Page 21
Hot Swap Change Proposal 96-0037

IEEE P1451.3 Proposal

	Proposal Title:
	Discovery process changes

	Proposal Number:
	02-025

	Revision Number:
	 H

	Date:
	1/15/2003

	
	

	Name:
	Lee Eccles

	Company:
	Boeing

	Phone Number:
	206-655-2824

	Fax Number:
	206-655-7724

	Email Address:
	lee.h.eccles@boeing.com

	
	

	Proposal Status:
	 Initial Draft

 X Revised Draft

 Ready for Vote

	Impacts:
	 __

 __

	Action:
	__ Approved

__ Approved with changes

__ Rejected

__ Returned for revision

	
	

Background:

This proposal addresses the following comments.

Catlin-20
5.1.11 - "Initiate Discovery" does not appear to be a command transmitted using the Command Services Protocol. Therefore, it should not be presented in Clause 5. Rather, it seems to be a mandatory service provided by the Data Link Layer, wholly dependent on the underlying physical layer. Requirements for an abstract Discovery Service could be promoted to a major clause or relocated subordinate to Clause 4. The Discovery Service should provide the abstraction layer, with overt requirements for each physical layer to provide and articulate the detailed mechanisms need to satisfy the abstraction. An overview to the discovery process (i.e., utilization of the Discovery Service and its relationship to the assignment and verification of TBIM alias via command services protocol) should be provided as an informative annex.

Catlin-22
5.3.1 - Communications management commands should be divided into two classes of commands: "Communications Initialization Commands" and "Communications Operational Commands". It is not apparent whether the commands in Table 28 should be sent using the Command Services protocol. If not, these commands should not be presented in Clause 5.

Catlin-28
5.3.2 - "Management reply commands" are not commands and should be presented in the same context as the "Initiate Discovery" support (refer to ballot comment on 5.1.11). In Table 31, it seems questionable to introduce new function codes for these replies.

The following is from G.989.2. By using this format we do not need to specify any HomePNA specific commands or features. However, this does not completely relieve us of a need to set up a protocol to handle IEEE p1451 specific commands or services. We could handle them as Non-standard or Vendor-specific short (or long) format type and that is what is proposed here. This proposal is to use the Non-standard to avoid problems with vendor specific implementations of a HomePNA chip set.

--- Excerpt from IEEE 802.3
3.1.1 MAC frame format

Figure 3—1 shows the nine fields of a frame: the preamble, Start Frame Delimiter (SFD), the addresses of the frame’s source and destination, a length or type field to indicate the length or protocol type of the following field that contains the MAC Client data, a field that contains padding if required, the frame check sequence field containing a cyclic redundancy check value to detect errors in a received frame, and an extension field if required (for 1000 Mb/s half duplex operation only). Of these nine fields, all are of fixed size except for the data, pad, and extension fields, which may contain an integer number of octets between the minimum and maximum values that are determined by the specific implementation of the CSMA/CD MAC. See 4.4 for particular implementations.

The minimum and maximum frame size limits in 4.4 refer to that portion of the frame from the destination address field through the frame check sequence field, inclusive.

Relative to Figure 3—1,the octets of a frame are transmitted from top to bottom, and the bits of each octet are transmitted from left to right.

[image: image1.wmf]PREAMBLE

7 OCTETS

SFD

1 OCTET

DESTINATION ADDRESS

6 OCTETS

SOURCE ADDRESS

6 OCTETS

2 OCTETS

FRAME CHECK SEQUENCE

4 OCTETS

2 OCTETS

LENGTH/TYPE

MAC CLIENT DATA

PAD

46-1500

OCTETS

EXTENSION

b

0

b

7

BITS WITHIN

FRAME TRANSMITTED

LEFT TO RIGHT

OCTETS WITHIN

FRAME TRANSMITTED

TOP TO BOTTOM

lsb

msb

Figure 3—1—MAC frame format
Relative to Figure 3-1,the octets of a frame are transmitted from top to bottom, and the bits of each octet are transmitted from left to right.

3.2 Elements of the MAC frame

3.2.1 Preamble field

The preamble field is a 7-octet field that is used to allow the PLS circuitry to reach its steady-state synchronization with the received frame’s timing (see 4.2.5).
3.2.3 Address Fields

Each MAC frame shall contain two address fields: the Destination Address field and the Source Address field, in that order. The Destination Address field shall specify the destination addressee(s)for which the frame is intended. The Source Address field shall identify the station from which the frame was initiated.

The representation of each address field shall be as follows (see Figure 3):
a) Each address field shall be 48 bits in length. While IEEE 802 specifies the use of either 16-or 48-bit addresses, no conformant implementation of IEEE 802.3 uses 16-bit addresses. The use of 16-bit addresses is specifically excluded by this standard.

b) The first bit (LSB) shall be used in the Destination Address field as an address type designation bit to identify the Destination Address either as an individual or as a group address. If this bit is 0,it shall indicate that the address field contains an individual address. If this bit is 1,it shall indicate that the address field contains a group address that identifies none, one or more, or all of the stations connected to the LAN. In the Source Address field, the first bit is reserved and set to 0.

c) The second bit shall be used to distinguish between locally or globally administered addresses. For globally administered (or Universal) addresses, the bit is set to 0. If an address is to be assigned locally, this bit shall be set to 1. Note that for the broadcast address, this bit is also a 1.

d) Each octet of each address field shall be transmitted least significant bit first.

[image: image2.wmf]I/G

U/L

46-Bit Address

I

/G =0 INDIVIDUAL ADDRESS

I/G =1 GROUP ADDRESS

U/L =0 GLOBALLY ADMINISTERED ADDRESS

U/L =1 LOCALLY ADMINISTERED ADDRESS

Figure 3-2—Address field format
3.2.3.1 Address designation

A MAC sublayer address is one of two types:

a) Individual Address .The address associated with a particular station on the network.

b) Group Address .A multi-destination address, associated with one or more stations on a given network.

There are two kinds of multicast address:

1) Multicast-Group Address .An address associated by higher-level contention with a group of

logically related stations.

2) Broadcast Address .A distinguished, predefined multicast address that always denotes the set of

all stations on a given LAN.

All 1’s in the Destination Address field shall be predefined to be the Broadcast Address. This group shall be predefined for each communication medium to consist of all stations actively connected to that medium; it shall be used to broadcast to all the active stations on that medium. All stations shall be able to recognize the Broadcast Address. It is not necessary that a station be capable of generating the Broadcast Address.

The address space shall also be partitioned into locally administered and globally administered addresses.

The nature of a body and the procedures by which it administers these global (U) addresses is beyond the scope of this standard.
3.2.4 Destination Address field

The Destination Address field specifies the station(s)for which the frame is intended. It may be an individual or multicast (including broadcast) address.

3.2.5 Source Address field

The Source Address field specifies the station sending the frame. The Source Address field is not interpreted by the CSMA/CD MAC sublayer.

3.2.6 Length/Type field

This two-octet field takes one of two meanings, depending on its numeric value. For numerical evaluation, the first octet is the most significant octet of this field.

a) If the value of this field is less than or equal to the value of maxValidFrame (as specified in 4.2.7.1), then the Length/Type field indicates the number of MAC client data octets contained in the subsequent data field of the frame (Length interpretation).

b) If the value of this field is greater than or equal to 1536 decimal (equal to 0600 hexadecimal), then the Length/Type field indicates the nature of the MAC client protocol (Type interpretation). 13

The Length and Type interpretations of this field are mutually exclusive. When used as a Type field, it is the responsibility of the MAC client to ensure that the MAC client operates properly when the MAC sublayer pads the supplied data, as discussed in 3.2.7.

Regardless of the interpretation of the Length/Type field, if the length of the data field is less than the minimum required for proper operation of the protocol, a PAD field (a sequence of octets) will be added at the end of the data field but prior to the FCS field, specified below. The procedure that determines the size of the PAD field is specified in 4.2.8.The Length/Type field is transmitted and received with the high order octet first.

3.2.7 Data and PAD fields

The data field contains a sequence of n octets. Full data transparency is provided in the sense that any arbitrary sequence of octet values may appear in the data field up to a maximum number specified by the implementation of the standard that is used. A minimum frame size is required for correct CSMA/CD protocol operation and is specified by the particular implementation of the standard. If necessary, the data field is extended by appending extra bits (that is, a pad)in units of octets after the data field but prior to calculating and appending the FCS. The size of the pad, if any, is determined by the size of the data field supplied by the MAC client and the minimum frame size and address size parameters of the particular implementation. The maximum size of the data field is determined by the maximum frame size and address size parameters of the particular implementation.

The length of PAD field required for MAC client data that is n octets long is max [0,minFrameSize - (8 x n +2 x addressSize + 48)] bits. The maximum possible size of the data field is maxUntaggedFrameSize (2 x addressSize +48)/8 octets. See 4.4 for a discussion of implementation parameters; see 4.2.3.3 for a discussion of the minFrameSize.

3.2.8 Frame Check Sequence (FCS) field

A cyclic redundancy check (CRC) is used by the transmit and receive algorithms to generate a CRC value for the FCS field. The frame check sequence (FCS) field contains a 4-octet (32-bit) cyclic redundancy check (CRC) value. This value is computed as a function of the contents of the source address, destination address, length, LLC data and pad (that is, all fields except the preamble, SFD, FCS, and extension). The encoding is defined by the following generating polynomial.

G(x)=x32 +x26 +x23 +x22 +x16 +x12 +x11 +x10 +x8 +x7 +x5 +x4 +x2 +x +1

Mathematically, the CRC value corresponding to a given frame is defined by the following procedure:

a) The first 32 bits of the frame are complemented.

b) The n bits of the frame are then considered to be the coefficients of a polynomial M(x)of degree n - 1. (The first bit of the Destination Address field corresponds to the x(n-1) term and the last bit of the data field corresponds to the x0 term.)

c) M(x)is multiplied by x32 and divided by G(x),producing a remainder R(x)of degree ≤31.

d) The coefficients of R(x)are considered to be a 32-bit sequence.

e) The bit sequence is complemented and the result is the CRC.

The 32 bits of the CRC value are placed in the frame check sequence field so that the x31 term is the left-most bit of the first octet, and the x0 term is the right most bit of the last octet. (The bits of the CRC are thus transmitted in the order x31, x30,…,x1 ,x0.)See reference [B37].

3.2.9 Extension field

The Extension field follows the FCS field, and is made up of a sequence of extension bits, which are readily distinguished from data bits. The length of the field is in the range of zero to (slotTime—inFrameSize) bits, inclusive. The contents of the Extension field are not included in the FCS computation.

The Extension field may have a length of greater than zero under the conditions that are described in 4.2.3.4. The length of the Extension field will be zero under all other conditions. Implementations defined in 4.4.2 may ignore this field altogether if the number of bit times in the slotTime parameter is equal to the number of bits in the minFrameSize parameter.

