

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

φ(1020) MASS

We average mass and width values only when the systematic errors have been evaluated.

VALUE (N	1eV)		EVT	<u>-S</u>		DOCUMENT ID		TECN	COMMENT
1019.417	7 ± 0.014	OUR AVERAG	SΕ	Error i	nc	ludes scale facto	or of	1.8. Se	e the ideogram
1010.00	0.10				1	below.	00-		+ -
1019.36	± 0.12				1	ACHASOV	00B	SND	$e^+e^- ightarrow \eta\gamma$
1019.504	1 ± 0.011	± 0.033	314	k		AKHMEISHIN	99D	CMD2	$e^+ e^- \rightarrow K_L^0 K_S^0$
1019.38	±0.07	± 0.08	220	0	2	AKHMETSHIN	99F	CMD2	$e^+e^- ightarrow - lpha \ \pi^+\pi^- \ge 2\gamma$
1019.51	± 0.07	± 0.10	1116	59		AKHMETSHIN	98	CMD2	$e^+e^{\pi^+\pi^-\pi^0}$
1019.5	± 0.4					BARBERIS	98	OMEG	$450 pp \rightarrow pn2K^+2K^-$
1019.42	± 0.06		5560	00		AKHMETSHIN	95	CMD2	$e^+e^- \rightarrow$
1019.7	± 0.3		201	2		DAVENPORT	86	MPSF	$400 \ pA \rightarrow 4KX$
1019.411	1 ± 0.008	3	642	k	3	DIJKSTRA	86	SPEC	100–200 π^{\pm} , \overline{p} ,
1019.7	± 0.1	± 0.1	507	9		ALBRECHT	85 D	ARG	$p, K^-, \text{ on Be}$ $10 e^+ e^- \rightarrow k^+ k^- \chi$
1019.3	± 0.1		150	0		ARENTON	82	AEMS	$\begin{array}{c} n & n \\ 11.8 \text{ polar.} \\ nn \rightarrow KK \end{array}$
1019.67	± 0.17		2508	30	4	PELLINEN	82	RVUE	$pp \rightarrow RR$
1019.52	± 0.13		368	1		BUKIN	78C	OLYA	$e^+e^- \rightarrow$
						<i>c</i>			hadrons
• • • VV	/e do no	t use the follow	ing d	lata to	r a	iverages, fits, lir	nıts,	etc. • •	•
1019.8	± 0.7					ARMSTRONG	86	OMEG	85 $\pi^+/pp \rightarrow \pi^+/p4Kp$
1020.1	± 0.11		552	6	5	ATKINSON	86	OMEG	20–70 γ p
1019.7	± 1.0					BEBEK	86	CLEO	$e^+e^- \rightarrow \gamma(4S)$
1020.9	± 0.2				5	FRAME	86	OMEG	$13 K^+ p \rightarrow K^+$
1021.0	± 0.2				5	ARMSTRONG	83 B	OMEG	$\begin{array}{c} \phi K \ p \\ 18.5 K^{-} p \rightarrow \end{array}$
1020.0	± 0.5				5	ARMSTRONG	83 B	OMEG	$ \begin{array}{c} K^{-} K^{+} \Lambda \\ 18.5 K^{-} p \rightarrow \end{array} $
1019.7	± 0.3				5	BARATE	83	GOLI	$K^{-}K^{+}\Lambda$ 190 π^{-} Be \rightarrow
1019.8	± 0.2	± 0.5	76	6		IVANOV	81	OLYA	$1-1.4 e^+e^- \rightarrow \mu^+ \mu^-$
1019.4	± 0.5		33	7		COOPER	78 B	НВС	$0.7-0.8 \overline{p} p \rightarrow 0.7-0.8 \mu p$
1020	± 1		38	3	5	BALDI	77	CNTR	$ \frac{\kappa S}{\pi} \frac{\kappa L}{\mu} + \pi $ 10 $\pi^{-} p \rightarrow \pi^{-} \phi p$

1018.9	± 0.6	800	COHEN	77	ASPK	$6 \pi^{\pm} N \rightarrow_{\kappa^{\pm} \kappa^{-} N}$
1019.7	± 0.5	454	KALBFLEISCH	76	HBC	$2.18 \frac{K^{-}}{K} p \rightarrow$
1019.4	± 0.8	984	BESCH	74	CNTR	$2 \gamma p \rightarrow \psi^{\pm} \psi^{\pm}$
1020.3	±0.4	100	BALLAM	73	HBC	рК ' К 2.8—9.3 үр
1019.4	± 0.7		BINNIE	73 B	CNTR	$\pi^- p \rightarrow \phi n$
1019.6	± 0.5	120	⁶ AGUILAR	72 B	HBC	3.9,4.6 $K^- p \rightarrow$
1019.9	± 0.5	100	⁶ AGUILAR	72 B	НВС	$\begin{array}{c} \Lambda K^+ K^- \\ 3.9,4.6 \ K^- p \rightarrow \\ \kappa^- \ \kappa^+ \kappa^- \end{array}$
1020.4	± 0.5	131	COLLEY	72	НВС	$K pK + K$ $10 K^+ p \rightarrow K^+$
1019.9	±0.3	410	STOTTLE	71	НВС	$ \begin{array}{c} \kappa & p\phi \\ 2.9 & K^{-} & p \rightarrow \\ \Sigma & \Lambda & \overline{K} \end{array} $

 1 Using a total width of 4.43 \pm 0.05 MeV. Systematic uncertainty included.

 2 Using a total width of 4.43 \pm 0.05 MeV.

 3 Weighted and scaled average of 12 measurements of DIJKSTRA 86.

⁴ PELLINEN 82 review includes AKERLOF 77, DAUM 81, BALDI 77, AYRES 74, DE-_ GROOT 74.

⁵Systematic errors not evaluated.

⁶ Mass errors enlarged by us to Γ/\sqrt{N} ; see the note with the $K^*(892)$ mass.

 $\phi(1020)$ mass (MeV)

φ(1020) WIDTH

We average mass and width values only when the systematic errors have been evalutated.

