1382 Part I Overview: The Physical Environment

1383

Authors: D. R. Cahoon, S. J. Williams, B. Gutierrez, K. E. Anderson, and E. R. Thieler

1386	The first part of this report examines the physical and environmental impacts of sea-level	
1387	rise on the natural environments of the mid-Atlantic region. Rising sea level over the next	
1388	century will have a range of effects on coastal regions, including land loss and shoreline	
1389	retreat from erosion and inundation, intrusion of saltwater into coastal freshwater	
1390	aquifers, and an increase in flooding frequency and storm-surge elevation from coastal	
1391	storms (Williams et al., 1991; Morton, 2003). The sensitivity of a coastal region to sea-	
1392	level rise depends both on the physical aspects (shape and composition) of a coastal	
1393	landscape and also the ecological setting. One of the most obvious impacts is that there	
1394	will be land loss as coastal areas are inundated and eroded. On a more detailed level,	
1395	rising sea level will not just inundate the landscape but will be a driver of change to the	
1396	coastal landscape. These impacts will have large effects on human development in	
1397	coastal regions (see Part II of this report) as well as effects on natural environments such	
1398	as coastal wetland ecosystems (Williams, 2003). Making long-term predictions of coastal	
1399	change is difficult because of the multiple, interacting factors that contribute to that	
1400	change. Given the large potential impacts to human and natural environments, there is a	
1401	need to improve our ability to conduct long-term predictions.	
1402		
1402	Port I of this report describes the physical settings of the mid. Atlantic coast as well as the	

Part I of this report describes the physical settings of the mid-Atlantic coast as well as theprocesses that influence shoreline change and land loss in response to sea-level rise. Part

Do Not Cite or Quote

55 of 800

1405	I also provides an assessment of shoreline changes that can be expected over this century		
1406	as well as the consequences of those changes on coastal habitats and the important flora		
1407	and fauna they support. Chapter 1 provides a rough estimate of the extent of low-lying		
1408	lands that may be at risk from future sea-level rise. There are, however, many limitations		
1409	to this approach since sea-level rise will not only inundate the coastal landscape but also		
1410	cause changes to coastal landforms and ecosystems. Also, even predicting the extent of		
1411	inundation is uncertain due to limitations of the existing topographic data in the coastal		
1412	zone. Chapter 2 provides an assessment of the impacts of sea-level rise on the coastal		
1413	landforms of the Mid-Atlantic, such as beaches and barrier islands that make up the		
1414	ocean coast of the Mid-Atlantic, in order to identify some of the factors and processes		
1415	that influence their behavior. Chapter 3 provides an assessment of the vulnerability of		
1416	coastal wetlands to future sea-level rise. Chapter 4 reviews the potential impacts of sea-		
1417	level rise on coastal habitats and species within this region.		
1418			
1419	I.1 COASTAL ELEVATIONS		
1420	Chapter 1 summarizes available information on coastal land elevations for the mid-		
1421	Atlantic region in order to identify and estimate the extent of land area threatened by		
1422	future sea-level rise. These coastal elevation data are also used to estimate the land		

1423 potentially available for wetland migration in response to sea-level rise, and the sea-level

1424 rise impacts to the human built environment (see Chapter 6).

- 1425
- 1426
- 1427

Do Not Cite or Quote

56 of 800

CCSP 4.1

1428	I.2 OCEAN COASTS		
1429	Chapter 2 summarizes the factors and processes controlling the dynamics of ocean coasts.		
1430	The major factor affecting the location and shape of coasts at centennial and longer time		
1431	scales is global sea-level change, which is linked to the Earth's climate. These close		
1432	linkages are well documented in the scientific literature from field studies conducted over		
1433	the past few decades (e.g., Muhs et al., 2004; Kraft, 1971; Carter and Woodroffe, 1994).		
1434	The details of the process-response relationships, however, are the subject of active,		
1435	ongoing research. The general characteristics and shape of the coast (coastal morphology)		
1436	reflects complex and ongoing interactions between the physical processes that act on the		
1437	coast (hydrodynamic climate $-e.g.$, waves and tidal characteristics), the availability of		
1438	sediment (sediment supply) transported by waves and tidal currents at the shore, and the		
1439	geological substrate on which the coast is situated (geological framework). Variations in		
1440	these three factors are responsible for the different coastal landforms and environments		
1441	occurring in the coastal regions of the U.S.		
1442			
1443	A range of coastline types can be identified along the coastline of the continental United		
1444	States including cliff or bluff shorelines, sandy shorelines, wetland shorelines, coral reef		
1445	shorelines, and mudflat shores (Walker and Coleman, 1987). The majority of the U.S.		
1446	coast consists of sandy shores. Wetland coasts occur intermittently mainly on the west		
1447	coast of Florida and along the Louisiana coast. Wetlands also occur extensively on the		
1448	inner coasts along bays and estuaries, especially on the Atlantic coast. Coral reefs occur		
1449	in tropical waters in south Florida, Hawaii, Puerto Rico and the Virgin Islands. Muddy		

Do Not Cite or Quote

57 of 800

	<u>CCSP 4.1 February 12, 2</u>			
1450	shores occur predominantly along the Louisiana and the northeastern coast of the Gulf of			
1451	Mexico in Florida.			
1452				
1453	The mid-Atlantic coast of the United States is primarily composed of barrier islands, with			
1454	intervening stretches made up of coastal headlands and coastal spits (See Chapter 2).			
1455	Many of these barrier islands front coastal lagoons which commonly harbor coastal			
1456	wetlands and are host to a range of species. In addition, the gentle slope of the Atlantic			
1457	margin is characterized by incised river valleys that are lined with many low-lying areas,			
1458	diverse shoreline settings, and extensive coastal wetlands. Chapter 2 considers the effect			
1459	of rising sea level on the mid-Atlantic open coast settings.			
1460				
1461	I.3 WETLAND SUSTAINABILITY			
1462	Chapter 3 describes the vulnerability of coastal wetlands in the mid-Atlantic region to			
1463	current and future sea-level rise. The fate of coastal wetlands in the Mid-Atlantic are			
1464	determined in large part by the way in which wetland vertical development processes			
1465	change with climate drivers. Chapter 3 identifies the important climate drivers affecting			
1466	the vertical development of wetlands in the mid-Atlantic region. In addition, the			
1467	processes by which wetlands build vertically vary by geomorphic setting. Thus, Chapter			
1468	3 examines wetland responses to sea-level rise for five primary geomorphic settings with			
1469	several sub-settings for the coastal wetlands of the Mid-Atlantic, based on a geomorphic			
1470	classification developed by Reed et al. (2008):			
1471	• Tidal Fresh Forests (FF)			
1472	• Tidal Fresh Marsh (FM)			

58 of 800

	<u>CCSP 4.1</u> February 12, 2008		
1473	• Estuarine/Brackish Channelized Marshes (ES)		
1474	o Meander		
1475	o Fringing		
1476	o Island		
1477	• Back Barrier Lagoon Marsh (BB)		
1478	o Back barrier/Other		
1479	• Active flood tide delta		
1480	o Lagoonal fill		
1481	• Saline Marsh Fringe (SF)		
1482	FF and FM are distinguished based on vegetative type (forested vs. herbaceous) and the		
1483	salinity of the area. ES marshes are brackish and occur along channels rather than open		
1484	coasts. ES Meander marshes would be those bordering meandering tidal rivers while ES		
1485	Fringing are those bordering wider open channels where tidal flow is not focused in a		
1486	specific thalweg. ES Island marshes are, as the term implies, marsh islands within tidal		
1487	channels. BB marshes occupy fill within transgressive back barrier lagoons. Where the		
1488	fill is attached to barrier islands, the marshes are Back Barrier/Other, and Flood Tide		
1489	Deltas are marshes forming landward of tidal inlets. Lagoonal fill is frequently		
1490	abandoned flood tide deltas where the inlet is closed and marsh is not supplied with		
1491	sediment directly from the inlet. SF marshes are transgressive salt marshes bordering		
1492	uplands, mostly on the landward side of tidal lagoons.		
1493	3		
1494	The information on climate drivers, wetland vertical development, and geomorphic		
1495	settings, combined with local sea-level rise trends, was synthesized and assessed using an		

59 of 800

- 1496 expert decision process to determine wetland vulnerability for each geomorphic setting in
- 1497 each subregion of the mid-Atlantic region.
- 1498

1499 I.4 IMPACTS ON PLANTS AND ANIMALS

- 1500 Chapter 4 summarizes the potential impacts to biota as a result of habitat change or loss
- 1501 driven by sea-level rise. Habitat quality, extent, and spatial distribution will change as a
- 1502 result of shore erosion, wetland loss, and shifts in estuarine salinity gradients. Of
- 1503 particular concern is the loss of wetland habitats and the important ecosystem functions
- 1504 they provide, which include critical habitat for wildlife, the trapping of sediments,
- 1505 nutrients, and pollutants, the cycling of nutrients and minerals, the buffering of storm
- 1506 impacts on coastal environments, and the exchange of materials with adjacent
- 1507 ecosystems.
- 1508

1509 PART I OVERVIEW REFERENCES

- 1510 Carter, R.W.G. and C.D. Woodroffe, 1994: *Coastal Evolution: Late Quaternary*1511 *Shoreline Morphodynamics*. Cambridge University Press, Cambridge UK and
 1512 New York, 517 pp.
- 1513 Kraft, J.C., 1971: Sedimentary facies patterns and geologic history of a Holocene marine
 1514 transgression. *GSA Bulletin*, 82(8), 2131-2158.
- 1515 Morton, R.A., 2003: An Overview of Coastal Land Loss: With Emphasis on the
- 1516 Southeastern United States. U.S. Geological Survey Open File Report 03-337,
- 1517 U.S.G.S. Center for Coastal and Watershed Studies, St. Petersburg, FL, 29 pp.
- 1518 Available at http://pubs.usgs.gov/of/2003/of03-337/pdf.html
- 1519 Muhs, D.R., R.M. Thorson, J.J. Clague, W.H. Mathews, P.F. McDowell, and H.M.
- 1520 Kelsey, 1987: Pacific coast and mountain system. In: Geomorphic Systems of

Do Not Cite or Quote

60 of 800

	CCSP 4.1 February 12, 2008	
1521	North America. [Graf, W.L. (ed.)]. Centennial special volume 2, Geological	
1522	Society of America, Boulder CO, pp. 517-582.	
1523	Reed, D.J., D. Bishara, D. Cahoon, J. Donnelly, M. Kearney, A. Kolker, L. Leonard,	
1524	R.A. Orson, and J.C. Stevenson, 2008: Site-specific scenarios for wetlands	
1525	accretion as sea level rises in the mid-Atlantic region. US Environmental	
1526	Protection Agency	
1527	Walker, H.J. and J.M. Coleman, 1987: Atlantic and Gulf Coast province. In:	
1528	Geomorphic Systems of North America [Graf, W.L. (ed.)]: Centennial special	
1529	volume 2, Geological Society of America, Boulder CO, pp. 51-110.	
1530	Williams, S.J., K. Dodd, and K.K. Gohn, 1991: Coasts in Crisis. U.S. Geological	
1531	Survey Circular 1075, U.S. Geological Survey, Reston VA, 32 pp. Available at	
1532	http://pubs.usgs.gov/circ/c1075/	
1533	Williams, S.J., 2003, Coastal and marine processes. In: Natural Resources Policy and	
1534	Management [Cilek, V. (ed.)]. in Encyclopedia of Life Support Systems (EOLSS),	
1535	developed under the auspices of the UNESCO, EOLSS Publishers, Oxford, UK.	
1536	Available (with subscription) at http://www.eolss.net	

Do Not Cite or Quote

61 of 800

1538 Chapter 1. Coastal Elevations

1539

1540 Authors: James G. Titus, EPA, K. Eric Anderson, USGS, Stephen K. Gill, NOAA

1541

1542 **KEY FINDINGS**

1543	The lands that could be inundated by rising sea level include tidal wetlands, nontidal

- 1544 wetlands, and dry land. While the shores of the Mid-Atlantic are composed mainly of
- 1545 sandy beaches which respond to sea-level rise by a combination of erosion and
- 1546 inundation, identifying and quantifying the low-lying land the Mid-Atlantic is critical to
- addressing the risk posed by future sea-level rise. The low-lying land in the mid-Atlantic
- 1548 region includes more than 5000 km^2 of tidal wetlands.
- The elevation data currently available for the mid-Atlantic region have been
- 1550 collected from a variety of sources over the past several decades and consequently
- 1551 are of variable vertical resolution and horizontal accuracy. Thus, with the
- 1552 exception of high-resolution data (*e.g.*, lidar), the data can only be used for
- 1553 generalized depictions of low-lying land vulnerable to sea-level rise.
- Based on an analysis of existing data approximately 900-2100 km² (350-800 mi²)
- 1555 of dry land, half of which is in North Carolina, is within 50 cm (20 in) above
- 1556 spring high water.
- For a larger rise, the amount of vulnerable dry land is roughly proportional to elevation, although the percentage uncertainty is somewhat less. For example,
- 1559 $4900-6500 \text{ km}^2$ of dry land are within 200 cm above spring high water.

Do Not Cite or Quote

62 of 800

	CCSP 4.1 February 12, 2008			
1560	• Including dry land and nontidal wetlands, the Mid-Atlantic has 5,500-7,500 km ²			
1561	of land within one meter above spring high water — an area the size of Delaware.			
1562	Approximately half of this land is within 50 cm above spring high water.			
1563	• Including tidal and nontidal wetlands, the Mid-Atlantic has $18,000-20,700 \text{ km}^2 \text{ of}$			
1564	land within 3 m above spring high water — an area the size of New Jersey.			
1565	• The area of dry land that may potentially be available for wetland migration is			
1566	less than one-sixth the current area of tidal wetlands.			
1567				
1568	1.1 INTRODUCTION			
1569	Elevation maps are critical to understanding and characterizing vulnerability to sea-level			
1570	rise. Coastal managers, federal, state and local policy makers, researchers and the public			
1571	rely on this type of information, along with other data, to plan and prepare for rising sea			
1572	level. Studies estimating the amount of land potentially inundated by rising sea level have			
1573	long been challenged by the need to estimate the impacts of a rise in sea level that is less			
1574	than the vertical precision of the topographic maps available for a particular study area			
1575	(Table 1.1). Sea-level rise scenarios have often ranged between 50-100 cm, yet the			
1576	available topographic maps along the Atlantic Coast generally have contour intervals of			
1577	1.5, 3, and even 6-meters. Along the U.S. Pacific Coast and in most other nations, the			
1578	vertical resolution of available maps is even less. For more than two decades, however,			
1579	studies have met the challenge by obtaining the best available data and interpolating			
1580	between the available contours using a few different methods (e.g., Schneider and Chen,			
1581	1980; Kana <i>et al.</i> , 1984).			

63 of 800

Box 1.1 Elevation and Vulnerability
Elevation of coastal land is a critical determinant of the coastal land area that is vulnerable to sea-level
rise. However, elevation is not the only factor that determines vulnerability. For example, a 50cm sea
level rise would not submerge all land within 50cm above high water. Several factors influence
submergence, including the possibility of future shoreline protections measures, wetland vertical
development, barrier island migration, and others.
Conversely, land that is currently higher than the projected sea level rise may also be vulnerable in
certain locations or circumstances. For example higher ground could experience significant storm
surge and coastal erosion.

1582 End text box

1583	Table 1.1 summarizes	some previous studie	s that mapped the land	vulnerable to
1505	1 uolo 1.1 Summul205	bonne previous studie	b that mapped the fund	vullieruole to

1584 inundation as sea level rises. Schneider and Chen (1980) estimated the nationwide land,

- 1585 structures, and population potentially vulnerable to a 5-7 meter (15-25 foot) rise from a
- 1586 disintegration of the West Antarctic Ice Sheet. The authors estimated the area below

1587 specific contours on printed USGS topographic maps. Although maps were available

1588 with contour intervals of 1.5 to 6 m (5 to 20 ft) for most of the United States, maps with

- 1589 poorer quality were also used. By contrast, Kana et al. (1984), created inundation maps
- 1590 for the vicinity of Charleston, SC, an area small enough to allow the researchers to
- 1591 digitize available USGS maps, which had a 1.5-m (5-ft) contour interval. A digital terrain
- 1592 model interpolating between the contours was necessary, however, because the study
- 1593 created maps of the spring-high-water shoreline in 25-year increments for sea-level-rise
- scenarios ranging from 5 to 20 mm/yr.

1595

- 1596 Advances in technology have improved the quality of some elevation data to assess
- 1597 which lands are vulnerable to sea-level rise. Two important developments have been the
- 1598 systematic conversion of pre-existing information into a digital elevation data set, and the

64 of 800

	<u>CCSP 4.1 February 12, 2008</u>			
1599	development of high-resolution data such as lidar ¹ . Digital elevation data have been			
1600	collected for a number of years by Federal and State agencies for a range of applications			
1601	(Osborn et al., 2001). The most commonly used data are from the National Elevation			
1602	Dataset (Gesch et al., 2002). These data estimate the elevation at particular locations			
1603	within 2.2 meters (95% confidence interval). Thus, they cannot reliably identify specific			
1604	locations that would be inundated from a sea-level rise of 1 or 2 meters. Nevertheless,			
1605	they can generally depict low-lying land vulnerable to sea-level rise.			
1606				
1607	Digital elevation data have many applications other than assessing vulnerability to sea-			
1608	level rise. The primary applications have included the rectification of aerial photography,			
1609	extraction of drainage basins, modeling water flow, and visualizations. For coastal zone			
1610	management, however, the most important use has been creation of maps depicting flood			
1611	hazards. Like sea-level rise studies, these efforts also require the synthesis of elevation			
1612	data from a diverse set of sources with varying resolution and accuracy. FEMA and its			
1613	local partners use elevation data to create flood insurance rate maps, which depict			
1614	floodplain boundaries and flood surge heights to the nearest 30 cm (1 ft). (See Chapter 8).			
1615	FEMA (2008) requires that the topographic data must have a contour of 1.5 m (5 feet) or			
1616	better. Another example is NOAA's National Geophysical Data Center (NGDC, 2008).			
1617	NGDC has initiated a tsunami inundation gridding project which integrates bathymetric,			

¹⁶¹⁸ topographic and shoreline data from various sources, resolutions, accuracies and with

65	of	800
----	----	-----

¹ LIDAR (Light Detection and Ranging) is a remote sensing system used to collect topographic data. LIDAR data are collected with aircraft-mounted lasers capable of recording elevation measurements at a rate of 2,000 to 5,000 pulses per second and have a vertical precision of 15 cm. After a baseline data set has been created, follow-up flights can be used to detect shoreline changes. Many federal, state, and local agencies are obtaining LIDAR to better characterize land elevations. This technology is also being used by NOAA, USGS, and NASA scientists to document topographic changes along shorelines of the mid-Atlantic.

	CCSP 4.1 February 12, 2008
1619	disparate reference datums to produce a digital elevation model (DEM) for use in the
1620	tsunami forecast system. They are used to provide baseline DEM's for models to simulate
1621	tsunami generation, propagation, and inundation. USACE regularly assembles elevation
1622	data to estimate flooding and flood damages when planning for possible structural flood
1623	protection projects.
1624	
1625	The need for high resolution elevation data in the coastal zone can be met by the use of
1626	airborne lidar (Sallenger et al., 2003). Elevation data derived from lidar normally have
1627	errors in the range of $+/-0.3$ meters. Such data are not widely available but have been
1628	used in studies looking at inundation effects in specific localities (Bin et al., 2007; Csatho
1629	et al., 2001; Johnson et al., 2006; Larsen et al., 2004; Lathrop and Love, 2007). Such data
1630	have been combined with high resolution bathymetry data to successfully model dynamic
1631	coastal environments (Feyen et al., 2005; Gesch and Wilson, 2001; Pietrafesa, et al.,
1632	2007). The importance of higher quality geospatial information has been recognized by
1633	the National Research Council and others (NRC, 2004; Stockdon, 2007).