3.3 Order of bit transmission

Each octet of the MAC frame, with the exception of the FCS, is transmitted low-order bit first.
--- End of excerpt from IEEE 802.3

The definition of the MAC Frame Format is not as clear in G989 as it is in IEEE 802-3. The following is gleaned from G989.1 and G989.2 with a little “reading between the lines.”

The basic MAC frame format is as shown in the following figure. Both formats start with a preamble. However, the Ethernet preamble is 7 octets and the HPNA preamble is 16 octets. This should be handled by the hardware and not be an issue for IEEE p1451.3. In Ethernet the preamble is followed by a fixed pattern Start Frame Delimiter (SFD) field in one octet. In HPNA the SFD field is omitted and replaced by two fields, the Frame Type and the Frame Control Field. The fields from the destination Address through the Frame Check Sequence (FCS) are supposedly the same as Ethernet. The PAD that would go in an Ethernet data field is not mentioned in G.989 but from some of the things that are in the documents it seems that it must be there. The Extension field that can be on an Ethernet field is not mentioned in G.989. Instead there are two fields that follow the FCS. The first field is a sixteen-bit CRC. The second one is a PAD field. This field is only used with 2D symbol mapping so it must not be a replacement for the PAD in Ethernet.

[image: image3.wmf]P

reamble

16 Octets

Frame Type

1 Octet

Destination Address

6 Octets

Source Address

6 Octets

2 Octets

Frame Check Sequence

4 Octets

2 Octets

Ethertype/Length

Bit

7

Bit

0

Fields

 within a frame are

transmitted from top to

bottom and most

significant octet to least

significant octet

Frame Control

3 Octets

CRC-16

HPNA PAD

EOF

1 Octet

41-0 Octets

MAC CLIENT DATA

PAD

46-1500

Octets

msb

lsb

Bits within an octet are transmitted lsb first

Figure HPNA MAC Frame Format.

The Ethertype/length field is usually referred to in the G.989 documents as Ethertype but occasionally it is referred to as the Ethertype/length field. This leads to the conclusion that this field is used the same way that the type/length field is used in IEEE 802-3.

The following excerpt from G.989.1 defines the Frame Type field. From what it says I assume that we should be using Frame Type 0 (but that statement is made with very little confidence). The End-of-Frame delimiter is clearly defined but it is probably handled by the hardware and should not be an issue for IEEE p1451.3.

 The Frame Control field is defined in the excerpt from G.989.2 below the excerpt from G.989.1.

--- Excerpt from G.989.1

7.2
Frame type (FT)

The frame type (FT) field is an 8-bit field that is set to a known value by the transmitter. It is encoded into 4 symbols according to the diagram in the previous clause, then interspersed with 4 symbols of zero amplitude, and it is quadrature amplitude modulated with a carrier frequency of 7.0 MHz. The receiver decodes this field and discards the frame if it is not a known value.

The frame type is intended to provide flexibility for defining other frame formats and modulators in future versions of this Recommendation. For G.989.1 the value of FT shall be as defined in Table 1:

Table 1/G.989.1 – Frame type allocation

	FT
	Usage

	0
	Reserved for the installed base of existing PNT devices

	1-127
	Reserved for use by the ITU-T

	128-255
	Reserved for prototyping and Non-standard facilities

7.3
End-of-frame delimiter (EOF)

The end-of-frame delimiter (EOF) is the first eight symbols of the length-128 preamble, quadrature amplitude modulated with a carrier frequency of 7.0 MHz and an initial phase of 2πτ (7.0 + (, where (is the offset from the last symbol of the FT field in microseconds and (is the initial phase of the modulator (at the start of the burst).

--- End of Excerpt from G.989.1

--- Excerpt from G.989.2

5.3.2
Frame Control Definition

The frame control field is a 24-bit field defined in the following table.

Table 2/G.989.2 – Frame Control Field

	Field
	Bit Number
	Bits
	Description

	
	
	
	

	RSVD
	23
	1
	Reserved. This field shall be set to zero by the transmitter, and the receiver shall ignore it

	PRI
	22:20
	3
	Priority (0-7)

	SI
	19:16
	4
	Scrambler Initialization

	PE
	15:8
	8
	Payload Encoding

	HCS
	7:0
	8
	Header Check Sequence

Hence, with the bit ordering defined in § 5.3.1, the frame control field is transmitted in the order shown in Figure 11/G.989.2.

[image: image4.wmf]

SI

PE

HCS

PRI

RSVD

time on wire

Figure 11/G.989.2 Frame Control Field Order

5.3.2.1
Scrambler Initialization Bits

This 4-bit field shall be set to the value used to initialize the scrambler, as described in § 5.3.6.

5.3.2.2
Priority

Priority refers to the MAC priority mechanism. The 3 bit PHY priority value (PRI) shall be set to the G.989.1 priority level of the frame.

For PNT stations that do not implement class-of-service the PRI field shall be ignored on receive, and shall be transmitted set to 1.

5.3.2.3
Payload Encoding

This field determines the constellation encoding of the variable bit-rate portion of the PNT payload. The values are defined as follows.

Table 1/G.989.2 – Payload Encoding

	Value
	Interpretation

	0
	Non-standard mode

	1
	4D symbol mapping, 2 bits per symbol

	2
	4D symbol mapping, 3 bits per symbol

	3
	4D symbol mapping, 4 bits per symbol

	4
	4D symbol mapping, 5 bits per symbol

	5
	4D symbol mapping, 6 bits per symbol

	6
	4D symbol mapping, 7 bits per symbol

	7
	4D symbol mapping, 8 bits per symbol

	8
	Non-standard

	9
	2D symbol mapping, 2 bits per symbol

	10
	2D symbol mapping, 3 bits per symbol

	11
	2D symbol mapping, 4 bits per symbol

	12
	2D symbol mapping, 5 bits per symbol

	13
	2D symbol mapping, 6 bits per symbol

	14
	2D symbol mapping, 7 bits per symbol

	15
	2D symbol mapping, 8 bits per symbol

	16-256
	Reserved for use by ITU‑T

	NOTE: Receivers should discard frames whose PE value they do not understand.

5.3.2.4
Header Check Sequence (HCS)

An 8-bit cyclic redundancy check (CRC) is computed as a function of the (unscrambled) 128-bit sequence in transmission order starting with the G.989.1 FT field and ending with the Ethernet SA field, with zeros substituted for the as-of-yet uncomputed HCS field. The encoding is defined by the following generating polynomial.

G(x) = x8 + x7 + x6 +x4 + x2 + 1
[5-1]

Mathematically, the CRC value corresponding to a given frame is defined by the following procedure.

1 The first 8 bits of the input bit sequence in transmission order (i.e., the G.989.1 FT field) are complemented.

2 The 128 bits of the sequence in transmission order are then considered to be the coefficients of a polynomial M(x) of degree 127. (The first bit of the FT field corresponds to the x127 term and the last bit of the SA field corresponds to the x0 term.)

3 M(x) is multiplied by x8 and divided by G(x), producing a remainder R(x) of degree ≤ 7.

4 R(x) is multiplied by H(x) to produce N(x), where H(x) is defined as H(x)=x7 + x6 + x5 + x4 + x2 + x + 1

5 N(x) is divided by G(x), producing a remainder R'(x) of degree ≤ 7.

6 The coefficients of R'(x) are considered to be an 8-bit sequence.

7 The bit sequence is complemented and the result is CRC'.

The 8 bits of CRC' are placed in the HCS field so that x7 is the LSB of the octet and x0 is the MSB of the octet. (The bits of the CRC' are thus transmitted in the order x7, x6, … x1, x0.)

NOTE 1: Although the HCS is embedded within the protected bit-stream, it is calculated in such a way that the resulting 128-bit stream provides error-detection capabilities identical to those of a 120-bit stream with an 8-bit CRC appended. It should be noted that the resulting 128-bit sequence, considered as the coefficients of a polynomial of degree 127, when divided by G(x), will always produce a remainder equal to x7 + x6 + x + 1.

NOTE 2: Because all fields covered by the HCS are transmitted at 4D symbol mapping and 2 bits per symbol, these fields should be received correctly in many cases where the payload is received in error. The HCS may be used in conjunction with soft-decision error statistics to determine with high probability whether the header was received correctly. This knowledge may be useful for optimizing the performance of ARQ and/or rate negotiation algorithms.

5.3.3
Ethernet Frame

The bit fields starting with the DA field and ending with the FCS field in Figure 10 are identical to the corresponding fields described in ISO/IEC 8802‑3, and are referred to as the Link-level Ethernet Frame.

NOTE: An ISO/IEC 8802‑3 Ethernet frame has an Ethernet preamble and start-frame-delimiter (SFD) bits prefixed to the Link-level frame, these bits are not present in PNT frames.

NOTE: It is intended that assigned Ethernet MAC addresses are used for Destination Address (DA) and Source Address (SA).

The Ethernet frame consists of an integer number of octets.

Formatting and procedures for the Ethernet Frame contents are further described in § 6.

--- End of Excerpt from G.989.2

Control messages

As with any network there are a number of messages, primarily control messages that are passed between the data link layers of two devices on the bus. These messages are not passed up the communications protocol stack to the application but are handled within the data link layer. (With a single processor running both the application and the protocol stack this may be splitting hairs but it is a convenient way to define the functionality.) HPNA uses two frame formats to accomplish these functions, the Short Format and the Long Format. For the purposes of IEEE p1451.3 only the Short Format is needed and that is described in the following excerpt from G.989.2. Note that the Ethertype field is used to identify this type of message. For normal traffic the Ethertype field is used as the length and must be less than 1536.

--- Excerpt from G.989.2

6.2
Basic Link Layer Frame Format

There are two basic formats for a Link Control Frame, a short subtype and a long subtype. The short subtype format may be used for control frames where the amount of control information is less than 256 octets. The long subtype format is used for control frames where the amount of control information exceeds 255 octets.

Note: The control and encapsulation frames described in this Recommendation use the short subtype format.

6.2.1
Short Format

Table 5/G.989.2 – Short Format Link Control Frame

	Field
	Length
	Explanation

	DA
	6 octets
	Ethernet Destination Address

	SA
	6 octets
	Ethernet Source Address

	Ethertype
	2 octets
	886C16

	SSType
	1 octet

	0 – Non-standard

1 – Rate Request Control Frame

2 – Link Integrity Short Frame

3 – Capabilities Announcement

4 – LARQ

5 – Vendor-specific short format type

6 –127 Reserved for future use by the ITU-T

 (See Note)

	SSLength
	1 octet
	Number of control information octets, starting with the SSVersion field (or the first octet following SSLength if it is not defined as SSVersion) and ending with the second(last) octet of the Next Ethertype field. Min is 2 and max is 255.

