never exceeded 6x106 due to computing limitations.
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Figure 24a
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Figure 24b
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Figure 25a
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Figure 25b
[image: image47.emf]FMCW 40 dB Bandwidth,  Bc = 1 MHz,  Phi = 0Pi,  Fo = 1000 MHz (nominal)
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Figure 26a
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Figure 26b
[image: image49.emf]FMCW 40 dB Bandwidth,  Bc = 10 MHz,  Phi = 0Pi,  Fo = 1000 MHz (nominal)
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Figure 27a
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Figure 27b
[image: image51.emf]FMCW 40 dB Bandwidth,  Bc = 100 MHz,  Phi = 0Pi,  Fo = 1000 MHz (nominal)
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Figure 28a

[image: image52.emf]FMCW 40 dB Bandwidth,  Bc = 100 MHz,  Phi = 1Pi,  Fo = 1000 MHz (nominal)

0

960

1920

2880

3840

4800

5760

6720

7680

8640

9600

10560

0.001 0.01 0.1 1 10 100 1000

tau (usec)

BW (MHz)     .

0%tfb/tau 1%tfb/tau 10%tfb/tau 100%tfb/tau RSEC40


Figure 28b
1.7 Summary Observations 

1. The OOB roll-off for NCP (( ≠ 0) chirped flyback FMCW is 20 dB/decade.

2. The OOB roll-off for CP (( = 0) chirped flyback FMCW with zero flyback (tfb/τ = 0) is 40 dB/decade.

3. The OOB roll-off for CP chirped flyback FMCW with non-zero flyback (tfb/τ > 0) is 60 dB/decade.

4. As tfb/τ approaches unity the bandwidths decrease for both CP and NCP.

5. The FMCW waveform is Time-Bandwidth product (Bcτ) dependant.  The higher Bcτ is, regardless of the center frequency, the steeper the spectrum becomes, meaning that the ratio of -20 and -40 dB bandwidths approaches unity.  This is valid for both CP and NCP waveforms. 

6. Given the same Bcτ, the spectrum is narrower with larger τ than larger Bc.

7. The current FMCW -20 dB bandwidth formula underestimates the theoretical spectrum, although the fit improves with increasing Bcτ.

8. As long as Bcτ ≥ 1000, the ITU FMCW -20 dB bandwidth underestimates the FFT by less than 10% regardless of phase discontinuity.  For cases where tfb = τ and the discontinuity is small (( ≤ 0.1π), Bcτ can be as small as 100 and still keep the error below 10%.

9. The current FMCW -40 dB bandwidth formula usually underestimates the theoretical spectrum, but it may be adequate for a high Bcτ and high center frequency.  

10. For CP FMCW with large Fo, the current -40 dB bandwidth formula overestimates the bandwidth (see Figure 25), even for small Bcτ (see Figure 24).  

11. For small Fo, the current FMCW -40 dB bandwidth formula can underestimate the bandwidth, even for large Bcτ CP FMCW.  

12. Since spectrum is not dependent on center frequency it is inappropriate for the bandwidth formula to be a function of center frequency.  

2 Bandwidth Proposals

2.1 Introduction

The previous portion of this paper concluded that the current bandwidth formulas for FMCW are inadequate, and provided a background for developing a methodology to derive more suitable formulas.  This section analyzes a large data set of FFT bandwidths of various FMCW waveforms, organizes the data, makes simplifying observations, and curve fits the data with various proposed bandwidth formulas.  Appendices A and B provide the code segment and sample spreadsheet used to generate the data set analyzed in this section, so that anyone with Matlab® or Excel® can duplicate and follow the process for generating and evaluating the proposals set forth herein.

The previous analysis showed that phase discontinuities broaden the spectrum.  As the phase discontinuity is increased from 0 to π, the bandwidths monotonically increase, though not linearly.  It is unknown whether or not phase discontinuities exist in real FMCW system implementations, or whether they can be controlled if they do.  Due to this uncertainty it may be prudent to analyze different cases of NCP in addition to CP.  Therefore CP (( = 0) and two cases of NCP (( = 0.5π and ( = π) are addressed in the remainder of this paper.