Do Not Cite or Quote

66 of 800

Study	Input Data	Vertical Precision ¹	Lowest SLR Estimated	Area Depicted	Method for Treating Uncertainty
Schneider and Chen, 1980	USGS Contours from printed topographic maps	5 to 40 ft (or worse)	4.57m	United States	None reported
Kana <i>et al.</i> , 1984	USGS Contours	5 ft	50cm	Charleston area	None reported
EPA, 1989	USGS Contours and wetlands	5 to 20-ft	50cm	U.S. sample of 48 4-quad sites	Sampling error, no model/data error
Najjar <i>et al.</i> , 2000	NED (30m)	3.74m	61cm	Delaware	None reported
Titus and Richman, 2001	1:250k USGS (1 degree NED)	10 to 20m	1m	US Atlantic and Gulf Coasts	None reported
Weiss and Overpeck, 2003	NED (30m)	2.44m	1m	United States	None reported
Cooper <i>et al.</i> , 2005	USGS NED (10m)	2.44m	61cm	NJ; case study Cape May Pt	None reported
Feyen <i>et al.</i> , 2005	бm generated from lidar	20 to 25 cm	Any SLR estimate (model)	Coastal NC	None reported
US DOT, 2007	USGS NED (10-30m res)	2.44m	бст	DC, MD, VA, NC	None reported
Climate Impacts Group, 2007	NED (30m)	2.44m	11cm	Greater New York City Region	None reported
Titus and Wang,2008	Best available (lidar to USGS Contours)	Lidar (~20cm) to 20 ft	50cm	8 mid-Atlantic coastal states	Error assessment based RMSE of input

Table 1.1 Examples of studies that map/estimate the land vulnerable to inundation as sea level rises.

(1) For contours, elevation uncertainty is usually 1/2 contour interval (*i.e.*, 1/2 of value listed in this column).

Abbreviations:

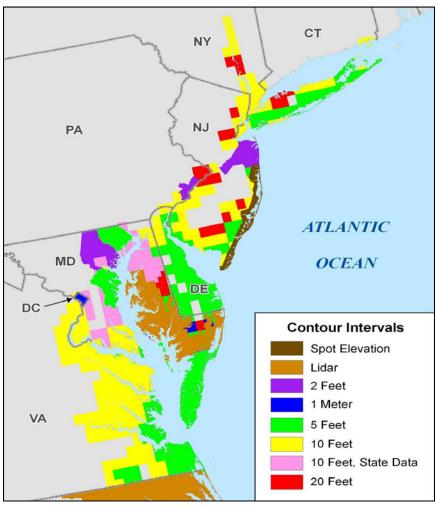
NED: National Elevation Dataset. SRTM: Shuttle Radar Topography Mission GTOPO30: Global Digital Elevation Model, 30 arc seconds Lidar: Light Detection and Ranging RMSE: root mean square error. LE: Linear Error USGS: United States Geological Survey

1636

1637

1638 **1.2 DATA AND APPROACH**

- 1639 A range of elevation data sets, having large variations in vertical resolution and
- 1640 horizontal accuracy, are available to depict elevations for the mid-Atlantic region. In this
- 1641 report the best existing data is used to provide regional and state-wide depictions of the


Do Not Cite or Quote

67 of 800

	<u>CCSP 4.1 February 12, 2008</u>
1642	low-lying areas that may be susceptible to sea-level rise. It should be noted that over
1643	large areas, such as those depicted in this chapter, these maps do not accurately reflect the
1644	flooding or inundation that could occur at a precise location. Still the results of this
1645	analysis makes it possible to make general estimates of the dry land and wetland areas
1646	vulnerable to inundation with greater quantification than the other questions addressed by
1647	this report. Nevertheless, the resolution and accuracy of available data varies
1648	substantially. Like the other studies shown in Table 1.1, a set of new EPA studies used a
1649	"patchwork" of the best available elevation data, as shown in Figure 1.1 (Titus and
1650	Wang, 2008; Jones and Wang, 2008; Titus and Cacela, 2008). The maps presented here
1651	in Chapter 1 do not possess the resolution and accuracy required by localized DEM
1652	flooding models. Even so, this approach recognizes the drawbacks of the diverse set of
1653	inputs and uses NOAA tide station datums as a basis for vertical datum transformations,
1654	and provides uncertainty bounds and ranges in the output.

Do Not Cite or Quote

68 of 800

- 1664 "sea level" or the National Geodetic Vertical Datum (NGVD29), which is the reference
- 1665 elevation for printed USGS maps. Spring high water is the average high tide during a full
- 1666 or new moon, and it approximates the boundary between tidal wetlands and dry land.

Do Not Cite or Quote

69 of 800

Figure 1.1 Variations in the precision of elevation data available in 2006. Rectangles generally signify
 USGS 1:24,000 data. The USGS maps had a 20-ft contour interval for the (pink) quads in Maryland where
 EPA used state data. Spot elevation data provided by the Corps of Engineers had approximately the same
 precision as 2-ft contours. Lidar was available for all of North Carolina and part of Maryland. Source: Titus
 and Wang (2008).

¹⁶⁶²

¹⁶⁶³ This report discusses elevations above "spring high water" rather than above present-day

	CCSP 4.1 February 12, 2008
1667	(Box 1.2). Thus, the land below spring high water is some form of tidal wetland (unless it
1668	is protected by a dike), and is flooded by the tides twice during a typical month.
1669	
1670	Figure 1.2 shows the observed spring tide range at 768 locations reported by NOAA.
1671	Elevations relative to spring high water are one-half the tide range less than elevations
1672	relative to mean sea level. For example, along parts of the Delaware River, the spring tide
1673	range is generally 200 cm. Therefore, spring high water is about 100 cm above mean sea
1674	level, which is in turn approximately 30 cm above NGVD. Therefore, the USGS "5-ft"
1675	(152 cm) contour is only about 22 cm above spring high water at these locations.

1677 Titus and Wang (2008) created coastal elevation maps showing elevations relative to

1678 spring high water. The analysis involved five steps:

1679 1. Obtain the best elevation data from usual sources of topographic map data, such as the

1680 USGS, as well as state and local governments and other federal agencies. The accuracy of

1681 these data varies. (See Figure 1.2)

1682 2. Supplement the available topographic data with a "wetland supplemental contour" based

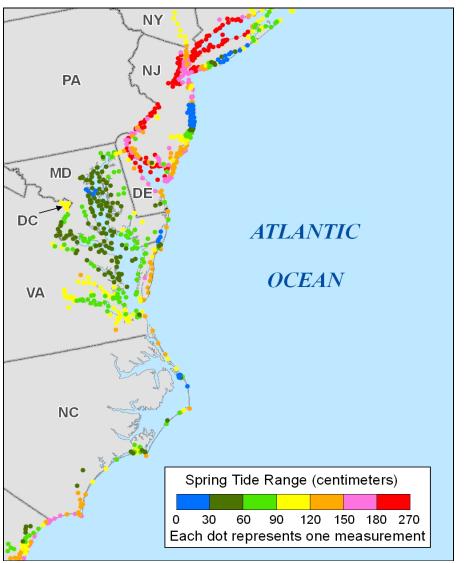
1683 on the upper boundary of regular tidal inundation. Use wetlands data to estimate the

1684 horizontal location of the wetland contour. This step improves precision by providing an

1685 intermediate elevation between zero (NGVD) and the lowest topographic contour (e.g., 5-ft 1686 NGVD).

- 1687 3. Use tidal data to estimate the elevation (relative to a reference elevation such as NGVD
- 1688 or NAVD), of spring high water, providing the vertical position of the wetland supplemental

70 of 800

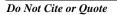

1689	contour. Titus and Wang obtained estimates of the mean tide level and spring tide range at
1690	152 and 768 locations, respectively. Figure 1.2 displays spring tide range.
1691	4. Interpolate elevations relative to the vertical datum for all land above spring high water
1692	using elevations obtained from the previous steps. Titus and Wang used two different
1693	approaches for the summary tables and maps. For their summary tables, they assumed that
1694	elevations are uniformly distributed between contours, and interpolated. For the maps, they
1695	used Topogrid because it appeared to provide more reliable results. In areas with lidar,
1696	interpolation was not necessary.
1697	5. Use the information from step 3 to calculate elevations from NGVD to spring high water.
1698	Titus and Wang assessed the accuracy of both their specific data points and their
1699	summary statistics by comparing their elevation estimates with lidar from Maryland and
1700	North Carolina. The root mean square error at individual locations was approximately
1701	one-half the contour interval of the input data. They also found that the vertical error of
1702	the cumulative elevation distribution curve was generally less than one-quarter the
1703	contour interval of the input data, which implies that the systematic error for reasonably
1704	large areas could be up to one-quarter of a contour interval. Titus and Cacela (2008)
1705	estimated an uncertainty range for the area of land below particular elevations based on
1706	

1706 that assumption.

CCSP 4.1

Do Not Cite or Quote

71 of 800



1707 1708 1709 1710 1711

Figure 1.2 Observations of tide ranges used in this study. This figure depicts the 768 observations from

NOAA's Tide Tables used to create a surface depicting spring tide range. When dots overlap, the dot with the

lower tide range is shown on top. (Titus and Wang, 2008).

72 of 800

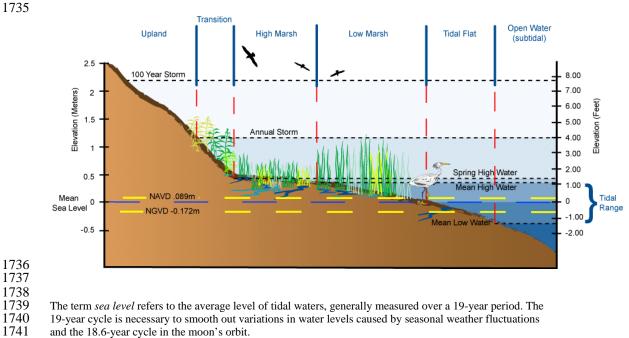
CCSP 4.1

1712 1713

******** BEGIN BOX 1.2: TIDES, SEA LEVEL, AND REFERENCE ELEVATIONS

1714 Tides are caused by the gravitational attraction of the moon and sun on the ocean water. Most places in the 1715 mid-Atlantic region have two high and low tides every day. The daily tide range varies over the course of 1716 the lunar month. Mean high water and mean low water are the average elevations of the daily high and low 1717 tides. During full and new moons, the gravitational pull of the moon and the sun are in alignment, which 1718 causes the tide range to be 15-25% greater than average. The average of the full and new moon high and 1719 low tides are known as spring high water and spring low water. In addition to the astronomic tides, water 1720 levels fluctuate due to winds, atmospheric pressure, ocean current, and -- in inland areas-river flow, rainfall 1721 and evaporation. Daily tide ranges in the Mid-Atlantic are as great as 2.5 m in parts of the Delaware River 1722 and less than 5 cm in some of the sounds of North Carolina.

1723


1724 In coastal areas with tidal marshes, the high marsh is generally found between mean high water and spring 1725 high water, while low marsh is found from slightly below mean sea level up to spring high water. (See 1726 diagram.) In bays with small (e.g., 10-20 cm) tide ranges, however, winds and seasonal runoff can cause water level fluctuations with a greater impact on tidal wetlands than the tides themselves. These areas are known as "*irregularly flooded*". In some locations, such as upper Albemarle Sound in North Carolina, the 1727 1728 1729 astronomic tide range is essentially zero, and all wetlands are irregularly flooded. Freshwater wetlands in 1730 such areas are often classified as "nontidal wetlands" because there is no tide, but unlike most nontidal

1731 areas, the flooding—and risk of wetland loss—are still controlled by sea level. Wetlands that lie at sea level

1732 along an estuary with a very small tide range and have hydrology similar to nontidal wetlands are called nanotidal wetlands.

1733

1734

1746

Tide gauges measure the water level relative to the land, and thus include both changes in the elevation of 1744 the ocean surface and movements of the land. For clarity, scientists often use two different terms: 1745

global sea-level rise is the worldwide increase in the volume of the world's oceans that occurs as a result of thermal expansion and melting ice caps and glaciers.

Do Not Cite or Quote

73 of 800

	CCSP 4.1 February 12, 2008
1747 1748 1749	• <i>relative sea-level rise</i> refers to the total change in sea level relative to the elevation of the land, which includes both global sea level rise and land subsidence.
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758	In this report, the term "sea-level rise" means "relative sea-level rise." Land elevations are measured relative to either water levels or a fixed benchmark. Most topographic maps use one of two fixed reference elevations. USGS topographic maps measure elevations relative to the National Geodetic Vertical Datum of 1929 (NGVD29), which was approximately mean sea level in 1929 at 26 major coastal cities. Newer digital elevation maps and high-resolution data generally measure elevations relative to the North American Vertical Datum of 1988 (NAVD88) (Zilkoski <i>et al.</i> , 1992). This report measures elevations relative to spring high water (for the year 2000), which indicates how much the sea must rise before the land is inundated by the tides.
1759	END BOX *****************
1760 1761 1762	1.2 RESULTS
1762	Figures 1.3 and 1.4 depict the locations of these lands using two different formats. Figure
1764	1.3 shows land less than 3 meters above the tides, with dry land in 50-cm increments and
1765	nontidal wetlands depicted in two shades of purple. Figure 1.4 shows land less than 6
1766	meters above the tides, in 1-meter elevation increments. This chapter displays the two
1767	separate formats for two reasons: First, Figure 1.3 displays nontidal wetlands because, for
1768	some purposes, it is more important to know that the land is already wet than the precise
1769	elevation. Second, information on which lands are between 3 and 6 meters above sea
1770	level can help identify lands that would be vulnerable to storm surge if the sea rises a
1771	meter or two. (For larger scale maps, see Appendices A-G).
1772	
1773	Table 1.2 provides "best estimates" ² from the Titus and Wang (2008) analysis of the
1774	amount of dry land, and nontidal wetlands close to sea level in each of the Mid-Atlantic
1775	states, using half-meter increments. For comparison, Table 1.2 also includes the area of
1776	tidal wetlands. Table 1.3 shows the corresponding uncertainty range from Titus and

74 of 800

 $^{^{2}}$ By "best estimate" we mean a single estimate rather than an uncertainty range.

- 1777 Cacela (2008), except that the table shows the total amount of land below a given
- 1778 elevation.
- 1779
- 1780 Given the poor resolution of the data, the chapter findings use the cumulative uncertainty
- 1781 range from Table 1.3; but the incremental results in Table 1.2 offer some insights. Most
- 1782 notably, the amount of dry land at various elevations is fairly similar within 4 meters
- above spring high water. More nontidal wetlands are within 1 meter of the tides than (for
- 1784 example) 3 to 4 meters—especially in North Carolina.

75 of 800

					Meters a	bove Spi	ring Hig	h Water			
State		0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
			Dry	Land, by	half met	er elevati	on increi	nent ¹			
New York		82.4	81.5	85.9	86.4	78.5	70.6	67.5	61.4	57.8	51.7
New Jersey		127.2	148.0	150.2	125.5	110.5	108.4	104.5	100.5	98.8	95.0
Pennsylvania		12.6	11.1	15.0	13.4	11.3	11.3	9.8	9.2	9.3	9.1
Delaware		72.2	53.9	52.4	56.3	66.4	68.9	70.5	73.8	75.5	72.9
Maryland		185.3	265.1	240.7	265.1	226.3	243.8	246.1	231.2	202.9	195.4
DC		2.4	1.2	1.4	1.4	1.8	1.8	1.8	1.8	1.7	1.7
Virginia		172.1	176.8	223.0	236.9	253.4	332.1	346.2	337.9	275.0	253.0
North Carolina		741.9	626.1	581.7	637.0	632.6	572.0	618.4	715.5	566.5	412.2
Mid-Atlantic Region		1396.1	1363.7	1350.2	1422.1	1380.9	1409.0	1464.8	1531.3	1287.5	1090.9
	Tidal wetlands	N	Nontidal V	Vetlands	. by half	meter ele	vation in	crement			
New York	149.1	5.0	4.8	3.4	3.2	2.8	2.0	1.9	1.9	1.9	1.8
New Jersey	980.4	99.5	72.6	70.9	64.4	43.2	41.0	39.8	36.0	35.5	35.0
Pennsylvania	6.1	1.9	1.5	1.7	1.6	1.1	1.0	1.0	1.0	0.8	0.3
Delaware	357.1	22.2	9.8	9.2	8.9	7.9	7.8	7.9	7.6	7.5	7.4
Maryland	1115.8	64.5	57.2	53.8	57.6	40.8	47.2	53.7	47.0	41.3	39.5
DC	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1
Virginia	1618.9	73.1	75.0	70.4	68.6	72.6	74.3	73.7	74.1	66.5	64.1
North Carolina	1272.0	2372.3	718.5	394.4	320.8	295.7	259.4	233.5	238.1	218.9	234.4
Mid-Atlantic Region	5500.2	2638.5	939.5	603.8	525.1	464.0	432.7	411.5	405.7	372.5	382.6
			Cu	mulative	(total) ar	nount of	land belo	w a give	n elevatio	on ²	
Dry Land		1396	2760	4110	5532	6913	8322	9787	11318	12606	13697
Nontidal wetlands		2638	3578	4182	4707	5171	5604	6015	6421	6793	7176
All land	5500	9535	11838	13792	15739	17584	19426	21302	23239	24899	26373

Table 1.2 Area of lands close to sea level in the Mid-Atlantic by state: (square kilometers) Source: Titus and
Wang (2008).

86 (1) For example, New York has 81.5 square kilometers of dry land between 0.5 and 1.0 meters above

spring high water.

788 (2) For example, the mid-Atlantic region has 2760 square kilometers of dry land less than 1 meter above

spring high water.

76 of 800

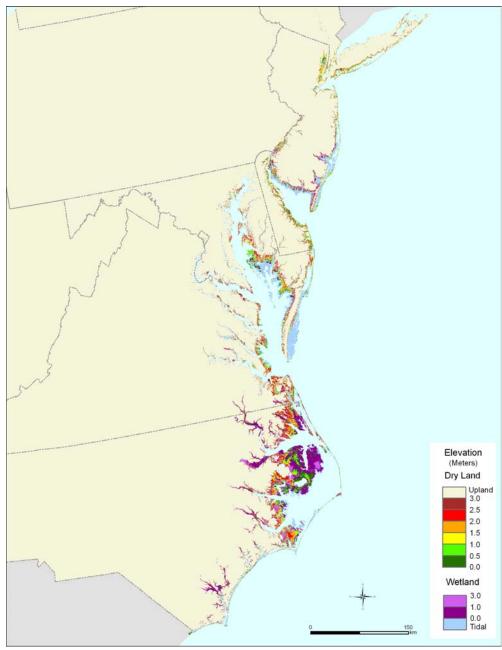
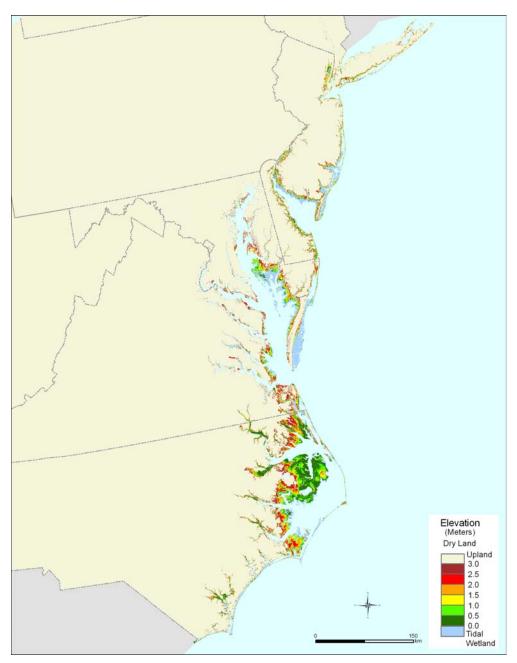



Figure 1.3 Dry land and nontidal wetlands within three meters above the tides in the mid-Atlantic region.