	SSVersion
	1 octet
	Version number of the control information

	Data
	0-252 octets
	Control information

	Next Ethertype
	2 octets
	Ethertype/length of next layer protocol, 0 if none.

	Pad
	41-0 octets
	Padding required to meet minimum if data < 41 octets

	FCS
	4 octets
	Frame Check Sequence

	
Note: SSType values 128-255 correspond to the Long Subtype.

The SSVersion field specifies which format version of the control information is used. This allows for the future extension of each SSType.

Receivers shall check SSLength to ensure that sufficient control information is present. Newer, backwards compatible, frame format versions may contain additional fixed data fields, but for backwards compatibility should contain the fixed fields specified in earlier formats.

Receivers shall interpret all supported SSType frames using the latest supported SSVersion that is less than or equal to the SSVersion indicated in the received frame. Unknown fields shall be ignored. Encapsulated data from unsupported (newer) SSVersions of supported encapsulating SSType frames shall be passed to the layer above.

The Next Ethertype field is required for all Short Format Link Control Frame headers. Among other things, it supports backward compatibility by enabling receivers to always strip short format link layer headers. If the Next Ethertype field is zero, then the frame is a basic control frame and should be dropped after processing the control information it contains. The Next Ethertype field is always the last two octets of the control header. The position of the Next Ethertype field in the frame shall be determined using the SSLength field in order to ensure forward compatibility.

If the Next Ethertype field is non-zero, then the frame is an encapsulating control frame. An encapsulated data frame is an encapsulating control frame with any Next Ethertype field not matching 000016 or 886C16. G.989.2 receivers shall be capable of removing at least one encapsulating Short Format Link Control Frame header from any received encapsulated data frame. Future versions of this Recommendation may require the processing of multiple headers on encapsulated data frames, such as might occur if a Rate Request Control Frame were inserted into (i.e., piggybacked-on) a regular data frame with a LARQ header. When Next Ethertype is restricted by the specification to the value 000016 for a specific Link Layer control frame SSType or LSType, then encapsulation of data frames is not allowed when using that Link Layer control frame type. The only Link Layer frame type which supports encapsulation of data frames is the LARQ frame.

If the SSType is not understood by the receiver (a fact possibly announced via future CSA options) then the frame shall be ignored. Note that all nodes are required to understand the LARQ SSTYPE (although they are not required to implement LARQ). Because the LARQ SSTYPE is the only SSTYPE allowed to encapsulate data payloads, G.989.2 transmissions will never result in dropped payloads due to unfamiliar SSTYPE values.

The header and trailer for standard Ethernet frames are shaded with gray, in order to highlight the formats of the control information frames.

--- End of excerpt from G.989.2

In this proposal, we define a standard abstract interface to all services offered by the Data Link Layer. This facilitates adoption of alternate physical layers with a minimal impact to the upper layers of the protocol stack and the application layer. All services have been specified in such a way that the application does not need to know the details of the physical layer to use them.

Discovery Process – find out which TBIMs are currently connected to the bus.

Table 1 Discovery Process

	Seq.
	TBC Application
	Data Link layer in TBC
	Data link layer in TBIM
	TBIM Application

	1
	During initialization or periodically during operation, send an initiate discovery message to the discovery service in the Data link layer of the TBC.
	
	
	During initialization send a “RequestAlias” service request to the data link layer of the TBIM.

	2
	
	Broadcast a “Short Format Link Control Frame” with an “Initiate discovery” message.
	Enable discovery service
	

	3
	
	
	If discovery service is enabled,

transmit a “Short Format Link Control Frame” with a “discovery reply” message.

DA = source address of the TBC from received message

SA = 0,0 (broadcast – no alias)

Data field contains the UUID of the TBIM.
	

	4
	
	Returns zero or more UUID’s to the TBC application
	
	

	5
	If zero UUIDs, go to step 11.
	
	
	

	6
	Request an assign alias service from the data link layer to assign a TBIM Alias to each UUID.
	
	
	

	7
	
	Broadcast a “Short Format Link Control Frame” with an “Assign alias” message. Data field contains the Alias, UUID
	
	

	8
	
	
	· Replies with TBIM alias and data from PHY TEDS

· Returns TBIM alias to the TBIM application.

· Initiates monitoring of the alias assignments
	

	9
	
	Returns OK status to the application
	
	TBIM application transitions to HALT state

	10
	Repeat steps 6 through 9 for all received UUIDs. When done, go to step 1
	
	
	

	11
	End of discovery process
	
	
	

Table 2 Streaming data process

	Seq.
	TBC Application
	Data Link layer in TBC
	Data link layer in TBIM
	TBIM Application

	1
	The TBC calls the InitializeStreamingCommunication service to initialize the streaming capabilities in the data link layer and obtain the MessageInterval and the access type (TDMA for IEEE p1451.3)
	
	
	

	2
	
	Computes the message interval as half the maximum latency but not less than 50 ms or more than 250 ms. Returns the Message interval and access code to the application.
	
	

	3
	The TBC accesses the TEDS using the asynchronous protocols for a given TransducerChannel or proxy and determined the length of a message from that TransducerChannel.
	
	
	

	4
	The TBC requests the Streaming services in the data link layer to setup a streaming communications channel with a particular TransducerChannel by calling the SetupStreamingCommunicationChannel service. The call provides the TransducerChannel address and the message length.
	
	
	

	5
	
	Sends an Assign time slot control message to the data link layer in the TBIM.
	
	

	6
	
	
	Makes appropriate linkages to cause the addressed TransducerChannel to use the assigned time slot to send streaming data.

Sends an Assign time slot reply message with the defined status.
	

	7
	
	Returns from the SetupStreamingCommunicationChannel service request with % resources used and status.
	
	

	8
	Repeats steps 3 through 7 until all streaming TransducerChannels have assignments.
	
	
	

	9
	When ready to begin receiving streaming data the TBC application calls the ArmStreamingCommunication service.
	
	
	

	10
	
	Broadcasts a define epoch message to all TBIMS, starts the modulation of the sync signal and starts issuing Beginning-of-epoch and Start Async messages.
	
	

	11
	Issues a trigger(s) to streaming devices to start streaming data.
	
	
	

	12
	
	Passes the trigger(s) messages
	
	

	13
	
	
	Passes the trigger to the application using the trigger protocol.
	

	14
	
	
	
	Begins streaming data operations

	15
	
	
	Passes data to the data link layer in the TBC in the appropriate time slot.
	

	16
	
	Passes the data to the application using the streaming data protocol.
	
	

	17
	IF no request from the system is present to stop streaming it processes the received data and returns to step 15.
	
	
	

	18
	When ready to stop receiving streaming data the TBC application calls the DisarmStreamingCommunication service.
	
	
	

	19
	
	Broadcasts a Disarm streaming message and returns to the application.
	
	

	20
	
	
	Stops passing streaming data but does not necessarily stop the process application running in the TBIM.
	

	21
	Issues Halt Commands to all streaming TransducerChannels using the Datagram protocol to control the state of the TransducerChannels.
	
	
	

	22
	
	Transmits the datagram(s) in the Asynchronous mode.
	
	

	23
	
	
	Receives the datagram.
	

	24
	
	
	
	Transitions to the halted state

	25
	End of streaming process
	
	
	

Proposal:

References

Add the following:

ISO/IEC 14750: 1999-03-15
Information technology — Open Distributed Processing — Interface Definition Language

IEEE Std 802.3™-2002
IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements

Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications

4.13
Arbitrary octet array

Symbol: OctetArray

Size: varies

This data type is comprised of an arbitrary number of octets, treated as an aggregate entity that may or may not be interpreted as a number. An OctetArray can be a structure comprised of one or more primitive data types, arrays of primitive data types, or smaller OctetArrays.

4.14
Time-of-day

5.10
CommunicationsChannels

The standard recognizes two classes of CommunicationsChannels. One class of CommunicationsChannels is open to all users by some method that is determined in the Data Link and Physical layers of the protocol stack. This CommunicationsChannel is known as the TBIM CommunicationsChannel. The other class of CommunicationsChannels is dedicated to a particular TransducerChannel or TBC and that is the only device that may transmit using this CommunicationsChannel. These are called Data CommunicationsChannels.

To further differentiate between communications capabilities, Data and Physical CommunicationsChannels are defined in the standard. Data CommunicationsChannels are defined in the standard without regard for how they are physically implemented. Data CommunicationsChannels are mapped to physical CommunicationsChannels in the Data Link or Physical layers of the protocol stack. Unless the context clearly indicates that a physical CommunicationsChannel is being specified, all references to a CommunicationsChannel refer to Data CommunicationsChannels.

5.10.1
TBIM CommunicationsChannel

The TBIM CommunicationsChannel is always assigned as logical CommunicationsChannel zero. The data link or physical layers of the protocol stack provide the mapping of this function into the physical realization of the CommunicationsChannel.

5.10.2
Data CommunicationsChannels

Data CommunicationsChannels are primarily used for streaming data and are assigned to TransducerChannel numbers. The data link or physical layers of the protocol stack provide the mapping of this function into the physical realization of the CommunicationsChannel.

6.1
Standard commands

The control function allows commands to be sent to the TBIM as a whole, or to each TransducerChannel thereof, which affect their state or operation. The list of standard command classes is given in Table 7.

The TBIM shall respond to all unimplemented commands by setting the TBIM invalid command bit in the status register. See 5.10.3 for a complete description of this bit.

Table 7—Standard command classes

	Class
	Category
	Address

	
	
	TBIM
	TransducerChannel
	Global
	Group

	
	
	
	Normal
	Proxy
	
	

	0
	Reserved
	—
	—
	—
	—
	—

	1
	Initialization
	See Table 8
	See Table 8
	See Table 8
	See Table 8
	See Table 8

	2
	Operational
	See Table 10
	See Table 10
	See Table 10
	See Table 10
	See Table 10

	3
	Query TEDS
	See Table 14
	See Table 14
	See Table 14
	No
	No

	4
	Read TEDS block
	See Table 14
	See Table 14
	See Table 14
	No
	No

	5
	Write TEDS block
	See Table 14
	See Table 14
	See Table 14
	No
	No

	6
	Update TEDS
	See Table 14
	See Table 14
	See Table 14
	No
	No

	7
	Set operating mode
	Yes
	Yes
	Yes
	Yes
	Yes

	8
	Read operating mode
	No
	Yes
	No
	No
	No

	9
	Run diagnostics
	Yes
	Yes
	Yes
	Yes
	Yes

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	10 - 127
	Reserved
	—
	—
	—
	—
	—

	128 - 255
	Open for manufacturers
	—
	—
	—
	—
	—

6.1.1
Initialization commands

The initialization class of commands is used to set up a TBIM. Table 8 gives a list of the initialization commands defined in the standard. A TBIM, TransducerChannel or TransducerChannel proxy only responds to commands in this class when in the halted state. If one of these commands is received when the TBIM is in any other state the command rejected bit shall be set.

