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Abstract. Work on generative planning syste[ns  ha-~ focllsed On two di-
t,crsc aplJroac}lcs to plan construction. Ilierarchical task  network (11’~N)
planners build plans by successively refining high-level goals into lower-
level activities. Operator-baqed planners employ means-end analysis to
formulate plans consisting of Iow-level activities. While many have ar-
gued the universal dominance of a single approach, we present an alter-
native  view: that in clifferent  situations either may fJe most appropriate.
To support t}lis view, vw describe a nurnbcr  of advantages and clisadvan-
tages  of these approaches in light of our experiences in developing two
real-world, fielcled planning systems.

1  Introcluction

AI planning researchers have developed numerous aplmoaches to the task of
correct and efflcicnt plan~ling.  Two main ap~moaches to this task arc operator-
based  planners and hiera7c}Lical  task network (HTN) planrlers. Whi le  cons ider-
able work has been clone itl analyzing and formalizing each of these approaches
[Chapman 1987, Erol et al. 1994], and some work has been done in comparing
them from a theoretical standpoint [Kan)hllarr]pati  1995, Mitlton  et al. 1 991],
comparatively little effort l~as been devoted to comparing the two approac])es  in
a more practical setting.

l$~hilc both  HTN and operator-based plarulers  typically construct plans by
searc)iing  in a plan-space, they differ considerably in how they express plan re-
fi nement  operators. HTN planners generally specify plan mollifications ir~ terms
of flexible task reduction rules. operator-tmsecl  planners perform all reasoning at
the lowest level of abstraction ancl provide a strict semantics for clefining c)pera-
tor  definitions. By virtue of their represe~ltationl  HThT plarlners  more naturally
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1[’1)1’(’S(’11(  lli(’till(’11~ and Ill Od(l[a[it~.  111 CO IltlilSt, ()[)(’IZlt  (l[-~J;LS(’(]  [Ilitfl  1( ’fill (’111 (’Ilt S
am Iuoxe gcner:tl si; w tllcy call covet II IaIly Inote platltlilig  situations.

It) this  Imper, we ex[)[aitl Ilow a llyl)ri[~ a~j~}macli,  ~~’~iic]l combi[les t)lcse t!t’o
plaullillg  tcchlliques,  is an effective lllctllod  for l)larlIliI1g irl real-wwIld apl)lica-
tiolls.  Iu particular, we iuvmtigate  tlic critical issue of plauni[lg  rt’~)rc’selltatiorl.
If doulail~ knowledge ca~l })c naturally rei)reselltcd  in a plallllitlg  syste~o tllell:
(1) It will be easier  to cucode an initial kl~owledge  base; (2) fewc[ mlcodillg er-
rors will occur, leading to a higllcr pcrforma~lm’  system; arid (3) mailltc~lallcc  of
the knowledge base will Iw collsidcral]ly easier. I’IIus,  an iln~)ortallt ll~casure  for
cvaluatill.g IITN atld operator  -l)ased ~)lautli[lg is lmtv natural ly cacll I)aradignl
cau represc~lt  kcy a.sl)ects of plauui[lg  klkowr]edge.

To evaluate representation abilities, we focus ori four criteria: generality,  hiera-
rchy,  flexibility, and efficiency. C;euerality describes t}le range  of problclu-solvil]g
situations that cau be covered by a small aruoutit  of krlow’ledge.  Ilicrarchies  al-
low C.OU1U1OI1  constraints, procedures, aud patterns to be clefiued once yet used
mauy  times. Flexibility describes how easily a wide ralige  of constraints can be
accurately re~)rescuted.  l: fficieucy relates to how t llc represent at ior) ill fluc]lces
the size of the planner’s search space.

‘This pal)er  clescribcs  a IIumlmr of irll~)ortant  representational issues that we
have eucouutered  iu building  two NASA plarl~lillg  systems [Chicll et al. 1995]:
Image Processitlg  for Sciellce Data Analysis  (the MV1’ sjstem) [C;hie]l and Mor-
te~mll  1996] arlcl Deep S1]ace Network (DSNT)  Arlterlna Operations (the DP1,AN
systeln)  [Chien et al. 1997]. ~’hc Multirilissioll  VICA1{  Planner (h4VP) uses plau-
nirlg techniques to autolllatically ge[ierate  itnage processing proglams from user
specified processing goals. MVP allows a user to sl)ecify a list of ilnage  process-
ing recluirwmeuts  allcl then derives the requirecl  processing steps to achim’e the
iuput goals. Our second applicatio]l  coIlcerIls  operating Raclio Allteuuas.  111 t}lis
cfomaiu,  the DPLAN plauner  is given a set of autenua tracking goals arid equil~-
lnerlt information. DPLAN then ge~lerates  a list of autel~na operation steps that
will create a col~l[tllltlicatiol~s ]iuk with orbitit~g s~)acecraft.