VALU	E (MeV)	EVTS	1	DOCUMENT ID		TECN	COMMENT
4.458	± 0.032 OUR AVE	RAGE	_				
4.477	$2\pm 0.036\pm 0.022$	314k	/	AKHMETSHIN	99 D	CMD2	$e^+e^- \rightarrow K^0_I K^0_S$
4.44	± 0.09	55600	/	AKHMETSHIN	95	CMD2	$e^+e^- \rightarrow hadrons$
4.45	± 0.06	271k	I	DIJKSTRA	86	SPEC	100 π^- Be
4.5	± 0.7	1500	/	ARENTON	82	AEMS	11.8 polar. $pp \rightarrow KK$
4.2	± 0.6	766	71	VANOV	81	OLYA	$1-1.4 e^+e^- \rightarrow \mu^+ \mu^-$
4.3	± 0.6		7 (CORDIER	80	WIRE	$e^+e^- \rightarrow \pi^+\pi^-\pi^0$
4.36	± 0.29	3681	7	BUKIN	78C	OLYA	$e^+e^- ightarrow$ hadrons
4.4	± 0.6	984	7	BESCH	74	CNTR	$2 \gamma p \rightarrow p K^+ K^-$
4.67	± 0.72	681	7	BALAKIN	71	OSPK	$e^+e^- ightarrow$ hadrons
4.09	± 0.29		I	BIZOT	70	OSPK	$e^+e^- ightarrow$ hadrons
• • •	• We do not use the	e following	g da	ta for averages,	fits,	limits,	etc. • • •
3.6	± 0.8	337	7 (COOPER	78 B	HBC	$\begin{array}{c} 0.7 - 0.8 \ \overline{p}p \rightarrow \\ \kappa_{c}^{0} \kappa_{c}^{0} \pi^{+} \pi^{-} \end{array}$
4.5	± 0.50	1300 7	7,8	AKERLOF	77	SPEC	$400 \ p A \rightarrow K^+ K^- X$
4.5	± 0.8	500 7	7,8	AYRES	74	ASPK	$3-6 \pi^- p \rightarrow$
							$K^+K^-n, K^-p \rightarrow$
							$K^+K^-\Lambda/\Sigma^0$
3.81	± 0.37		(COSME	74 B	OSPK	$e^+e^- \rightarrow K^0_L K^0_S$
3.8	± 0.7	454	7	BORENSTEIN	72	HBC	2.18 $K^- p \rightarrow \overline{K} \overline{K} n$
7 _V	Vidth errors enlarge	d by us to	5 4Г	\sqrt{N} : see the n	ote v	with the	$K^{*}(892)$ mass.

⁸ Systematic errors not evaluated.

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Γ ₁	K^+K^-	(49.2 ±0.7)%	S=1.2
Γ_2^-	$K_{1}^{0}K_{5}^{0}$	(33.8 ±0.6)%	S=1.2
Г ₃	$\rho \pi + \pi^+ \pi^- \pi^0$	$egin{array}{ccc} (15.5 \pm 0.6 \end{array} egin{array}{ccc} \% \end{array}$	S=1.4
Г ₄ Г ₅	${\scriptstyle ho \pi \ \pi^+ \pi^- \pi^0}$		
Г ₆	$\eta \gamma$	$(1.297\pm0.033)\%$	S=1.2
Γ ₇	$\pi^{0}\gamma$	(1.26 ± 0.10) $ imes$	10 ⁻³
Г ₈	e ⁺ e ⁻	(2.91 ± 0.07) $ imes$	10 ⁻⁴ S=1.2
Г9	$\mu^+\mu^-$	(3.7 \pm 0.5) $ imes$	10 ⁻⁴
Γ ₁₀	$\eta e^+ e^-$	(1.3 $\substack{+0.8\\-0.6}$) $ imes$	10 ⁻⁴
Γ_{11}	$\pi^+\pi^-$	$(7.5 \pm 1.4) imes$	10 ⁻⁵
$\Gamma_{12}^{}$	$\omega \pi^0$	(4.8 ±2.0)×	10 ⁻⁵
Γ ₁₃	$\omega\gamma$	< 5 %	CL=84%

 ϕ (1020) DECAY MODES

HTTP://PDG.LBL.GOV Page 3

Created: 12/18/2000 15:04

Γ_{14}	$ ho\gamma$	< 1.2	imes 10 ⁻⁵	CL=90%
Γ ₁₅	$\pi^+\pi^-\gamma$	(4.1 ± 1.3)	$) imes 10^{-5}$	
Γ_{16}	$f_0(980)\gamma$	(3.4 ± 0.4)	$) \times 10^{-4}$	
Γ_{17}	$\pi^{0}\pi^{0}\gamma$	(1.08 ± 0.19	$) \times 10^{-4}$	
Γ ₁₈	$\pi^+\pi^-\pi^+\pi^-$	< 8.7	imes 10 ⁻⁴	CL=90%
Γ ₁₉	$\pi^+\pi^+\pi^-\pi^-\pi^0$	< 1.5	imes 10 ⁻⁴	CL=95%
Γ ₂₀	$\pi^0 e^+ e^-$	< 1.2	imes 10 ⁻⁴	CL=90%
Γ ₂₁	$\pi^{0}\eta\gamma$	(8.6 ± 1.8)	$) imes 10^{-5}$	
Γ ₂₂	$a_0(980)\gamma$	< 5	imes 10 ⁻³	CL=90%
Г ₂₃	$\eta^{\prime}(958)\gamma$	(6.7 + 3.5 - 3.1)	$) imes 10^{-5}$	
Г ₂₄	$\eta \pi^0 \pi^0 \gamma$	< 2	imes 10 ⁻⁵	CL=90%
Γ ₂₅	$\mu^+\mu^-\gamma$	(1.4 ± 0.5	$) imes 10^{-5}$	
Γ ₂₆	$ ho\gamma\gamma$	< 5	imes 10 ⁻⁴	CL=90%
Γ ₂₇	$\eta \pi^+ \pi^-$	< 3	imes 10 ⁻⁴	CL=90%

CONSTRAINED FIT INFORMATION

An overall fit to 15 branching ratios uses 42 measurements and one constraint to determine 8 parameters. The overall fit has a $\chi^2 = 38.2$ for 35 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$ Γ_i/Γ_{total} . The fit constrains the x_i whose labels appear in this array to sum to one.

<i>x</i> 2	-66						
x ₃	-58	-22					
×6	-19	16	1				
x7	-14	14	1	11			
x ₈	44	-47	-4	-37	-30		
x ₉	-8	8	1	6	5	-18	
<i>x</i> ₁₁	-6	6	1	5	4	-13	2
	x_1	<i>x</i> ₂	<i>x</i> 3	×6	×7	<i>x</i> 8	x ₉

ϕ (1020) PARTIAL WIDTHS

$\Gamma(\eta\gamma)$				Г ₆
VALUE (keV)	DOCUMENT ID	TECN	COMMENT	
\bullet \bullet We do not use the following	data for averages,	, fits, limits,	etc. • • •	
$58.9 \pm 0.5 \pm 2.4$	ACHASOV	00 SND	$e^+e^- \rightarrow \eta \gamma$	