Commands in this class that may be issued to both a TransducerChannel and a TransducerChannel proxy (i.e., there is a “Yes” under both the columns labeled “Normal” and “Proxy” in Table 8) shall have the same effect as issuing that same command to each member of the TransducerChannel proxy individually when issued to the TransducerChannel proxy.

Table 8—Initialization commands

	Function
	Command
	Address
	Required/ Optional

	
	
	TBIM
	TransducerChannel
	Global
	Group
	

	
	
	
	Normal
	Proxy
	
	
	

	0
	Reserved
	—
	—
	—
	—
	—
	—

	1
	Sleep
	Yes
	Yes
	Yes
	Yes
	Yes
	Optional

	2
	Wake-up
	Yes
	Yes
	Yes
	Yes
	Yes
	Optional

	3
	Set TransducerChannel data repetition count
	Yes
	Yes
	No
	Yes
	Yes
	Optional

	4
	Set TransducerChannel pre-trigger count
	Yes
	Yes
	No
	Yes
	Yes
	Optional

	5
	Calibrate TransducerChannel
	Yes
	Yes
	Yes
	Yes
	Yes
	Optional

	6
	Zero TransducerChannel
	Yes
	Yes
	Yes
	Yes
	Yes
	Optional

	
	
	
	
	
	
	
	

	7
	Enable corrections
	Yes
	Yes
	Yes
	No
	No
	see 6.1.1.7

	8
	Disable corrections
	Yes
	Yes
	Yes
	No
	No
	see 6.1.1.8

	9
	Enable TransducerChannel
	Yes
	Yes
	Yes
	Yes
	Yes
	Required

	10
	AddressGroup definition
	Yes
	Yes
	Yes
	No
	No
	Required

	11
	Erase operational setup
	Yes
	No
	No
	Yes
	Yes
	Required

	12
	Store operational Setup
	Yes
	Yes
	Yes
	Yes
	Yes
	Required

	13
	Read TBIM structure
	Yes
	No
	No
	No
	No
	Required

	14 – 127
	Reserved
	—
	—
	—
	—
	—
	—

	128 – 255
	Open for manufacturers
	—
	—
	—
	—
	—
	—

6.1.1.1
Sleep

6.1.1.2
Wake-up

6.1.1.3
Set TransducerChannel data repetition count

6.1.1.4
Set TransducerChannel pre-trigger count

6.1.1.5
Calibrate TransducerChannel

6.1.1.6
Zero TransducerChannel

6.1.1.7
Enable corrections

6.1.1.8
Disable corrections

6.1.1.9
Enable TransducerChannel

6.1.1.10
AddressGroup definition

6.1.1.11
Erase operational setup

6.1.1.12
Store operational Setup

6.1.1.13
Read TBIM structure

8.
Upper layers of the ISO model (layers 3 through 7)

This clause describes the protocols defined for this standard. Figure 1 shows the relationship of these protocols to the ISO/OSI seven-layer model [A6].

[image: image5.wmf]ISO

7 Layer

Model

Command

Services

IEEE p1451.3 Datagram

Protocol

Data Link Layer

Physical Layer

(from HomePNA)

Trigger

Protocol

Application

Presentation

Session

Transport

Network

Data Link

Physical

Reply

Protocol

Security & Encryption

(Future Option)

Others as

required

(Future

Option)

NCAP or TBIM Application

(This is above the communications stack and is not part of the 7 layer model)

(Layer 7)

(Layer 1)

Streaming

Data Protocol

Security &

Encryption

(Future Option)

Figure 1—Model of the protocol stack

8.2
Protocol identifiers

Table 4 lists the protocol identifiers defined by this standard.

Table 9—Protocol identifiers
	Protocol Identifier
	Protocol Name

	0x00
	Reserved

	0x01
	Datagram protocol

	0x02
	Streaming data protocol

	0x03
	Trigger protocol

	0x04
	Command services protocol

	0x05
	Reply protocol

	0x06 - 0x0F
	Reserved

	0x10 - 0x1F
	Open to manufacturers

	
	

Protocol identifiers listed as reserved are designated for future versions of this standard and shall not be used. Protocol identifiers listed as open to manufacturers may be used to designate protocols not described by the standard.

8.4
Streaming data protocol

The streaming data protocol is used to transmit data in the streaming mode. This protocol is identical to the datagram protocol except that it uses a different protocol identifier number. It is used to separate data being communicated in a command/response mode from streaming data at the application.

9.
Standard services offered by the Data Link Layer

This clause provides a standard abstract interface to all services offered by the Data Link Layer. The intent of this clause is to facilitate adoption of alternate physical layers with a minimal impact to the upper layers of the protocol stack and the application. The underlying description of how these services are performed is dependent on the physical layer and shall be provided in Clause 10.

9.1
Syntax and semantics

The interface to services described in this clause is presented as operations. Operation signatures are presented using a variant of the Interface Definition Language (IDL), defined in ISO/IEC 14750:1999. The variation is summarized as follows: the IDL signature of an operation described in this clause shall only use data types defined within this standard.

All IDL specifications within this clause are prefaced with "IDL:" in bold type to facilitate automated extraction from an electronic copy of this standard.

9.1.1
IDL semantics

All data types appearing in the signature of an operation define the data type of the referenced argument. IDL has no concept of "pointers" or "references". This does not imply "pass by value", or any other technique. The actual data type of the argument is dependent on the language in which it is implemented.

9.1.2
Abstract representation of an aggregate

Within the context of this clause, an arbitrary data type is defined, as follows:

IDL:
typedef OctetArray PDU;

This data type is comprised of an arbitrary number of octets, treated as an aggregate entity, that shall not be interpreted as a number. A PDU is typically a complex structure used in an abstract context in which the actual data structure is irrelevant. The data type PDU is used to represent a "Protocol Data Unit" delivered between layers of the protocol stack.

9.1.3
Array of UUIDs

Within the context of this clause, a new data type is defined to support an array of UUIDs, as follows:

IDL:
typedef UUID UUID_ARRAY[];

9.1.4
Return status

All operations described in this clause define an argument to receive a return status. The value returned is an enumerated value, defined below:

Table 10—Enumerated values for return status

	Enumeration
	Value
	Meaning

	DLLRS_SUCCESS
	0
	Success.

	DLLRS_ALIAS
	1
	Alias zero is illegal in this context

	DLLRS_BADARG
	2
	An argument has been passed to an operation with an illegal or undefined value.

	DLLRS_BADSETUP
	3
	The streaming mode setup has no participating TBIMs.

	DLLRS_BW_EXHAUSTED
	4
	Bandwidth exhausted. The requested allocation is denied.

	DLLRS_CHANNEL
	5
	Channel zero is illegal in this context

	DLLRS_EMPTY
	6
	The message queue is empty and streaming mode is disarmed.

	DLLRS_LATENCY
	7
	The value specified for latency cannot be achieved due to constraints at the physical layer.

	DLLRS_LOST_ALIAS
	8
	Applicable only to the TBIM protocol stack -- indicates that this TBIM has lost its privileges to use a previously granted alias.

	DLLRS_NO_ASSIGNMENT
	9
	The specified chan has no logical CommunicationChannel assigned.

	DLLRS_NO_RESPONSE
	10
	No TBIM responded.

	DLLRS_TIMEOUT
	11
	A message has not arrived within the time limit.

9.2
Streaming Mode Management Services on the TBC

Streaming mode management services offered by the Data Link layer support transducers operating in streaming mode. The interface to these services is exposed to the application in the TBC, as described below.

9.2.1
Operation InitializeStreamingCommunication

This operation defines the allowable latency between sample acquisition and data delivery.

Note—For HPNA, the allowable latency is used to determine the epoch length.

IDL:

InitializeStreamingCommunication(

in
F32
latency,

in
U8
discardStrategy,

out
U8
accessCode,

out
F32
messageInterval,

out
U32
retStatus);

Argument latency specifies the allowable bus latency, in seconds. This latency is a constant for all TBIMs on the bus.

Argument discardStrategy is an enumerated code to select the discard strategy for the Data Link layer. When an application fails to retrieve streaming data messages in a timely fashion, the Data Link Layer may be compelled to discard messages. There are two defined strategies, as follows:

Table 11—Discard Strategy Enumerations

	Enumeration
	Value
	Meaning

	DLLDS_OLDEST
	0
	The oldest message is discarded.

	DLLDS_NEWEST
	1
	The incoming message is discarded

Argument accessCode is an enumerated code, as follows:

Table 12—Access Code Enumerations

	Enumeration
	Value
	Meaning

	DLLAC_TDMA
	0
	Time Division Multiple Access

	DLLAC_FDMA
	1
	Frequency Division Multiple Access

	DLLAC_CDMA
	2
	Code Division Multiple Access

When accessCode is DLLAC_TDMA, argument messageInterval is the Epoch length, in seconds. For other values of accessCodes, this value may have another interpretation that is defined by the Data Link Layer.

Argument retStatus provides return status from the operation, as follows:

Table 13—Return Status

	Enumeration
	Meaning

	DLLRS_SUCCESS
	Success

	DLLRS_BADARG
	Argument error: the caller has specified an undefined discard strategy

	DLLRS_LATENCY
	The value specified for latency cannot be achieved due to constraints at the physical layer

	See Table 10 for enumerated value definitions

Upon return, all internal tables and maps used by the data link layer to manage bandwidth have been reset to an empty state.

9.2.2
Operation SetupStreamingCommunicationChannel

This operation shall be invoked for each TransducerChannel or proxy that contributes data to the stream. Internally, the data link layer allocates logical CommunicationChannels until the resources are exhausted.

IDL:

SetupStreamingCommunicationChannel(

in
U8
alias,

in
U8
channel,

in
U32
messageLength,

out
F32
percentResourceUsed,

out
U32
retStatus);

Argument alias specifies the TBIM Alias of the target TBIM. It is not legal to specify an alias of zero (the global address). It is legal to specify an alias of 255 to denote the TBC.

Argument channnel specifies the TransducerChannel number on the target TBIM. When alias is 255, channnel is an artificial identifier used by the logical source of data being directed to a streaming actuator. It is not legal to specify a channnel of zero.

Argument messageLength specifies the length of the datagram delivered during streaming operation, including header, in octets.

Argument percentResourceUsed specifies the percent of the resource consumed, in aggregate. This statistic has different meaning based on accessCode. The precise meaning of this parameter is provided in the clause describing the Data Link and Physical Layers.

Argument retStatus provides return status from the operation, as follows:

Table 14—Return Status

	Enumeration
	Meaning

	DLLRS_SUCCESS
	Success

	DLLRS_ALIAS
	Alias zero is illegal in this context

	DLLRS_CHANNEL
	Channel zero is illegal in this context

	DLLRS_BW_EXHAUSTED
	Bandwidth exhausted. The requested allocation is denied.