Both of t}le planners described a})ove elnl)loy a silnilar  combitlation  of HTN
arid operator-bawd plauning  teclluiques,  (lonstructillg  aud experimenting with
these systems has  helped us to closely examine mauy of the representation aud
efficiency trade-offs generated whetl using an integrated plauuiug  framework.

2 An Overview of IITN and Operator-based Planning

While we presume that tile rea(lcr lms a working k[lowledge  of basic o~wrator-
based plalltlitlg  aud IITN  plar~llirlg tcch~liqucs,  uc briefly revietv  the ~[lost salielit
diflerellces  of the two apl)roac}lcs.

An HTN plauuer  [Erol et al. 19’34] uscs task reductio~l  rules to decompose
abstract goals into low level tasks. Ily ddiniILg certain rwfuctioI]  refi[]e[tlents, the
user cau direct the plaurler  towards particular search patlis.  The user can also
directly iutluetlce  the plauuer  by addiIlg coIlstrairlt  information to a rule that
would Ilot, strictly be derived from goal illteractioli  alialyses.  lITN plar~ners  are



t.]ltui ccj[wificrt’(1  vt)r’y  flexil)ie it) rcl}reserlti[)g doluaiu illfor’nlatiorl, ~Jnfortutlately,
ttlis fl(’xil)ility  call ofte~] lca(l to Ilmnerous overly  -slmiflc r e d u c t i o n  rules that
call be (Ii fficolt to understalld,

It] co]lt,rast, arl o p e r a t o r - b a s e d  planrwrlu [1’enberttly  and \Veld 1992,  Car-
I)o]le]l  et al. 1992, Weld 1994]  rca.so~ls at a single level of abstraction - the
Iowwst  level. Actic)I~s are strictly dcflncd ill tetlus of prcccmditions  al~d cfl’ects.
Pla~M arc ~jroduced  tl~tongl) subgoaliug  and goal illteract,ioll  analysis. All plan
co~lstrai[lts are a direct consequence of goal actlicvemellts  and precondition aucl
effect  almlysis.  T1lis rigid rcpreselltation  is t)ottl a streug~h a[ld a weakness. It, is
advantageous since it more ex~dicitly  directs the k[lowleclge e~lgilleer in encoding
a do~naill. Yet, it can also Illake certain aspects of a l)roblcvu  difficult to repre-
scllt. F-or  example, k[lowll ordering constraints can be clifticult to encocle if they
catlnot  easily be represetlted  in terms of preconditiolls  ancl effects.

In an integrated IITN/operator  framework, a planner can usc multiple l)lan-
~ling lnethocls auci reason about different types of pla~lniug goals. Both the N4VP
and DPLAN planners use a siruilar  integration of IITN  and operator-based plan-
l~ing tuethods.  Domaitl  inforlnation  call be represented in either an HTN or op-
erator for[nat  ancl both  approaches can be usecl during ~)lallning to cleterl[line a
problem solution. Domain information pertaining to these two techniques is kept
se~)arate;  clecompositiollal  infor~nation is sl)ecified in decolnpositioll  rules, while
items  such as activity precondition and effects are kept in a separate schema list.
This clisti~lctiou is intmlded  to allow a planner to apply a wider variety of plan-
ning, techtliques  and to formulate cfomain  information in a flexible and usable
representation. These IJlanuers can also easily use additional domain information
for Inore efficient ancl flexible planning.

Two very relatecl systems to MVP and DPLAN  arc SIPE  [Wilkins 1988]
atld 0-I’lan [l’ate et al. 1994], which both allow for tile irltegratio~l of HTN and
o~)erator-basecl planning5.  IIowever, O-Plait and SIP13  do not retain as much of
all explicit clistinctiorl  betwecu  HTN and o~)etator-based planning techniques.
Instead, typically plan forlnulation  is priluarily  clone using decornpositiou  oper-
ators (or networks). Operator-based features such a.s preconditions ancl effects
are aclcled to these structures when necessary. In contrast, we support all ap-
~)roach in which IITN  planning  and operator-bzused  techuiclues can be used in
colljutlctiou  or’ as separate planning methods.