Do Not Cite or Quote

77 of 800

1793

1794 **Figure 1.4** Land within six meters above the tides in the Mid-Atlantic.

Do Not Cite or Quote

78 of 800

	CCSP 4.1 February 12, 2008
1795	These results show that the Mid-Atlantic has $5,500-7,500 \text{ km}^2$ of dry land and nontidal
1796	wetlands within one meter above the tides — an area the size of Delaware.
1797	Approximately half of this land is within 50 cm above the tides. Including tidal wetlands,
1798	the Mid-Atlantic has 18,000-20,700 km^2 of land within 3 m above the tides — an area the
1799	size of New Jersey.
1800	
1801	Description. Most of this low-lying area includes the farms, forests, and residential back
1802	yards just inland of the tidal wetlands along most estuaries, as well as nontidal wetlands
1803	in particularly flat areas such as the lands along Pamlico and Albemarle Sounds in North
1804	Carolina and the lower portions of Chesapeake and Delaware Bays. The lowest
1805	developed lands include dry land that was created by filling tidal wetlands, the bay sides
1806	of barrier islands ³ , and several small towns along Chesapeake Bay and the sounds of
1807	North Carolina ⁴ .
1808	
1809	The greatest concentration of low land is between Cape Lookout and the mouth of
1810	Chesapeake Bay (Figure 1.4). More than 5,000 km ² of North Carolina is less than one
1811	meter above the tides, including the majority of three counties (Dare, Hyde, and Tyrrell).
1812	Almost half of the dry land close to sea level is in North Carolina. Figures 1.3 and 1.4
1813	imply that North Carolina accounts for about 85 percent of the nontidal wetlands within
1814	one meter of spring high water — but less than 25 percent of the region's tidal wetlands.

1815 That result, however, is partly an artifact of the fact that *nanotidal* freshwater wetlands

Do Not Cite or Quote

³ Long, narrow strips of sand forming islands that protect inland areas from ocean waves and storms (USGS).

⁴ The dry sand beaches along the Atlantic Ocean and major bays, between the dunes and high water mark, is also low enough to be inundated if sea level rises 50-200 cm. But because these lands would generally erode before they become inundated by the tides, we discuss beaches in Chapter 2.

	CCSP 4.1 February 12, 2008
1816	(areas with very small tides) are classified as nontidal. The astronomic tides of Albemarle
1817	Sound and its tributaries are only a few centimeters, but winds and other hydrological
1818	variations cause irregular flooding tens of centimeters above mean sea level. The elevation
1819	of this flooding will increase as the sea rises, just as high tides increase as the sea rises.
1820	
1821	The second largest concentration of lands close to sea level is along the lower Eastern
1822	Shore of Maryland and adjacent Accomack County, Virginia. Many of the most
1823	vulnerable communities in this area are remnants of a time when fishing in Chesapeake
1824	Bay supported a large part of the Maryland and Virginia economies. Smith and Tangier
1825	Islands — both less than one meter above the tides — lack a bridge to the mainland and
1826	are still populated mainly by watermen. Other low-lying communities are inhabited by
1827	the descendants of residents of islands that have eroded or entirely converted to marsh. A
1828	few communities on the western side of the Bay are also very low lying, such as
1829	Poquoson and Gloucester County.
1830	
1831	In both North Carolina and along Chesapeake Bay, the vulnerability to rising sea level is
1832	apparent to the naked eye. Water levels rise and fall with the tides in the small roadside
1833	ditches in Carteret (NC), Dorchester, and Somerset Counties. Hummocks surrounded by
1834	marsh are all that remain of some pine forests; and dead trees stand in the marsh
1835	elsewhere. Marsh grass grows in the front yards of many homes. In some locations,
1836	driveways through the marsh are all that remain. Salt-tolerant weeds sometimes break up
1837	an otherwise perfect row of corn where the intrusion did not occur in years past. Cypress
1838	trees, which only germinate on dry ground, stand in water that is nearly a meter deep.

80 of 800

1840	The bay sides of some developed barrier islands in New Jersey and New York are already
1841	flooded during spring high tides. The coastal geological processes that create and sustain
1842	barrier islands tend to create very low land on the bay side. In New Jersey, tens of square
1843	kilometers along the low sides of developed barrier islands are within 50-100 cm above
1844	spring high water. The New Jersey shore was developed decades before the rest of the
1845	mid-Atlantic coast. The older development makes communities there more vulnerable,
1846	for two reasons. First, with sea level rising 3-4 mm/yr, communities developed 100 years
1847	ago are 30-40 cm (one foot) closer to sea level than when they were developed. Second,
1848	the dredge-and-fill approach to coastal development, which was commonplace in the
1849	mid-Atlantic until it was curtailed during the 1970s, created land barely above the
1850	elevation of the marsh.
1851	
1851 1852	Uncertainty. Comparing Map 1.1 with Table 1.3 shows that the uncertainty regarding the
	<i>Uncertainty</i> . Comparing Map 1.1 with Table 1.3 shows that the uncertainty regarding the area of land within a given elevation above the tides is greatest in areas with poor
1852	
1852 1853	area of land within a given elevation above the tides is greatest in areas with poor
1852 1853 1854	area of land within a given elevation above the tides is greatest in areas with poor topographic information, such as northern New Jersey, and least in areas where lidar is
1852 1853 1854 1855	area of land within a given elevation above the tides is greatest in areas with poor topographic information, such as northern New Jersey, and least in areas where lidar is available, such as North Carolina and parts of Maryland. Given the need to interpolate in
1852 1853 1854 1855 1856	area of land within a given elevation above the tides is greatest in areas with poor topographic information, such as northern New Jersey, and least in areas where lidar is available, such as North Carolina and parts of Maryland. Given the need to interpolate in areas where high-quality data is unavailable, the uncertainty is more than twofold for the
1852 1853 1854 1855 1856 1857	area of land within a given elevation above the tides is greatest in areas with poor topographic information, such as northern New Jersey, and least in areas where lidar is available, such as North Carolina and parts of Maryland. Given the need to interpolate in areas where high-quality data is unavailable, the uncertainty is more than twofold for the land within 50 cm above the tides, but only 30 percent for the land within 2 meters above
1852 1853 1854 1855 1856 1857 1858	area of land within a given elevation above the tides is greatest in areas with poor topographic information, such as northern New Jersey, and least in areas where lidar is available, such as North Carolina and parts of Maryland. Given the need to interpolate in areas where high-quality data is unavailable, the uncertainty is more than twofold for the land within 50 cm above the tides, but only 30 percent for the land within 2 meters above

Do Not Cite or Quote

81 of 800

CCSP 4.1 which generally correspond to the likely range. Evaluated over the entire mid-Atlantic

- 1863 region, errors would normally be expected to offset. But Titus and Cacela had no
- 1864 information on the correlation of error across the region, and hence made the most
- 1865 cautious assumption possible by assuming that overestimates in one subregion are never
- 1866 offset by underestimates in another subregion. Therefore, the uncertainty range for
- 1867 regional totals likely represents a wider range of probability than the county-specific
- 1868 results.

1862

Do Not Cite or Quote

82 of 800

Public Review Draft

February 12, 2008

				l	Meters	above	spring	high w	ater			
	0.	5	1.	0	2.	0	3.	0	4	.0	5	.0
Sub-Region	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High
L.I. Sound/ Peconic	6	31	22	59	63	111	106	158	149	200	190	229
S. Shore Long Island	19	70	59	134	161	250	266	335	347	400	410	450
NY Harbor/ Raritan Bay	5	72	47	143	139	230	215	288	265	343	314	374
New York	0	13	8	25	24	44	40	58	52	72	65	78
New Jersey	5	59	39	117	115	186	175	230	213	271	249	295
New Jersey Shore	18	61	66	129	184	237	262	327	344	409	418	481
Delaware Bay	19	62	52	108	124	206	217	312	321	421	427	512
New Jersey	3	19	15	36	39	73	70	114	109	154	146	182
Delaware	15	43	38	71	85	133	146	198	212	267	281	330
Delaware River	17	80	56	146	152	262	249	368	342	467	430	549
Atlantic Coast of Del-Mar-Va total	27	87	81	148	200	275	318	390	425	495	529	599
Delaware	11	32	28	53	64	95	104	139	149	187	196	234
Maryland	3	17	20	40	74	97	126	145	165	180	199	211
Virginia	13	37	33	55	62	82	87	106	111	129	134	154
Chesapeake Bay total	102	466	441	906	1193	1827	1973	2859	2962	3818	3865	4633
Delaware	1	2	1	3	4	7	9	14	15	24	26	36
Maryland	66	290	306	530	738	1007	1141	1451	1572	1865	1966	2213
District of Columbia	2	3	3	4	5	7	9	11	13	15	16	18
Virginia	34	172	131	369	445	805	815	1383	1362	1915	1857	2366
Virginia Beach Atlantic Coast	7	27	25	56	78	142	158	219	235	288	293	310
Pamlico Albemarle Sounds	621	1028	1186	1519	2239	2601	3274	3629	4449	4789	5269	5441
Atlantic Coast of North Carolina	103	151	182	238	370	429	529	579	682	740	855	908
Total NY to NC	945	2136	2218	3585	4903	6569	7567	9463	10520	12370	13001	14486

 Table 1.3a
 Uncertainty range of the cumulative area of dry land close to sea level, by subregion: Mid-Atlantic¹ (square kilometers)

1869

Do Not Cite or Quote

83 of 800

_					M	eters ab	ove Sp	ring Hi	gh Wa	ter			
	Tida	0.	5	1.	0	2.	.0	3.	0	4.	.0	5.	0
Sub-Region	l wetl ands	Low	Hig h	Low	High	Low	High	Low	High	Low	High	Low	High
L.I. Sound/ Peconic	36	1	2	2	4	4	7	7	9	9	11	11	13
S. Shore Long Island	104	1	4	4	7	8	10	11	12	12	13	14	15
NY Harbor/ Raritan Bay	68	0	3	2	6	6	9	9	11	10	13	12	16
New Jersey Shore	524	11	52	42	92	101	157	152	205	196	249	237	286
Delaware Bay	497	16	54	45	90	98	139	140	173	172	202	199	224
Delaware River	216	12	41	33	64	65	93	90	108	103	122	116	133
Atlantic Coast of Del-Mar-Va total	757	4	14	13	28	39	55	62	73	78	85	89	95
Chesapeake Bay total	1903	43	150	143	257	331	483	504	690	714	900	909	1119
Virginia Beach Atlantic Coast	124	6	21	20	37	42	57	61	73	76	88	89	96
Pamlico Albemarle Sounds	829	2083	2625	2772	3039	3401	3562	3852	3984	4235	4352	4592	4695
Atlantic Coast of North Carolina	443	197	255	275	315	393	429	495	525	583	616	680	710
Total NY to NC	5500	2374	3221	3351	3940	4487	5001	5381	5864	6189	6652	6948	7401

Table 1.3b Uncertainty range of the cumulative area of nontidal and tidal wetlands close to sea level, by subregion: Mid-Atlantic¹ (square kilometers)

						Meters	above Sj	oring Hig	gh Wate	r			
	Tidal	0).5	1	.0	2	.0	3.	.0	4	.0	5.	.0
	wetlands	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High
Dry land		945	2136	2218	3585	4903	6569	7567	9463	10520	12370	13001	14486
Nontidal wetlands		2374	3221	3351	3940	4487	5001	5381	5864	6189	6652	6948	7401
All land	5500	8819	10857	11069	13025	14890	17070	18448	20826	22208	24521	25448	27387

1872 1873 1874

Sources:

1875 Titus, J.G. and Cacela, 2008.

1876 (1) Low and high are an uncertainty range based on the contour interval and/or stated root mean square

error (RMSE) of the input elevation data. Calculations assume that half of the RMSE is random error and

1877 1878 half is systematic error.

1879

Do Not Cite or Quote

84 of 800

CCSP 4.1

1880	1.3 IMPLICATIONS OF TOPOGRAPHY FOR TIDAL WETLANDS
1881	In the chapters that follow, a fundamental concept is that land that is dry today may
1882	become intertidal and eventually submerged as sea level rises. Tables 1.2 and 1.3 show
1883	that the dry land within 50 cm above the tides is less than the area of tidal wetlands in
1884	most areas, with the exception of North Carolina. (Available data in North Carolina are
1885	poorly suited to this type of analysis). From New York to Virginia, the area of dry land
1886	within 1 meter above the tides is only about one-fourth the current area of tidal wetlands.
1887	North Carolina has approximately 3,000 km ² of <i>wetlands</i> within 50 cm above the tides, but
1888	only 700 km^2 of <i>dry land</i> within 1 meter above the tides. Figure 1.5a shows county-by-
1889	county variability of the ratio of tidal wetlands to dry land within 1 meter above the tides ⁵ .
1890	
1891	Comparing the area of dry land within 1 meter above spring high water to the area of
1892	tidal wetlands, however, is only a rough approximation of the potential sustainability of
1893	tidal wetlands through landward migration. Tidal wetlands in some areas are within 25
1894	cm below spring high water, while in other areas tidal wetlands may extend 1 to 1.5
1895	meters below spring high water because the tide range may be 2 to 3 meters. Hence, the
1896	ratio depicted in Figure 1.5a has a denominator that is always the area of dry land within
1897	one meter above spring high water; but the numerator could be wetlands within 25 cm or
1898	1.5 meters below spring high water. Figure 1.5b depicts the ratio of the area of tidal
1899	wetlands (i.e. wetlands within one-half the tide range below spring high water) to the area of
1900	dry land within one-half tide range above spring high water. (We exclude North Carolina
1901	because the small tide range would give us a meaninglessly large ratio.) This figure shows

⁵Counties that are partly along the ocean and partly along Chesapeake Bay, Delaware Bay, or Long Island Sound are split.

Do Not Cite or Quote

85 of 800

1902	the ratio of the average slope immediately above spring high water to the average slope
1903	between spring high water and the open water. Across the region depicted, excluding North
1904	Carolina, the current area of tidal wetlands in the Mid-Atlantic is more than six times the
1905	area of dry land available for wetland migration. (Table 1.4). That is, the area of land
1906	potentially available for inland wetland migration is approximately 15 percent the area of
1907	existing tidal wetlands.
1908	
1909	Given the mid-Atlantic topography, it follows that the fate of tidal wetlands in the Mid-
1909 1910	Given the mid-Atlantic topography, it follows that the fate of tidal wetlands in the Mid- Atlantic is likely to depend more on their ability to keep pace with rising sea level through
1910	Atlantic is likely to depend more on their ability to keep pace with rising sea level through
1910 1911	Atlantic is likely to depend more on their ability to keep pace with rising sea level through sedimentation and peat formation than on the availability of land for inland migration.
1910 1911 1912	Atlantic is likely to depend more on their ability to keep pace with rising sea level through sedimentation and peat formation than on the availability of land for inland migration. Yet the potential for wetlands to keep pace with an accelerated rise in sea level is uncertain.
1910 1911 1912 1913	Atlantic is likely to depend more on their ability to keep pace with rising sea level through sedimentation and peat formation than on the availability of land for inland migration. Yet the potential for wetlands to keep pace with an accelerated rise in sea level is uncertain. For example, as we discuss in Chapter 3, the rate of sea-level rise at which wetlands can

1916 ability of wetlands to keep pace with rising sea level. (See Part VI).

Do Not Cite or Quote

CCSP 4.1

86 of 800

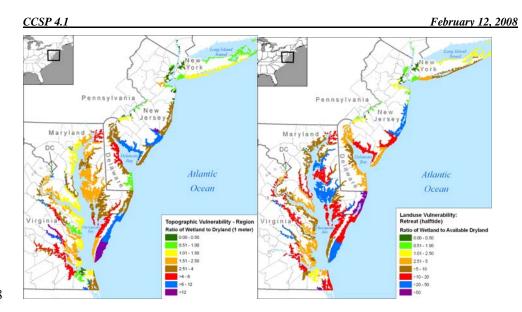

		in one-half tide range ng high water (km²) ¹	Tidal wetlands	migration:	for wetland Ratio ² of tidal ands to:
State	Dry land	Nontidal wetlands	(km ²)	Dry land	All land
L.I. Sound and Peconic Estuary	34	2	36	1.06	1.01
South Shore Long Island	52	1	104	1.98	1.93
NY Harbor/Raritan Bay	97	4	64	0.65	0.63
New York	16	1	5	0.30	0.28
New Jersey	82	3	59	0.72	0.69
New Jersey Shore	47	40	524	11.12	6.02
Delaware Bay	72	59	497	6.88	3.78
New Jersey	22	41	261	12.10	4.17
Delaware	51	18	236	4.66	3.43
Delaware River	98	45	215	2.19	1.50
Delaware fresh	7	1	5	0.71	0.61
Delaware saline	16	3	69	4.26	3.59
New Jersey fresh	23	12	27	1.20	0.80
New Jersey saline	28	25	108	3.83	2.01
Pennsylvania	24	4	6	0.25	0.22
Atlantic Coast of Del-Mar-Va	40	6	909	22.46	19.76
Delaware	8	2	41	4.96	4.15
Maryland	1	0	105	76.07	68.09
Virginia	31	4	764	24.77	22.06
Chesapeake Bay	166	57	1665	10.05	7.47
Delaware	1	2	7	5.29	2.33
Maryland	72	26	1011	14.11	10.31
District of Columbia	2	0	0	0.20	0.19
Virginia	91	29	647	7.15	5.41
Virginia Beach — Atlantic Coast	9	7	124	13.17	7.47
Total: NY to VA	617	221	4137	6.70	4.94

Table 1.4 Potential for wetland migration: Area of tidal wetlands compared to area of land within one-half tide range above spring high water.

2. The reciprocal of this ratio defines area of land potentially available for inland wetland migration, as a percentage of current wetlands. For example, the regionwide ratio of 6.48 implies that the area of land potentially available for inland wetland migration is 15 percent of the current wetland area. SOURCE: Titus and Wang (2008); Jones and Wang (2008).

NOTE: Information presented here approximates the area that may be available for wetland migration or formation relative to existing wetland area and does not indicate the potential for loss or gain in total wetland area.

87 of 800

1004

1919 Figure 1.5 Dry land available for potential wetland migration or formation (New York to Virginia). a) County-1920 by-county ratios of the area of tidal wetlands to the area of dry land within 1 meter above spring high water. 1921 The figure shades polygons from the tidal wetlands data set. Small polygons are exaggerated to ensure 1922 visibility, and b) County-by-county ratios of tidal wetlands to the area of dry land within one-half the tide range 1923 above spring high water. 1924 NOTE: Information presented here approximates the area that may be available for wetland migration or 1925 formation relative to existing wetland area and does not indicate the potential for loss or gain in total wetland 1926 area. 1927 1928 1929 **CHAPTER 1 REFERENCES**

- 1930 **Bin**, Okmyung, Chris Dumas, Ben Poulter, and John Whitehead, 2007. Measuring the
- 1931 Impacts of Climate Change on North Carolina Coastal Resources, National
- 1932 Commission on Energy Policy, Washington, DC. 101p.
- 1933 <u>http://econ.appstate.edu/climate/</u>

1934	Cooper, Matnew J.P., M. D. Beevers and M. Oppenneimer, 2005: Future Sea Level
1935	Rise And The New Jersey Coast: Assessing Potential Impacts and Opportunities.