2.2 Data Generation

Using the code segment in APPENDIX A, and the sample input spreadsheet in Appendix B, bandwidths were generated for 480 different combinations of FMCW parameters.  There were 120 simulations each for phase discontinuities (() of 0, 0.1π, 0.5π, and π.  The simulations for each ( used 5 values for Bc {0.01, 0.1, 1, 10, 100}, 6 consecutive elements of {0.01, 0.1 1, 10, 100, 1000, 10000, 100000, 1000000} for τ, and 4 values for tfb/τ {0, 0.01, 0.1, 1}.
  The simulations show that the bandwidths increased in magnitude with phase discontinuity.  In order to compare FFT bandwidths with RSEC20 and RSEC40, their ratio was calculated.  When all the data were sorted by B20/RSEC20, a pattern emerged as shown in Table 1.

Table 1.  Sample of data generated

	Fo
	Bc
	τ
	Bc*τ
	tfb
	tfb/τ
	(/π
	Fs
	B20
	B40
	B20/RSEC20
	B40/RSEC40

	99.99999975
	1
	100000
	100000
	100000
	1
	0.1
	30
	1.002222895
	1.006471772
	1.002222895
	0.97715706

	99.9999975
	10
	10000
	100000
	10000
	1
	0.1
	300
	10.02222895
	10.06471772
	1.002222895
	1.003461387

	99.999975
	100
	1000
	100000
	1000
	1
	0.1
	3000
	100.2222895
	100.6471772
	1.002222895
	1.006169921

	100
	100
	1000
	100000
	1000
	1
	0
	3000
	100.2632928
	100.8307749
	1.002632928
	1.008005348

	100
	10
	10000
	100000
	10000
	1
	0
	300
	10.02632928
	10.08307749
	1.002632928
	1.005291874

	100
	1
	100000
	100000
	100000
	1
	0
	30
	1.002632928
	1.008307749
	1.002632928
	0.978939563

	99.999875
	100
	1000
	100000
	1000
	1
	0.5
	3000
	100.3343887
	103.609783
	1.003343887
	1.035787094

	99.9999875
	10
	10000
	100000
	10000
	1
	0.5
	300
	10.03343887
	10.3609783
	1.003343887
	1.032998833

	99.99999875
	1
	100000
	100000
	100000
	1
	0.5
	30
	1.003343887
	1.03609783
	1.003343887
	1.005920224

	90.90909045
	1
	100000
	100000
	10000
	0.1
	0.1
	60
	1.004207114
	1.013668586
	1.004207114
	0.984144258

	90.90908636
	10
	10000
	100000
	1000
	0.1
	0.1
	600
	10.04207114
	10.13668586
	1.004207114
	1.010636676

	90.90904545
	100
	1000
	100000
	100
	0.1
	0.1
	6000
	100.4207114
	101.3668586
	1.004207114
	1.013364577

	100
	1
	100000
	100000
	10000
	0.1
	0
	60
	1.004702024
	1.016131416
	1.004702024
	0.986535355

	100
	100
	1000
	100000
	100
	0.1
	0
	6000
	100.4702024
	101.6131416
	1.004702024
	1.015826668

	100
	10
	10000
	100000
	1000
	0.1
	0
	600
	10.04702024
	10.16131416
	1.004702024
	1.013092139


Table 1 shows the pattern that every three consecutive values of in column B20/RSEC20 are identical.  After sorting the table by (, and noting that RSEC20 for FMCW is equal to the chirp Bc, the following observation was made. For each (, the BW formula is some factor multiplied by the chirp, where the factor is a function of Bcτ and tfb/τ.  
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When B40 was divided by the chirp a pattern of similar values emerged, showing that (14) also applies to the -40 dB bandwidth.