3 Representing Hierarchical ancl Modularity Information

Lfally of the ot.)stacles  in applying planning techuiclues to real-world problems
can be characterip,ed  as relwesentation  difficulties. One aclvautage  to enlplcyixLg
all IITN planner is the ability to use abstract representation levels of domain
object,s and goals, Allowing abstract representations of these ite~ns enables us to
rel)rese~lt  domains in an object-oriented form, which is easier to write aucl reason
about. This for[nat  also contributes to a rnox-e  general domain kuowleclgc base

5 It is wwrttt Iloting  that these systellls  co]nprisc  4 of the 5 apl,lications recently cle-
sclit,  ml in [lEI;I; Expert 1996].
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Fig. 1. Arlte]l,la  a[ld Receiver  l[icrarchies

that ca[l be efficiently updated a[ld ~llaiutained. l-Julike operator-based plaillmrs,
IITN plarl~lels provide direct sul)~mrt for this ty~m of represmltatioll.  6

3.1 Object and Goal  Hierarchies

whfXl USjIlg W H~N pkUI[lN’,  diffCTeUt dJShaCt  ]CV(?]S  O f  CIOIUajll Ol)jCCk NIC]

goa]scau be reprcseuted  by coustructingatl object or goal hierarchy. L40recle-
tailcd iuformatio~l such as object iustauces  is at one end of a }Iierarchy, while
very geueral  itlformatioll  such as broacl object ty~)cs is at the other end. II) the
DSN domaiu,  differeut  types of ecluir)rucnlt, are ofteu recluirecl  for ser)arate  atl-
temla activities. For example, ulal~y cliffercut ty~)es of auteu[las  are currently
represented in our rfomaiu,  Our doulaill  also iuclucfes several cliffereut types of
receivers, which are used toreceive data trausmissionsfrom orbit ingspacectaft.
IIL Figure I we S1]OW ~)artial  equil)niel)t Ilierarcilies  for ar)tcnllas  allc]  receivers.

The main  acfvautage to this tylJe of representation is that decomposition
rules cau refer to either low- or Iligh-level  forlns of a particular object  or goal.
I~~ttle DSNclo!llaill,  acoI1~I~~o]~  alltc)l~l~a  operatiorl  isperforlllillg atelettletry (or
clowulink)  pass where iufor~nation istrausmitted froma  spacecraft toauautenua,
A telc:rrletry I)ass~lsllally  requires  ollcofseveral  tyl)esof receivers  clel)e1lcli~lgo1l
the type of antel~ua beiug usecl. The maiu steps of the pass may be very similar
for rfifferellt  aute~luas even though differmlt  receiver types are required. By usiug
object  and goal hierarchies we cau write just onc telemetry decoulr)ositiorl rule
to represeut  the ,geueral steps take]) c!uriug  this operation. For ilmtaucc,  ill the
telemetry rule showIi in Figure  2, a general pe7f07?11-receiver-co7 Ljgl17(ltio?l goal
is asserted as a U(IW goal,

Information pcrtaitkixlg to specific equip~llellt  is contaiued  in sluallcr,  ]Ilore
specializcci rules, For iustal)ce,  specific receiver coufiguratio!l  stc[xs cau be added
separately by decomposing the perfoT?rL-Teceive7 -coTlfigurat20?l  goal. The rules
listed it~ )?igure 3 show two possible ways to break CIOWU  this goal for either a
Block-IV type receiver or a Block-V receiver. This format allows us to avoid
writiug Inultiple  versions of the main tclclnctry  rule.

—
G For a discussion of tt,cse issues in tile context of represer(ting,  reactii,e ~)lal,ni(,g

kno}vlcdge  see  [l:it},y  IXN],
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(decomprule  default-telemetry-track

Ihs

(initialgoals ((track-goal spacecraft-track telemetry ?track-id)))

rhs

(newgoals ((gl (perform-antenna-controller-configuration ?track-id))

(g2 (perform-exciter-n-transmitter-configuration ?track-icl))

(g3 (perform-microwave-controller-configuration ?track-id))

(g4 (~)crfort,,-receiver-co,,fiyurotio,, ?track-id))

(g5 (perform-telemetry-configuration ?track-id))

