Test Plan and Executive Summary for

IRGANOX 1035

Thiodiethylene bis (3,5-di-tert-butyl-4hydroxyhydrocinnamate)

CAS No. 41484-35-9

Name of Sponsoring Organization: HPV Registration Number: Technical Contact Persons: Address:

Tel: Fax: Date: Ciba Specialty Chemicals Corporation

Richard Balcomb and Shailaja Rao 540 White Plains Road Tarrytown, New York 10591 USA (914) 785-2000 (914) 785-4147 AUGUST 8, 2003

EXECUTIVE SUMMARY

A. Introduction

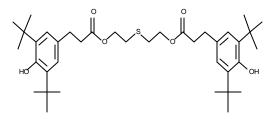
An important objective of EPA's High Production Volume (HPV) chemical challenge program is the gathering and public release of basic hazard information on those chemicals manufactured at high volumes in the United States. Ciba Specialty Chemicals has agreed to participate in this program and hereby submit for review and public comment our available data and test plan for Irganox 1035.

B. General Substance Information

Chemical Name: Thiodiethylene bis (3,5-di-tert-butyl-4hydroxyhydrocinnamate)

Appearance: White to off-white crystalline powder.

Typical Commercial Purity: >99%


Chemical Abstract Service Registry Number: 41484-35-9

Trade Names: Irganox 1035 and Irganox L 115

Chemical Formula: C₃₈H₅₈O₆S₁

Molecular weight: 642.94

Structure:

C. General Use Information

Thiodiethylene bis (3,5-di-tert-butyl-4-hydroxyhydrocinnamate), commonly known as Irganox 1035, is a sterically hindered phenolic antioxidant. Irganox

1035 is a thermal stabilizer recommended for the stabilization of polyolefins, elastomers and other polymeric substances. Irganox 1035 is also an effective stabilizer for inhibiting oxidation, gel formation and discoloration of EPDM (ethylene propylene diene monomer), polybutadiene and emulsion SBR (styrene butadiene) organic substrates such as plastics, synthetic fibers, and elastomers. Irganox 1035 is widely used for stabilization of polyethylene cable and wire resins. Under the tradename Irganox L 115, the compound is sold as an additive for synthetic and partially synthetic lubricants and for engine oils.

This product has been cleared by the FDA for use in polymers, resins or adhesives intended for food contact applications [21 CFR (Code of Federal Regulations) § 178.3570] at concentrations up to 0.5% of the article.

Environmental Endpoints

Existing ecotoxicology data for this chemical indicate that it has low toxicity to fish and aquatic plants. Testing has also shown it is moderately toxic to aquatic invertebrates. The solubility of the compound is very low and residues that enter aquatic systems will likely become bound to sediment. The material is not readily biodegradable, however, environmental exposures are expected to be negligible and overall there is low concern for adverse ecological effects.

A hydrolysis study has not been conducted. The very low water solubility of the compound makes such testing impractical or impossible. The low water solubility of the material also makes it unlikely that hydrolysis would be a significant route of environmental degradation. No testing is proposed for this endpoint.

Toxicology Endpoints

Available mammalian acute toxicity data indicates the material is practically non-toxic by oral, dermal or inhalation exposure. The compound is also not mutagenic or clastogenic. Subchronic testing has shown the material is well tolerated over periods up to 90 days with no clinical effects or mortality. The principal effect observed is enlargement of the liver.

Specific reproduction and developmental tests are not available. Ciba proposes to conduct a developmental study (OECD 414 protocol). The need for a reproduction study will be met based on the analysis of reproductive organs in the existing 90-day studies and the developmental study that is proposed.

This material is sold only to large industrial users as an ingredient for their products and processes. There are no direct consumer applications for this compound and no direct sales to the general public. Ciba's industrial hygiene

programs and Responsible Care practices limit worker exposure and no adverse effects have been associated with manufacturing or use of the material.

Conclusions

Acceptable test data are available for the majority of HPV endpoints. These data do not raise significant concerns for adverse effects on man or the environment from the product as presently used. A developmental toxicity study will be initiated following EPA's review of this submission.

SUMMARY TABLE

PHYSICAL/CHEMICAL ELEMENTS	DATE	RESULTS	FULFILLS REQUIREMENT
Melting Point	2001	63.0 – 68.0 °C	Yes
Boiling Point	2003	664.94 °C	Yes
Vapor Pressure	2003	7.5 x 10 ⁻¹⁸ mm Hg	Yes
Partition Coefficient	2003	log Kow > 10.36 (estimated)	Yes
Water Solubility	2003	< 1 mg / liter (measured) 4.55 x 10 ⁻⁷ mg/ L (estimated)	Yes
ENVIRONMENTAL FATE A	2003	For reaction with hydroxyl radical, predicted rate constant = 60.98×10^{-12} cm ³ /molecule-sec. Predicted half-life =	Yes
Stability in Water / Hydrolysis	2003	2.103 h. EPIWIN model could not evaluate this structure. Experimental determination is not practical due to low water solubility.	NA
Fugacity	2003	Predicted distribution using Level III fugacity model Air 0.00046 % Water 1.04 % Soil 44.4 % Sediment 54.6 %	Yes
Biodegradation	1984	Not biodegradable 10 mg/L: 7% in 28 days 20 mg/L: 2% in 28 days	Yes
ECOTOXICITY ELEMENTS			
Acute Toxicity to Fish	1984	Zebra Fish : LC_{50} (96 h) > 57 mg/L	Yes
		Rainbow Trout: LC_{50} (96 h) > 61 mg/L	-
		EC_{50} (0-72 h) > 41 mg/L	Yes
Toxicity to Aquatic Plants	1993		
Toxicity to Aquatic Plants Acute Toxicity to Aquatic Invertebrates	1993 1984	i) EC_{50} (24 h) > 4.4 mg/L	Yes

SUMMARY TABLE (CONTINUED)

HEALTH ELEMENTS	DATE	RESULTS	FULFILLS REQUIREMENT
Acute Toxicity	1982	Rat: LD ₅₀ (Oral) > 5,000 mg/kg	Yes
	1975	Rabbit: LD ₅₀ (Dermal) > 3,000 mg/kg	
	1975	Rat: LD_{50} (Inhalation) > 6,300 mg/m ³	
Genetic Toxicity			
In Vitro (Ames)	1984	Ames Test - Salmonella typhimurium: No increase in mutations with or without metabolic activation (at doses of 20, 80, 320, 1280 and 5120 ì g/ 0.1 ml)	Yes
In Vivo (Nucleus Anomaly Test)	1984	No Nucleus anomalies found in Chinese hamster bone marrow cells following oral doses of 875, 1750 and 3500 mg/kg	Yes
Repeated Dose Toxicity Subchronic Toxicity			
i) 90-Day oral toxicity study in rats	1983	NOEL = 60 ppm	Yes
ii) 90-Day oral toxicity study in rats	1973	NOEL < 10000 ppm	
iii) 90-Day oral toxicity study in beagle dogs	1973	NOEL = 2000 ppm	
Reproductive Toxicity		No significant effects on reproductive organs in available subchronic tests with rats, mice and dogs.	Requirement will be met based on results of subchronic studies and the proposed developmental study.
Developmental Toxicity		Not Available	Testing Proposed