- 1936 Report, available from Science, Technology and Environmental Policy Program,
- 1937 Woodrow Wilson School of Public and International Affairs, Princeton
- 1938 University. November
- 1939 2005.<u>http://www.environmentnewjersey.org/uploads/sR/9N/sR9N-</u>
- 1940 <u>sL9cXyA7pGI_ODVlw/Future_Sea_Level_Rise.pdf</u>

Do Not Cite or Quote

88 of 800

	<u>CCSP 4.1</u> February 12, 2008
1941	Climate Impacts Group, 2007. Climate Change and a Global City, the
1942	PotentialConsequences of Climate Variability and Change, Metro East Coast
1943	Assessment, Center for Climate Systems Research, Columbia University.
1944	http://ccsr.columbia.edu/cig/mec/03 Sea Level Rise and Coast.pdf
1945	Csatho, Bea, Young-Ran Lee, Tony Schenk, William Krabill, and Jan McGarry, 2001.
1946	Creation of High Resolution, Precise Digital Elevation Models of Ocean City and
1947	Assateague Island, MD, Intl. Archives of Photogrammetry and Remote Sensing,
1948	Vol. 34, Annapolis, MD, pp. 31-35.
1949	Environmental Protection Agency. 1989. The Potential Effects of Global Climate
1950	Change on the United States. Report to Congress. Appendix B: Sea Level Rise.
1951	Washington, D.C.: U.S. Environmental Protection Agency. EPA 230-05-89-052.
1952	Feyen, J., Hess, K., Spargo, E., Wong, A., White, S., Sellars, J., Gill, S., 2005:
1953	Development of a Continuous Bathymetric/Topographic Unstructured Coastal
1954	Flooding Model to Study Sea Level Rise in North Carolina (pdf). Proceedings of
1955	the 9th International Conference on Estuarine and Coastal Modeling, M.
1956	Spaulding et al., eds., ASCE, Charleston, South Carolina, October 31 - November
1957	2, 2005.
1958	FEMA 2008. Guidelines and Specifications for Flood Hazard Mapping Partners.
1959	Appendix D: Guidance for Coastal Flooding Analyses and Mapping cited at
1960	http://www.fema.gov/library/viewRecord.do?id=2206 January 30 2008
1961	Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., and Tyler, D., 2002. "The
1962	National Elevation Dataset," Photogrammetric Engineering and Remote Sensing,
1963	Vol. 68, No. 1, January 2002, pp. 5-11.
1964	Gesch, Dean, and Robert Wilson, 2001. Development of a Seamless Multisource
1965	Topographic/Bathymetric Elevation Model of Tampa Bay, MTS Journal, Vol. 35,
1966	No. 4, Winter 2001-2002, pp. 58-64.

89 of 800

	CCSP 4.1 February 12, 2008
1967	Johnson, Zoë, Roger Barlow, Inga Clark, Curt Larsen and Ken Miller, 2006. Worcester
1968	County - Sea Level Rise Inundation Model, Technical Report, Nov. 2006, MD
1969	DNR # 14-982006-166, 16p.
1970	Jones, R. and J. Wang, 2008. Interpolating Elevations: Proposed Method for Conducting
1971	Overlay Analysis of GIS Data on Coastal Elevations, Shore Protection, and
1972	Wetland Accretion. Section 1.2 in: Background Documents Supporting Climate
1973	Change Science Program Synthesis and Assessment Product 4.1: Coastal
1974	Elevations and Sensitivity to Sea Level Rise [J.G. Titus and E.M. Strange (eds.)].
1975	EPA430R07004, U.S. Environmental Protection Agency, Washington, DC.
1976	Kana, T.W., J. Michel, M.O. Hayes, and J.R. Jensen, 1984. "The physical impact of sea-
1977	level rise in the area of Charleston, South Carolina. In M.C. Barth and J.G. Titus
1978	(Eds.), Greenhouse Effect and Sea Level Rise. Van Nostrand Reinhold Co., New
1979	York, N.Y., Chap. 4, pp. 105-150.
1980	Larsen, C., I. Clark, G. Guntenspergen, D. Cahoon, V. Caruso, C. Hupp, T. Yanosky,
1981	2004: The Blackwater NWR Inundation Model. Rising Sea Level on a Low-lying
1982	Coast: Land Use Planning for Wetlands, U.S. Geological Survey, Open File
1983	Report 04-1302, On-line only, Version 1.0, 2p.
1984	http://pubs.usgs.gov/of/2004/1302/
1985	Lathrop, Richard G., and John E. Hasse, 2007. Vulnerability of New Jersey's Coastal
1986	Habitats to Sea Level Rise, Center for Remote Sensing and Spatial Analysis,
1987	Rutgers University, New Jersey, 17p.
1988	Najjar, R.G., Walker, H.A., Anderson, P.J., Barron, E.J., Bord, R.J., Gibson, J.R.,
1989	Kennedy, V.S., Knight, C.G., Megonigal, J.P., O'Connor, R.E., Polsky, C.D.,
1990	Psuty, N.P., Richards, B.A., Sorenson, L.G., Steele, E.M., Swanson, R.S., 2000.
1991	The Potential Impacts of Climate Change on the Mid-Atlantic Coastal Region.
1992	Climate Research 14: 219-233.
1993	NOAA, 2001. Tidal Datums and Their Applications, NOAA Special Publication NOS
1994	CO-OPS 1, NOAA, National Ocean Service, February 2001, p 63-68.

90 of 800

	<u>CCSP 4.1 February 12, 2008</u>
1995	National Research Council, 2004. A Geospatial Framework for the Coastal Zone:
1996	National Needs for Coastal Mapping and Charting, National Academy Press,
1997	Washington, DC, 168p
1998	NGDC, 2008. National Geophysical Data Center Tsunami Inundation Gridding Project,
1999	Tsunami DEM Development, NOAA, NGDC, Boulder Colorado.
2000	http://www.ngdc.noaa.gov/mgg/inundation/tsunami/general.html
2001	NOAA, 2001. Tidal Datums and Their Applications, NOAA Special Publication NOS
2002	CO-OPS 1, NOAA, National Ocean Service, February 2001, p 63-68.
2003	Osborn, K., List, J., Gesch, D., Crowe, J., Merrill, G., Constance, E., Mauck, J., Lund,
2004	C., Caruso, V., and Kosovich, J., 2001. National digital elevation program
2005	(NDEP), in Naune, D., ed., Digital Elevation Model Technologies and
2006	Applications: The DEM Users Manual: Bethesda, Maryland, American Society
2007	for Photogrammetry and Remote Sensing, p. 83-120.
2008	Pietrafesa, L.J., K. Kelleher, T. Karl, M. Davidson, M. Peng, S. Bao, D. Dickey, L. Xie,
2009	H. Liu, and, M. Xia, 2007. A New Architecture for Coastal Inundation and Flood
2010	Warning Prediction, Marine Technology Society Journal, Vol. 40, No. 4, pp. 71-
2011	77.
2012	Sallenger, A.H., Krabill, W., Swift, R., Brock, J., List, J., Hansen, M., Holman, R.A.,
2013	Manizade, S., Sontag, J., Meredith, A., Morgan, K. and Stockdon, H. 2003.
2014	Evaluation of airborne scanning lidar for coastal change applications. J Coast Res.
2015	19:125-133.
2016	Schneider, S. and R.S, Chen. 1980. Carbon Dioxide Flooding: Physical Factors and
2017	Climatic Impact. Annual Review of Energy 5:107-140.
2018	Stockdon, H.F., Lillycrop, W.J., Howd, P.A., and Wozencraft, J.M., 2007. The Need for
2019	Sustained and Integrated High-Resolution Mapping of Dynamic Coastal
2020	Environments, Marine Technology Society Journal, Vol. 40, No. 4, pp. 90-101.

91 of 800

	<u>CCSP 4.1</u> February 12, 2008
2021	Titus, J.G. and D. Cacela, 2008: In: Background Documents Supporting Climate Change
2022	Science Program Synthesis and Assessment Product 4.1: Coastal Elevations and
2023	Sensitivity to Sea Level Rise [J.G. Titus and E.M. Strange (eds.)].
2024	EPA430R07004, U.S. Environmental Protection Agency, Washington, DC.
2025	Titus, J.G. and J. Wang, 2008: Maps of lands close to sea level along the middle Atlantic
2026	coast of the United States: an elevation data set to use while waiting for LIDAR.
2027	In: Background Documents Supporting Climate Change Science Program
2028	Synthesis and Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea
2029	Level Rise [J.G. Titus and E.M. Strange (eds.)]. EPA430R07004, U.S.
2030	Environmental Protection Agency, Washington, DC.
2031	Titus, J.G. and C. Richman. 2001. Maps of lands vulnerable to sea level rise: modeled
2032	elevations along the US Atlantic and Gulf coasts. Climate Research, Vol. 18: 205-
2033	228.
2034	US DOT, 2007. The Potential Impacts of Global Sea Level Rise on Transportation
2035	Infrastructure, Phase 1 – Final Report: the District of Columbia, Maryland, North
2036	Carolina and Virginia. Prepared by ICFI for the U.S Department of
2037	Transportation, Washington, DC.
2038	http://climate.dot.gov/publications/potential_impacts_of_global_sea_level_rise/in
2039	<u>dex.htm</u>
2040	Weiss, J. and Overpeck, J.T.: 2003, Climate Change and Sea Level: Maps of Susceptible
2041	Areas, Department of Geosciences Environmental Studies Laboratory, University
2042	of Arizona, Tucson.
2043	http://www.geo.arizona.edu/dgesl/research/other/climate change and sea level.h
2044	<u>tm</u>
2045	Zilkoski, D.B., J.H. Richards, and G.M. Young, 1992. Results of the General Adjustment
2046	of the North American Vertical Datum of 1988, National Geodetic Survey,
2047	American Congress on Surveying and Mapping, Surveying and Land Information
2048	Systems, Vol. 52, No. 3, 1992, pp.133-149.

92 of 800

9	Chapter 2. Ocean Coasts
0	
	Authors: Benjamin T. Gutierrez, USGS, S. Jeffress Williams, USGS, E. Robert Thieler,
	USGS
	KEY FINDINGS
	• The majority of the mid-Atlantic region as well as the rest of the United States
	coastline consists of sandy shores whose landforms and characteristics of
	behavior are related to a variety of physical processes and factors. Along sandy
	coasts, it is virtually certain that erosion will dominate changes in shoreline
	position in response to sea-level rise and storms over the next century. Inundation
	from sea- level rise will be limited to the bedrock coasts such as those along
	portions of the New England and Pacific shores which are resistant to erosion, and
	to low-energy/low-relief coasts such as upper reaches of bays and estuaries.
	• The potential for coastal change in the future is likely to increase and be more
	variable than has been observed in historic past. It is very likely that significant
	portions of the U.S. will undergo large changes to the coastal system if the higher
	sea-level rise scenarios occur, such as increased rates of erosion, landward
	migration of barrier islands, and possibly segmentation or disintegration.
	• It is very likely that the rate of shoreline erosion will increase along the majority
	of the mid-Atlantic coast as sea level rises. This response will vary according the
	coastal landforms present at the shore and the local geologic and oceanographic
	conditions. Coasts containing headlands, spits, and barrier islands are generally

93 of 800

	CCSP 4.1 February 12, 2008
2072	expected to erode. Especially for higher sea-level rise scenarios, it is likely that
2073	some barrier island coasts, such as low-lying and sand starved parts of Virginia
2074	and North Carolina, will cross a threshold and undergo morphological changes
2075	such as more rapid landward migration, segmentation, or even disintegration in
2076	extreme scenarios.
2077	
2078	2.1 INTRODUCTION
2079	The general morphology of the coast reflects a complex and dynamic interaction between
2080	the physical processes (e.g., waves and tidal currents) that act on the coast, the
2081	availability of sediment transported by waves and tidal currents, and the local geology.
2082	Variations in these factors from one coastal region to the next are responsible for the
2083	different coastal landforms, such as barrier islands, that are observed along the coast
2084	today. Based on knowledge developed from studying the geologic record, the scope and
2085	general nature of the changes that can occur in response to sea-level rise are well
2086	established. On the other hand, constraining precisely how these changes occur in
2087	response to a specific rise in sea level has been elusive. Part of the complication arises
2088	due to the range of physical processes and factors influence that modify the coast and
2089	operate over a range of time scales (weeks-to-centuries-to-millennia). It is unclear how
2090	much these contribute to long-term changes that can be attributed to sea-level rise.
2091	Because of the complexity of the interaction between these factors it has been difficult to
2092	resolve a precise relationship between sea-level rise and shoreline change. Consequently,
2093	it has been difficult to reach a consensus among coastal scientists as to whether or not
2094	sea-level rise can be quantitatively related to observed shoreline changes.

94 of 800

2096	Along many U.S. shores, shoreline changes are related to changes in the shape of the
2097	landscape at the water's edge (e.g., the shape of the beach). Changes in beach
2098	morphology, and the resulting shoreline changes, do not occur directly as the result of
2099	sea-level rise but are in an almost continual state of change in response to waves and
2100	currents as well as the availability of sediment to the coastal system. This is especially
2101	true for shoreline changes over the past century, when increases in sea-level rise have
2102	been relatively small. During this time, large storms, variations in sediment supply to the
2103	coast, and human activity have had a more measurable influence on shoreline changes.
2104	Large storms can cause changes in shoreline position that persist for weeks to a decade or
2105	more (Morton et al., 1994; Zhang et al., 2004; List et al., 2006; Riggs and Ames, 2007).
2106	Complex interactions with nearshore sand bodies and/or underlying geology (the
2107	geologic framework), the mechanics of which are not yet clearly understood, also
2108	influence the behavior of beach morphology over a range of time scales (Riggs et al.,
2109	1995; Honeycutt and Krantz, 2003; Schuup et al., 2006; Miselis and McNinch, 2006).
2110	In addition, human actions to control changes to the shore and coastal waterways have
2111	considerably altered the behavior of some portions of the coast (e.g., Assateague Island
2112	(Dean and Perlin, 1977; Leatherman, 1984)).
2113	
2114	It is even more difficult to develop quantitative predictions of how shorelines may change
2115	in the future. The most easily applied models incorporate relatively few processes and
2116	rely on assumptions that do not always apply to real-world settings (Thieler et al., 2000;
2117	Cooper and Pilkey, 2004). These assumptions apply best to present conditions, but not

Do Not Cite or Quote

95 of 800

	CCSP 4.1 February 12, 2008
2118	necessarily to conditions that may exist in the future. Models that incorporate more
2119	factors require precise knowledge on a local scale, and it is therefore difficult to apply
2120	these models over larger coastal regions. Appendix H presents brief summaries of a few
2121	methods have been used to developed to predict and assess the potential for shoreline
2122	changes in response to sea-level rise.
2123	
2124	Chapter 1 addresses the vulnerability of coastal lands to inundation as sea level rises.
2125	Recent and ongoing assessments of sea-level rise impacts have used a similar approach to
2126	identify lands vulnerable to inundation by specific sea-level rise scenarios (Najjar et al.,
2127	2000; Titus and Richman, 2001; Rowley et al., 2007). While this approach provides an
2128	estimate of the land areas that may be affected, it does not incorporate the processes (e.g.,
2129	barrier island migration) nor the environmental changes that may occur (e.g., salt marsh
2130	deterioration) as sea level rises. Because of these complexities, inundation can be used as
2131	a first order approach to estimate land areas that could be affected by changing sea level.
2132	Because the majority of the nation's coasts, including the Mid-Atlantic, consist of sandy
2133	shores, inundation alone is unlikely to reflect the potential consequences of sea-level rise.
2134	Instead long-term, shoreline changes will involve both contributions from both
2135	inundation and erosion (Leatherman, 1990; Leatherman, 2001) as well as changes to
2136	other coastal environments such as wetlands.
2137	
2138	Most portions of the open coast of the United States will be subject to significant changes
2139	and net erosion over the next century. The main reason for this assertion is that the
2140	majority of U.S. coastline consists of sandy beaches which are highly mobile and in a

96 of 800

	CCSP 4.1 February 12, 2008
2141	continual state of change. This chapter presents an overview and assessment of the
2142	important factors and processes that influence potential changes to the mid-Atlantic
2143	ocean coast which may occur due to sea-level rise expected by the end of the century.
2144	
2145	2.2 ASSESSING THE POTENTIAL IMPACT OF SEA-LEVEL RISE ON THE
2146	OCEAN COASTS OF THE MID-ATLANTIC
2147	Lacking a single agreed-upon method or scientific consensus view about shoreline
2148	changes in response to sea-level rise at a regional scale, a panel of coastal scientists was
2149	consulted to address the key question (Gutierrez et al., 2007). Members of the panel were
2150	chosen based expertise in coastal studies, experience in the coastal research community,
2151	and involvement with coastal management in the mid-Atlantic region ⁶ . The panel
2152	discussed the changes that might be expected to occur to the ocean shores of the U.S.
2153	mid-Atlantic coast in response to predicted accelerations in sea-level rise over the next
2154	century, and considered the important geologic, oceanographic, and anthropogenic
2155	factors that contribute to shoreline changes in this region. The assessment presented here
2156	is based on the professional judgment of the panel. This qualitative assessment of
2157	potential changes that was developed based on an understanding of both field
2158	observations and quantitative information. In addition, the panel discussed and evaluated

97 of 800

⁶ Fred Anders (New York State, Dept. of State, Albany, NY), Eric Anderson (USGS, NOAA Coastal Services Center, Charleston, SC), Mark Byrnes (Applied Coastal Research and Engineering, Mashpee, MA), Donald Cahoon (USGS, Beltsville, MD), Stewart Farrell (Richard Stockton College, Pomona, NJ), Duncan FitzGerald (Boston University, Boston, MA), Paul Gayes (Coastal Carolina University, Conway, SC), Benjamin Gutierrez (USGS, Woods Hole, MA), Carl Hobbs (Virginia Institute of Marine Science, Gloucester Pt., VA), Randy McBride (George Mason University, Fairfax, VA), Jesse McNinch (Virginia Institute of Marine Science, Gloucester Pt., VA), Stan Riggs (East Carolina University, Greenville, NC), Antonio Rodriguez (University North Carolina, Morehead City, NC), Jay Tanski (New York Sea Grant, Stony Brook, NY), E. Robert Thieler (USGS, Woods Hole, MA), Art Trembanis (University of Delaware, Newark, DE), S. Jeffress Williams (USGS, Woods Hole, MA).