$\Gamma(\pi^{0}\gamma)$						Г7
VALUE (keV)		DOCUMENT ID	7	TECN	COMMENT	
• • • We do not use t	the following	data for averages	s, fits, l	limits,	etc. • • •	
$5.40 \!\pm\! 0.16 \! \substack{+0.43 \\ -0.40}$		ACHASOV	00 S	SND	$e^+e^- \rightarrow$	$\pi^0 \gamma$
Γ(e ⁺ e ⁻)						Г ₈
VALUE (keV)	EVTS	DOCUMENT ID	7	TECN	COMMENT	
• • • We do not use t	the following	data for averages	s, fits, l	limits,	etc. • • •	
$1.32 \pm 0.02 \pm 0.04$	314k	⁹ AKHMETSHIN	199D C	CMD2	$e^+e^- \rightarrow$	$K^0_{L}K^0_{C}$
⁹ Using B($\phi \rightarrow K_L^0$	$\kappa_{S}^{0} = 0.331$	$L \pm 0.009.$				
$\Gamma(e^+e^-) \times \Gamma(K_L^0)$	$(K_S^0)/\Gamma_{tota}^2$,,- (-	,	COMMENT	$\Gamma_8\Gamma_2/\Gamma^2$
$\frac{VALUE (units 10^{\circ})}{0.95 \pm 0.22} \text{ OUP EI}$	<u> </u>	DOCUMENT ID	<u> </u>	IECN	COMMENT	
$9.756 \pm 0.114 \pm 0.146$	314k	¹⁰ AKHMETSHIN	of 1.3. 199D (CMD2	$e^+e^- \rightarrow$	$\kappa^0_L \kappa^0_S$
$\Gamma(e^+e^-) \times [\Gamma(\rho \pi)]$	$) + \Gamma(\pi^+ \pi$	$(\pi^{-}\pi^{0})]/\Gamma^{2}_{total}$				Г ₈ Г ₃ /Г ²
VALUE (units 10^{-5})	EVTS	DOCUMENT ID	7	TECN	COMMENT	
4.50 ± 0.19 OUR FIT	Error inclue	les scale factor of	1.3.			
4.35±0.27±0.08	11169	¹⁰ AKHMETSHIN	198 (CMD2	$e^+e^- \rightarrow$	$\pi^+\pi^-\pi^0$
$\Gamma(e^+e^-) \times \Gamma(\eta \gamma)$)/Γ ² total					Г ₈ Г ₆ /Г ²
VALUE (units 10^{-6})	EVTS	DOCUMENT ID	7	TECN	COMMENT	
3.77 ±0.11 OUR FI	F Error inc	ludes scale factor	of 1.4.			
3.84 \pm 0.13 OUR AV	ERAGE Er	ror includes scale	factor	of 1.5.	See the id	eogram below.
$4.00 \pm 0.04 \pm 0.11$		11 ACHASOV	00 S	SND	$e^+e^- \rightarrow$	$\eta \gamma$
$3.765 \pm 0.092 \pm 0.143$	10	¹² ACHASOV	00B S	SND	$e^+e^- \rightarrow$	$\eta \gamma$
$3.53 \pm 0.08 \pm 0.17$	2200 12,	¹³ AKHMETSHIN	199F (CMD2	$e^+e^- \rightarrow$	$\eta \gamma$
• • • We do not use t	the following	data for averages	s, fits, l	limits,	etc. • • •	-
$3.848 \!\pm\! 0.036 \!\pm\! 0.070$		¹⁴ ACHASOV	00B S	SND	$e^+e^- \rightarrow$	$\eta \gamma$

 13 Recalculated by the authors from the cross section in the peak.

 14 Using various decay modes of the η from ACHASOV 98F, ACHASOV 00, and ACHASOV 00B. ¹⁵ From the $\pi^0 \rightarrow 2\gamma$ decay and using B($\pi^0 \rightarrow 2\gamma$) =(98.798 ± 0.032) × 10⁻².

ϕ (1020) BRANCHING RATIOS

$\Gamma(K^+K^-)/\Gamma_{\text{total}}$						Г1/Г
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	=/
0.492±0.007 OUR FIT	Error incl	udes scale factor	of 1.	2.		
0.493±0.010 OUR AVE	RAGE					
0.492 ± 0.012	2913	AKHMETSHIN	95	CMD2	$e^+e^- \rightarrow K^+K^-$	_
0.44 ± 0.05	321	KALBFLEISCH	76	HBC	$2.18 \ K^- p \rightarrow \Lambda k$	(+ K-
0.49 ± 0.06	270	DEGROOT	74	HBC	$4.2 \ K^- p \rightarrow \Lambda \phi$	
0.540 ± 0.034	565	BALAKIN	71	OSPK	$e^+e^- \rightarrow K^+K^-$	_
0.48 ± 0.04	252	LINDSEY	66	HBC	$2.1-2.7 \ K^- p \rightarrow \Lambda K^+ K^-$	
$\Gamma(K_{1}^{0}K_{c}^{0})/\Gamma_{total}$						Γ2/Γ
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	-/
0.338±0.006 OUR FIT	Error incl	udes scale factor	of 1.	2.		
0.331 ± 0.009 OUR AVE	RAGE					
$0.335 \!\pm\! 0.010$	40644	AKHMETSHIN	95	CMD2	$e^+e^- \rightarrow K^0_L K^0_S$;
$0.326 \!\pm\! 0.035$		DOLINSKY	91	ND	$e^+e^- \rightarrow K^0_I K^0_Z$	
0.310 ± 0.024		DRUZHININ	84	ND	$e^+e^- \rightarrow K_I^{\bar{0}}K_{\bar{0}}^{\bar{0}}$	•
$\bullet \bullet \bullet$ We do not use th	e following	data for averages	, fits	, limits,	etc. • • •	
$0.329\!\pm\!0.006\!\pm\!0.010$	314k ¹	⁶ AKHMETSHIN	99 D	CMD2	$e^+e^- \rightarrow K^0_I K^0_S$	
$0.27\ \pm 0.03$	133	KALBFLEISCH	76	HBC	2.18 $K^- p \rightarrow \Lambda \tilde{k}$	$\kappa_1^0 \kappa_S^0$
$0.257 \!\pm\! 0.030$	95	BALAKIN	71	OSPK	$e^+e^- \rightarrow K^0_I K^0_Z$	
0.40 ± 0.04	167	LINDSEY	66	HBC	$2.1-2.7 \ K^- p \rightarrow$	
					$\Lambda \kappa_L^0 \kappa_S^0$	
$[\Gamma(\alpha\pi) \perp \Gamma(\pi^+\pi^-\pi)$	- ⁰)]/Γ					
	· /]/ · tota			TECN	COMMENT	• 3/•
0.155±0.006 OUR FIT	Error inclu	udes scale factor	of 1.	<u>1100</u> 4.	COMMENT	
0.151±0.009 OUR AVE	RAGE Err	or includes scale	facto	or of 1.7.		
0.161 ± 0.008	11761	AKHMETSHIN	95	CMD2	$e^+e^- \rightarrow \pi^+\pi^-$	π^0
0.143 ± 0.007		DOLINSKY	91	ND	$e^+e^- \rightarrow \pi^+\pi^-$	π^0
\bullet \bullet \bullet We do not use th	e following	data for averages	, fits	, limits,	etc. • • •	
$0.145\!\pm\!0.009\!\pm\!0.003$	11169 1	⁷ AKHMETSHIN	98	CMD2	$e^+e^- \rightarrow \pi^+\pi^-$	_π 0
$0.139 \!\pm\! 0.007$	1	⁸ PARROUR	76 B	OSPK	e^+e^-	
$\Gamma(\mathbf{K}_{0}^{0}\mathbf{K}_{0}^{0})/\Gamma(\mathbf{K}\mathbf{K})$						ر +۲م)
VALUE	EVTS	DOCUMENT ID		TECN	• 2/ (• . COMMENT	L''2)
0.407+0.008 OUR FIT	Error incl	udes scale factor	of 1	<u></u>		
0.45 ± 0.007 OUR M/E		udes scale factor	01 1.	۷.		
0.41 ± 0.07			66	нв€	221 K - n VI	K
0.48 ± 0.07	52	BADIER	00 65P	HRC	$2.24 \text{ m} p \rightarrow Mr$ $3 \text{ K}^{-} \text{ n}$	x <i>i</i> x
0.40 ± 0.07	3∠ 34		63	HRC	$\frac{3}{195} K^{-} n \rightarrow \Lambda V$	K
0.10 ±0.10	JT	JUILEIN	00	inde	$1.55 \text{ K} p \rightarrow $	
HTTD. / /DDC I BL (COV	Page 7		Create	ed: 12/18/2000	15:04