	See Table 10 for enumerated value definitions

9.2.3
Operation ArmStreamingCommunication

This operation prepares the TBC for streaming data mode. The precise action taken by the Data Link Layer is dependent on the underlying physical layer. Once the TBC is armed, the application may start streaming operation by issuing a trigger to all participating TBIMs.

Note—For HPNA, this operation causes the data link layer to: broadcast the epoch definition, begin modulating the sync signal, and begin transmitting Beginning-of-epoch and Start Async messages.

IDL:

ArmStreamingCommunication(

out
U32
retStatus);

Argument retStatus provides return status from the operation, as follows:

Table 15—Return Status

	Enumeration
	Meaning

	DLLRS_SUCCESS
	Success

	DLLRS_BADSETUP
	The streaming communication setup has no participating TBIMs

	See Table 10 for enumerated value definitions

9.2.4
Operation DisarmStreamingCommunication

This operation disarms all TBC logic required to support streaming data mode. The precise action taken by the Data Link Layer is dependent on the underlying physical layer. Once the bus is disarmed, the application is expected to issue a HALT command to all participating TBIMs.

Note—For HPNA, this operation shall suspend the sync signal and cause the TBC to stop issuing Beginning of Epoch and Start Async messages.

Behavior of the TBIM is undefined when the application fails to issue a HALT command before re-arming the TBC with a subsequent invocation of ArmStreamingCommunication().

IDL:

DisarmStreamingCommunication(

out
U32
retStatus);

Argument retStatus provides return status. This operation always returns DLLRS_SUCCESS.

9.3
Streaming Mode Protocol Services

Streaming mode protocol services offered by the Data Link layer support transducers operating in streaming mode. The interface to these services is exposed to higher layers in the protocol stack in both the TBC and the TBIM, as described below.

9.3.1
Operation PollStreamingDataQueue

This operation reports status of the queue of streaming data messages.

IDL:

PollStreamingDataQueue(

out
U32
incomingMessages,

out
U32
discardedMessages,

out
U32
retStatus);

Argument incomingMessages returns the number of messages available to read.

Argument discardedMessages returns the number of messages that have been discarded since the last poll.

Argument retStatus provides return status. This operation always returns DLLRS_SUCCESS.

9.3.2
Operation ReadStreamingDataMessage

This operation reads the next available message from the queue of incoming data messages. If the queue is empty and the TBC is still armed for streaming mode operation, this operation optionally waits for a message to arrive.

IDL:

ReadStreamingDataMessage(

in
F32
timeout,

out
PDU
pdu,

out
U16
pduSize,

out
U32
retStatus);

Argument timeout is the mechanism to limit the wait interval. The timeout value is specified in seconds. When timeout is greater than zero, this operation shall wait up to timeout seconds for a message to arrive. If a message arrives within that interval, it is returned to the caller. Otherwise, the operation returns with a retStatus of DLLRS_TIMEOUT. A timeout value of zero indicates that the caller is unwilling to wait, and if the queue is empty, this operation shall return immediately with a retStatus of DLLRS_SUCCESS and a pduSize of zero.
Argument pdu is the returned protocol data unit. It is always a complete datagram suitable for parsing by the Streaming Protocol.

Argument pduSize is the size of the protocol data unit, in octets.

Argument retStatus provides return status from the operation, as follows:

Table 16—Return Status

	Enumeration
	Meaning

	DLLRS_SUCCESS
	Success

	DLLRS_BADARG
	Argument error: the caller has specified an illegal value for timeout

	DLLRS_EMPTY
	The message queue is empty and streaming mode is disarmed

	DLLRS_TIMEOUT
	A message has not arrived within the time limit

	See Table 10 for enumerated value definitions

9.3.3
Operation WriteStreamingDataMessage

This operation is a request to transmit a message. The precise action taken by the Data Link Layer is dependent on the underlying physical layer. In TDMA schemes, the operation queues the message for output at the time in the epoch allocated to the specified TransducerChannel.

IDL:

WriteStreamingDataMessage(

in
U8
chan,

in
U16
ChannelAddress,

in
PDU
pdu,

in
U16
pduSize,

out
U32
retStatus);

Argument chan specifies the logical source of the message. On the TBIM stack, this is synonymous with the TransducerChannel number. On the TBC stack, the value is artificial and corresponds to the source of data directed to a streaming actuator.

Argument ChannelAddress specifies the logical destination of the message. On the TBIM stack, this is always the TBC. On the TBC stack, the value is TransducerChannel address to which the data is to be sent.

Argument pdu is the message to be transmitted. It is always a complete datagram encapsulated by the Streaming Protocol.

Argument pduSize is the size of the protocol data unit, in octets.

Argument retStatus provides return status from the operation, as follows:

Table 17—Return Status

	Enumeration
	Meaning

	DLLRS_SUCCESS
	Success

	DLLRS_LOST_ALIAS
	Applicable only to the TBIM protocol stack -- indicates that this TBIM has lost its privileges to use a previously granted alias.

	DLLRS_NO_ASSIGNMENT
	The specified chan has no logical CommunicationChannel assigned.

	See Table 10 for enumerated value definitions

Note: There are no constraints related to whether the bus is operating in streaming mode. That is, it is legal to issue a WriteStreamingDataMessage() while the bus is not streaming.
9.4
Discovery Services in the TBC

Discovery services offered by the Data Link layer support the bus discovery process in which the TBC can solicit responses from all TBIMs that do not currently possess a TBIM Alias assignment. Discovery on an IEEE1451.3 bus enables plug and play operation. The interface to the discovery services available on the TBC is described below. These services are not available on the TBIM.

9.4.1
Operation InitiateDiscovery

This operation is a request to solicit a response from one (or more) TBIMs that do not currently have an assigned TBIM Alias.

IDL:

InitiateDiscovery(

out
UUID_ARRAY
uuidArray,

out
U8

nUuid,

out
U32

retStatus);

Argument uuidArray receives zero or more UUIDs from TBIMs that lack a current TBIM Alias.

Argument nUuid is the number of TBIMs that responded and, therefore, is the number of UUIDs returned in uuidArray. When nUuid returns zero, the discovery process is complete because all TBIMs on the bus have an assigned TBIM Alias.

Argument retStatus provides return status. This operation always returns DLLRS_SUCCESS.

9.4.2
Operation AssignAlias

This operation assigns a TBIM Alias to the TBIM whose UUID is specified.

IDL:

AssignAlias(

in
UUID
uuid,

in
U8
tbimAlias,

out
U32
retStatus);

Argument uuid is the UUID of a TBIM.

Note: Typically, system knowledge that a TBIM with the specified UUID exists on the bus is acquired via the InitiateDiscovery() operation. However, other scenarios are possible, including data base driven setup strategies.

Argument tbimAlias specifies the TBIM Alias to assign to the TBIM whose UUID is specified.

Argument retStatus provides return status from the operation, as follows:

Table 18—Return Status

	Enumeration
	Meaning

	DLLRS_SUCCESS
	Success

	DLLRS_NO_RESPONSE
	TBIM failed to respond to the assignment

	See Table 10 for enumerated value definitions

9.5
Discovery Services in the TBIM

Discovery services offered by the Data Link layer support the bus discovery process in which the TBC can solicit responses from all TBIMs that do not currently possess a TBIM Alias assignment. Discovery on an IEEE p1451.3 bus enables plug and play operation. The interface to the discovery services available on the TBIM is described below. These services are not available on the TBC.

9.5.1
Operation RequestAlias

This operation shall wait indefinitely for the TBC to assign this unit a TBIM Alias.

IDL:

RequestAlias(

in
UUID
uuid,

out
U8
tbimAlias,

out
U32
retStatus);

Argument uuid is the UUID of this TBIM.

Argument tbimAlias returns the TBIM Alias assigned to this unit by the TBC.

Argument retStatus provides return status. This operation always returns DLLRS_SUCCESS.

9.5.2
Alias monitoring

The TBIM alias is captured by the data link layer in the TBIM during a RequestAlias() operation. The data link layer uses this alias to generate the source address in each response generated by that TBIM. In addition, the TBIM Alias is returned to the application, to support the requirements of the higher layers in the protocol stack.

Once a TBIM has received an alias assignment, it shall monitor all future alias assignments to detect whether the TBIM Alias being assigned to another TBIM conflicts with its current assignment. If it detects such a conflict, it shall clear the alias assignment used in the data link layer. All subsequent requests from the upper layers of the protocol stack to transmit data shall return a DLLRS_LOST_ALIAS status to the application. The application is expected to take appropriate action to re-initialize, re-invoke the RequestAlias() operation, and wait for a new alias assignment.

9.6
Transmitter Control Services

Transmitter control services are offered by the Data Link layer in the TBC only. These services are not available on the TBIM. Transmitter control primitives allow the TBC to enable and disable the transmitter on a specified TBIM or on all TBIMs on the bus. These services are offered to control a transmitter in a TBIM that is malfunctioning. These services should be implemented in such a way that they have the maximum probability of working in a TBIM that will not respond to normal commands.

9.6.1
Operation DisableTransmitter

This operation causes the Data Link Layer in the TBC to issue a bus message that shall cause one or more TBIMs to disable its transmitter.

IDL:

DisableTransmitter(

in
U8
tbimAlias,

out
U32
retStatus);

Argument tbimAlias specifies the target TBIM. If tbimAlias is zero, the command issued is global and all TBIMs on the bus shall disable their transmitters.

Argument retStatus provides return status. This operation always returns DLLRS_SUCCESS. Success should not be interpreted to mean that the bus command was honored -- once the transmitter is disabled, the TBIM cannot articulate success. Hence, a successful return only confirms that the bus command was issued.

9.6.2
Operation EnableTransmitter

This operation causes the Data Link Layer in the TBC to issue a bus message that shall cause one or more TBIMs to enable its transmitter.

IDL:

EnableTransmitter(

in
U8
tbimAlias,

out
U32
retStatus);

Argument tbimAlias specifies the target TBIM. If tbimAlias is zero, the command issued is global and all TBIMs on the bus shall enable their transmitters.

Argument retStatus provides return status. This operation always returns DLLRS_SUCCESS. The primitive transducer bus command issued to enable a transmitter does not solicit a response from the addressed TBIM(s). A successful return only confirms that the bus command was issued.

9.7
Datagram Protocol Services

Datagram protocol services, offered by the Data Link layer, support command-response transactions on the bus. The interface to these services is exposed to the Datagram protocol in both the TBC and the TBIM, as described below.

9.7.1
Operation PollDatagramQueue

This operation reports status of the queue of datagrams.

IDL:

PollDatagramQueue(

out
U32
incomingMessages,

out
U32
discardedMessages,

out
U32
retStatus);

Argument incomingMessages returns the number of messages available to read.

Argument discardedMessages returns the number of messages that have been discarded since the last poll.