	<u>CCSF 4.1</u> February 12, 2008
2159	the challenges and uncertainties involved in using various predictive approaches some of
2160	which are described in Appendix H.
2161	
2162	This assessment focuses on four sea-level rise scenarios consisting of the three defined in
2163	the Preface and the Context Chapter (See pages X) as well as an additional high scenario
2164	considering a 2 m rise over the next few hundred years. In all of the discussions, we are
2165	referring to relative sea level, the combination of global sea-level change and local
2166	change in land elevation. Using these scenarios, the assessment focused on:
2167	• Identifying important factors and processes contributing to shoreline change over
2168	the next century;
2169	• Identifying key geomorphic settings in the mid-Atlantic Bight;
2170	• Defining potential responses of shorelines to sea-level rise; and
2171	• Assessing the likelihood of these responses.
2172	
2173	2.3 GEOLOGICAL CHARACTER OF THE MID-ATLANTIC COAST
2174	The mid-Atlantic margin of the U.S. is a low-gradient coastal plain that has accumulated
2175	over millions of years in response to the gradual erosion of the Appalachian mountain
2176	chain. The resulting sedimentation has constructed a broad coastal plain and a continental
2177	shelf that extends up to 300 km seaward of the present coast (Colquhoun et al., 1991).
2178	The current morphology of this coastal plain has resulted from the incision of rivers that
2179	drain the region and the construction of barrier islands along the mainland occurring
2180	between the river systems. Repeated ice ages, which have resulted in sea-level
2181	fluctuations up to 140 meters (Muhs et al., 2004), caused these rivers to erode large

98 of 800

2182	valleys during periods of low sea level that then flooded and filled with sediments when
2183	sea levels rose. The northern extent of the mid-Atlantic region considered in this report,
2184	Long Island, New York, was also shaped by the deposition of glacial outwash plains and
2185	moraines that accumulated from the retreat of the Laurentide ice sheet which reached its
2186	maximum extent approximately 21,000 years ago. The gently sloping landscape that
2187	characterizes entire mid-Atlantic margin in combination with slow rates of sea-level rise
2188	over the past 5,000 years and abundant sand supply is also thought to have enabled the
2189	formation of the barrier islands that comprise the majority of the Atlantic coast (Walker
2190	and Coleman, 1987; Psuty and Ofiara, 2002).
2191	
2192	Presently, the river systems along the mid-Atlantic coast generally discharge into large
2193	estuaries and bays, thereby delivering minor amounts of sediment to the open coast
2194	(Meade, 1972). As a result, the region is generally described as sediment-starved (Wright,
2195	1995). The sediments that form the mainland beach and barrier beach environments are
2196	thought to be derived mainly from the wave-driven erosion of the mainland substrate and
2197	sediments from the seafloor of the continental shelf. Since the largest waves and
2198	associated currents occur during storms along the Atlantic coast, this margin of the
2199	United States is often referred to as a storm-dominated coast (Davis and Hayes, 1984).
2200	
2201	The majority of the open coasts along the mid-Atlantic Bight are sandy shores that
2202	include the beach and barrier environments. Although barriers comprise 15 percent of the
2203	world coastline (Glaeser, 1978), they are the dominant shoreline type along the Atlantic
2204	coast. Along the portion of the mid-Atlantic Bight coast examined here, barriers line the

99 of 800

	<u>CCSP 4.1</u> February 12, 2008
2205	majority of the open coast. Consequently scientific investigations exploring coastal
2206	geology of this portion of North America have focused on understanding barrier island
2207	systems (Fisher, 1962 and 1968; Pierce and Colquhoun, 1970; Kraft, 1971; Leatherman,
2208	1979; Moslow and Heron, 1979; 1994; Swift, 1975; Nummedal, 1983; Oertel, 1985;
2209	Belknap and Kraft, 1985; Hine and Snyder, 1985; Davis, 1994).
2210	
2211	2.4 IMPORTANT FACTORS FOR MID-ATLANTIC SHORELINE CHANGE
2212	Several important factors influence the evolution of the mid-Atlantic coast in response to
2213	sea-level rise. Among these are: 1) the geologic framework, 2) physical processes, 3) the
2214	sediment supply, 4) and human activity. Each of these influences the development of the
2215	coastal landscape and influences the response of coastal landforms to changes in sea
2216	level.
2217	
2218	2.4.1 Geologic Framework
2219	An important factor influencing coastal morphology and behavior is the underlying
2220	geology of a setting, which is also referred to as the geological framework. On a large
2221	scale, an example of this is the contrast in the characteristics of the Pacific coast versus
2222	the Atlantic coast of the United States. The collision of tectonic plates along the Pacific
2223	margin has contributed to the development of a steep coast where cliffs line much of the
2224	shoreline (Inman and Nordstrom, 1971; Muhs et al., 1987; Dingler and Clifton, 1994;
2225	Griggs and Patch, 2004; Hapke et al., 2006; Hapke and Reid, 2007). While common,
2226	sandy barriers and beaches along the Pacific margin are confined to river mouths and
2227	low-lying coastal plains that stretch between rock outcrops and coastal headlands. On the

100 of 800

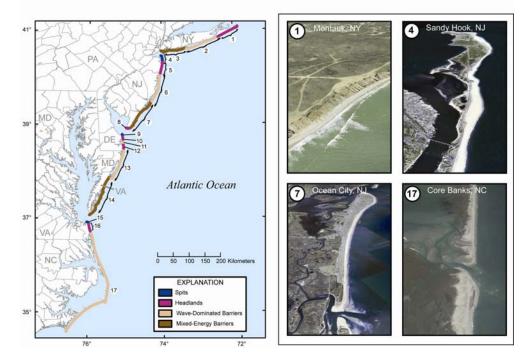
	<u>CCSP 4.1</u> February 12, 2008
2228	other hand, the Gulf of Mexico and Atlantic coasts of the U.S. are situated on a passive
2229	margin where tectonic activity is minor (Walker and Coleman, 1987). As a result, these
2230	coasts are composed of wide coastal plains and wide continental shelves extending far
2231	offshore. The majority of these coasts are lined with barrier beaches and lagoons, large
2232	estuaries, isolated coastal capes, and mainland beaches that abut highs in the surrounding
2233	landscape.
2234	
2235	From a smaller scale perspective focused on the mid-Atlantic Bight, the influence of the
2236	geological framework involves more subtle details of the regional geology. More
2237	specifically, the distribution, structure, and orientation of different rock and sediment
2238	units as well as the presence of features such as river and creek valleys eroded into these
2239	rock units provides a structural control on a coastal environment (e.g., Kraft, 1971;
2240	Belknap and Kraft, 1985; Fletcher et al., 1990; Riggs et al., 1995; Schwab et al., 2000;
2241	Honeycutt and Krantz, 2003). Specifically, the framework geology can control (1) the
2242	location of features, such as inlets, capes, or sand-ridges, (2) the erodibility of sediments,
2243	and (3) the type and abundance of sediment available to the littoral system. In the mid-
2244	Atlantic Bight, the position of tidal inlets, estuaries, and shallow water embayments can
2245	be related to the existence of river and creek valleys that were present in the landscape
2246	during periods of lower sea level in a number of cases (e.g., Kraft, 1971; Belknap and
2247	Kraft, 1985; Fletcher et al., 1990). Elevated regions of the landscape, which can often be
2248	identified by areas where the mainland abuts the ocean coast, form coastal headlands.
2249	The erosion of these features supplies sand to the nearshore system. Differences in
2250	sediment composition (sediment size or density), can sometimes be related to differences

101 of 800

	CCSP 4.1 February 12, 2008
2251	in shoreline retreat rates (e.g., Honeycutt and Krantz, 2003). In addition, the distribution
2252	of underlying geological units (rock outcrops, hard-grounds or sedimentary strata) in
2253	shallow regions offshore of the coast can modify waves and currents and influencing
2254	patterns of sediment erosion, transport, and deposition on the adjacent shores (Riggs et
2255	al., 1995). These complex interactions with nearshore sand bodies and/or underlying
2256	geology can also influence the behavior of beach morphology over a range of time scales
2257	(Riggs et al., 1995; Honeycutt and Krantz, 2003; Schuup et al., 2006; Miselis and
2258	McNinch, 2006).
2259	
2260	2.4.2 Physical Processes
2261	The physical processes acting on a coast are a principal factor shaping coastal landforms
2262	and changes in shoreline position. Waves, tidal currents, and winds continually erode,
2263	rework, winnow, redistribute, and shape the sediments that make up these landforms.
2264	Waves are generated by local winds or result from of far-away disturbances such as large
2265	storms out at sea. Waves typically approach the shore at an angle, resulting in the
2266	generation of longshore currents. These currents provide a mechanism for sand transport
2267	along the coast, referred to as littoral transport, longshore drift or longshore transport.
2268	Where there are changes in coastal orientation, the angle which waves approach the coast
2269	changes and can lead to local reversals in longshore sediment transport. These variations
2270	can result in the creation of abundances or deficits of longshore sediment transport and
2271	contribute to the seaward growth or landward retreat of the shoreline at a particular
2272	location (e.g., Cape Lookout, NC (McNinch and Wells, 1999)).
2273	

102 of 800

	<u>CCSP 4.1 February 12, 2008</u>
2274	Tidal currents can be strong, particularly near the mouths of bays and tidal inlets, serving
2275	as a mechanism that transports sediment from ocean shores to backbarrier wetlands,
2276	inland waterways on flood tides and vice versa on ebb tides. Aside from these settings,
2277	tidal currents are generally small along the mid-Atlantic Bight except near changes in
2278	shoreline orientation or sand banks. In these settings, the strong currents generated can
2279	significantly influence sediment transport pathways and the behavior of adjacent shores.
2280	
2281	2.4.3 Sediment Supply
2282	The availability of sediments to a coastal region also has important effects on coastal
2283	landforms and their behavior. Coastal sediments generally come from erosion of the coast
2284	and from erosion of the continental shelf and onshore transport. In general, an abundance
2285	of sediment along the coast can cause the coast to build seaward over the long term if the
2286	rate of supply exceeds the rate at which sediments are eroded and transported by
2287	nearshore currents. Conversely, the coast can retreat landward if the rate of erosion
2288	exceeds the rate at which sediment is supplied to a coastal region. Considering stretches
2289	of the shore approaching 50 km or less, the concept of sediment supply is often referred
2290	to as the sediment budget. This refers to the amount of sediment being gained or lost
2291	from a coastal setting such as a stretch of beach (Komar, 1996; List, 2005). The sediment
2292	budget is a critical determinant of how a specific shoreline setting will respond to
2293	changes in sea level. At the same time, it is difficult if not impossible to quantify with
2294	high confidence the sediment budget over time periods as long as a century or its precise
2295	role in influencing shoreline changes.
2296	


CCSP 4.1

103 of 800

2297	2.4.4 Human Impacts
2298	The human impact on the coast is another important factor affecting shoreline changes,
2299	especially over the past century. A variety of erosion control practices and alterations of
2300	the coast have been undertaken over the last century along much of the mid-Atlantic
2301	region, particularly during the latter half of the 20th century. In many cases, shoreline
2302	engineering structures such as seawalls, revetments, groins and jetties have significantly
2303	altered sediment transport processes, often exacerbating erosion on a local scale (See Box
2304	2.1, northern Assateague Island). At the same time, beach nourishment has been used on
2305	many beaches to temporarily mitigate erosion and provide storm protection by adding to
2306	the sediment budget. It is uncertain if these mitigation practices are sustainable for the
2307	long term and whether or how these shoreline protection measures might impede the
2308	ability of natural processes to respond to future sea-level rise, especially at higher rates. It
2309	is also uncertain whether beach nourishment will be continued into the future due to
2310	economic constraints and often limited supplies of suitable sand resources. Because of
2311	these uncertainties, this assessment focuses on assessing the vulnerability of the coastal
2312	system as it currently exists.
2313	
2314	2.5 COASTAL LANDFORMS OF THE MID-ATLANTIC
2315	For this assessment, the coastal landforms along the shores of the mid-Atlantic Bight can
2316	be classified using the criteria developed by Fisher (1962; 1982), Hayes (1979), and
2317	Davis and Hayes (1984). Four distinct geomorphic settings occur in the mid-Atlantic
2318	region, as shown in Figure 2.1 and described below.
2210	

Do Not Cite or Quote

104 of 800

2320

Figure 2.1 Map of the Mid-Atlantic coast of the U.S. showing the seventeen coastal compartments and their coastal geomorphic type. Numbers on the map specify specific coastal compartments and refer to the discussions in Sections 2.5 and 2.8. Numbers on the photographs refer to specific coastal compartments depicted on the map. Images from Google Earth. (Gutierrez *et. al.*, 2007).

2326 2.5.1 Spits

- 2327 The accumulation of sand from longshore transport has formed large spits that extend
- from adjacent headlands into the mouths of large coastal embayments (Figure 2.1,
- compartments 4, 9, and 15). Outstanding examples of these occur at the entrances of
- 2330 Raritan (Sandy Hook, NJ) and Delaware Bays (Cape Henlopen, DE). The evolution and
- 2331 existence of these spits results from the interaction between alongshore transport driven
- by incoming waves and the tidal flow through the large embayments. Morphologically
- these areas can evolve rapidly. For example, Cape Henlopen (Figure 2.1, compartment 9)
- has extended over 1.5 km to the north into the mouth of Delaware Bay since 1842 as the

Do Not Cite or Quote

105 of 800

- 2335 northern Delaware shoreline has retreated and sediment has been transported north by
- 2336 longshore currents (Kraft, 1971; Ramsey *et al.*, 2001).

2338 2.5.2 Headlands

- 2339 In the Mid-Atlantic, coastal headlands typically occur where elevated regions of the
- 2340 landscape intersect the coast. These regions are often drainage divides that separate
- 2341 creeks and rivers from one another in the landscape. The erosion of headlands provides a
- source of sediment that is incorporated into the longshore transport system that supplies
- and maintains adjacent beaches and barriers. Coastal headlands are present on Long
- 2344 Island, NY (See Figure 2.1), from Southampton to Montauk (compartment 1), in northern
- 2345 New Jersey from Monmouth to Point Pleasant (compartment 5; Oertel and Kraft, 1994),
- 2346 in southern New Jersey at Cape May (compartment 8), on Delaware north and south of
- 2347 Indian River and Rehoboth Bays (compartments 10 and 12; Kraft, 1971; Oertel and
- 2348 Kraft, 1994; Ramsey et al., 2001), on the Virginia coast, from Cape Henry to Sandbridge
- (compartment 16).
- 2350

2351 2.5.3 Wave-Dominated Barrier Islands

- 2352 Wave-dominated barrier islands occur as relatively long and thin stretches of sand
- 2353 fronting shallow estuaries, lagoons, or embayments and are bisected by widely-spaced
- tidal inlets (Figure 2.1, compartments 2, 6, 10, 13, and 17). These barriers are present in
- 2355 regions where wave energy is large relative to tidal energy, such as in the mid-Atlantic
- region (Hayes, 1979; Davis and Hayes, 1984). Limited tidal ranges result in flow through
- tidal inlets that is marginally sufficient to flush the sediments that accumulate from

Do Not Cite or Quote

106 of 800

	CCSP 4.1 February 12, 2008
2358	longshore sediment transport. In some cases this causes the inlet to migrate over time in
2359	response to a changing balance between tidal flow through the inlet and wave driven
2360	alongshore transport. Inlets on wave-dominated coasts often exhibit large flood-tidal
2361	deltas and small ebb-tidal deltas as tidal currents are often stronger during the flooding
2362	stage of the tide.
2363	
2364	In addition, inlets on wave-dominated barriers are often temporary features. They open
2365	intermittently in response to storm-generated overwash and migrate laterally in the
2366	direction of net littoral drift. In many cases these inlets are prone to filling with sands
2367	from alongshore transport (e.g., McBride, 1999).
2368	
2369	Overwash produced by storms is common on wave-dominated barriers (e.g., Morton and
2370	Sallenger, 2003; Riggs and Ames, 2007). Overwash erodes low-lying dunes into the
2371	island interior. Sediment deposition from overwash adds to the island's elevation.
2372	Washover fans that extend into the backbarrier waterways form substrates for backbarrier
2373	marshes and submerged aquatic vegetation.
2374	
2375	The process of overwash is an important mechanism by which some types of barriers
2376	migrate landward and upward over time. This process of landward migration has been
2377	referred to as "roll-over" (Dillon, 1970; Godfrey and Godfrey, 1976; Fisher, 1982; Riggs
2378	and Ames, 2007). Over decades to centuries, the intermittent processes of overwash and
2379	inlet formation enable the barrier to migrate over and erode into back-barrier
2380	environments such as marshes as relative sea-level rise occurs over time. As this occurs,

107 of 800

2381	back-barrier environments such as marshes are eroded and buried by barrier beach and
2382	dune sands.
2383	
2384	2.5.4 Mixed-Energy Barrier Islands
2385	The other barrier island type present along the U.S. Atlantic coast, mixed-energy barrier
2386	islands, is shorter and wider than their wave-dominated counterparts (Hayes, 1979;
2387	Figure 2.1, compartments 3, 4, 7, and 14). The term "mixed-energy" refers to the fact that
2388	while waves are an important factor influencing the morphology of these systems, tidal
2389	currents are also significant and influence the barriers island morphology. Due to the
2390	influence of the tidal inlets, mixed energy barriers are punctuated by well-developed tidal
2391	inlets. Some authors have referred to the mixed-energy barriers as tide-dominated barriers
2392	along the Delmarva shoreline (e.g., Oertel and Kraft, 1994).
2393	
2394	The large sediment transport capacity of the tidal currents within the inlets of these
2395	systems maintains large ebb-tidal deltas seaward of the inlet mouth. The shoals that
2396	comprise ebb-tidal deltas cause incoming waves to refract around the large sand body
2397	that forms the delta so that local reversals of alongshore currents and sediment transport
2398	occur downdrift of the inlet. As a result, portions of the barrier downdrift of inlets
2399	become localized sediment sinks that are manifest as recurved sand ridges, giving the
2400	barrier islands a 'drumstick'-like shape (Hayes 1979; Davis, 1994).
2401	
2402	
2403	

108 of 800

CCSP 4.1

2404	2.6 TWENTIETH CENTURY RATES OF SEA-LEVEL RISE
2405	Over the last century, relative sea-level rise rates along the Atlantic coast of the U.S. have
2406	ranged between 1.8 mm/yr to as much as 4.4 mm/yr (Table 2.1; Zervas, 2001). The
2407	lowest rates (1.75-2 mm/yr) are close to the present global rate of 1.7 \pm 0.5 mm/yr
2408	(Bindoff et al., 2007) and occur along coastal New England and from Georgia to northern
2409	Florida. The highest rates have been observed in the mid-Atlantic region between
2410	northern New Jersey and southern Virginia. Subsidence of the land surface due to a range
2411	of factors contributes to the high rates of relative sea-level rise observed in this region. It
2412	is believed that the subsidence is attributable mainly to glacio-isostatic adjustments of the
2413	earth's crust in response to the melting of the Laurentide ice sheet, and to the compaction
2414	of sediments due to freshwater withdrawal from coastal aquifers (Gornitz and Lebedeff,
2415	1987; Emery and Aubrey, 1991; Kearney and Stevenson, 1991; Douglas, 2001; Peltier,
2416	2001).
2417	
2418	With the anticipated acceleration in the rate of global sea-level rise (e.g., IPCC report,
2419	Bindoff et al., 2007), local rates of relative sea-level rise will also accelerate. Recently,
2420	the Fourth Assessment Report (FAR) of the Intergovernmental Panel on Climate Change
2421	(IPCC) has predicted that sea level will rise by 10-59 cm over the next century (Bindoff
2422	et al., 2007), which is a somewhat smaller rise and range than indicated in the Third
2423	Assessment Report (TAR, IPCC, 2001; estimate 11-88 cm) (Church et al., 2001), but has
2424	a higher confidence (90%) than the TAR. Since rates of relative sea-level rise in the Mid-
2425	Atlantic exceed the global rate for the 20th century, it can be expected that sea-level rise
2426	in this region will exceed these projections.

Do Not Cite or Quote

109 of 800

2427	Table 2.1 Rates of relative sea-level rise for selected long-term tide gauges on the East Coast of the
2428	United States (Zervas, 2001).