 $|\Gamma(\rho\pi) + \Gamma(\pi^+\pi^-\pi^0)|/\Gamma(K\overline{K})$ $\Gamma_3/(\Gamma_1+\Gamma_2)$ VALUE DOCUMENT ID TECN COMMENT 0.186±0.008 OUR FIT Error includes scale factor of 1.4. 0.24 ± 0.04 OUR AVERAGE 0.237 ± 0.039 CERRADA 77B HBC 4.2 $K^- p \rightarrow \Lambda 3\pi$ 66 HBC 0.30 ± 0.15 LONDON 2.24 $K^- p \rightarrow$ $\Lambda \pi^+ \pi^- \pi^0$ $\left[\Gamma(\rho \pi) + \Gamma(\pi^+ \pi^- \pi^0) \right] / \Gamma(K_I^0 K_{\varsigma}^0)$ Γ_3/Γ_2 DOCUMENT ID TECN COMMENT 0.457±0.020 OUR FIT Error includes scale factor of 1.3. 0.51 ± 0.05 OUR AVERAGE 78C OLYA $e^+e^- \rightarrow K^0_L K^0_S$, $\pi^+\pi^-\pi^0$ 74 OSPK $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ 0.56 ± 0.07 BUKIN 3681 0.47 ± 0.06 516 COSME OSPK $\Gamma(\eta\gamma)/\Gamma(\pi^{0}\gamma)$ Γ_6/Γ_7 VALUE • • • We do not use the following data for averages, fits, limits, etc. • • • $10.9 \pm 0.3 \substack{+0.7 \\ -0.8}$ $e^+e^- \rightarrow \eta \gamma, \pi^0 \gamma$ ACHASOV 00 SND $\Gamma(\mu^+\mu^-)/\Gamma_{\rm total}$ Γ₉/Γ *VALUE* (units 10^{-4}) DOCUMENT ID TECN COMMENT 2.5 ±0.4 OUR AVERAGE ¹⁹ HAYES 2.69 ± 0.46 71 CNTR 8.3,9.8 $\gamma C \rightarrow \mu^+ \mu^- X$ ¹⁹ EARLES 70 CNTR 6.0 $\gamma C \rightarrow \mu^+ \mu^- X$ 2.17 ± 0.60 • • • We do not use the following data for averages, fits, limits, etc. • • • ¹⁷ ACHASOV 99C SND $e^+e^- \rightarrow u^+u^ 3.30\!\pm\!0.45\!\pm\!0.32$ ²⁰ VASSERMAN 81 OLYA $e^+e^- \rightarrow \mu^+\mu^ 4.83 \pm 1.02$ 73 OSPK $e^+e^- \rightarrow \mu^+\mu^-$ ²⁰ AUGUSTIN 2.87 ± 1.98 $\Gamma(\eta\gamma)/\Gamma_{\text{total}}$ Γ_6/Γ VALUE DOCUMENT ID **EVTS** TECN COMMENT 0.01297±0.00033 OUR FIT Error includes scale factor of 1.2. 0.0126 ± 0.0004 OUR AVERAGE ²¹ ACHASOV 98F SND $e^+e^- \rightarrow 7\gamma$ $0.01246 \pm 0.00025 \pm 0.00057\,10k$ ²² AKHMETSHIN 95 CMD2 $e^+e^- \rightarrow \pi^+\pi^- 3\gamma$ 0.0118 ± 0.0011 279 ²³ DRUZHININ ND $e^+e^- \rightarrow 3\gamma$ 84 0.0130 ± 0.0006 ²⁴ DRUZHININ ND $e^+e^- \rightarrow 6\gamma$ 84 0.014 ± 0.002 290 KURDADZE 83C OLYA $e^+e^- \rightarrow 3\gamma$ 0.0088 ± 0.0020 77 CNTR 6.7–10 γ Cu $0.0135\ \pm 0.0029$ ANDREWS ²³ COSME 0.015 ± 0.004 54 76 OSPK e^+e^- • • We do not use the following data for averages, fits, limits, etc. • ²⁵ ACHASOV $e^+e^- \rightarrow \eta \gamma$ $0.01338 \pm 0.00012 \pm 0.00052$ 00 SND ²⁶ ACHASOV 00B SND $0.01287 \pm 0.00012 \pm 0.00042$ $e^+e^- \rightarrow n\gamma$ ²⁷ ACHASOV 00B SND $e^+e^- \rightarrow \eta \gamma$ $0.01259 \pm 0.00030 \pm 0.00059$ ²⁸ AKHMETSHIN 99F CMD2 $e^+e^- \rightarrow \eta\gamma$ $0.0118 \pm 0.0003 \pm 0.00062200$ ²⁹ BENAYOUN 96 RVUE 0.54-1.04 $e^+e^- \rightarrow$ 0.0121 ± 0.0007 $\eta \gamma$ HTTP://PDG.LBL.GOV Created: 12/18/2000 15:04 Page 8

$\Gamma(\pi^+\pi^-\gamma)/\Gamma_{ m total}$							Г	15/F
VALUE (units 10^{-4})	CL%	<u>EVTS</u>	DOCUM	IENT I	D	TECN	COMMENT	
0.41±0.12±0.04	3	30175	³⁰ AKHM	IETSH	11N 99B	CMD2	$e^+e^- \rightarrow e^+e^-$	
• • • We do not use the	he followi	ng data f	for average	s, fits	, limits,	etc. •	$\pi'\pi\gamma$	
< 0.3	90		³¹ AKHM	IETSH	IIN 97C	CMD2	$e^+e^+ \xrightarrow{\rightarrow}$	
<600	90		KALBI	ELEIS	CH 75	HBC	$2.18 K^{-} p - \Lambda \pi^{+} \pi^{-} \gamma$	→ N
< 70	90		COSM	E	74	OSPK	$e^+e^+ \rightarrow$	Y
<400	90		LINDS	EY	65	HBC	$2.1-2.7 K^{-1}$ $\Lambda \pi^{+} \pi^{-1}$ trals	p → neu-
$\Gamma(\omega\gamma)/\Gamma_{total}$							Γ	₁₃ /Г
VALUE	<u>CL%</u>	<u>D00</u>	CUMENT ID		TECN	<u>COMM</u>	ENT	
<0.05	84	LIN	DSEY	66	HBC	2.1–2. Λπ	7 $K^- p \rightarrow \pi^-$ neutrals	
$\Gamma(ho\gamma)/\Gamma_{ ext{total}}$							Γ:	14/F
VALUE (units 10^{-4})	CL%	DOC	CUMENT ID		TECN	COMM	ENT	
< 0.12	90	³² AKI	HMETSHI	N 99B	CMD2	e^+e^-	$\rightarrow \pi^+ \pi^- \gamma$, ,
• • • We do not use the	he followi	ng data f	for average	s, fits	, limits,	etc. •	• •	
< 7	90	AKI	HMETSHI	N 97C	CMD2	e ⁺ e ⁻	$\rightarrow \pi^+ \pi^- \gamma$	/
<200	84	LIN	DSEY	66	HBC	2.1–2. Λπ	7 $K^- p \rightarrow + \pi^-$ neutrals	
$\Gamma(e^+e^-)/\Gamma_{total}$							ī	⁻ 8/Г
VALUE (units 10^{-4})	EVTS	DOC	UMENT ID		TECN	СОММ	ENT	
2.99±0.08 OUR AVER	AGE Er	ror inclu	des scale fa	actor	of 1.2.			
2.88 ± 0.09	55600	AKI	HMETSHI	N 95	CMD2	e^+e^-	\rightarrow hadrons	
3.00 ± 0.21	3681	BUI	ΚIN	78 C	OLYA	e^+e^-	\rightarrow hadrons	
3.10 ± 0.14		³³ Paf	ROUR	76	OSPK	e^+e^-		
$3.3 \ \pm 0.3$		COS	SME	74	OSPK	e^+e^-	\rightarrow hadrons	
2.81 ± 0.25	681	BAI	AKIN	71	OSPK	e^+e^-	\rightarrow hadrons	
3.50 ± 0.27		CH	ATELUS	71	OSPK	e ⁺ e ⁻		
$\Gamma(\pi^0\gamma)/\Gamma_{ ext{total}}$							I	
VALUE (units 10^{-3})	EVTS	DOC	CUMENT ID		TECN	СОММ	ENT	
1.31 ± 0.13 OUR AVI	ERAGE						_	
1.30 ± 0.13		DR	JZHININ	84	ND	e† e ⁻	$ ightarrow$ 3 γ	
1.4 ± 0.5	32	COS	SME	76	OSPK	e+ e-		
• • • We do not use the	he followi	ng data f	for average	s, fits	, limits,	etc. •	• •	
$1.226\!\pm\!0.036\!+\!0.096\\-\!0.089$		³⁴ ACI	HASOV	00	SND	e^+e^-	$\rightarrow \pi^0 \gamma$	
1.26 ± 0.17		²⁹ BEN	NAYOUN	96	RVUE	$0.54-1_{\pi^0}$	$04 e^+ e^- \rightarrow \gamma$	