Argument retStatus provides return status. This operation always returns DLLRS_SUCCESS.

9.7.2
Operation ReadDatagram

This operation reads the next available message from the queue of incoming datagrams. If the queue is empty, this operation optionally waits for a message to arrive.

IDL:

ReadDatagram(

in
F32
timeout,

out
PDU
pdu,

out
U16
pduSize,

out
U32
retStatus);

Argument timeout is the mechanism to limit the wait interval. The timeout value is specified in seconds. When timeout is greater than zero, this operation shall wait up to timeout seconds for a message to arrive. If a datagram message arrives within that interval, it is returned to the caller. Otherwise, the operation returns with a retStatus of DLLRS_TIMEOUT. A timeout value of zero indicates that the caller is unwilling to wait, and if the queue is empty, this operation shall return immediately with a retStatus of DLLRS_SUCCESS and a pduSize of zero.
Argument pdu is the returned protocol data unit. It is always a complete datagram suitable for parsing by the Datagram Protocol.

Argument pduSize is the size of the protocol data unit, in octets.

Argument retStatus provides return status from the operation, as follows:

Table 19—Return Status

	Enumeration
	Meaning

	DLLRS_SUCCESS
	Success

	DLLRS_BADARG
	Argument error: the caller has specified an illegal value for timeout

	DLLRS_TIMEOUT
	A message has not arrived within the time limit

	See Table 10 for enumerated value definitions

9.7.3
Operation SendDatagram

This operation is a request to transmit a datagram. The precise action taken by the Data Link Layer is dependent on the underlying physical layer. In TDMA schemes, the operation queues the message for output during the next asynchronous interval.

IDL:

SendDatagram(

in
U8
chan,

in
U16
ChannelAddress,

in
PDU
pdu,

in
U16
pduSize,

out
U32
retStatus);

Argument chan specifies the logical source of the message. On the TBIM stack, this is synonymous with the TransducerChannel number. On the TBC stack, the value is artificial and corresponds to the logical source of the message.

Argument ChannelAddress specifies the logical destination of the message. On the TBIM stack, this is always the TBC. On the TBC stack, the value is TransducerChannel address to which the data is to be sent.

Argument pdu is the message to be transmitted. It is always a complete datagram encapsulated by the Datagram Protocol.

Argument pduSize is the size of the protocol data unit, in octets.

Argument retStatus provides return status from the operation, as follows:

Table 20—Return Status

	Enumeration
	Meaning

	DLLRS_SUCCESS
	Success

	DLLRS_LOST_ALIAS
	Applicable only to the TBIM protocol stack -- indicates that this TBIM has lost its privileges to use a previously granted alias.

	See Table 10 for enumerated value definitions

9.8
Trigger Protocol Services

Trigger protocol services offered by the Data Link layer support trigger transactions on the bus. The interface to these services is exposed to the Trigger protocol in both the TBC and the TBIM, as described below.

9.8.1
Operation PollTriggerQueue

This operation reports status of the queue of trigger messages.

IDL:

PollTriggerQueue(

out
U32
incomingMessages,

out
U32
discardedMessages,

out
U32
retStatus);

Argument incomingMessages returns the number of messages available read.

Argument discardedMessages returns the number of messages that have been discarded since the last poll.

Argument retStatus provides return status. This operation always returns DLLRS_SUCCESS.

9.8.2
Operation ReadTriggerMessage

This operation reads the next available message from the queue of incoming trigger messages. If the queue is empty, this operation optionally waits for a message to arrive.

IDL:

ReadTriggerMessage(

in
F32
timeout,

out
PDU
pdu,

out
U16
pduSize,

out
U32
retStatus);

Argument timeout is the mechanism to limit the wait interval. The timeout value is specified in seconds. When timeout is greater than zero, this operation shall wait up to timeout seconds for a message to arrive. If a message arrives within that interval, it is returned to the caller. Otherwise, the operation returns with a retStatus of DLLRS_TIMEOUT. A timeout value of zero indicates that the caller is unwilling to wait, and if the queue is empty, this operation shall return immediately with a retStatus of DLLRS_SUCCESS and a pduSize of zero.
Argument pdu is the returned protocol data unit. It is always a complete trigger message suitable for parsing by the Trigger Protocol.

Argument pduSize is the size of the protocol data unit, in octets.

Argument retStatus provides return status from the operation, as follows:

Table 21—Return Status

	Enumeration
	Meaning

	DLLRS_SUCCESS
	Success

	DLLRS_BADARG
	Argument error: the caller has specified an illegal value for timeout

	DLLRS_TIMEOUT
	A message has not arrived within the time limit

	See Table 10 for enumerated value definitions

9.8.3
Operation SendTriggerMessage

This operation is a request to transmit a trigger message. The precise action taken by the Data Link Layer is dependent on the underlying physical layer. In TDMA schemes, the operation queues the message for output during the next asynchronous interval.

Note: It is permissible to send trigger messages using the streaming protocol. However they should be received by the TBIM using the trigger protocol.

IDL:

SendTriggerMessage(

in
U8
chan,

in
U16
ChannelAddress,

in
PDU
pdu,

in
U16
pduSize,

out
U32
retStatus);

Argument chan specifies the logical source of the message. On the TBIM stack, this is synonymous with the TransducerChannel number. On the TBC stack, the value is artificial and corresponds to the logical source of the message.

Argument ChannelAddress specifies the logical destination of the message. On the TBIM stack, this is always the TBC. On the TBC stack, the value is TransducerChannel address to which the data is to be sent.

Argument pdu is the message to be transmitted. It is always a complete datagram encapsulated by the Datagram Protocol.

Argument pduSize is the size of the protocol data unit, in octets.

Argument retStatus provides return status from the operation, as follows:

Table 22—Return Status

	Enumeration
	Meaning

	DLLRS_SUCCESS
	Success

	DLLRS_LOST_ALIAS
	Applicable only to the TBIM protocol stack -- indicates that this TBIM has lost its privileges to use a previously granted alias.

	See Table 10 for enumerated value definitions

9.9
Delay Measurement Services

Delay measurement services offered by the data link layer provide a mechanism to measure the propagation delay on the bus. The interface to the MeasureDelay service is exposed to the application in the TBC only, as described below.

This MeasureDelay operation shall cause the data link layer to measure the propagation delay between the TBC and the target TBIM. The precise action taken by the Data Link Layer is dependent on the underlying physical layer.

IDL:

MeasureDelay(

in
U8
tbimAlias,

out
F32
delay,

out
U32
retStatus);

Argument tbimAlias is the TBIM Alias of the target.

Argument delay is the measured delay, in seconds.

Argument retStatus provides return status from the operation, as shown in Table 23
Table 23—Return Status for delay measurement services

	Enumeration
	Meaning

	DLLRS_SUCCESS
	Success

	DLLRS_NO_RESPONSE
	TBIM did not respond to the command

	See Table 10 for enumerated value definitions

910. Lower layers of the ISO model (layers 1 and 2)

No text changes

10.1
HomePNA Data link layer protocol specifications

The HomePNA™ data link layer specified in Paragraph 6 of ITU Recommendation G.989.2 includes control commands for rate negotiation, link integrity, capability announcement and limited automated repeat request (LARQ). The implementation of these functions is not required to be compliant to this specification but, if compliant, their use must be limited to the asynchronous interval to avoid interference with the operation of the bus when in isochronous mode. In this specification, the responsibility for these functions is relegated to the application layer. In any case, TBIMs may need to detect and keep track of the communication modes with the implementation of internal timers.

The use of the control messages as specified in Recommendation G.989.2 will not interfere with the operations specified in this standard except as noted above.

10.2
Data link - Logical link control (LLC) sublayer

The logical link control layer is in the upper portion of the data link layer and is used to break messages up into packets for transmission, reassemble packets into messages upon reception and for directing the messages to the correct upper layer protocol.

The LLC protocol is as shown in Table 24.

Table 24—LLC protocol

	1-Octet
	1-Octet

	1
	1
	1
	1
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	5
	4
	3
	2
	1
	0
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	Source protocol identifier
	Destination protocol identifier

	Sequence number

	PDU

10.2.1
Protocol Identifiers

The assigned protocol identifiers are enumerated in Table 9.

10.2.2
Sequence Number

Sequence numbers are used to reassemble messages if the packets are not received in sequential order. A different sequence number shall be used for each packet used to transmit a complete message. The source of the transmission shall assign the first sequence number in a message arbitrarily. The remaining sequence numbers in a message shall increment the sequence number in the previous packet by 1 and use that number as the new sequence number.

10.3
Data link – MAC sublayer

The Media Access Control (MAC) sublayer is responsible for the access on the physical medium. HomePNA specifies that any access to the physical medium uses a contention-based method with collision detection (CSMA/CD). This method is not changed. However, this specification takes into consideration the operational characteristics of the bus in order to prevent collisions during specified times, assuring TBIMs successful transmissions.

Transducer bus operation is dependent on the direction of the transmission. The TBC-to-TBIM link operates on a point-to-multipoint basis: i.e., a TBC is capable of handling multiple TBIMs. The TBC is the only transmitter operating in this direction and messages are broadcasted to all stations. All TBIMs on one bus receive the same transmission, or parts thereof. They check the destination address in the received messages and retain only those addressed to them.

In the other direction, all TBIMs share the TBIM-to-TBC link and send transmissions only to the TBC. A method to prevent collisions during access the physical medium by the TBIMs or TBC is specified in 10.2.2.

10.3.1
Elements of the MAC Frame

The elements of the MAC frame are described in ITU Recommendation G.989.1, ITU Recommendation G989.2 and IEEE 802.3. They are summarized here from those sources. Figure 2 identifies the fields in the MAC frame. The subsequent subclauses provide more definition.

All fields shall be transmitted most-significant octet first, with the LSB within each octet transmitted first. The LSB within a field is designated as bit number 0. Diagrams show most significant bits or octets to the left.

[image: image6.wmf]P

reamble

16 Octets

Frame Type

1 Octet

Destination Address

6 Octets

Source Address

6 Octets

2 Octets

Frame Check Sequence

4 Octets

2 Octets

Ethertype/Length

Bit

7

Bit

0

Fields

 within a frame are

transmitted from top to

bottom and most

significant octet to least

significant octet

Frame Control

3 Octets

CRC-16

HPNA PAD

EOF

1 Octet

41-0 Octets

MAC CLIENT DATA

PAD

46-1500

Octets

msb

lsb

Bits within an octet are transmitted lsb first

Figure 2—MAC Frame

10.3.1.1
Preamble

The preamble is a fixed pattern that is used to synchronize the receiver to an incoming data stream. This standard does not alter the preamble in any way.

10.3.1.2
Frame Type

The Frame type shall always be zero.

10.3.1.3
Frame Control Definition
The content of these fields are taken directly from ITU Recommendation G989.2, paragraph 5.3.2 and summarized here for convenience.
The frame control field is a 24-bit field as defined in Table 2.