(g6 (move-antenna-to-point ?track-id))

(g7 (perform-receiver-calibration ?track-id)))

constraints ((before gl g6)

(before g7 g3)

(before g4 g7))))
—.—— —.—

Fig. 2. Telemetry I)ecomposition  Rule

(decomprule  default-telemetry-track

Ihs

(initialgoals ((perform-receiver-configuration ?track-id)))

conditions (( CC N-equipment-assign nlent  ?track-id ?equip)

((isa  ?equip BLOCK-IV-RECEIVER)))

rhs

(newgoals ((configure-block-iv-receiver ?track-id ?equip))))

(decomprule  configure-receiver2
Ihs

(initialgoals  ((perform-receiver-configuration ?track-id)))

conditions (( CCN-equipment-assignment ?track-id ?equip)

((isa  ?equip BLOCK-V-RECEIVER)))

rhs

( n e w g o a l s  ((configure-block-v-receiver?track-id?equip))))
—.

Fig .3 .  Two Decolllpositiorl  Rtllesfor Receiver  Co1lfiguratio~l

By allowing object and goal hierarchies, we can construct domains in an
object-oriented approach. Domain  information is easily understood ancl updated
sitlce domain details arc kept separate from more general knowledge. For exam-
ple, to uuclerstand  the general steps of a telemetry operation, a user only has
to view the main telemetry decomposition rule. If more low-level kuowledge  is
desired, such as how to operate a particular piece of ecluipment,  the user could
search for rules that clirectly pertain to that equipment type. Knowledge main-
tenance is also more efficient. Most dolnain  updates involve changes to only
low-level ste~)s. For imtance, adcling a new type of receiver to the domain, would
not cause any rules that refer to more general receiver goals to be modified.
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Unfortunately, a mociular representation often makes it difficult to represent
mote specialized inter-modular constraints. TIImc types of constraints refer to
iuforlnation i]lsidc of several rtiffere~lt  cleconlpositioll rules and are usually only
a~Jplicabk in cettaill situations. I)efinillg these constrail}ts  forces the addition of
more specialized rules and often causes a hierarchical representation of rules to
be infeasible,

Forexalllple, WILCII perfornlin, greceive tcalibration ill the DSh’ clomaitl,  it is
sometimes uccessary  for high-level rules to refer to s~)ecific receiver calibration
steps.  When using a Block-I\~ receiver, VL131 (Very Long Baselilm I~terferon~c-
try) telemetry tracks clirectly i[npose high-level ordering constraints on specific
receiver calibration steps, instead of on a more general calib7ate-receiver goal.
Twodifferent  VLBItracks  areshown  in Figllre4; the left uses aFllock-V  receiver
aucl the right a 1310ck-IV receiver. I,ow-level  receiver calibration steps are shown
in the shadecl  areas. In the B1ock-V  case, receiver calibration is mapped onto
a sillgle general operator. How’ever, ill the Block-IV case it corrm~)onds  to five
low-le~wl steps  which have constraints i~nposed on thenl  by the telelnetry rule.
These constraints coulci he modified to refer to a more gel~eral  goal (consistil~g  of
theshacled area), but thc[lsl)ccializecl  collstraitlt  i~lforl~latiorl  w~o~llcl  be lost. For
instance, currently the corlfig-~DA step a~id co?~fig-c~ctr  step  ca[l be perfor~ued
in parallel; however, if all ordering  co]lstraiuts  are forced to refer to the entire
shadecl  areas, sLlch parallel  execution would violate an ordering constraint,

Ox~e solution,  which stays within the HTN franlework,  istoencocle separate
ILIICS for tracks that recluite these inter-nlodular  constraints. Unfortunately, this



solllt,  ioli rcwults  ill less rule gmlc[ality  and i[lcrcases tllc co~n~)lexity of the cfo-
II)ai[l ddiuitioll. A1lotller  ~)ossibility is to cxq)rcscvlt tllc kllo~vledgc  ill a  pu re ly
operator-based forluat.  ‘lllis optiorl oftcll provides a l[mre colnlmct  representa-
tio~l of required constraint i[lforlnation,  however, it has tile disadva~ltages  of (1)
losing tile representation hierarctly  and (2) requiri~lg  tllore seatcll.