Station	Rate of Sea-level rise (mm/yr)	Latitude	Longitude	Time Span of Record
Eastport, ME	2.12 ± 0.13	44.9033	-66.9850	1929-1999
Portland, ME	1.91 ± 0.09	43.6567	-70.2467	1912-1999
Seavey Island, ME	1.75 ± 0.17	43.0833	-69.2500	1926-1999
Boston, MA	2.65 ± 0.1	42.3550	-71.0517	1921-1999
Woods Hole, MA	2.59 ± 0.12	41.5233	-70.2222	1932-1999
Providence, RI	1.88 ± 0.17	41.8067	-71.4017	1938-1999
Newport, RI	2.57 ± 0.11	41.5050	-71.3267	1930-1999
New London, CT	2.13 ± 0.15	41.3550	-72.0867	1938-1999
Montauk, NY	2.58 ± 0.19	41.0733	-71.935	1947-1999
Willets Point, NY	2.41 ± 0.15	40.8000	-72.2167	1931-1999
The Battery, NY	2.77 ± 0.05	40.7000	-74.0150	1905-1999
Sandy Hook, NJ	3.88 ± 0.15	40.4667	-73.9833	1932-1999
Atlantic City, NJ	3.98 ± 0.11	39.355	-74.4183	1922-1999
Philidelphia, PA	2.75 ± 0.12	39.9335	-75.1417	1900-1999
Lewes, DE	3.16 ± 0.16	38.7817	-75.1200	1919-1999
Baltimore, MD	3.12 ± 0.08	39.2667	-76.5783	1902-1999
Annapolis, MD	3.53 ± 0.13	38.9833	-76.4800	1928-1999
Solomons Island, MD	3.29 ± 0.17	38.3167	-76.4517	1937-1999
Washington D.C.	3.13 ± 0.21	38.8733	-77.0217	1931-1999
Hampton Roads, VA	4.42 ± 0.16	36.9467	-76.3300	1927-1999
Portsmouth, VA	3.76 ± 0.23	36.8167	-75.7000	1935-1999
Wilmington, NC	2.22 ± 0.25	34.2267	-77.9533	1935-1999
Charleston, SC	3.28 ± 0.14	32.7817	-79.9250	1921-1999
Fort Pulaski, GA	3.05 ± 0.2	32.3330	-80.9017	1935-1999
Fernandina Beach, FLA	2.04 ± 0.12	30.6717	-81.4650	1897-1999
Mayport, FLA	2.43 ± 0.18	30.3967	-81.4300	1928-1999
Miami, FLA	2.39 ± 0.22	25.7667	-79.8667	1931-1999
Key West, FLA	2.27 ± 0.09	24.5533	-81.8083	1913-1999

2430 2.7 POTENTIAL RESPONSES TO FUTURE SEA-LEVEL RISE

2431 Based on our understanding of the four landforms discussed in the previous section, three

2432 potential responses could occur along the mid-Atlantic coast in response to sea-level rise

2433 over the next century.

Do Not Cite or Quote

110 of 800

2.7.1 Bluff and Upland Erosion
Shorelines along headland regions of the coast will retreat landward with rising sea level.
As sea level rises over time, uplands will be eroded and the sediments incorporated into
the beach and dune systems along these shores. Along coastal headlands, bluff and
upland erosion will persist under all four of the sea-level rise scenarios considered in this
report. A possible management reaction to bluff erosion is shore armoring. This may
reduce bluff erosion in the short term but could increase erosion of the adjacent coast by
reducing sediment supplies to the littoral system.
2.7.2 Overwash, Inlet Processes, and Barrier Island Morphologic Changes
For barrier islands, three main processes are agents of change as sea level rises. First,
storm overwash may occur more frequently. This is especially critical if the sand
available to the barrier is limited and insufficient to allow the barrier to maintain its width
and/or build vertically over time in response to rising water levels. If sediment supplies or
the timing of the barrier recovery are insufficient, storm surges coupled with breaking
waves will affect increasingly higher elevations of the barrier systems as mean sea level
increases, possibly causing more extensive erosion and overwash. In addition, the
potential for higher waves and storm surge can be linked to recent assertions that
hurricanes have become more powerful over the last century in response to global
warming (Emanuel, 2005; Webster et al., 2005). Some have argued that there is
insufficient evidence to support this finding (Landsea et al., 2006), but others have
confirmed the increase in hurricane strength region in the western North Atlantic (Kossin

Do Not Cite or Quote

111 of 800

	<u>CCSP 4.1</u> February 12, 2008
2457	et al., 2007) and the link to greenhouse warming (Holland and Webster, 2007). Recently,
2458	analyses of long-term wave data from Atlantic coast ocean buoys indicates that summer-
2459	time wave heights have increased since the mid-1970s and are related to Atlantic
2460	hurricane activity (Komar and Allan, 2007). At the same time, scientists acknowledge
2461	that it is not yet possible to predict future increases in hurricane intensity nor frequency
2462	with certainty due to a range of complexities. Some attempts to model future scenarios
2463	indicate that some meteorological factors such as wind shear could strengthen limiting
2464	tropical cyclone activity (Vecchi and Soden, 2007). Details regarding current and future
2465	trends are reviewed in detail in SAP 3.3.
2466	
2467	Second, tidal inlet formation and migration will contribute to important changes in the
2468	future shoreline position. Storm surges coupled with high waves can cause not only
2469	barrier island overwash but also breach the barriers and create new inlets. In some cases,
2470	breaches can be large enough to form inlets that persist for some time until the inlet
2471	channels fill with sediments accumulated from longshore transport. Geological
2472	investigations along the shores of the mid-Atlantic Bight have found numerous deposits
2473	indicating former inlet positions (Moslow and Heron, 1979; Everts et al., 1983;
2474	Leatherman, 1985; for North Carolina and Fire Island, New York, respectively). Some
2475	classic examples of mid-Atlantic Bight inlets that were formed by the storm surges and
2476	breaches from the 1933 hurricane are: Shackleford inlet (NC); Ocean City inlet (MD);
2477	Indian River inlet (DE); and Moriches inlet (NY). Most recently, tidal inlets formed in
2170	the North Caroline Outer Denks in response to Hurrisons Isshel (in 2002) and on Neuset

- 2478 the North Carolina Outer Banks in response to Hurricane Isabel (in 2003) and on Nauset
- 2479 Beach, on Cape Cod, in response to an April 2007 storm. While episodic inlet formation

112 of 800

	CCSP 4.1 February 12, 2008
2480	and migration are natural processes and can occur independently of long-term sea-level
2481	rise, a long-term increase in sea level coupled with limited sediment supply and increases
2482	in storm frequency and/or intensity could increase the likelihood for future inlet
2483	breaching.
2484	
2485	Third, the combined effect of rising sea level and stronger storms could accelerate barrier
2486	island shoreline changes. These will involve both changes to the seaward facing and
2487	landward facing shores of some barrier islands. Assessments of shoreline change on
2488	barrier islands indicate that that barriers have thinned in some areas over the last century
2489	(Leatherman, 1979; Jarrett, 1983; Everts et al., 1983; Penland et al., 2005). Evidence of
2490	barrier migration has been less apparent, but is documented at Core Banks, NC (Riggs
2491	and Ames, 2007), Louisiana and southern Virginia.
2492	
2493	2.7.3 Threshold Behavior
2494	Barrier islands are dynamic environments that are sensitive to a range of factors. Some
2495	evidence suggests that changes in some or all of these factors can lead to conditions
2496	where a barrier system becomes less stable and crosses a geomorphic threshold. In this
2497	situation, the potential for significant changes to the barrier island is high. These changes
2498	can involve landward migration or changes to the barrier island dimensions itself
2499	(reduction in size, increased presence of tidal inlets). It is difficult to precisely define an
2500	unstable barrier but indications of instability can be:
2501	• Rapid landward migration of the barrier

113 of 800

<u>CCSP 4.1</u> February 12, 2008
• Decrease in barrier width and height possibly from a loss of beach and dune sand
volume
• Increased frequency of overwash during storms
• Increased frequency of barrier breaching and inlet formation
• Segmentation of the barrier.
Given the unstable state of some barrier islands under current rates of sea-level rise and
climate trends, it is very likely that conditions will worsen under accelerated sea-level
rise rates. The unfavorable conditions for barrier maintenance could result in significant
changes to barrier islands as witnessed in coastal Louisiana (See also, Box 2.1; McBride
et al., 1995; McBride and Byrnes, 1997; Penland et al., 2005; Day et al., 2007; Sallenger
et al., 2007). Here the Chandeleur Islands appear to be disintegrating as the result of a
combination of 1) limited sediment supply by longshore or cross-shore transport, 2)
accelerated rates of sea-level rise, and 3) permanent sand removal from the barrier system
by storms such as Hurricanes Camille, Georges and Katrina. In addition, recent studies
from the North Carolina Outer Banks indicate that there have been at least two periods
during the past several thousand years where fully open-ocean conditions have occurred
in Albemarle and Pamlico Sounds, which are estuaries fronted by barrier islands at the
present time (Culver et al., 2007). These findings have led marine scientists to suggest
that portions of the North Carolina barrier island system may have segmented or become
less continuous than present for periods of a few hundred years, and later reformed.
Given future increases in sea level and/or storm activity, the potential for a threshold

114 of 800

2524	crossing exists. Portions of these barrier islands could once again become segmented or
2525	disintegrate.
2526	
2527	Changes in sea level coupled with changes in the hydrodynamic climate and sediment
2528	supply in the broader coastal environment contribute to the development of unstable
2529	behavior. The threshold behavior of unstable barriers could result in: a) barrier
2530	segmentation b) barrier disintegration, or, c) landward migration and roll-over. If the
2531	barrier were to disintegrate, portions of the ocean shoreline could migrate or back-step
2532	toward and/or merge with the mainland.
2533	
2534	The parts of the mid-Atlantic coast most vulnerable to threshold behavior can be
2535	estimated based on their physical dimensions. During storms, large portions of low-
2536	elevation, narrow barriers can be inundated under high waves and storm surge. Narrow,
2537	low-elevation barrier islands are most susceptible to storm overwash, which can lead to
2538	landward migration, and the formation of new tidal inlets. The northern portion of
2539	Assateague Island, MD is an example of a barrier that is extremely vulnerable to even
2540	modest storms because of its narrow width and low elevation (e.g., Leatherman, 1979;
2541	see also Box 2.1 and included figures).
2542	
2543	The future evolution of low-elevation, narrow barriers could depend in part on the ability
2544	of salt marshes in back-barrier lagoons and estuaries to keep pace with sea-level rise
2545	(FitzGerald et al., 2003; FitzGerald et al., 2006; Reed et al., 2007). It has been suggested
2546	that a reduction of salt marsh in back-barrier regions could change the hydraulics of back-

115 of 800

- barrier systems, altering local sediment budgets and leading to a reduction in sandy
- 2548 materials available to sustain barrier systems (FitzGerald *et al.*, 2003; 2006).

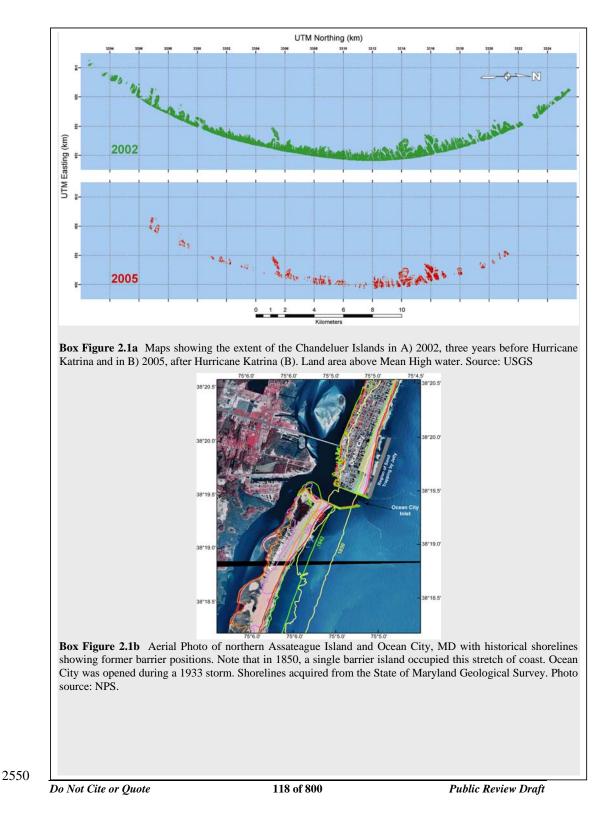
116 of 800

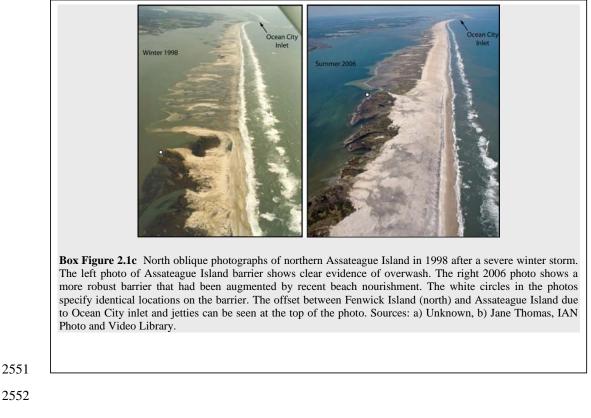
Box 2.1 Evidence for threshold crossing of coastal barrier landforms

It has been generally thought by coastal scientists that barrier islands change and evolve in subtle and somewhat predictable ways over time in response to storms, changing sediment supply, and sea-level rise. Recent field observations, however, suggest that some barrier islands can reach a "threshold" condition where they become unstable and disintegrate. Two sites where barrier island disintegration is occurring and may occur are **a**) along the 72 km long Chandeleur Islands in Louisiana, east of the Mississippi River delta, due to impacts of Hurricane Katrina in September 2005, and **b**) the northern 10 km of Assateague Island National Seashore, Maryland due to 70 years of sediment starvation caused by the construction of jetties to maintain Ocean City inlet.

Chandeleur Islands, Louisiana

In the Chandeleur Islands, the high storm surge (~ 4 m) and waves associated with Hurricane Katrina in 2005 completely submerged the islands and eroded about 85 percent of the sand from the beaches and dunes (Sallenger *et al.*, 2007). Box Figure 2.1a (UTM Northing) shows the configuration of the barriers in 2002, and in 2005 after Katrina's passage. Follow-up USGS aerial surveys indicate that erosion has continued. Natural island rebuilding has been minimal. When the Chandeleur Islands were last mapped in the late 1980s and erosion rates were calculated from the 1850s, it was calculated that the Chandeleurs would last approximately 250 to 300 years (Williams *et al.*, 1992). The results from post-Katrina studies suggest that some threshold has been crossed such that conditions have changed and natural processes may not contribute to the rebuilding of the barrier in the future.


Assateague Island National Seashore, Maryland


An example of one shoreline setting where human activity has increased the vulnerability of the shore to sea-level rise, is Assateague Island, Maryland. Prior to a hurricane in 1933, Assateague Island was a continuous, straight barrier connected to Fenwick Island (Dolan et al., 1980). An inlet that formed during the storm separated the island into two sections at the southern end of Ocean City, Maryland. Subsequent construction of two stone jetties to maintain the inlet for navigation interrupted the longshore transport of sand to the south. Since then, the jetties have trapped sand building the Ocean City shores seaward by 250 m by the mid-1970s (Dean and Perlin, 1977). In addition, the development of sand shoals (ebb tidal deltas) around the inlet mouth has sequestered large volumes of sand from the longshore transport system (Dean and Perlin, 1977; FitzGerald, 1988). South of the inlet, the opposite has occurred. The sand starvation on the northern portion of Assateague Island has cause the shore to migrate almost 700 m landward and transformed the barrier into a low-relief, overwash-dominated barrier (Leatherman, 1979; 1984). This extreme change in barrier island sediment supply has caused a previously stable segment of the barrier island to migrate. To mitigate the effects of the jetties, beach nourishment is undertaken periodically by the U.S. Army Corps of Engineers and National Park Service as shown in Box Figure 2.1c, to elevate the barrier using sand dredged from the tidal deltas and offshore. Current, plans call for periodic sand renourishment of Assateague to prevent further deterioration. The long-term sustainability of such an approach to maintain Assateague Island is unknown.

2549

Do Not Cite or Quote

117 of 800

2553 2.8 POTENTIAL CHANGES TO THE MID-ATLANTIC OCEAN COAST DUE

2554 TO SEA-LEVEL RISE

- 2555 In this section, the responses to the four sea-level rise scenarios considered in this chapter
- are described according to coastal landform types (Figure 2.2). As defined in the Preface
- and Context Chapter the first three sea-level rise scenarios (Scenarios 1-3) are: 1) a
- continuation of the 20th century rate, 2) the 20th century rate plus 2 mm/yr, and 3) the
- 2559 20th century rate plus 7 mm/yr. The last scenario, Scenario 4, specifies a 2-m rise over
- the next few hundred years. The coastal scientists that contributed to this assessment
- 2561 recognized that there are a few caveats to this approach. These are:

Do Not Cite or Quote

119 of 800

2562	• This is a regional scale assessment and there are local exceptions to these	
2563	classifications and potential outcomes,	
2564	• Given that some portions of the mid-Atlantic coast are heavily influenced by	
2565	development and erosion mitigation practices, it could not be assumed that these	
2566	would be continued into the future given uncertainties regarding the decision-	
2567	making process that occurs when these practices are pursued, but	
2568	• At the same time, there were locations where some members of the panel felt that	
2569	erosion mitigation would be implemented regardless of cost.	
2570		
2571	To express the likelihood of a given outcome for a particular sea-level rise scenario, the	
2572	terminology advocated by ongoing CCSP assessments was used (CCSP, 2006; See the	
2573	Preface of this Report). This terminology is used to quantify and communicate the degree	
2574	of likelihood of a given outcome specified by the assessment. This represents the degree	
2575	of confidence that the contributing scientists believe that a specific outcome will be	
2576	achieved. These terms should not be construed to represent a quantitative relationship	
2577	between a specific sea-level rise scenario and a specific dimension of coastal change, or	
2578	rate at which a specific process operates on a coastal geomorphic compartment. The	
2579	potential coastal responses to the sea-level rise scenarios are described below according	
2580	to the coastal landforms defined in Section 2.5.	
2581		
2582 2583	2.8.1 Spits (Compartments 4, 9, 15)	
2585	For sea-level rise Scenarios 1-3, it is virtually certain that the coastal spits in the mid-	
2585	Atlantic Bight will be subject to increased storm overwash, erosion, deposition over the	

120 of 800

2586	next century. It is virtually certain that some of these coastal spits will continue to grow
2587	though the accumulation of sediments from longshore transport as the erosion of updrift
2588	coastal compartments occurs. For Scenario 4, it is likely that threshold behavior could
2589	occur for this type of coastal landform (rapid landward and/or alongshore migration).
2590	
2591 2592 2593	2.8.2 Headlands (Compartments 1, 5, 8, 10, 12, 16)
	Over the next century, it is virtually certain that these headlands will be subject to
2594	increased erosion for all four sea-level rise scenarios. It is very likely that shoreline and
2595	upland (bluff) erosion will accelerate in response to projected increases in sea level.
2596 2597 2598 2599	2.8.3 Wave-Dominated Barrier Islands (Compartments 2, 6, 11, 13, 17)
	Potential sea-level rise impacts on wave-dominated barriers in the Mid-Atlantic vary
2600	spatially and depend on the sea-level rise scenario (Figure 2.2). For Scenario 1, it is
2601	virtually certain that the majority of the wave-dominated barrier islands in the mid-
2602	Atlantic Bight will continue to experience morphological changes through erosion,
2603	overwash, and inlet formation as they have over the last several centuries. The northern
2604	portion of Assateague Island (compartment 13) is an exception. Here the shoreline
2605	exhibits high rates of erosion and large portions of this barrier are submerged during
2606	moderate storms. At times in the past, large storms have breached and segmented
2607	portions of northern Assateague Island (Morton et al., 2003). Due to this behavior, it is
2608	possible that these portions of the coast are already at a geomorphic threshold. With any
2609	increase in the rate of sea-level rise, it is virtually certain that this barrier island will
2610	exhibit large changes in morphology, ultimately leading to the degradation of this island.
2611	Periodic nourishment and sand bypassing at Ocean City Inlet may reduce erosion on

121 of 800

2612	Compartment 13, but the long-term sustainability of this practice is uncertain. Portions of
2613	the North Carolina Outer Banks (Figure 2.2) may similarly be nearing a geomorphic
2614	threshold.
2615	
2616	For Scenario 2, it is virtually certain that the majority of the wave-dominated barrier
2617	islands in the mid-Atlantic Bight will continue to experience morphological changes
2618	through overwash, erosion, and inlet formation as they have over the last several
2619	centuries. It is also about as likely as not that a geomorphic threshold could be reached
2620	in a few locations, resulting in rapid morphological changes in these barrier systems.
2621	Along the shores of northern Assateague Island (compartment 13) and a substantial
2622	portion of compartment 17 it is very likely that the barrier islands could exhibit threshold
2623	behavior (barrier segmentation). For this scenario, the ability of wetlands to maintain
2624	their elevation through accretion at higher rates of sea-level rise may be reduced (Reed et
2625	al., 2007). It is about as likely as not that the loss of back-barrier marshes could lead to
2626	changes in hydrodynamic conditions between tidal inlets and back-barrier lagoons
2627	affecting the evolution of barrier islands (e.g., FitzGerald et al., 2003; 2006).
2628	
2629	For Scenario 3, it is very likely that the potential for threshold behavior will increase. It
2630	is virtually certain that a 2 m sea-level rise will lead to threshold behavior (segmentation
2631	or disintegration) for this landform type.