$\Gamma(\pi^+\pi^-)/\Gamma_{total}$						Γ_{11}/Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
• • • We do not use	e the followir	ng data for averages	, fits	, limits,	etc. • • •	
$0.71 \pm 0.11 \pm 0.09$		¹⁷ ACHASOV	00 C	SND	$e^+e^- \rightarrow$	$\pi^+\pi^-$
$0.65^{+0.38}_{-0.29}$		¹⁷ GOLUBEV	86	ND	$e^+e^- \rightarrow$	$\pi^+\pi^-$
$2.01 \substack{+1.07 \\ -0.84}$		¹⁷ VASSERMAN	81	OLYA	$e^+e^- ightarrow$	$\pi^+\pi^-$
<6.6 <2.7	95 95	BUKIN ALVENSLEB	78в 72	OLYA CNTR	$e^+e^- \rightarrow$ 6.7 $\gamma C \rightarrow$	$\pi^+\pi^-$ $C\pi^+\pi^-$
Г(0)/Г					,	F /F
$(\omega \pi^{\circ})/ $ total						1 12/1
VALUE (units 10 ⁻⁵)		DOCUMENT ID		TECN	COMMENT	_
$4.8^{+1.9}_{-1.7}\pm0.8$		ACHASOV	99	SND	$e^+e^- \rightarrow$	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$
$\Gamma(\kappa^0_L\kappa^0_S)/\Gamma(\kappa^+$	К−)					Γ_2/Γ_1
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
$0.688^{+0.022}_{-0.019}$ OUR I	FIT Error in	ncludes scale factor	of 1.	2.		
0.740 ± 0.031 OUR /	AVERAGE					
0.70 ± 0.06	2732	BUKIN	78C	OLYA	$e^+e^- \rightarrow$	$\kappa_L^0 \kappa_S^0$
$0.82 \hspace{.1in} \pm 0.08$		LOSTY	78	HBC	4.2 K ⁻ p -	$\rightarrow \phi$ hyperon
$0.71 \ \pm 0.05$		LAVEN	77	HBC	10 K ⁻ p -	$\rightarrow K^+ K^- \Lambda$
0.71 ± 0.08		LYONS	77	HBC	3-4 K ⁻ p	$\rightarrow \Lambda \phi$
0.89 ± 0.10	144	AGUILAR	72B	HBC	3.9,4.6 K ⁻	p
$[\Gamma(\rho\pi) + \Gamma(\pi^+\pi$	·-π ⁰)]/Γ(K ⁺ K ⁻)				Γ_3/Γ_1
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
0.314 ± 0.014 OUR F	IT Error in	cludes scale factor	of 1.4	4.		
0.28 ±0.09	34	AGUILAR	72в	HBC	3.9,4.6 K ⁻	p
$\Gamma(\eta e^+ e^-)/\Gamma_{\rm total}$	l					Г ₁₀ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
$1.3^{+0.8}_{-0.6}$	7	GOLUBEV	85	ND	$e^+ e^- \rightarrow$	$\gamma\gamma e^+e^-$
$\Gamma(\eta'(958)\gamma)/\Gamma_{tot}$	al					Г ₂₃ /Г
<u>VALUE (units 10^{-5})</u> C	L% EVTS	DOCUMENT ID		TECN	COMMENT	
6.7 <mark>+3.4</mark> ±1.0	5	³⁵ AULCHENKO	99	SND	$e^+e^- ightarrow$	$\pi^+ \pi^- 3\gamma$
• • • We do not use	e the followir	ng data for averages	, fits	, limits,	etc. • • •	
$8.2^{+2.1}_{-1.9}{\pm}1.1$	21	³⁶ AKHMETSHIN	00 B	CMD2	$e^+e^- \rightarrow$	$\pi^+\pi^-3\gamma$
<11 9	0	AULCHENKO	98	SND	$e^+e^- \rightarrow$	7γ
$12 \begin{array}{c} +7\\ -5 \end{array} \pm 2$	6	³⁶ AKHMETSHIN	97 B	CMD2	$e^+e^- \rightarrow$	$\pi^+ \pi^- 3\gamma$
<41 9	0	DRUZHININ	87	ND	$e^+e^- \rightarrow$	$\gamma \eta \pi^+ \pi^-$