A more satisfactclry  solutio~l is to i[icorljoratc  operator-based plauni[lg  tech-
lliques u’ith the hierarchical rcpreseutatiou.  Insteacl of directly acfcfing these con-
straints to decomposition rules, we call irllplicitly  reI)resellt  thcm  by adcling
precollctitions  aucl effects to low-level track steps I’llis approach permits illter-
Inodu]ar  cmteriug constraints to be separate from ctecon~positio~l  rules, thereby
allowing rules to retain their modularity. Thus, in IJigure 4, the Iitlk between
conjig-MDA  aucl the low-level calztJmte-Block-Z V-receiver step WOUIC1  be rep-
resented through preconditiotls  and effects. The relevant orcleriug colistraints
WOUICI eventually be added through operator-based precondition achievertieut.
The only clrawback to this formulation is that acquiring constraints through
gc)al achievement instead ofspecifyingthmn  directly in decomposition rulm  in-
creases search. However, we feel this is all adequate tracleoff since it allows us to
represent our domai[l  information in a nlore useful a~~c{ flexible format.

Point 1: Hierarchy and Modularity }11’N approaches have the udva7l-

tczge ofcasi[ys tL~~~~orti7tga  }lierarchica!r  c~~rcserltatio~i.  o~)c~(ltor-based  a~)~)roac~tes
have the advantage of generality, siTLcc they can cotler?rLaTly ~~[a7t71ing  situatio?ts
Ullconsiderecl by the knowledge engineer. yet,  they ale usually  less cficient. A
hybrid HTN/operator- based approach allows an encoding that supports hierarchy
and generality, without requiring an overly large search space.

4 Encoding Implicit Constraints

Another advantage to using a hybrid planning systeln  is the ability to encode
i~nplicit constraint inforlnation.  These are constraints that may not be obvious
when defining decomposition rules or operators, but are still necessary for correct
planning. Consicter the following exatnple.  Whell performing a telemetry passin
the DSN domain, a required step is to position the antenna to point at a specified
set c) f coordinates  (represented by the goal 7)io~/c-a7~ten7ta-  to-poi?~t).  However,for
matly pre-calibration steps, which prepare the antenna for a transmission, it is
necessary to have the antenna in a stow position where stray trans[nissious  are
clirectecl at a harnlless  location. The antenna is uot  movecl to point at the final
cc)c)rdillates until most pre-calibratioll  stel)s have bcml executecl. unfortunately,
when defining the DSN domain, this co[)straint  is often (accicleutally)  left out
of nlal~y pre-calibration  decomposition rules since it does not clirectly affect the
success of pre-calibration activities.

One way to cnlforce  this co~lstraint  is to ex~)licitly acid orclcring constraints
to all telenletry clecolnposition  rules that specify ?~~owe-a7~te7t?~ a-to-poi7~t. be or-
dered t~jtera[ly  activity that could cause thealltenn atotransmit.  Unfortunately,
such a collstraitlt nlay have to be sl)ecified Ilumerous times if there are nlulti-
ljle r[lles to wllicli it al)~)lics.  A~lotller option  is to use operator-basecl precondi-



tiO1l/efIcct  alialysis.  \$’[’ collld il(ld  a ~)two[t(litioll of 7tot(f~71te71.7  LfL-(~f-T1r)~rlf)  to ally

I)rc-calibtatioll  a c t i v i t i e s  t h a t  colll(l cawse allt(’III)ii  tlalwlllissioll.  ‘1’liis ~)revellts
the 71 Lovc-a7~tc7L7Lf1 -to-T~oz7~t  stcy) froln being ord(’md Ix’fore ally l~rc-ctilil)r{ltic)ll
activities that use the tralmlittcr. Ullfortuliatcly,  this ol)tioll requires  a liunllmt
of extra ~Jrecollclitions to be added al~d could possibly illducc more scarcll.

A better solutio)} is to utilize hotli  IITN al~d operator-ba.wxl techl~iques.  First
we call add a protectio~l to the maili tele~llctry decolnposition  rule that forbids
stray transmissions clurillg the elltim  lJre-cal  process. Thell,  using operator-based
methods, we call require ally pre-calil)ration  trarmrlissioll  action  to have a condi-
tional effect Ivhicll  violates this require[nellt  when the conditiml  a7Lte7~7)c~-af-IJoz7Lt
is satisfied. This strategy requires pre-calibration  actions that cause ttatlslnis-
sions to be ordered before tile actiori 71 Lovc-a7Lte7L7La-  to-poi7)t  is executed, and it
causes the least amount of knowledge maintenance,

Po in t  2 :  Imp l i c i t  Cons t r a in t s  An HTN  approach offe7s g7cat @zbzIzty
in specifying arbitrary constraints, but may require restating constraints multi-
ple times (urhen no appropriate hierarchy ezists).  Operator-based methods can
also be used to represent these constraints however they often lead to a prolij-
e7 ation of operator preconditions. IIybrid  methods offm the greatest flc~ihi[zty in
representing implicit constraints.