To find the factors, hereafter called “B20factor” and “B40factor” (which are B20/Bc and B40/Bc, respectively), additional sorting and filtering was done to produce the following figures.
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Figure 29.  B20/Bc vs Bcτ curves for different tfb/τ, for the CP case (( = 0)
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Figure 30.  B40/Bc vs Bcτ curves for different tfb/τ, for the CP case (( = 0)
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Figure 31.  B20/Bc vs. Bcτ curves for different tfb/τ, for the NCP case (( = 0.5π)
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Figure 32.  B40/Bc vs. Bcτ curves for different tfb/τ, for the NCP case (( = 0.5π)
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Figure 33.  B20/Bc vs. Bcτ curves for different tfb/τ, for the NCP case (( = π)
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Figure 34.  B40/Bc vs. Bcτ curves for different tfb/τ, for the NCP case (( = π)

Each of these figures contain four curves for different values of tfb/τ along with an additional curve which is an equation fitted to the tfb/τ = 0.01 curve.
, 
  The form of B20factor and B40factor equations is arbitrary, and it may be possible to improve them, if necessary.  At Bcτ = 0.1 the curves rose sharply making it difficult to curve fit with the larger values of Bcτ.  Therefore, all equations that follow are valid only for Bcτ ≥ 1.

All data points are spaced one decade apart, and are connected by straight lines.  The B20factor and B40factor curves were all drawn with 100 evenly spaced points per decade, to show how the curve is shaped between decades.

The figures show that bandwidths decrease with increasing Bcτ and tfb/τ.  The bandwidth for tfb = 0 does not drop to within 110% of the bandwidth for tfb = τ until Bcτ exceeds 100 for B20, and 10000 for B40.

The following equations are the final forms for -20 and -40 dB bandwidth formulas, based on the cases presented in the above sections:
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where Bcτ ≥ 1

Formulas (15) and (16) were compared to the output of real waveforms generated by an Agilent Vector Signal Generator (VSG) programmed to generate various FMCW waveforms.  Summary Tables were made that compared the -20 and -40 dB bandwidth values to validate that the two equations are a good approximation of FFT theory and also to begin to investigate implementation factors.  The results are given in Ref. 
. The implementation factors for these equations will require additional research and measurements. 
APPENDIX A


This section lists a Matlab® script file used to generate the data of this paper.  

% FMCWchirpedFlyback.m

% Calculate the spectrum of a complex CW chirp.  Plot the power spectrum

clear all; format long g;

Plotit=0; % 1 if you want to plot, 0 otherwise

PlotTime=0; % 1 if you want to plot voltage vs time, 0 otherwise

semi=1; % 1 if you want to plot spectrum on logx scale, 0 otherwise

BWs=1; % 1 if you want to calculate X dB bandwidths, 0 otherwise

Intplt=1; % 1 if you want to interpolate these BWs, 0 otherwise

Writeout=1; % 1 if you want to write an output matrix to Excel, 0 otherwise

b1=3;b2=20;b3=30;b4=40; %bX are the various calculated X dB bandwidths

[indata,colnames]=xlsread('FMCWinputs.xls'); %read input parameters from Excel file

Fo_v=indata(:,1); %center frequency vector

Bc_v=indata(:,2); %chirp vector

tau_v=indata(:,3); %tau vector

tfb_v=indata(:,4); %flyback time vector

Fs_v=indata(:,5); %sampling frequency vector

outdata={'Fo','Bc','tau','tfb','Fs','M','N',['B' num2str(b1)],['B' num2str(b2)],...