Table 2–Frame Control Field

	Field
	Bit numbers
	Number of bits
	Description

	Reserved
	23
	1
	Reserved. This field shall be set to zero by the transmitter, and the receiver shall ignore it

	Priority
	22:20
	3
	Priority (0-7)

	SI
	19:16
	4
	Scrambler Initialization

	PE
	15:8
	8
	Payload Encoding

	HCS
	7:0
	8
	Header Check Sequence

10.3.1.3.1
Priority

Priority refers to the MAC priority mechanism. The 3-bit priority value (PRI) shall be set according to the ITU Recommendation G.989.1, paragraph 8.1 and ITU Recommendation G.989.2, paragraph 5.3.2.2 priority level of the frame.

10.3.1.3.2
Scrambler Initialization Bits

This 4-bit field shall be set to the value used to initialize the scrambler, as described in ITU Recommendation G.989.2, paragraph 5.3.6. The scrambler consists of a 23-bit shift register with feedback from two points. It is used to provide a uniform power-spectral density in the transmitted message. The following generating polynomial is used to initialize four bits in the shift register.

G(x) = x23 + x18 + 1

10.3.1.3.3
Payload Encoding

This field determines the constellation encoding of the variable bit-rate portion of the payload. The values are defined in ITU Recommendation G.989.2, paragraph 5.3.2.3 and summarized in Table 18 for convenience.

Table 25–Payload Encoding

	Enumeration
	Interpretation

	0
	Non-standard mode

	1
	4D symbol mapping, 2 bits per symbol

	2
	4D symbol mapping, 3 bits per symbol

	3
	4D symbol mapping, 4 bits per symbol

	4
	4D symbol mapping, 5 bits per symbol

	5
	4D symbol mapping, 6 bits per symbol

	6
	4D symbol mapping, 7 bits per symbol

	7
	4D symbol mapping, 8 bits per symbol

	8
	Non-standard

	9
	2D symbol mapping, 2 bits per symbol

	10
	2D symbol mapping, 3 bits per symbol

	11
	2D symbol mapping, 4 bits per symbol

	12
	2D symbol mapping, 5 bits per symbol

	13
	2D symbol mapping, 6 bits per symbol

	14
	2D symbol mapping, 7 bits per symbol

	15
	2D symbol mapping, 8 bits per symbol

	16-256
	Reserved for use by ITU‑T

10.3.1.3.4
Header Check Sequence (HCS)

The HCS is defined in ITU Recommendation G.989.2, paragraph 5.3.2.4 and summarized here for convenience.

An 8-bit cyclic redundancy check (CRC) is computed as a function of the (unscrambled) 128-bit sequence in transmission order including the Frame Type, frame control, Destination address and Source address octets as shown in Figure 2. Zeros are substituted for the as-of-yet uncomputed HCS field. The encoding is defined by the following generating polynomial.

G(x) = x8 + x7 + x6 +x4 + x2 + 1

Because all fields covered by the HCS are transmitted at 4D symbol mapping and 2 bits per symbol, these fields should be received correctly in many cases where the payload is received in error. This allows the source of an incorrectly received payload to be determined. This knowledge can then be used for optimizing the performance.

10.3.1.4
Destination address

The MAC address used by IEEE p1451.3 takes the form shown in Figure 3. The I/G and U/L bits are as defined in IEEE 802.3. For this application the I/G bit can take on either value. It shall be a 1 for Global or Group addresses. It shall have a value of zero when addressing an individual TBIM or TBC. The U/L bit shall always be set to 1 to indicate that this is a locally administered address. The TBIM alias portion of the address shall contain the TBIM alias of the destination device.

[image: image7.wmf]I/G

U/L

Six Zeros

I

/G =0 INDIVIDUAL ADDRESS

I/G =1 GROUP ADDRESS

U/L =0 GLOBALLY ADMINISTERED ADDRESS

U/L =1 LOCALLY ADMINISTERED ADDRESS

TBIM Alias

32 Zeros

Figure 3—MAC address format

10.3.1.5
Source address

The source address is identical to the destination address except that the TBIM address octet shall contain the TBIM alias of the source of the transmission.

10.3.1.6
Ethertype/length

This two-octet field takes one of two meanings, depending on its numeric value. For numerical evaluation, the first octet is the most significant octet of this field.

1. This field should be interpreted as a length field if the value of this field is less than or equal to 1535 decimal then the Length/Type field indicates the number of MAC client data octets contained in the subsequent data field of the frame including pad octets. All messages defined by this standard except Data Link and Physical Layer Control messages shall use the length interpretation of this field.

2. This field should be interpreted as a type field if the value of this field is greater than or equal to 1536 decimal. A type field identifies the message as a control message. Within this standard the only type used is for Data Link and Physical Later Control messages and has the value 886C hexadecimal.
The Length and Type interpretations of this field are mutually exclusive.

Regardless of the interpretation of the Length/Type field, if the length of the data field is less than 46 octets, a PAD field (a sequence of octets) will be added at the end of the data field but prior to the FCS field, specified below.

10.3.1.7
MAC client data

This is the data supplied to the MAC layer for transmission.

10.3.1.8
PAD

IEEE 802.3 defines this field. It is only present if less than 46 octets are present in the data field.

10.3.1.9
Frame Check Sequence (FCS)

IEEE 802.3 defines the frame check sequence.

A cyclic redundancy check (CRC) is used by transmit and receive algorithms to generate a CRC value for the FCS field. The frame check sequence (FCS) field contains a 4-octet (32-bit) cyclic redundancy check (CRC) value. This value is computed as a function of the contents of the source address, destination address, length, MAC client data and pad. The encoding is defined by the following generating polynomial.

G(x)=x32 +x26 +x23 +x22 +x16 +x12 +x11 +x10 +x8 +x7 +x5 +x4 +x2 +x +1

10.3.1.10
CRC-16

The CRC-16 is defined by ITU Recommendation G.989.2 paragraph 5.3.4 and summarized here for convenience.

A 16-bit cyclic redundancy check (CRC) is computed as a function of the contents of the (unscrambled) Ethernet frame in transmission order, starting with the first bit of the destination address field and ending with the last bit of the FCS field. See Figure 2 to identify the intervening fields. The encoding is defined by the following generating polynomial.

G(x) = x16 + x12 + x5 + 1

Note: The CRC-16, in conjunction with Ethernet’s FCS, provides more protection from undetected errors than the FCS alone. This is motivated by environmental factors required by the original requirements for HomePNA that will often result in a frame error rate (FER) several orders of magnitude higher than that of Ethernet, making the FCS insufficient by itself. The environmental factors for the IEEE p1451.3 application are less severe than for HomePNA but the CRC-16 is retained to be compatible with HomePNA chip sets.

10.3.1.11
HPNA Pad

The HPNA pad is defined by ITU Recommendation G.989.2 paragraph 5.3.5 and summarized here for convenience.

 When Phoneline Networking Transceiver payloads use 2D symbol mapping a Pad field shall be included to assure that the minimum transmission time for the frame shall be at least 92.5 microseconds. The Pad field shall consist of an integral number of octets. All octets, except the last one shall be set to a value of zero. The last Pad octet shall be set to a number equal to the number of octets in the pad field minus one.

10.3.1.12
End-of-frame (EOF)

ITU Recommendation G.989.1, paragraph 7.3, defines the EOF.

10.4
Transducer bus management messages

The Data link and physical layer management messages contain information that is related to the physical and data link layers of the protocol stack. Except as noted in the descriptions on the individual messages these messages do not communicate with the TBIM or TBC applications. All of these messages utilize the Short Format Link Control Frame defined in ITU Recommendation G.989.2 paragraph 6.2.1 and summarized here for convenience. For this standard the contents of the fields shall be as described in Table 5 with further definition listed in Table 6.

10.4.1
ITU-T G.989.2 paragraph 6.2.1 Short Format

Table 5—Short Format Link Control Frame

	Field
	Length
	Explanation

	DA
	6 octets
	Ethernet Destination Address

	SA
	6 octets
	Ethernet Source Address

	Ethertype
	2 octets
	886C16

	SSType
	1 octet

	0 – Non-standard

1 – Rate Request Control Frame

2 – Link Integrity Short Frame

3 – Capabilities Announcement

4 – LARQ

5 – Vendor-specific short format type

6 –127 Reserved for future use by the ITU-T

 (See Note)

	SSLength
	1 octet
	Number of control information octets, starting with the SSVersion field and ending with the second(last) octet of the Next Ethertype field. Min is 2 and max is 255.

	SSVersion
	1 octet
	Version number of the control information

	Data
	0-252 octets
	Control information

	Next Ethertype
	2 octets
	Ethertype/length of next layer protocol, 0 if none.

	Pad
	41-0 octets
	Padding required to meet minimum if data < 41 octets

	FCS
	4 octets
	Frame Check Sequence

	Note: SSType values 128-255 correspond to the Long Subtype that is not used by IEEE p1451.3.

The SSVersion field specifies which format version of the control information is used.

ITU Recommendation G.989.2, paragraph 6.2.1 for all Short Format Link Control Frame headers, requires the Next Ethertype field.

The header and trailer for standard Ethernet frames are shaded with gray, in order to highlight the formats of the control information frames.

10.4.2
Values to be used in certain fields in the “short format”

For the purposes of messages defined in this standard these fields shall be as described in ITU Recommendation G.989.2 paragraph 6.2.1 with the contents of certain fields restricted as shown in Table 6. Control messages defined for HomePNA, such a messages to set the payload encoding, shall be as defined in ITU Recommendation G.989.1 and ITU Recommendation G.989.2.
Table 6—Short Format field definitions

	Field
	Field Contents

	SSType
	Zero

	SSVersion
	Zero for the initial version of IEEE p1451.3

	Data
	As specified for the individual messages

	Next EtherType
	Zero

10.4.3
Transducer bus management messages

The transducer bus management message shall be as listed in Table 22. All of these messages are sent using the short format as described in 10.3.1.

Table 22—Transducer bus management messages

	Message code
	Command
	Addressed to

	
	
	Broadcast
	Specific TBIM
	TBC

	0
	Reserved
	—
	—
	—

	1
	Initiate discovery
	Yes
	No
	No

	2
	Discovery reply
	No
	No
	Yes

	3
	Assign alias
	Yes
	No
	No

	4
	Assign alias response
	No
	No
	Yes

	5
	Assign time slot
	No
	Yes
	No

	6
	Assign time slot reply
	No
	No
	Yes

	7
	Define epoch
	Yes
	No
	No

	8
	Disarm streaming
	Yes
	No
	No

	9
	Beginning-of-epoch message
	Yes
	No
	No

	10
	Start asynchronous interval
	Yes
	No
	No

	11
	Reflect
	No
	Yes
	No

	12
	Reflect reply
	No
	No
	Yes

	13
	Enable transmitter
	Yes
	Yes
	No

	14
	Disable transmitter
	Yes
	Yes
	No

	15 – 127
	Reserved
	—
	—
	—

	128 - 255
	Open for manufacturers
	—
	—
	—

10.4.3.1
Initiate discovery message

A request for the InitiateDiscovery service causes the Data Link layer to issue an Initiate discovery message to all TBIMs on the bus. The data field for this message shall be as shown in Table 23. All TBC’s shall generate this message. This message shall not be generated by a TBIM.