$\Gamma(\eta \pi^0 \pi^0 \gamma) / \Gamma_{ ext{total}}$		Г ₂₄ /Г
VALUE (units 10^{-5})	CL%	DOCUMENT ID TECN COMMENT
<2	90	AULCHENKO 98 SND $e^+e^- ightarrow 7\gamma$
$\Gamma(\pi^{0}\pi^{0}\gamma)/\Gamma_{total}$		Γ ₁₇ /Γ
VALUE (units 10^{-4})	CL%	EVTS DOCUMENT ID TECN COMMENT
$1.08 \pm 0.17 \pm 0.09$		268 AKHMETSHIN 99C CMD2 $e^+e^{\pi^0\pi^0\gamma}$
• • We do not use th	e follow	ing data for averages, fits, limits, etc. $\bullet \bullet$
$1.14\!\pm\!0.10\!\pm\!0.12$		164 ACHASOV 981 SND $e^+e^- \rightarrow 5\gamma$
<10	90	DRUZHININ 87 ND $e^+e^- \rightarrow 5\gamma$
$\Gamma(\pi^0\pi^0\gamma)/\Gamma(\eta\gamma)$		Γ ₁₇ /Γ ₆
VALUE (units 10 ⁻²)	EVTS	DOCUMENT ID TECN COMMENT
0.90±0.08±0.07	164	ACHASOV 981 SND $e^+e^- ightarrow 5\gamma$
$\Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0})$	/Γ _{total}	Г ₁₉ /Г
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID TECN COMMENT
<1.5	95	BARKOV 88 CMD $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0$
$\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma_{ m tc}$	otal	Г ₁₈ /Г
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID TECN COMMENT
<8.7	90	CORDIER 79 WIRE $e^+e^- \rightarrow 4\pi$
$\Gamma(f_0(980)\gamma)/\Gamma_{total}$		Г ₁₆ /Г
$\frac{VALUE \text{ (units } 10^{-4})}{34 \pm 04}$		EVTS DOCUMENT ID TECN COMMENT
$2.90 \pm 0.21 \pm 1.54$	ERAGE	³⁷ AKHMETSHIN 99C CMD2 $e^+e^- \rightarrow \pi^+\pi^-\gamma$, $\pi^0\pi^0\gamma$
3.42±0.30±0.36	C 11	164 ³⁸ ACHASOV 981 SND $e^+e^- \rightarrow 5\gamma$
• • VVe do not use th	e follow	ing data for averages, fits, limits, etc. $\bullet \bullet \bullet$
$1.93 \pm 0.46 \pm 0.50$		27188 ³⁹ AKHMETSHIN 99B CMD2 $e^+e^- \rightarrow \pi^+\pi^-\gamma$
$3.05\!\pm\!0.25\!\pm\!0.72$		268 ⁴⁰ AKHMETSHIN 99C CMD2 $e^+e^{\pi^0\pi^0\gamma}$
$1.5 \ \pm 0.5$		268 ⁴¹ AKHMETSHIN 99C CMD2 $e^+ e^- d^-$
< 1	90	⁴² AKHMETSHIN 97C CMD2 $e^+e^+ \rightarrow$
< 7	90	⁴³ AKHMETSHIN 97C CMD2 $e^+e^- \rightarrow$
<20	90	DRUZHININ 87 ND $e^+e^- \rightarrow \pi^0 \pi^0 \gamma$
$\Gamma(\pi^0 e^+ e^-) / \Gamma_{\text{total}}$		Г ₂₀ /Г
VALUE .	<u>CL%</u>	DOCUMENT ID TECN COMMENT
<1.2 × 10 ⁻⁴	90	DOLINSKY 88 ND $e^+e^- \rightarrow \pi^0 e^+e^-$

 $\Gamma(\pi^0 \eta \gamma) / \Gamma_{\text{total}}$ Γ_{21}/Γ VALUE (units 10^{-4}) CL% EVTS TECN COMMENT 0.86±0.18 OUR AVERAGE AKHMETSHIN 99C CMD2 $e^+e^- \rightarrow \eta \pi^0 \gamma$ $0.90 \pm 0.24 \pm 0.10$ 80 988 SND $0.83 \!\pm\! 0.23 \!\pm\! 0.12$ 20 ACHASOV • • • We do not use the following data for averages, fits, limits, etc. • $e^+e^- \rightarrow \pi^0 n\gamma$ <25 90 DOLINSKY 91 ND $\Gamma(a_0(980)\gamma)/\Gamma_{total}$ Γ_{22}/Γ <u>VALUE (units 10^{-3})</u> DOCUMENT ID CL% TECN COMMENT $e^+e^- \rightarrow \pi^0 n\gamma$ <5 90 DOLINSKY 91 ND $\Gamma(\eta'(958)\gamma)/\Gamma(\eta\gamma)$ Γ_{23}/Γ_6 VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT AKHMETSHIN 00B CMD2 $e^+e^- \rightarrow \pi^+\pi^- 3\gamma$ $6.5^{+1.7}_{-15}\pm0.8$ 21 • • • We do not use the following data for averages, fits, limits, etc. • • $9.5^{+5.2}_{-4.0}\pm1.4$ ⁴⁴ AKHMETSHIN 97B CMD2 $e^+e^- \rightarrow \pi^+\pi^- 3\gamma$ 6 $\Gamma(\mu^+\mu^-\gamma)/\Gamma_{\rm total}$ Γ_{25}/Γ VALUE (units 10^{-5}) TECN COMMENT **EVTS** DOCUMENT ID ³⁹ AKHMETSHIN 99B CMD2 $e^+e^- \rightarrow \mu^+\mu^-\gamma$ $1.43 \pm 0.45 \pm 0.14$ 27188 • • • We do not use the following data for averages, fits, limits, etc. 45 AKHMETSHIN 97C CMD2 $e^+e^-
ightarrow \mu^+\mu^-\gamma$ $2.3 \hspace{0.1in} \pm 1.0$ $824\pm$ 33 Γ_{26}/Γ $\Gamma(\rho\gamma\gamma)/\Gamma_{\text{total}}$ *VALUE* (units 10^{-4}) TECN COMMENT CL% DOCUMENT ID AKHMETSHIN 98 CMD2 $e^+e^- \rightarrow \pi^+\pi^-\gamma\gamma$ <5 90 $\Gamma(\eta \pi^+ \pi^-) / \Gamma_{\text{total}}$ Γ_{27}/Γ VALUE (units 10^{-4}) CL% DOCUMENT ID TECN COMMENT AKHMETSHIN 98 CMD2 $e^+e^- \rightarrow \pi^+\pi^-\gamma\gamma$ 90 <3 ¹⁶ Using $\Gamma_{e^+e^-} = 1.32 \pm 0.04$ keV. ¹⁷ Using B($\phi \rightarrow e^+e^-$)=(2.99 ± 0.08) × 10⁻⁴. ¹⁸Using $\Gamma(\phi)$ = 4.1 Mev. If interference between the $\rho\pi$ and 3π modes is neglected, the fraction of the $\rho\pi$ is more than 80% at the 90% confidence level. $^{19}\,\mathrm{Neglecting}$ interference between resonance and continuum. ²⁰ Recalculated by us using $B(\phi \rightarrow e^+e^-) = (2.99 \pm 0.08) \times 10^{-4}$. ²¹ Using $B(\phi \rightarrow e^+e^-) = (2.99 \pm 0.08) \times 10^{-4}$ and $B(\eta \rightarrow 3\pi^0) = (32.2 \pm 0.4) \times 10^{-6}$. ²² From $\pi^+\pi^-\pi^0$ decay mode of η . ²³ From 2γ decay mode of η . ²⁴ From $3\pi^0$ decay mode of η . ²⁵ From the $\eta \rightarrow 2\gamma$ decay and using B($\phi \rightarrow e^+e^-$) =(2.99 ± 0.08) × 10⁻⁴. 26 Using various decay modes of the η from ACHASOV 98F, ACHASOV 00, and ACHASOV 00B and B($\phi \rightarrow e^+e^-$) = (2.99 ± 0.08) × 10⁻⁴. ²⁷ From the $\eta \to \pi^+ \pi^- \pi^0$ decay and B($\phi \to e^+ e^-$) = (2.99 ± 0.08) × 10⁻⁴.