        ['B' num2str(b3)],['B' num2str(b4)]};

for Cnt = 1:length(Bc_v),

    Fo = Fo_v(Cnt);     % center frequency of chirp, MHz 

    Bc = Bc_v(Cnt);  % chirp bandwidth

    tau=tau_v(Cnt);  %length of up chirp, usec

    tfb=tfb_v(Cnt);    %flyback time

    Fs=Fs_v(Cnt);    %sampling frequency

    dt=1/Fs;    

    ChtRng=2000;   %range of frequencies to be plotted, MHz

    if ChtRng>Fs,

        ChtRng=Fs;

    end

    DR=140;   %total dynamic range to be displayed, dB

    t=-tau:dt:0-dt;  %time for first part of LFM

    x = cos(2*pi*Fo*t+pi*Bc*(t.*t/tau+t)) + j*sin(2*pi*Fo*t+pi*Bc*(t.*t/tau+t));

        %Complex time domain is necessary to depict the spectrum properly

    if tfb>0,

        t2=0:dt:tfb-dt;  %time for second part of LFM

        x2 = cos(2*pi*Fo*t2-pi*Bc*(t2.*t2/tfb-t2)) + j*sin(2*pi*Fo*t2-pi*Bc*(t2.*t2/...

            tfb-t2)); % complex time domain signal

        x=[x,x2]; clear x2; %free up x2 memory

        t = [t,t2]; clear t2; %time for pulse

    end     

    M=length(t);

    N=M; %# FFT points.  Must equal M for FMCW

    DF=Fs/N;  %frequency resolution

    if ~(Plotit & PlotTime), clear t; end %free up memory

    X = 20*log10(abs(fftshift(fft(x,N)))); %generate the power spectrum

    X=X-max(X);    %normalize the power spectrum       

    if ~(Plotit & PlotTime), clear x; end %free up memory

    f = -Fs/2:DF:Fs/2-DF;   % frequency scale, MHz

    if BWs,   % Calculate the 4 XdB bandwidths specified

        if Intplt,  %if DF is large you can improve accuracy through interpolation

            u=max(find(X>-b1));v=min(find(X>-b1));

            B1=interp1(X(u:u+1),f(u:u+1),-b1)-interp1(X(v-1:v),f(v-1:v),-b1);

            u=max(find(X>-b2));v=min(find(X>-b2));

            B2=interp1(X(u:u+1),f(u:u+1),-b2)-interp1(X(v-1:v),f(v-1:v),-b2);

            u=max(find(X>-b3));v=min(find(X>-b3));

            B3=interp1(X(u:u+1),f(u:u+1),-b3)-interp1(X(v-1:v),f(v-1:v),-b3);

            u=max(find(X>-b4));v=min(find(X>-b4));

            B4=interp1(X(u:u+1),f(u:u+1),-b4)-interp1(X(v-1:v),f(v-1:v),-b4);

        else

            B1 = f(max(find(X>-b1))+1) - f(min(find(X>-b1))-1);

            B2 = f(max(find(X>-b2))+1) - f(min(find(X>-b2))-1);

            B3 = f(max(find(X>-b3))+1) - f(min(find(X>-b3))-1);

            B4 = f(max(find(X>-b4))+1) - f(min(find(X>-b4))-1);    

        end

    elseif semi,

        u=max(find(X>-b1));v=min(find(X>-b1));

        B1=interp1(X(u:u+1),f(u:u+1),-b1)-interp1(X(v-1:v),f(v-1:v),-b1);

    end

    if Plotit,

    figure(1);  % plot 

    tstring=['F_o=',num2str(Fo),'MHz; B_c=',num2str(Bc),'; \tau=',num2str(tau),...

            '\musec; t_{fb}=',num2str(tfb),'; F_s=',num2str(Fs),'; m=',num2str(M)];

    if PlotTime,

        subplot(2,1,1);

        plot(t,real(x),'b')

        xlabel('time');

        ylabel('amplitude')

        title(tstring);

        subplot(2,1,2);  % plot the spectrum

        tstring=['n=',num2str(N)];

    else

        tstring=[tstring,'; n=',num2str(N)];

    end

    if BWs & (B4>ChtRng),ChtRng=B4;end

    if semi,

        h=semilogx(f-Fo,X,'b-');

        axis([10^floor(log10(B1/2)),10^ceil(log10(ChtRng/2)),-DR,0]);

        xlabel('frequency offset (MHz)');

    else        

        plot(f,X,'b-');

        axis([Fo-ChtRng/2,Fo+ChtRng/2,-DR,0]);

        xlabel('frequency (MHz)');

    end            

    set(gca,'gridlinestyle','-')

    set(gca,'minorgridlinestyle','-')

    ylabel('Power (dB)')

    if BWs,

        tstring=[tstring,'; B',num2str(b1),'=',num2str(B1),'; B',num2str(b2),'=',...