Do Not Cite or Quote

122 of 800

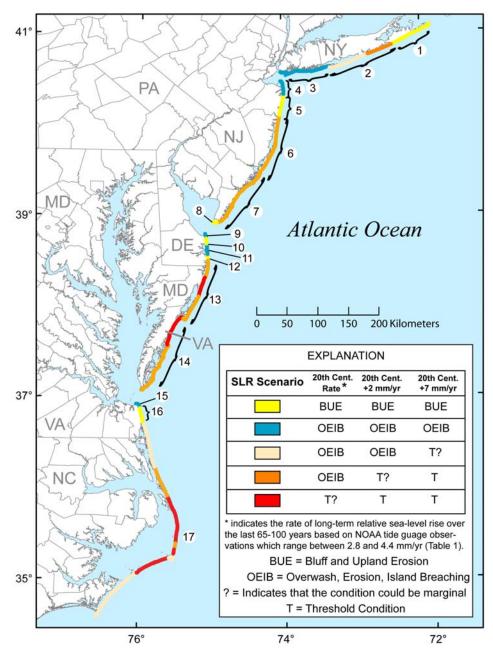


Figure 2.2 Map showing the potential sea-level rise responses for each coastal compartment. Colored
 portions of the coastline indicates the potential response for a given sea-level rise scenario according to the
 inset table. Numbers designate coastal compartments shown in Figure 2.1 (Gutierrez *et. al.*, 2007).

123 of 800

2637 2638 2639	2.8.4 Mixed-Energy Barrier Islands (Compartments 3, 7, 14)
	The response of mixed-energy barrier islands will vary among coastal compartments. For
2640	Scenarios 1 and 2, the mixed-energy barrier islands along the Mid-Atlantic will be
2641	subject to processes much as have occurred over the last century such as storm overwash
2642	and shoreline erosion. Given the degree to which these barriers have been developed, it is
2643	difficult to determine the likelihood of future inlet breaches, or whether such breaches
2644	would be allowed to persist. In addition, changes to the back-barrier shores are uncertain
2645	due to the extent of development.
2646	
2647	For the higher sea-level rise scenarios (Scenarios 3 and 4), it is about as likely as not
2648	that these barriers could reach a geomorphic threshold. This threshold is dependent on the
2649	availability of sand from the longshore transport system to supply the barrier. It is
2650	virtually certain that a 2 m sea-level rise will have severe consequences along the shores
2651	of this compartment, including one or more of the extreme responses described above.
2652	For Scenario 4, the ability of wetlands to maintain their elevation through accretion at
2653	higher rates of sea-level rise may be reduced (Reed et al., 2007). It is about as likely as
2654	not that the loss of back-barrier marshes could lead to changes in the hydrodynamic
2655	conditions between tidal inlets and back-barrier lagoons, affecting the evolution of barrier
2656	islands (FitzGerald et al., 2003; 2006).
2657	
2658	It is about as likely as not that four of the barrier islands along the Virginia coast
2659	(Wallops Island, Assawoman Island, Metompkin Island, and Cedar Island) are presently
2660	at a geomorphic threshold. Thus, it is very likely that further sea-level rise will contribute

124 of 800

2661	to significant changes resulting in the segmentation, disintegration and/or more rapid
2662	landward migration of these barrier islands.
2663	
2664	CHAPTER 2 REFERENCES
2665	Belknap, D. F. and J.C. Kraft, 1985: Influence of antecedent geology on stratigraphic
2666	preservation potential and evolution of Delaware's barrier system. Marine
2667	Geology, 63, 235-262.
2668	Bindoff, N.L., J. Willebrand, V. Artale, A, Cazenave, J. Gregory, S. Gulev, K. Hanawa,
2669	Le Quéré, S. Levitus, Y. Nojiri, C.K. Shum, L.D.Talley and A. Unnikrishnan,
2670	2007, Observations: Oceanic Climate Change and Sea Level. In: Climate Change
2671	2007: The Physical Science Basis. Contribution of Working Group I to the Fourth
2672	Assessment Report of the Intergovernmental Panel on Climate [Solomon, S., D.
2673	Qin, M. Manning, Z. Chen, M. Marquis, K.B. Avery, M. Tignor and H.L. Miller
2674	(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York,
2675	NY, USA.
2676	Church, J.A., Gregory, J.M. Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M.T., Qin,
2677	D. and Woodworth, P.L., 2001: Changes in sea level. In: Climate Change 2001:
2678	The Scientific Basis. Contribution of Working Group I to the Third Assessment
2679	Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., Y.
2680	Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A.
2681	Johnson (eds.)]. Cambridge University Press, Cambridge, United Kingdom and
2682	New York, NY, USA, 881pp.
2683	CCSP, 2006: Recommendations for Implementing the CCSP Synthesis and Assessment
2684	Guidelines, December 18, 2006, Climate Change Science Program, Washington
2685	D.C., http://www.climatescience.gov/Library/sap/sapguidelines.pdf.
2686	Colquhoun, D.J., G.H. Johnson, P.C. Peebles, P.F. Huddleston, and T. Scott, 1991:
2687	Quaternary geology of the Atlantic Coastal Plain. In: Quaternary nonglacial

125 of 800

CCSP	4.1

2688	geology: conterminous U.S. [R.B. Morrison (ed)]. Boulder, Colorado, Geological
2689	Society of America, The Geology of North America, K-2, 629-650.
2690	Cooper, J.A.G. and O.H. Pilkey, 2004: Sea-level rise and shoreline retreat: time to
2691	abandon the Bruun Rule. Global and Planetary Change, 43, 157–171.
2071	abandon the Bruth Rule. Globar and Franciary Change, 45, 157–171.
2692	Culver, S.J., Grand Pre, C.A., Mallinson, D.J., Riggs, S.R., Corbett, D.R., Foley, J.,
2693	Hale, M., Metger, L., Ricardo, J., Rosenberger, J., Smith, C.G., Smith, C.W.,
2694	Synder, S.W., Twamley, D., Farrell, K., and Horton, B, 2007: Late Holocene
2695	barrier island collapse: Outer Banks, North Carolina, USA, SEPM, The
2696	Sedimentary Record, 5, 4, 4-8.
2697	Davis, R.A., 1994: Barrier island systems-a geologic overview. In: Geology Of Holocene
2698	Barrier Island Systems [R.A. Davis (ed.)]. Springer-Verlag, New York, 435-456.
2098	Darrier Island Systems [K.A. Davis (ed.)]. Springer-veriag, New Tork, 455-450.
2699	Davis, R.A, and M.O. Hayes, 1984: What is a wave-dominated coast? Marine Geology,
2700	60, 313-329.
2701	Day, J.W.J., W.J. Mitsch, K. Orth, H., Mashriqui, R.J. Reed, L. Shabman, C.A.
	•
2702	Simenstad, B.J. Streever, R.R. Twilley, C.C. Watson, J.T. Wells, D.F. Whigham,
2703	2007: Restoration of the Mississippi Delta: Lessons from Hurricanes Katrina and
2704	Rita. Science, 315(5819), 1679-1684.
2705	Dean, R.G. and M. Perlin, 1977: A coastal engineering study of Ocean City Inlet. Coastal
2706	Sediments '77, American Society of Civil Engineers, 520-540.
2700	Sedments 77, Theread Society of Civit Engineers, 525 516
2707	Dillon, W.P., 1970: Submergence effects on Rhode Island barrier and lagoon and
2708	influences on migration of barriers. Journal of Geology, 78, 94-106.
2709	Dingler, J.R. and H.E. Clifton, 1994: Barrier systems of California, Oregon, and
2710	Washington. In: Geology of Holocene Barrier Island Systems [R.A. Davis (ed.)].
2711	Springer-Verlag, New York, 115-165.

Do Not Cite or Quote

126 of 800

CCSP	94.1

2713	Dolan, R., H. Lins, and J. Stewart, 1980: Geographical analysis of Fenwick Island,
2714	Maryland, a Middle Atlantic Coast Barrier Island. Geological Survey Professional
2715	Paper 1177-A. 24p.
2716	Douglas, B.C., 2001: Sea level change in the era of the recording tide gauge. In: Sea
2717	Level Rise: History and Consequences [B.C. Douglas, M.S. Kearney, S.P.
2718	Leatherman (Eds.)]. International Geophysics Series, 75, Academic Press, 37-64.
2719	Emanuel, K. 2005: Increasing destructiveness of tropical cyclones over the past 30 years.
2720	Nature, 436, 686–688.
2721	Emery, K.O. and D.G. Aubrey, 1991: Sea Levels, Land Levels, and Tide Gauges.
2722	Springer-Verlag, 237pp.
2723	Everts, C.H., J.P. Battley, and P.N. Gibson, 1983: Shoreline movements, Cape Henry,
2724	VA to Cape Hatteras, NC, 1849-1980, Report 1. US Army Corps of Engineers,
2725	Washington, DC, Tech. Rept. CERC-83-1, 111pp.
2726	Fisher, J.J., 1962: Geomorphic expression of former inlets along the Outer Banks of
2727	North Carolina. M.S. thesis, Department of Geology and Geography, University
2728	of North Carolina, Chapel Hill, 120 pp.
2729	Fisher, J.J., 1968: Barrier island formation: discussion. Geological Society of America
2730	Bulletin, 79, 1421-1426.
2731	Fisher, J.J., 1982: Barrier Islands. In: The Encyclopedia of Beaches and Coastal
2732	Environments [M.L. Schwartz (ed.)]. Volume XV, 124-133.
2733	FitzGerald, D.M., 1988: Shoreline erosional-depositional processes associated with tidal
2734	inlets. In: Hydrodynamics and Sediment Dynamics of Tidal Inlets [D.G. Aubrey
2735	and L. Weishar, (eds.)]. Lecture Notes on Coastal and Estuarine Studies, 29,
2736	Springer-Verlag, New York, 186-225.
2737	FitzGerald, D.M., B.A. Argow, and I.A. Buynevich, 2003: Rising sea level and its
2738	effects on back-barrier marshes and tidal flats, tidal inlets, and adjacent barrier

127 of 800

CCSP	4.1

2739	shorelines. In: Proceedings Coastal Sediments '03 [R.A. Davis, A. Sallenger, and
2740	P. Howd (eds.)]. America Society of Civil Engineers, Reston, VA.
2741	FitzGerald, D.M., I.V. Buynevich, and B.A. Argow, 2006: Model of tidal inlet and
2742	barrier island dynamics in a regime of accelerated sea-level rise. Journal of
2743	Coastal Research, SI 39, p. 789-795.
2744	Fletcher, C. H., H.J. Knebel, and J.C. Kraft, 1990: Holocene evolution of an estuarine
2745	coast and tidal wetlands. Geological Society of America Bulletin, 102, 283-297.
2746	Glaeser, J.D., 1978: Global distribution of barrier islands in terms of tectonic setting.
2747	Journal of Geology, 86, 283-297.
2748	Godfrey, P.J., and M.M. Godfrey, 1976. Barrier Island Ecology of Cape Lookout
2749	National Seashore and Vicinity, North Carolina. U.S. Government Printing
2750	Office, Washington, DC 20402, National Park Service Monograph Series, No. 9,
2751	160 pp.
2752	Gornitz, V. and S. Lebedeff, 1987: Global sea-level changes during the past century. In:
2753	Sea-Level Fluctuation and Coastal Evolution [D. Nummedal, O.H. Pilkey, and
2754	J.D. Howard, (eds)]. Society of Economic Paleontologists and Mineralogists,
2755	Special Publication 41, 3-16.
2756	Griggs, G.B. and K.B. Patsch, 2004: California's coastal cliffs and bluffs. In: Formation,
2757	Evolution, and Stability of Coastal Cliffs-Status and Trends [M. Hampton (ed.)].
2758	U.S. Geological Survey Professional Paper 1693, 53-64.
2759	Gutierrez, B.T., S.J. Williams, and E.R. Thieler, 2007: Potential for shoreline changes
2760	due to sea-level rise along the U.S. mid-Atlantic region. U.S. Geological Survey
2761	Open File Report 2007-1278, http://pubs.usgs.gov/of/2007/1278/.
2762	Hapke, Cheryl J., D. Reid, B.M. Richmond, P. Ruggiero and J. List, 2006: National
2763	Assessment of Shoreline Change part 3; Historical shoreline change and
2764	associated coastal land loss along sandy shorelines of the California coast. U.S.
2765	Geological Survey Open-File Report 2006-1219, 79 pp.

128 of 800

С	CSP	4.1

2766	Hapke, C.J., and D. Reid, D., 2007: The National assessment of shoreline change: Part 4,
2767	Historical coastal cliff retreat along the California coast. U.S. Geological Survey
2768	Open-file Report 2007-1133, 51 pp.
2769	Hayes, M.O., 1979: Barrier island morphology as a function of tidal and wave regime.
2770	In: Barrier Islands from the Gulf of St. Lawrence to the Gulf of Mexico [S.
2771	Leatherman, (ed.)]. Academic Press, New York, 211-236.
2772	Hine, A.C. and S.W. Snyder, 1985: Coastal lithosome preservation: evidence from the
2773	Shoreface and inner continental shelf off Bogue Banks, North Carolina. Marine
2774	Geology, 63, 307-330.
2775	Holland, G.J. and P.J. Webster, 2007: Heightened tropical cyclone activity in the North
2776	Atlantic: natural variability or climate trend? Philosophical Transactions of the
2777	Royal Society of London, A. doi:10.1098/rsta/2007.2083.
2778	Honeycutt, M.G. and D.E. Krantz, 2003: Influence of geologic framework on spatial
2779	variability in long-term shoreline change, Cape Henlopen to Rehoboth Beach,
2780	Delaware. Journal of Coastal Research, SI 38, 147-167.
2781	Inman, D.L. and C.E. Nordstrom, 1971: On the tectonic and morphologic classification
2782	of coasts. Journal of Geology, 79, 1-21.
2783	Jarrett, J.T., 1983: Changes of some North Carolina barrier islands since the mid-19th
2784	century. In: Proceedings Coastal Zone '83, American Society of Civil Engineers,
2785	641-661.
2786	Kearney, M.S. and J.C. Stevenson, 1991: Island loss and marsh vertical accretion rate
2787	evidence for historical sea-level changes in the Chesapeake Bay. Journal of
2788	Coastal Research, 7, 403-416.
2789	Kearney, W.R., 2001: Late Holocene Sea Level Variation. In: Sea Level Rise: History
2790	and Consequences [B.C. Douglas, M.S. Kearney, S.P. Leatherman (Eds.)].
2791	International Geophysics Series, 75, Academic Press, 13-36.

129 of 800

CCSP 4.1

2792 2793	Komar, P.D., 1996: The budget of littoral sediments concepts and applications. Shore and Beach. 64, 18-26.
2794 2795	Komar , P.D., and J.C. Allan, 2007: Increasing wave heights along the U.S. Atlantic coast due to the intensification of hurricanes. Journal of Coastal Research, in press.
2796 2797 2798	Kossin, J.P., K. R. Knapp, D. J. Vimont, R. J. Murnane, and B. A. Harper, 2007: A globally consistent reanalysis of hurricane variability and trends. Geophysical Research Letters, 34, L04815, doi:10.1029/2006GL028836.
2799 2800	Kraft , J.C., 1971: Sedimentary facies patterns and geologic history of a Holocene marine transgression. Geological Society of America Bulletin, 82, 2131-2158.
2801 2802	Landsea, C. W., B. A. Harper, K. Hoarau, and J. A. Knaff, 2006: Can we detect trends in extreme tropical cyclones?, Science, 313, 452–454.
2803 2804	Leatherman, S.P., 1979: Migration of Assateague Island, Maryland, by inlet and overwash processes. Geology, 7, 104-107.
2805 2806	Leatherman, S.P., 1984: Shoreline evolution of north Assateague Island. Shore and Beach, 3, 3-10.
2807 2808	Leatherman, S.P., 1985: Geomorphic and sedimentary analysis of Fire Island, New York. Marine Geology, 63, 173-195.
2809 2810	Leatherman, S.P., 1990: Modeling shore response to sea-level rise on sedimentary coasts. Progress in Physical Geography, 14(4), 447-464.
2811 2812 2813	Leatherman, S.P., 2001: Social and economic costs of sea level rise. In: Sea Level Rise: History and Consequences [B.C. Douglas, M.S. Kearney, S.P. Leatherman (eds.)]. International Geophysics Series, 75, Academic Press, 181-223.
2814 2815	List, J.H., 2005: The sediment budget. In: Encyclopedia of Coastal Science [M.L. Schwartz (ed.)], 846-850.

130 of 800

С	CSP	4.1

2816	List, J.H., A.S. Farris, and C. Sullivan, 2006: Reversing storm hotspots on sandy
2817	beaches: spatial and temporal characteristics. Marine Geology, 226, 261-279.
2818	McBride, R.A. and M.R. Byrnes, 1997: Regional variations in shore response along
2819	barrier island systems of the Mississippi River delta plain: Historical change and
2820	future prediction. Journal of Coastal Research, 13(3), 628-655.
2821	McBride, R.A., M.R. Byrnes, and M.W. Hiland, 1995: Geomorphic response-type model
2822	for barrier coastlines: a regional perspective. Marine Geology, 126, 143-159.
2823	McBride, R.A., 1999: Spatial and temporal distribution of historical and active tidal
2824	inlets: Delmarva Peninsula and New Jersey, USA. In: Coastal Sediments '99
2825	[N.C. Kraus and W.G. McDougal (ed.)], America Society of Civil Engineers,
2826	Reston, VA, 2, 1505–1521.
2827	McNinch, J.E. and J.T. Wells, 1999: Sedimentary processes and depositional history of a
2828	cape-associated shoal: Cape Lookout, North Carolina. Marine Geology, 158(1-4),
2829	233-252.
2830	Meade R. H., 1972: Transport and Deposition of Sediments in Estuaries. Geological
2831	Society of America, 133(1), 91-120.
2832	Miselis, J.L. and J.E. McNinch, 2006: Calculating shoreline erosion potential using
2833	nearshore stratigraphy and sediment volume, Outer Banks, North Carolina.
2834	Journal of Geophysical Research, 111, F02019.
2835	Morton, R.A., J.G. Paine, and J.C. Gibeaut, 1994: Stages and durations of post-storm
2836	recovery, southeastern Texas coast, USA. Journal of Coastal Research, 10, 214,
2837	226.
2838	Morton, R.A., K.K. Guy, H.W. Hill, and T. Pascoe, 2003: Regional Morphological
2839	Responses to the March 1962 Ash Wednesday Storm. In: Proceedings Coastal
2840	Sediments '03 [R.A. Davis, A.H. Sallenger, and P. Howd (Editors)]. America
2841	Society of Civil Engineers, Reston, VA.