Table 23—Initiate discovery message data field

	Data Field
	Data Type
	Function

	1
	U8E
	This field shall contain the message code shown in Table 22.

10.4.3.2
Discovery reply

The receipt of the request alias service request causes the service in the TBIM data link layer to wait for an initiate discovery message from the TBC. Upon receipt of this message it shall return a Discovery reply message containing the fields shown in Table 24 to the TBC using the asynchronous communications mode.

This message is required in all TBIMs.

Table 24—Discovery reply message data field

	Data Field
	Data Type
	Function

	1
	U8E
	This field shall contain the message code shown in Table 22.

	2
	UUID
	This field shall contain the eighty-bit UUID for the TBIM.

10.4.3.3
Assign alias message

A request for the AssignAlias service causes an assign alias message to be broadcast to all devices on the transducer bus. The data field for this message is shown in Table 25. This message shall be transmitted using the asynchronous transmission mode. The TBC is the only device on the bus that is allowed to generate this message. All TBIMs shall be able to accept and respond to it.

Table 25—Assign alias message data field

	Data Field
	Data Type
	Function

	1
	U8E
	This field shall contain the message code shown in Table 22.

	2
	UUID
	This field shall contain the eighty-bit UUID for the TBIM.

	3
	U8C
	The eight-bit alias for the TBIM.

10.4.3.4
Assign alias response

Upon receipt of an assign alias message from the TBC, the TBIM shall transmit an assign alias response message containing the information listed in Table 26. All TBIMs shall issue this response when they receive an assign alias message that contains their UUID.

Table 26—Assign alias response message data field

	Data Field
	Data Type
	Function

	1
	U8E
	This field shall contain the message code shown in Table 22.

	2
	U8E
	Assigned alias

	3
	U8E
	Asynchronous-only flag (same as in PHY TEDS)

	4
	U8C
	Highest supported payload encoding (same as in PHY TEDS)

	5
	F32
	Start delay (same as in PHY TEDS)

	6
	F32
	Reflect delay (same as in PHY TEDS)

	7
	F32
	Reflect delay uncertainty (same as in PHY TEDS)

10.4.3.5
Assign time slot message

Upon receipt of a SetupStreamingCommunicationChannel service request the TBC shall compute the number of packets required and the beginning time slot for each packet from the information supplied in the request and internally maintained information about the layout of the isochronous interval. It shall then broadcast an assign time slot message containing the information in Table 27 to the TBIM. TBIMs shall not generate this message.

Table 27—Assign time slot message data field

	Data Field
	Data Type
	Function

	1
	U8E
	This field shall contain the message code shown in Table 22.

	2
	U16E
	The sixteen-bit TransducerChannel Address

	3
	U16C
	The beginning time slot for a packet.

	4
	U8C
	Number of consecutive slots required

10.4.3.6
Assign time slot reply message

Upon receipt of an assign time slot message the TBIM shall return an assign time slot reply message containing the information in Table 28 to the TBIM. TBCs shall not generate this message.

Table 28—Assign time slot reply message data field

	Data Field
	Data Type
	Function

	1
	U8E
	This field shall contain the message code shown in Table 22.

	2
	U8E
	The status as listed in Table 29.

Table 29—Assign time slot status bits

	Bit
	Function

	0
	This bit shall be set to 1 to indicate that the message was received and processed successfully.

	1
	This bit shall be set to 1 if the TBIM does not support streaming data.

	2
	Reserved

	3
	Reserved

	4
	Open to manufacturers

	5
	Open to manufacturers

	6
	Open to manufacturers

	7
	Open to manufacturers

10.4.3.7
Define epoch message

Upon the receipt of the Initiate Streaming Communications service request the TBC shall issue the define epoch message as defined in Table 30 to all TBIMs on the bus. This message has two arguments. These two arguments define the length of the isochronous and the asynchronous intervals. The maximum length of the isochronous interval is 1200 slot times. The minimum length of the asynchronous interval is 50 slot times. The epoch length is the sum of the isochronous interval and the asynchronous interval and shall not exceed 1250 slot times. If the isochronous interval length is zero then the bus is being operated in the asynchronous mode only and the value in the asynchronous interval argument is not used. The default condition after reset or power up is with the length of the isochronous interval equal to zero.

TBIMs shall not generate this message.

Table 30—Arguments for the define epoch message

	Data Field
	Data Type
	Function

	1
	U8E
	This field shall contain the message code shown in Table 22.

	2
	U16C
	Isochronous interval - This field contains the number of slot times that are required in the isochronous interval (See Figure 19). The isochronous interval length requires a maximum of eleven bits and they shall be in the eleven least significant bits of the U16C. The five most significant bits shall be zero.

	3
	U16C
	Asynchronous interval - This field contains the number of slot times that are required in the asynchronous interval (See Figure 19). The asynchronous interval length requires a maximum of eleven bits and they shall be in the eleven least significant bits of the U16C. The five most significant bits shall be zero.

10.4.3.9
Beginning-of-epoch message

This message is always broadcast. It marks the beginning of an isochronous transmission interval. Isochronous transmission intervals are 0.25 seconds or less in length so if this message is not received within a one second period TBIMs may assume that the bus is being operated asynchronously without a defined epoch. The data field for this message shall be as described in Table 36. This message always occupies slot zero in the isochronous interval.

Only the TBC shall issue this message.

Table 36—Beginning-of-epoch message data field

	Data Field
	Type
	Function

	1
	U8E
	This field shall contain the message code shown in Table 22.

	2
	U16C
	The epoch number to be used during the next epoch. The epoch is incremented for each new epoch. It rolls over to zero for the next epoch after it reaches 65,535. This epoch number shall be written into the sequence number register defined in (Fix this reference) 5.6.4 at the beginning of the next epoch.

	3
	U8C
	Number of solicited retransmissions in this message = N

	
	
	Fields 4 and 5 will be repeated N times.

	4
	U16C
	The slot number in which the invalid packet began being transmitted.

	5
	U8E
	Reply priority

The data link layer may need to communicate the receipt of this message to the TBIM application. This may be done in either of two ways. By a hardware signal or by a trigger message addressed to the TBIM using the trigger protocol. If a message is sent using the trigger protocol, it shall have the form described in Table 37. Fix the Table

Table 37—Trigger message resulting from a beginning-of-epoch message

	1-Octet
	1-Octet

	1
	1
	1
	1
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	5
	4
	3
	2
	1
	0
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	Protocol Identifier
	Priority
	Version
	—
	0
	0
	0

	TBIM Alias
	zero

	TBIM Alias
	zero

Solicited retransmissions may be sent in this message for packets received with errors in the previous epoch. Fields 4 through 6 are used for this function.

To avoid collisions each packet to be retransmitted shall be assigned a different priority starting at priority seven and working down.

Note: This technique allows for the possibility of up to seven different packets receiving a solicited retransmission message during any one epoch. If less priority levels are used for solicited retransmissions then fewer packets can receive a solicited retransmission request in one epoch. The length of the asynchronous interval will also limit the number of packets that can be retransmitted.

Note: The solicited retransmissions are from data that was sent in the previous epoch. If these packets are not retransmitted within the asynchronous interval of this epoch they are lost. This means that these packets should have the highest priority with lower priorities used by non-time critical traffic.

The TBIMs do not reply to the data link layer in the TBC to any of this communication. A packet may be retransmitted as a result of a solicited retransmission but that communication is directed up through the protocol stack.

10.4.3.10
Start async message

This message is always broadcast to all TBIMs on a bus. It marks the end of an isochronous transmission interval and the beginning of the asynchronous interval. The data field for this message is shown in Table 38. This message always occupies the last slot in the isochronous interval.

Table 38—Start async message data field

	Data Field
	Data Type
	Function

	1
	U8E
	This field shall contain the message code shown in Table 22.

	2
	S32
	This field gives time error between when the Beginning-of-epoch message should have been transmitted and when it was actually transmitted. It is a signed 32-bit two’s complement integer giving the time error in nanoseconds. If the TBC does not provide this information the contents of this field shall be zero.

10.4.3.11
Reflect message

The TBC issues a message as shown in Table 39 when it receives a request for the delay measurement service. This message shall be transmitted using the asynchronous transmission mode. Only the TBC shall generate this message.

Table 39—Reflect message data field

	Data Field
	Data Type
	Function

	1
	U8E
	This field shall contain the message code shown in Table 22.

	2
	U8C
	The eight-bit alias for the TBIM.

10.4.3.12
Reflect reply

The TBIM changes the message code in the first field of the reflect request message as shown in Table 39, the source address and the destination address and returns the message to the TBC with a consistent delay between receipt and retransmission. This message shall be transmitted using the asynchronous transmission mode. Only TBIMs shall generate this message.

10.4.3.13
Enable transmitter

A request for the enable transmitter service causes an enable transmitter message to be broadcast to all devices on the transducer bus or to a specific TBIM. The data field for this message is shown in Table 40. This message shall be transmitted using the asynchronous transmission mode. Only the TBC shall generate this message.

Table 40—Enable Transmitter message data field

	Data Field
	Data Type
	Function

	1
	U8E
	This field shall contain the message code shown in Table 22.

10.4.3.14
Disable Transmitter message

A request for this service causes a disable transmitter message to be broadcast to all devices on the transducer bus or to a specific TBIM. The data field for this message is shown in Table 41. This message shall be transmitted using the asynchronous transmission mode. Only the TBC shall generate this message.

Table 41—Disable Transmitter message data field

	Data Field
	Data Type
	Function

	1
	U8E
	This field shall contain the message code shown in Table 22.

10.5
Physical layer

No Changes in this section

10.6
Physical specifications

No Changes in this section

�PAGE \# "'Page: '#'�'" ��In order to properly fill out this form, you MUST do the following:

Click on the CUSTOM tab, under FILE,PROPERTIES.

Click on the PropTitle property, enter your proposal name, click on MODIFY.

Click on the PropDate property, enter the date, click on MODIFY.

Click on the PropRev property, enter your revision symbol (space is OK, empty is not), click on MODIFY.

In NORMAL view, click on SELECT ALL under the EDIT menu.

Press the F9 key to update fields.

Page 21 of 1
Draft

Page 36 of 52

_1104142236.unknown

_1104142237.unknown

_1104142234.unknown

_1104142235.unknown

_1104142233.unknown

_1104142232.unknown