      num2str(B2),'; B',num2str(b3),'=',num2str(B3),'; B',num2str(b4),'=',num2str(B4)];

    end  

    title(tstring);

    grid on;

    end

    outdata=cat(1,outdata,{Fo,Bc,tau,tfb,Fs,M,N,B1,B2,B3,B4}); %create output data

end

if Writeout,

    xlswrite(outdata) %open output data in Excel

end

APPENDIX B


This section lists a M.S. Excel® spreadsheet called 'FMCWinputs.xls' which contains the inputs for the Matlab script for the ( = 0 case.  This method of input was used for ease because input parameters may need to be tweaked due to the FFT sensitivities of sampling rates on data accuracy, and the memory and speed limitations of different computers.

	Fo
	Bc
	tau
	tfb
	Fs

	0
	0.01
	10
	0
	1000

	0
	0.01
	10
	0.1
	1000

	0
	0.01
	10
	1
	1000

	0
	0.01
	10
	10
	1000

	0
	0.01
	100
	0
	100

	0
	0.01
	100
	1
	100

	0
	0.01
	100
	10
	100

	0
	0.01
	100
	100
	100

	0
	0.01
	1000
	0
	100

	0
	0.01
	1000
	10
	100

	0
	0.01
	1000
	100
	100

	0
	0.01
	1000
	1000
	100

	0
	0.01
	10000
	0
	100

	0
	0.01
	10000
	100
	100

	0
	0.01
	10000
	1000
	100

	0
	0.01
	10000
	10000
	100

	0
	0.01
	100000
	0
	60

	0
	0.01
	100000
	1000
	60

	0
	0.01
	100000
	10000
	55

	0
	0.01
	100000
	100000
	30

	0
	0.01
	1000000
	0
	6

	0
	0.01
	1000000
	10000
	6

	0
	0.01
	1000000
	100000
	6

	0
	0.01
	1000000
	1000000
	3

	0
	0.1
	1
	0
	10000

	0
	0.1
	1
	0.01
	10000

	0
	0.1
	1
	0.1
	10000

	0
	0.1
	1
	1
	10000

	0
	0.1
	10
	0
	1000

	0
	0.1
	10
	0.1
	1000

	0
	0.1
	10
	1
	1000

	0
	0.1
	10
	10
	1000

	0
	0.1
	100
	0
	1000

	0
	0.1
	100
	1
	1000

	0
	0.1
	100
	10
	1000

	0
	0.1
	100
	100
	1000

	0
	0.1
	1000
	0
	1000

	0
	0.1
	1000
	10
	1000

	0
	0.1
	1000
	100
	1000

	0
	0.1
	1000
	1000
	1000

	0
	0.1
	10000
	0
	600

	0
	0.1
	10000
	100
	600

	0
	0.1
	10000
	1000
	600

	0
	0.1
	10000
	10000
	300

	0
	0.1
	100000
	0
	60

	0
	0.1
	100000
	1000
	60

	0
	0.1
	100000
	10000
	60

	0
	0.1
	100000
	100000
	30

	0
	1
	1
	0
	10000

	0
	1
	1
	0.01
	10000

	0
	1
	1
	0.1
	10000

	0
	1
	1
	1
	10000

	0
	1
	10
	0
	1000

	0
	1
	10
	0.1
	1000

	0
	1
	10
	1
	1000

	0
	1
	10
	10
	1000

	0
	1
	100
	0
	1000

	0
	1
	100
	1
	1000

	0
	1
	100
	10
	1000

	0
	1
	100
	100
	1000

	0
	1
	1000
	0
	1000

	0
	1
	1000
	10
	1000

	0
	1
	1000
	100
	1000

	0
	1
	1000
	1000
	1000

	0
	1
	10000
	0
	600

	0
	1
	10000
	100
	600

	0
	1
	10000
	1000
	600

	0
	1
	10000
	10000
	300

	0
	1
	100000
	0
	60

	0
	1
	100000
	1000
	60

	0
	1
	100000
	10000
	60

	0
	1
	100000
	100000
	30

	0
	10
	0.1
	0
	100000

	0
	10
	0.1
	0.001
	100000

	0
	10
	0.1
	0.01
	100000

	0
	10
	0.1
	0.1