5 Scripting vs. Declaring

Another notable  difference between 111’N arid operator based ap~)roaclles  is that
the HTN ap~)roacb  allows the encoding of specific action secluences  while all
o~mrator-based approacil  oftc[l incurs  sig[lificant scarcll to construct Lllis same se-
cluence. Conversely, whe~l olx.7rator-s can be combirled in many clifferexlt ways but
still have interactions, ar~ operator-based representation can be a ItLore  concise,
natural method of encoding, these constraints. In varying domains, or portions of
olle domain, different asl)ects  of these represent at io~) t racleoffs  are I elevant.  Irl or-
der to demo~lstrate  this tracleoff we performed an experiment whm e a kuowledge
etlgineer  (KE) encodecl  a simplified portion of the MVP it[}age processing clornain
[Chien ancl Mortensen  1996].7 This portion represented a subproblem  callecl illl-
age rlavigation.8  The KE clevelopecl three planning models, one in which only
operator-based techniques were used, orle where only IITN techniques were used,
and one where both  tecll~liqoes were usecl.

All possible steps of the image navigatiorl  prohleln  are S11OWI1  ill Figure 5.
In the most basic case the process woLild involve setu~) steps A.1 a~ld A.2, at~d
automatic navigation ste~)s 11.4 and 11.5. However, in some cil culllstarices  all
asterisked steps would also be added. For example, if there is an i[litial  tiepc)i~lt
file, step A.3 might be added.
——

7 ‘rhe knowledge engineer had sotnc knowledge of the in~agc l,rocessillg  ap})licatioll
and had no knowledge of this paper or research topic.

8 This is perhaps the r])ost  colliplex sub[,roble[n  in this image i)rocessirlg  do][lain.  It
involves 8 top-level goals and 40 operators; a typical plan nligt(t rat~gr frolll 20-50
operators.
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Unfortunately, this is a very simplified llavigatiorl  casse. In most cases, the user
would request a ph~sc navigation process which woulcl inclucle more steps from
both B and C. In these situations, manual navigation (C) woulcl be performed
to fine-tune the results of automatic navigation (B). To even more com~)licate
matters, the exact specification of many steps depends on if other steps  are
being performed. For example, if residual error output is a recluestecl  goal, steps
B.6 and C.9 must be executed. This recluires  that step B.5 ancl step C.8 have
appropriate parameter settings to compute the residual output.

Furthermore, we have only listecl the major component steps of navigating
the image. There are also secondary steps that extract information from the
image label. These secondary steps help appropriately select program parameters
for each of the main ste~)s listecl in Figure 5. These extra details account for
additional operators and steps in the plan not shown in Figure 5.

We compared the three knowledge bases constructed by the KE  for this
problem using the followiJlg measures: compactness of encoding, modularity (lack
of repetition), ancl searctl  efficiellcy. In Figure 6 wc summarize the number  of
HTN rules, number of operators, and search required for the most ccmplex
problems in each of the encodings.

Fig. 6. Knowledge lncoding Statistics

Encoding # IITN  Iiules  Operators Search
O~mators o 8 26
1{ Ulcs 15 NA 5
lIyl,rid 5 8 18

Ilasecl  01] our results, the ~)ure opc’ratc]r-based  representation is inefficie~it
from a search perspective. While only a small subset of the operator combinations
will actually be used it) solving problems, this type of framework requires that the



all opcv at ors  lx} sufficicrlt Iy ac(IIIatc to IIIle out all ot l~cr collll)irlat  iolts.  It is also
d i f f i c u l t  to (Ict)ug ttw oiwrators to PIMIIN’ gell(’ratiol~  of ol~ly vali(l s(xlllr]l(vs.  011

writil]g, a [Jute o[)(’I:ltor-l):lsecl rcl)rcsc[itatioll tll(’ KE sai(l “7’hf’ 0fJCTllt07’  f(’[] ‘111(1,$

thC 7M)St  di&Cdt  tO L!71COdf.  ~?ltl  Slrldl  Ch(lTl~C  t@C/LlhJ  ClffCCtCd  711(L?1U  0]l(!7’lLtO?”S

rLn~  wotdd  ?rquirc great Te - tc. stin!g. ~ccause I had  uJo?hd  rllyscl.i into a Co? ’’rlcr, 1
hud tO St(L7’t  fl’oTIL SC7%tCh  a ftw t2VLCS.  ~07’  t h e  fin(d  t2711@,  [ l(!did fh(lt I nmdcd
to fullp  map the entire structure (27wlding  para7ne.tc7s)  071 papc7.  “