HTTP://PDG.LBL.GOV

Created: 12/18/2000 15:04

²⁸ From $\pi^{+}\pi^{-}\pi^{0}$ decay mode of η and using B($\phi \rightarrow e^{+}e^{-}$)= (2.99 ± 0.08) × 10⁻⁴. ²⁹ Reanalysis of DRUZHININ 84, DOLINSKY 89, and DOLINSKY 91 taking into account a triangle anomaly contribution.

³⁰ For $E_{\gamma} > 20$ MeV and assuming that B($\phi(1020) \rightarrow f_0(980)\gamma$) is neglibible. Supersedes AKHMETSHIN 97C. ³¹ For $E_{\gamma} > 20$ MeV and assuming that $B(\phi(1020) \rightarrow f_0(980)\gamma)$ is negligible.

³² Supersedes AKHMETSHIN 97C.

 33 Using total width 4.2 MeV. They detect 3π mode and observe significant interference with ω tail. This is accounted for in the result quoted above.

- ³⁴ From the $\pi^0 \rightarrow 2\gamma$ decay and using B($\phi \rightarrow e^+ e^-$) = (2.99 ± 0.08) × 10⁻⁴.
- ³⁵Using the value B($\eta' \rightarrow \eta \pi^+ \pi^-$)= (43.7 ± 1.5) × 10⁻² and B($\eta \rightarrow \gamma \gamma$)= (39.25 ± $(0.31) \times 10^{-2}$.

³⁶ Using the value B($\phi \rightarrow \eta \gamma$) = (1.26 ± 0.06) × 10⁻².

³⁷From the combined fit of the photon spectra in the reactions $e^+e^- \rightarrow \pi^+\pi^-\gamma$, $\pi^0 \pi^0 \gamma$.

³⁸Assuming that the $\pi^0 \pi^0 \gamma$ final state is completely determined by the $f_0 \gamma$ mechanism, neglecting the decay $B(\phi \rightarrow K\overline{K}\gamma)$ and using $B(f_0 \rightarrow \pi^+\pi^-) = 2B(f_0 \rightarrow \pi^0\pi^0)$.

 $^{39}\,{\rm For}\,\,{\it E}_{\gamma}>$ 20 MeV. Supersedes AKHMETSHIN 97C.

⁴⁰ Neglecting other intermediate mechanisms ($\rho \pi$, $\sigma \gamma$).

 41 A narrow pole fit taking into account $f_{0}(980)$ and $f_{0}(1200)$ intermediate mechanisms.

⁴² For destructive interference with the Bremsstrahlung process

 43 For constructive interference with the Bremsstrahlung process

⁴⁴ Superseded by AKHMETSHIN 00B.

⁴⁵ For E_{γ} > 20 MeV.

$\pi^+\pi^-\pi^0$ / $\rho\pi$ AMPLITUDE RATIO a_1 IN DECAY OF $\phi \rightarrow \pi^+\pi^-\pi^0$

VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
-0.16 < a ₁ < 0.11	90	46 AKHMETSHIN 98	CMD2	$e^+e^- \rightarrow \pi^+\pi^-\gamma\gamma$

 46 Dalitz plot analysis of 9735 events taking into account interference between the contact and $\rho\pi$ terms and assuming zero phase for the contact term.

$\phi(1020)$ REFERENCES

ACHASOV	00	EPJ C12 25	M.N. Achasov <i>et al.</i>	(Novosibirsk SND Collab.)
ACHASOV	00B	JETP 90 17	M.N. Achasov <i>et al.</i>	(Novosibirsk SND Collab.)
		Translated from ZHETF	117 22.	· · · · · · · · · · · · · · · · · · ·
ACHASOV	00C	PL B474 188	M.N. Achasov <i>et al.</i>	(Novosibirsk SND Collab.)
AKHMETSHIN	00B	PL B473 337	R.R. Akhmetshin et al.	(CMD-2 Collab.)
ACHASOV	99	PL B449 122	M.N. Achasov et al.	
ACHASOV	99C	PL B456 304	M.N. Achasov <i>et al.</i>	
AKHMETSHIN	99B	PL B462 371	R.R. Akhmetshin et al.	(CMD-2 Collab.)
AKHMETSHIN	99C	PL B462 380	R.R. Akhmetshin et al.	(CMD-2 Collab.)
AKHMETSHIN	99D	PL B466 385	R.R. Akhmetshin et al.	, ,
AKHMETSHIN	99F	PL B460 242	R.R. Akhmetshin et al.	(CMD-2 Collab.)
AULCHENKO	99	JETPL 69 97	V.M. Aulchenko <i>et al.</i>	, ,
		Translated from ZETFP	69 87.	