	100000

	0
	10
	1
	0
	10000

	0
	10
	1
	0.01
	10000

	0
	10
	1
	0.1
	10000

	0
	10
	1
	1
	10000

	0
	10
	10
	0
	10000

	0
	10
	10
	0.1
	10000

	0
	10
	10
	1
	10000

	0
	10
	10
	10
	10000

	0
	10
	100
	0
	10000

	0
	10
	100
	1
	10000

	0
	10
	100
	10
	10000

	0
	10
	100
	100
	10000

	0
	10
	1000
	0
	6000

	0
	10
	1000
	10
	6000

	0
	10
	1000
	100
	6000

	0
	10
	1000
	1000
	3000

	0
	10
	10000
	0
	600

	0
	10
	10000
	100
	600

	0
	10
	10000
	1000
	600

	0
	10
	10000
	10000
	300

	0
	100
	0.01
	0
	1000000

	0
	100
	0.01
	0.0001
	1000000

	0
	100
	0.01
	0.001
	1000000

	0
	100
	0.01
	0.01
	1000000

	0
	100
	0.1
	0
	100000

	0
	100
	0.1
	0.001
	100000

	0
	100
	0.1
	0.01
	100000

	0
	100
	0.1
	0.1
	100000

	0
	100
	1
	0
	100000

	0
	100
	1
	0.01
	100000

	0
	100
	1
	0.1
	100000

	0
	100
	1
	1
	100000

	0
	100
	10
	0
	100000

	0
	100
	10
	0.1
	100000

	0
	100
	10
	1
	100000

	0
	100
	10
	10
	100000

	0
	100
	100
	0
	60000

	0
	100
	100
	1
	60000

	0
	100
	100
	10
	60000

	0
	100
	100
	100
	30000

	0
	100
	1000
	0
	6000

	0
	100
	1000
	10
	6000

	0
	100
	1000
	100
	6000

	0
	100
	1000
	1000
	3000























� See ITU-R SM.1541 equations (38) and (44).


� The dependence of � REF _Ref124240435 �(2)� on center frequency may cause the most severe underestimation of bandwidth for systems in the HF range.


� The Radio Regulations definition of “assigned frequency band” specifically distinguishes the necessary bandwidth from the frequency tolerance.


� Positive chirps are defined to be those that sweep from low to high frequency.


� It is assumed that the power spectrum will be calculated using the FFT of the x(n) sequence described at the end of Section � REF _Ref127591153 \r �1.2�


� Since n is an arbitrary integer, the liberty has been taken to reverse the sign of n in � REF _Ref149365451 �(12)� 


� The fact that the envelope doesn’t change allows FM pulse bandwidth formulas to be independent of duty cycle.  


� 5 x 6 x 4 = 120 simulations


� B20 is the FFT -20 dB bandwidth.  RSEC20 is the Annex J 20 dB bandwidth.  RSEC40 is the RSEC 40 dB bandwidth 


� This is seen by dividing the B40 column by the Bc column (note these values are not shown in Table 1).


� tfb/τ = 1% is assumed to be a worst-case value in this derivation, because tfb = 0 seemed unrealistic.  In addition, for most of the plots there was not much difference between the two values.


� The curve fitting used the least mean square method





� “Results of FMCW Simulation and Measurements”
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