I{epreselltillg  this proljlem ill a pure H’I’N  fralnewotk  is also difficult. hlally
complex con~binations of clcpclldmlcies  al~d itltetrelations recluire  Ilulllerous dc-
cotll~)ositioll rules. Generally, tllerc  is o!ic reduction rule for eacl~ basic seclueuce,
and one rule for each colnt)inatioll  of add-OI)S  to tile basic Scqucllce, L)llfor’tw
nately,  this creates a proliferation of rules which are clifficult  to u[derstaucl  and
maintain. ‘1’he HTN e[lcoding of this probleln  resulted i[~ 4 rules to cover tbe
automatic navigation process, 2 to cover the manual navigation process, ancl also
a xlumber  of additional rules to aclclress with  previous tiepoint files (Step A.3).
‘1’hese  rules account for the 15 rules requirecl for the pure HTN rcpresentat ion.

In the combined HTN and operator-bawd framework it is possil~le to repre-
sent, clifferent  parts of the plan generation process using operato[-based  ancl/or
HTN  methods. Basic sec[uences can be easily represented using HTN rules h’fore
complex ac{clitions to each basic sequence call be represerlted  through operator-
basecl constructs such as preconditions and conditional effects. Ol~ce tbe basic
sequence has been deterlnined  through  cfecotnposition, goal-achievelncnt  is USCCI
to adcl additional constraints or clellenclencies. The complex navigation probleln
discussed above can now be represented as a separate script. For example, the
two basic navigation j)h~ses, autolllatic navigation ancl manual navigation, call
be represented ill an HTN framework. IIowever, slight modifications from the
defaul t  f ramework (SUCII as wbetbcr  or uot to usc an initial  tiepoint  file) can
be ]inlcecl in using operator-basecl  planning techniclues. This results in a reduced
number of rules (compactness) atld avoiclauce  of reclundaucy  in the KB. Avoiding
reduncfa~~cy is especially important since redundant portions of the KB must all
be upclatecl  whenever one part is cllangecl. This can lead to errols  alicl increased
maintenance costs.

330int 3: Scripting vs Declaring An llTN jra7nework is rnorc  seavch eflL-
cienf  than an operator-based 07113  i7L cases where  07dy  a few sequences of operators
are valid. A7L operator-based framework is representationally  much cleaner, how-
ever, it requi~es a mom general set of operators that can comectly 7nanage many
possible execution paths. 17L a hybrid !ranieu]ork,  we can interleave the tu~o plrLTL-

n~ng  processes (and representations) to produce an cflicient  planner  that SUf)J)OTb

a compact, nlaintainuble  representation

6 Other Representational Issues

6.1 Stat ic  Domain Information

One important issue in both operator-basccl ancl HTN-b~secl  planning is the abil-
ity to efficiently use static. state information to asist in pruliing, the search s[)ace.



often, decom~mitioll  coalitions or operator pruwnditicms  cmk bc colisiderml
static if t~ley will rxxnaill uIIc]Iaf IgN] thrmg]mut  tllc phIiIIing  process.  Tlicsc  con-
ditioljs  call usually be evaluated immediately, which will lielp to initially prune
tllc search space. Differcxlt  planners  are able to take advantage of this static
infmnatiwl ill varying degrees. Ill our integrated plaliniag  framework, static
preconditions occuri[lg  in dccolnposition  rules are labeled a.? such and only vari-
able Lilldillgs which satisfy thmn are generated whmi collsiclerillg  applicable cle-
com~]osition  r’u]cs. Thus, codr’signation  COItlnlittkNWt  to satisfy static col~ditions
occurs, but unnecessary comlnitmcnt  for other subgoals and variables is avoidecl.
These  static conditiol~s are rclatecl to filter conditions [Pryor ancl Collins 1992]
in that they are a specific type of filter condition restricting tlw al)plicability  of
the operator. IIowever, precisely because static co~iditions  cannot be changed by
operators, they can be e,~sily evaluated by a partial orcler planner and used in

cletermining  the applicability of a decomposition rule or operator.