ACHASOV	98B	PL B438 441		M.N. Achasov <i>et al.</i>	(Novosibirsk SND Collab.)
ACHASOV	98F	JETPL 68 573		M.N. Achasov et al.	(Novosibirsk SND Collab.)
ACHASOV	981	PL B440 442		M.N. Achasov <i>et al.</i>	· · · · · · · · · · · · · · · · · · ·
AKHMETSHIN	98	PL B434 426		R.R. Akhmetshin et al.	
AULCHENKO	98	PL B436 199		V.M. Aulchenko <i>et al.</i>	
BARBERIS	98	PL B432 436		D. Barberis <i>et al.</i>	(Omega expt.)
AKHMETSHIN	97B	PL B415 445		R.R. Akhmetshin et al.	(NOVO, BOST, PITT+)
AKHMETSHIN	97C	PL B415 452		R.R. Akhmetshin et al.	(CMD-2 Collab.)
BENAYOUN	96	ZPHY C72 221		M. Benayoun <i>et al.</i>	(IPNP, NOVO)
AKHMETSHIN	95	PL B364 199		R.R. Akhmetshin et al.	(CMD-2 Collab.)
DOLINSKY	91	PRPL 202 99		S.I. Dolinsky <i>et al.</i>	(NOVO)
DOLINSKY	89	ZPHY C42 511		S.I. Dolinsky et al.	(NOVO)
BARKOV	88	SJNP 47 248		L.M. Barkov <i>et al.</i>	(NOVO)
		Translated from	YAF 47	393.	
DOLINSKY	88	SJNP 48 277		S.I. Dolinsky <i>et al.</i>	(NOVO)
	07	I ranslated from	YAF 48	442.	
	87			V.P. Druzninin et al.	
ARIVISTRUNG	80	PL 100B 245		I.A. Armstrong <i>et al.</i>	(ATHU, BARI, BIRM+)
	80			IVI. Atkinson et al.	(BOINN, CERN, GLAS+)
	80	PRL 50 1893		C. Bedek et al.	
	00 96	7DUV (21 275		H Dilkstra at a/	(ANIK PDIS CEDN +)
	00 96	ND P276 667		D Erama at al	(ANIK, BRIS, CERN+)
	00	NF D270 007		V.P. Calubau at al	(GLAS)
GOLUDEV	00	Translated from	VAE 11	633	(1000)
AL BRECHT	85D	PI 153R 343		H Albrecht <i>et al</i>	(ARGUS Collab.)
GOLUBEV	85	SINP 41 756		V B Golubev et al	(NOVO)
GOLOBET	00	Translated from	YAF 41	1183.	(11010)
DRUZHININ	84	PL 144B 136		V.P. Druzhinin et al.	(NOVO)
ARMSTRONG	83B	NP B224 193		T.A. Armstrong et al.	(BARI, BIRM, ČERN+)
BARATE	83	PL 121B 449		R. Barate <i>et al.</i>	(SAČL, LOIC, SHMP, IND)
KURDADZE	83C	JETPL 38 366		L.M. Kurdadze <i>et al.</i>	` (NOVO)
		Translated from	ZETFP	38 306.	
ARENTON	82	PR D25 2241		M.W. Arenton <i>et al.</i>	(ANL, ILL)
PELLINEN	82	PS 25 599		A. Pellinen, M. Roos	(HELS)
DAUM	81	PL 100B 439		C. Daum <i>et al.</i>	(AMST, BRIS, CERN, CRAC+)
IVANOV	81	PL 107B 297		P.M. Ivanov <i>et al.</i>	(NOVO)
Also	82	Private Comm.		S.I. Eidelman	(NOVO)
VASSERMAN	81	PL 99B 62		I.B. Vasserman <i>et al.</i>	(NOVO)
Also	82	SJNP 35 240		L.M. Kurdadze <i>et al.</i>	
	00	ND D172 12	TAF 35	352. A Cordior at al	
	70	DI 01D 200		A. Cordier et al.	
BUKIN	79 78R	SIND 27 521		A D Bukin et al.	
DORIN	100	Translated from	YAF 27	985	(11010)
BUKIN	78C	SJNP 27 516	170 21	A.D. Bukin <i>et al.</i>	(NOVO)
		Translated from	YAF 27	976.	(
COOPER	78B	NP B146 1		A.M. Cooper <i>et al.</i>	(TATA, CERN, CDEF+)
LOSTY	78	NP B133 38		M.J. Losty <i>et al.</i>	(CERN, AMST, NIJM+)
AKERLOF	77	PRL 39 861		C.W. Akerlof et al.	(FNAL, MICH, PURD)
ANDREWS	77	PRL 38 198		D.E. Andrews <i>et al.</i>	(ROCH)
BALDI	77	PL 68B 381		R. Baldi <i>et al.</i>	(GEVA)
CERRADA	77B	NP B126 241		M. Cerrada <i>et al.</i>	(AMST, CERN, NIJM+)
COHEN	77	PRL 38 269		D. Cohen <i>et al.</i>	(ANL)
LAVEN	77	NP B127 43		H. Laven <i>et al.</i>	(AACH3, BERL, CERN, LOIC+)
LYONS	77	NP B125 207		L. Lyons, A.M. Cooper, A	.G. Clark (OXF)
COSME	76	PL 63B 352		G. Cosme <i>et al.</i>	(ORSAY)
KALBFLEISCH	76	PR D13 22		G.R. Kalbfleisch, R.C. Stra	and, J.W. Chapman (BNL+)
PARROUR	76	PL 63B 357		G. Parrour <i>et al.</i>	(ORSAY)
PARROUR	76B	PL 63B 362		G. Parrour <i>et al.</i>	(ORSAY)
KALBFLEISCH	75	PR D11 987		G.R. Kalbfleisch, R.C. Stra	and, J.W. Chapman (BNL+)
AYRES	<i>(</i> 4	PRL 32 1463		D.S. Ayres <i>et al.</i>	(ANL)
RESCH	/4	NP B/0 257		H.J. Besch <i>et al.</i>	(BONN)
COSME				I I OSMA At 21	(ORSAY)
COCNE	/4 74D	FL 40D 100			
COSME	74 74B 74	PL 48B 155 PL 48B 159		G. Cosme <i>et al.</i>	(ORSAY)
COSME DEGROOT	74 74B 74 72	PL 48B 155 PL 48B 159 NP B74 77		G. Cosme <i>et al.</i> A.J. de Groot <i>et al.</i>	(ORSAY) (AMST, NIJM)
COSME DEGROOT AUGUSTIN	74 74B 74 73 72	PL 48B 155 PL 48B 159 NP B74 77 PRL 30 462		G. Cosme <i>et al.</i> A.J. de Groot <i>et al.</i> J.E. Augustin <i>et al.</i>	(ORSAY) (AMST, NIJM) (ORSAY)

BINNIE	73B	PR D8 2789	D.M. Binnie <i>et al.</i>	(LOIC. SHMP)
AGUILAR	72B	PR D6 29	M. Aguilar-Benitez et al.	(BNL)
ALVENSLEB	72	PRL 28 66	H. Alvensleben <i>et al.</i>	(MIT, DESY)
BORENSTEIN	72	PR D5 1559	S.R. Borenstein <i>et al.</i>	(BNL, MICH)
COLLEY	72	NP B50 1	D.C. Colley <i>et al.</i>	(BIRM, GLAS)
BALAKIN	71	PL 34B 328	V.E. Balakin <i>et al.</i>	(NOVO)
CHATELUS	71	Thesis LAL 1247	Y. Chatelus	(STRB)
Also	70	PL 32 416	J.C. Bizot <i>et al.</i>	(ORSAY)
HAYES	71	PR D4 899	S. Hayes <i>et al.</i>	(CORN)
STOTTLE	71	Thesis ORO 2504 170	A.R. Stottlemyer	(UMD)
BIZOT	70	PL 32 416	J.C. Bizot <i>et al.</i>	(ORSAY)
Also	69	Liverpool Sym. 69	J.P. Perez-y-Jorba	
EARLES	70	PRL 25 1312	D.R. Earles <i>et al.</i>	(NEAS)
LINDSEY	66	PR 147 913	J.S. Lindsey, G. Smith	(LRL)
LONDON	66	PR 143 1034	G.W. London <i>et al.</i>	(BNL, SYRA) IGJPC
BADIER	65B	PL 17 337	J. Badier <i>et al.</i>	(EPOL, SACL, AMST)
LINDSEY	65	PRL 15 221	J.S. Lindsey, G.A. Smith	(LRL)
	5 dat	DDL 10 260		
SCHLEIN	05	PRL 10 306	P.E. Schein et al.	(UCLA) IGJP
			RELATED PAPERS -	
ACHASOV	99B	PAN 62 442	M.N. Achasov <i>et al.</i>	
		Translated from YAF 62	484.	
MARCO	99	PL B470 20	E. Marco <i>et al.</i>	
ACHASOV	98C	PR D57 1987	N.N. Achasov <i>et al.</i>	
OLLER	98B	PL B426 7	J.A. Oller	
ACHASOV	97C	PR D56 4084	N.N. Achasov <i>et al.</i>	
ACHASOV	97D	PR D56 203	N.N. Achasov <i>et al.</i>	
ACHASOV	95	PLB 363 106	N.N. Achasov, V.V. Gubin	(NOVM)
KAMAL	92	PL B284 421	A.N. Kamal, Q.P. Xu	
GEUKGIU	05 620	PL 152B 428	C. Georgiopoulos <i>et al.</i>	(IUFIS, AKIZ, FINAL+)
	03B	PRL 11 430	IN. Geifand <i>et al.</i>	(CULU, KUTG)
DERTANZA	02	LUT A 100	L. Dertanza et al.	(DNL, SYRA)