6.2 Nolninal Plan G e n e r a t i o n

It is often clesirahle to I)redict (and control) the plans that are generated for
nominal or near-nonlitlal  conditions. For example, wl~en the problem goals or
initial state change slightly, it is often desirable for the output plan to also change
only sligl~tly.  This is a strong user requirement in both  the image processing and
DSN antenna operations applications. In operator-based planners, it is often
clifflcrrlt  to encode such preferences. The plarmer  would typically only be Ieclrrired
to generate a correct plan. In contrast, since HTN planning techniques are closer
to scripting, lITN planners offer good contrcd over nominal or near-nominal
plan generation. Hybricl  HTN/operator  planning framrnvorlcs  can thus also offer
control over nominal plan generation.

6.3 Replannitlg

A key requirement ofn~anyreal-worl  dplanning systemsis theability to replan
when plan goals or other conditions change. Replanning generally requires basic
Icrlowleclge c)f wily certain goals and actions are present in the plan. This requires
a basic level of operator-basecl  information and is mostly supported through
tecIlniclues  such as precondition and effect analysis. HTN approaches often en-
courage the omission of this information from the domain knowledge since it is
not, recluirecl for normal  plalming.  It) order to replan, hybricl techniques must
still  maintain any relevarit  precondition and effect information. Therefore, if re-
planning is l~ecessary,  much of the ease of an HTN erlcocling approach is lost
because  asignificant arncmnt  ofopcrator-basec  lil~forlnation is still requirecl.

6.4 G o a l  M o d i f i e r s

A relevant cliffcrel~ce l~etw’eerl  ol)erator-t~~secl  allcl}ITN  plaIllliI~g  istl~eri(ll~lt]cr
c)f goal rno(lificrs  that rllust he lllailltained.  III o~wrator-basecl plannirlg} relevant



goal modifiers am listed as argu[iw[lts to tile goal prmlicatc.  I’llesc Illoflififm tlle[l
~et propagated  from goal to subgoal tlltougl] o~matots. TILUS, arly  I)ararlleters
that are possifJly  relevant to a goal (and any of its su})goals) ulllst }W prescllt  as
goal argummlts.  This procedure can res(llt in loll.g arp,(llucnt lists (ofterl 10s of
paranleters), thereby increasing the cliflkulty  of knowledge mailltcnallre.  Ill IITN
plallningl  relevant modifiers arc typically propagated top-dolvll frolo at)stract
goals which expand into more specific activities. While this process still  requires
all possibly relevant parameters to be present, the expansiol}.s  tend to result
in short wide structures (e.g. an H’1’N  rule expands a single goal i[lto nlany
~OdS). T1lUS, arg[l[lle[lt le[lgthS CfUiCkly  get SllOltCT at 10W’el ]eVek Of ~iJStlaCtiOI1.

Unfortunately, a hybrid approach requires goal arguinents  to supl)ort  both HTN
and operator-based planning and hence offers no advantage over either.

7 Conclusion

~IliS Pa])er h a . ”  deSCtikJCCl a  llU1llbel’  of lSSUeS IWballt iIl re~)rf%~llti[(~ ~)h[lill~

knowledge in operator-basccl  and HTN-ba.sed paradigms. TVe have described the
main tradeoffs of using either HTN or operator-based specifications to represent
domain knowledge. In particular, we discuss how these different Inethodologies
impact the naturalness of the representation. HTN approaches are strollg  at nlocl-
ular  ancl hierarchical representation, however operator-based approaches usually
provide a more compact representation of constraints. Hybrid representations
are best at managing the tradeoff between generality and ef%ciency. Hybrid al)-
proaches  are also most ffexible at encoding implicit constraints. HTN/hybrid
approaches offer most control over  non~illal  pIan generatiollt but operator-based
techr]iclues  offer the most support for replanning. HTN approaches most cleanly
represent goal argurtlent regressions. Fla.secl on these criteria we cclnclude that
neither the operator-based approacli nor the HTN approach clorninates the other.
Rather, in some cases the operator-based representation is more appropriate and
in other cases the HTN representation is more appropriate. Thus, it seems most,
prudent to advocate usage of hybrid llTN/operator  techniques.
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