131 of 800

2842	Morton, R.A. and A.H. Sallenger, 2003: Morphological impacts of extreme storms on
2843	sandy beaches and barriers. Journal of Coastal Research, 19(3), 560-573.
2844	Moslow, T.F. and S.D. Heron, 1979: Quaternary evolution of Core Banks,
2845	NorthCarolina: Cape Lookout to New Drum inlet. In: Barrier Islands, from the
2846	Gulf of Saint Lawrence to the Gulf of Mexico [S.P. Leatherman (ed.)]. Academic
2847	Press, New York, p. 211-236.
2848	Moslow, T.F. and S.D. Heron, 1994: The Outer Banks of North Carolina. In: Geology of
2849	Holocene Barrier Island Systems [R.A. Davis (ed.)]. Springer-Verlag, Berlin, 47-
2850	74.
2851	Muhs, D.R., R.M. Thorson, J.J. Clague, W.H. Mathews, P.F. McDowell, and H.M.
2852	Kelsey, 1987: Pacific coast and mountain system. In: Geomorphic Systems of
2853	North America [W.L. Graf, (ed.)]. Geological Society of America, Special
2854	Volume 2, Boulder Colorado, 517- 582.
2855	Muhs, D.R., J.F. Wehmiller, K.R. Simmons, and L.L. York, 2004: Quaternary sea level
2856	history of the United States. Developments in Quaternary Science, 1,147-183.
2857	Najjar, R.G., Walker, H.A., Anderson, P.J., Barron, E.J., Brod, R.J., Gibson, J.R.,
2858	Kennedy, V.S., Knight, C.G., Megonigal, J.P., O'Connor, R.E., Polsky, C.D.,
2859	Psuty, N.P., Richards, B.A., Sorenson, L.G., Steele, E.M., Swanson, R.S., 2000:
2860	The potential impacts of climate change on the mid-Atlantic coastal region.
2861	Climate Research, 14, 219-233.
2862	Nummedal, D., 1983: Barrier islands. In: Handbook of Coastal Processes and Erosion
2863	[P.D. Komar (ed.)]. CRC Press, Boca Raton, 77-122.
2864	Oertel, G.F., 1985: The barrier island system. Marine Geology, 63, 1-18.
2865	Oertel, G.F. and J.C. Kraft, 1994: New Jersey and Delmarva barrier islands. In: Geology
2866	of Holocene Barrier Island Systems [R.A. Davis (ed.)]. Springer-Verlag, New
2867	York, 207-232.

132 of 800

UUSP 4.1

2868	Peltier, W.R., 2001: Global glacial isostatic adjustment and modern instrumental records
2869	of relative sea level history. In: Sea Level Rise: History and Consequences [B.C.
2870	Douglas, M.S. Kearney, S.P. Leatherman (Eds.)]. International Geophysics
2871	Series, 75, Academic Press, 65-95.
2872	Penland, S., P.F. Connor, A. Beall, S. Fearnley, S.J. Williams, 2005: Changes in
2873	Louisiana's shoreline: 1855-2002. Journal of Coastal Research, SI 44, 7-39.
2874	Pierce, J.W. and D.J. Colquhoun, 1970: Holocene evolution of a portion of the North
2875	Carolina coast. Geological Society of America Bulletin, 12, 241-246.
2876	Psuty, N.P. and D.D. Ofiara, 2002: Coastal Hazard Mangement: Lessons and Future
2877	Directions from New Jersey, Rutgers University Press, New Brunswick, New
2878	Jersey, 429pp.
2879	Ramsey, K.W., W.S. Schenck, and L.T. Wang, 2001: Physiographic regions of the
2880	Delaware Atlantic coast. Delaware Geological Survey, Special Publication 25,
2881	University of Delaware, Lewes, Delaware, 1 map.
2882	Reed, D.J., D.A. Bishara, D.R. Cahoon, J. Donnelly, M. Kearney, A.S., Kolker, L.L.
2883	Leonard, R.A. Orson, J.C. Stevenson, 2007: Site-Specific Scenarios for Wetlands
2884	Accretion as Sea Level Rises in the Mid-Atlantic Region. Report to the Climate
2885	Change Division, Environmental Protection Agency, University of New Orleans,
2886	New Orleans, La, 49 p.
2887	Riggs, S.R., and D.V. Ames, 2007: Effect of storms on barrier island dynamics, Core
2888	Banks, Cape Lookout National Seashore, North Carolina, 1960-2001. U.S.
2889	Geological Survey Scientific Investigations Report 2006-5309, 78 p.
2890	Riggs, S.R., W.J. Cleary, and S.W. Snyder, 1995: Influence of inherited geologic
2891	framework upon barrier beach morphology and shoreface dynamics. Marine
2892	Geology, 126, 213-234.
2893	Rowley, R.J., J.C. Kostelnick, D. Braaten, X. Li, and J. Meisel, 2007: Risk of rising sea
2894	level to population and land area. EOS Transactions, 88(9), 105,107.

133 of 800

CCSP 4	4.1

2895	Sallenger, A.S., C.W. Wright, and J. Lillycrop, 2007: Coastal-change impacts during
2896	Hurricane Katrina: an overview. In: Proceedings Coastal Sediments '07 [N.C.
2897	Kraus and J.D. Rosati (eds.)]. America Society of Civil Engineers, Reston, VA.
2898	Schupp, C.A., J.E. McNinch, and J.H. List, 2006: Shore-oblique bars, gravel outcrops
2899	and correlation to shoreline hotspots. Marine Geology, 233, 63-79.
2900	Schwab, W.C., E.R. Thieler, J.R., Allen, D.S., Foster, B.A., Swift, J.F. Denny, 2000:
2901	Influence of inner-continental shelf geologic framework on the evolution and
2902	behavior of the barrier island system between Fire Island inlet and Shinnecock
2903	inlet, Long Island, New York. Journal of Coastal Research, 16(2), 408-422.
2904	Swift, D.J.P., 1975: Barrier island genesis; evidence from the central Atlantic shelf,
2905	eastern USA. Sedimentary Geology, 14, 1-43.
2906	Thieler, E.R., O.H. Pilkey, R.S. Young, D.M. Bush, and F. Chai, 2000: The use of
2907	mathematical models to predict beach behavior for coastal engineering: A critical
2908	review. Journal of Coastal Research, 16(1), 48-70.
2909	Titus, J.G. and C. Richman, 2001: Maps of lands vulnerable to sea level rise: Modeled
2910	elevations along the US Atlantic and Gulf coasts. Climate Research, 18, 205-228.
2911	Vecchi, G.A. and B.J. Soden, 2007: Increased tropical Atlantic wind shear in model
2912	projections of global warming. Geophysical Research Letters, 34, L0872,
2913	doi:10.1029/2006GL028905.
2914	Walker, H.J. and J.M. Coleman, 1987: Atlantic and Gulf Coast province. In:
2915	Geomorphic Systems of North America [W.L. Graf,(ed.)]: Geological Society of
2916	America, Special Volume 2, Boulder Colorado, 51- 110.
2917	Webster, P. J., G. J. Holland, J. A. Curry, and HR. Chang, 2005: Changes in tropical
2918	cyclone number, duration, and intensity in a warming environment. Science, 309,
2919	1844–1846.
2920	Williams, S.J., S. Penland, S., and A. H. Sallenger, 1992: Louisiana Barrier Island

134 of 800

2921	Erosion Study Atlas of Shoreline Changes in Louisiana from 1853 to 1989. U.S
2922	Geological Survey Miscellaneous Investigation Series I-2150-A, 107 p.
2923	Wright, L.D., 1995: Morphodynamics of inner continental shelves. CRC Press, Boca
2924	Raton, Florida, 241 p.
2925	Zervas, C., 2001: Sea Level Variations of the United States 1854-1999. NOAA
2926	Technical Report NOS CO-OPS 36, 201 p.
2927	http://tidesandcurrents.noaa.gov/publications/techrpt36doc.pdf
2928	Zhang, K., B.C. Douglas, and S.P. Leatherman, 2004: Global warming and coastal
2929	erosion. Climatic Change, 64(1-2), 41-58.

135 of 800

2930	Chapter 3.	Coastal	Wetland	Sustainability
------	------------	---------	---------	----------------

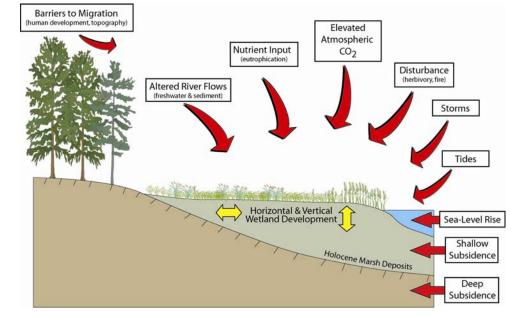
2931	
2932	Lead Authors: D. R. Cahoon, USGS, D. J. Reed, University of New Orleans, A. S.
2933	Kolker, Tulane University, M. M. Brinson, East Carolina University
2934	
2935	Contributing Authors: J. C. Stevenson, University of Maryland, S. Riggs, East
2936	Carolina University, R. Christian, East Carolina University, E. Reyes, East Carolina
2937	University, C. Voss, East Carolina University, and D. Kunz, East Carolina University.
2938	
2939	KEY FINDINGS
2940	• It is virtually certain that tidal wetlands already experiencing submergence by sea-
2941	level rise and associated high rates of loss (e.g., Mississippi River Delta in
2942	Louisiana, Blackwater River marshes in Maryland) will continue to lose area under
2943	the influence of future accelerated rates of sea-level rise and changes in other
2944	climate and environmental drivers.
2945	• It is very unlikely that there will be a net increase in tidal wetland area on a national
2946	scale over the next 100 years, given current wetland loss rates and the relatively
2947	minor accounts of new tidal wetland development (e.g., Atchafalaya Delta in
2948	Louisiana),
2949	• Current model projections of wetland vulnerability on regional and national scales
2950	are uncertain because of the coarse level of resolution of landscape scale models. In
2951	contrast, site-specific model projections are quite good where local information has
2952	been acquired on factors that control local accretionary processes in specific wetland
2953	settings. However, we have low confidence that site-specific model simulations can

136 of 800

2954	be successfully scaled up to provide realistic projections at regional or national
2955	scales.
2956 •	A regional assessment based on an expert opinion approach projects with a moderate
2957	level of confidence that those wetlands keeping pace with 20th century rates of sea-
2958	level rise (Scenario 1) would survive under Scenario 2 only under optimal hydrology
2959	and sediment supply conditions, and would not survive under Scenario 3.
2960	Exceptions may be found locally where sediment supplies are abundant, such as
2961	those that accompany storm overwash events.
2962 •	The regional assessment revealed a wide variability in wetland responses to sea-
2963	level rise, both within and among subregions and for a variety of wetland settings.
2964	This underscores both the influence of local processes on wetland elevation and the
2965	difficulty of scaling down regional/national scale projections of wetland
2966	sustainability to the local scale in the absence of local accretionary data. Thus
2967	regional or national scale assessments should not be used to develop local
2968	management plans where local accretionary dynamics may override regional
2969	controls on wetland vertical development.
2970 •	Several key uncertainties need to be addressed to improve confidence in projecting
2971	wetland vulnerability to sea-level rise. These include a better understanding of
2972	maximum rates at which wetland vertical accretion can be sustained; interactions
2973	and feedbacks among wetland elevation, flooding, and soil organic matter accretion;
2974	broad scale, spatial variability in accretionary dynamics; land use change effects
2975	(freshwater runoff, sediment supply, barriers to wetland migration) on tidal wetland

137 of 800

2978


2979	Given the expected increase in the rate of sea-level rise in the next century, effective
2980	management of the highly valuable coastal wetland habitats and resources in the United
2981	States will be enhanced by an in-depth assessment of the effects of accelerated sea-level
2982	rise on wetland vertical development (i.e., vertical accretion), the horizontal processes of
2983	shoreline erosion and landward migration affecting wetland area, and the expected
2984	changes in species composition of plant and animal communities. This chapter assesses
2985	future changes in the vertical buildup of coastal wetland surfaces and wetland
2986	sustainability during the next century under the three sea-level rise scenarios described in
2987	the Context chapter. Many factors must be considered in such an assessment, including
2988	the interactive effects of sea-level rise and other environmental drivers (e.g., changes in
2989	sediment supplies and storms), local processes controlling wetland vertical and horizontal
2990	development and the interaction of these processes with the array of environmental
2991	drivers, geomorphic setting, and limited opportunities for landward migration (e.g.,
2992	human development on the coast, or a steep slope) (Figures 3.1 and 3.2). Consequently,
2993	there is no simple, direct answer to this chapter's key question, particularly on national
2994	and regional scales, because of the various combinations of local drivers and processes
2995	controlling wetland elevation across the many tidal wetland settings found in North
2996	America, and the lack of available data on the critical drivers and local processes across
2997	these larger landscape scales. The ability of wetlands to keep pace with sea-level rise can
2998	be more confidently addressed at the scale of individual wetlands where data are

Do Not Cite or Quote

138 of 800

2999	available on the critical drivers and local processes. Scaling up from the local to the
3000	national perspective, however, is difficult, and is rarely done, because of data constraints
3001	and spatial and temporal interactions that become influential at larger scales. Better
3002	estimates of coastal wetland sustainability during future sea-level rise, and the factors
3003	influencing future sustainability, are needed to inform coastal management decision
3004	making. This chapter gives an overview of the factors influencing wetland sustainability
3005	(e.g., environmental drivers, accretionary processes, and geomorphic settings), our
3006	understanding of current and future wetland sustainability, including a regional case
3007	study analysis of the Mid-Atlantic coast of the United States, and information needed to
3008	improve our projections of future wetland sustainability at national, regional, and local
3009	scales.

3010

3013

3011

Do Not Cite or Quote

139 of 800

3014	3.1 WETLAND ACCRETIONARY DRIVERS AND PROCESSES
3015	Coastal managers would like to know if marsh elevation change will keep pace with
3016	future, accelerated sea-level rise. It is well established that marsh surface elevation
3017	changes in response to sea-level rise. Tidal wetland surfaces are frequently considered to
3018	be in an equilibrium relationship with local mean sea level (e.g., Pethick, 1981; Allen,
3019	1990), although recent modeling research suggests marshes are not at equilibrium with
3020	relatively high frequency sea-level oscillations (Kirwan and Murray, 2006). The response
3021	of tidal wetlands to future sea-level rise will be influenced not only by local site
3022	characteristics (e.g., slope and soil erodibility influences on sediment flux) but also by
3023	changes in drivers of vertical accretion, some of which are themselves influenced by
3024	climate change (Figure 3.1). Wetland accretionary dynamics are sensitive to changes in a
3025	suite of climate-related drivers, including the rate of sea-level rise, alterations in river and
3026	sediment discharge, increased frequency and intensity of hurricanes, and increased
3027	atmospheric temperatures and carbon dioxide concentrations. Accretion is also affected
3028	by local environmental drivers such as shallow (local) and deep (regional) subsidence,
3029	disturbance, and human coastal development that can form a barrier to landward marsh
3030	migration (Figure 3.1). Even if landward migration is blocked by natural or human
3031	barriers, a marsh could survive in place given an adequate accumulation of mineral
3032	sediment and soil organic matter to counteract sea-level rise (Cahoon et al., 2000) and to
3033	offset shore erosion. The relative roles of these drivers of wetland vertical development
3034	vary with geomorphic setting.
3035	
3036	

- 3036

140 of 800

3037	3.1.1 Wetland Accretionary Dynamics
3038	Projecting future wetland sustainability is made more difficult by the complex interaction
3039	of processes by which wetlands build vertically (Box 3.1, Figure 3.2) and which vary
3040	across geomorphic settings. This suite of processes controls the rates of mineral sediment
3041	deposition and accumulation of plant organic matter in the soil, and ultimately wetland
3042	elevation change. A description of the geomorphic settings is presented in the Part I
3043	Overview and a list of accretionary processes in Box 3.1. Net mineral sedimentation
3044	represents the balance between sediment import and export, which is influenced by
3045	sediment supply and grain size distribution, and varies among geomorphic settings and
3046	tidal and wave energy regimes. The delivery of sediments to the wetland surface occurs
3047	during flooding, which controls both the opportunity for deposition and the availability of
3048	sediment (Reed, 1989). Sediment may be derived from within an estuary by
3049	remobilization, and from fluvial and oceanic sources. Mechanisms of sediment
3050	remobilization and delivery include storms, tides, and, in higher latitudes, ice rafting. The
3051	formation of organic-rich wetland soils is an important contributor to wetland elevation,
3052	particularly in environments with low mineral sediment supplies. Organic matter
3053	accumulation represents the balance between plant production (especially production of
3054	roots and rhizomes) and decomposition/export of plant organic matter (Figure 3.2). Roots
3055	and rhizomes contribute mass, volume, and structure to the sediments. Figure 3.2 displays
3056	the relationship among environmental drivers, minerogenic and organogenic soil
3057	development processes, and wetland elevation. The dominant accretionary processes vary
3058	with geomorphic setting (Table 3.1).

141 of 800

3059 3060 3061	Table 3.1 Wetland geomorphic settings and dominant accretionary processes in the continental United States.
----------------------	---

United States.

Geomorphic Setting	Description	Sub- settings	Dominant processes	Example Site	Dominant vegetation
1. Open Coast	Areas sheltered from waves and currents due to coastal topography or bathymetry		Storm sedimentation Peat accumulation	Appalachee Bay, FL	smooth cordgrass (Spartina alterniflora) black needlerush (Juncus roemerianus) spike grass (Distichlis spicata) salt hay (Spartina patens) glasswort (Salicornia spp.) saltwort (Batis maritima)
2. Back Barrier Lagoon Marsh (BB)	Occupies fill within transgressive back barrier lagoons	Backbarrier Active flood tide delta Lagoonal fill	Storm sedimentation (including barrier overwash) Peat accumulation Oceanic inputs via inlets	Great South Bay, NY; Chincoteague Bay, MD, VA	smooth cordgrass (Spartina alterniflora) black needlerush (Juncus roemerianus) spike grass (Distichlis spicata) salt hay (Spartina patens) glasswort (Salicornia spp.) saltwort (Batis maritima)
3. Estuarine Embayment	Shallow coastal embayments with some river discharge, frequently drowned river valleys			Chesapeake Bay, MD, VA; Delaware Bay, NJ, PA, DE,	
a. Saline Fringe Marsh (SF)	Transgressive marshes bordering uplands at the lower end of estuaries (can also be found in back barrier lagoons)		Storm sedimentation Peat accumulation	Peconic Bay, NY; Western Pamlico Sound, NC	smooth cordgrass (Spartina alterniflora) black needlerush (Juncus roemerianus) spike grass (Distichlis spicata) salt hay (Spartina patens) glasswort (Salicornia spp.) saltwort (Batis maritima)
b. Stream Channel Wetlands	Occupy estuarine/alluvial channels rather than open coast			Dennis Creek, NJ; Lower Nanticoke River, MD	
Estuarine	Located in	Meander	Alluvial and tidal inputs	Lower James	smooth cordgrass

Do Not Cite or Quote

142 of 800

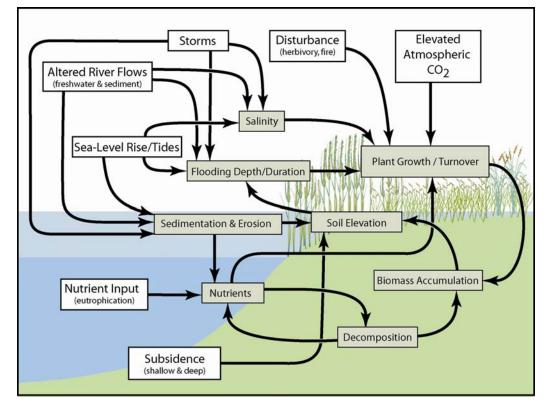
Geomorphic Setting	Description	Sub- settings	Dominant processes	Example Site	Dominant vegetation
Brackish Marshes (ES)	vicinity of turbidity maxima zone	Fringing Island	Peat accumulation	River, VA; Lower Nanticoke River, MD; Neuse River Estuary, NC	(Spartina alterniflora) salt hay (Spartina patens) spike grass (Distichlis spicata) black grass (Juncus gerardi) black needlerush (Juncus roemerianus) sedges (Scirpus olneyi) cattails (Typha spp.) big cordgrass (Spartina cynosuroides) pickerelweed (Pontederis cordata)
Tidal Fresh Marsh (FM)	Located above turbidity maxima zone; develop in drowned river valleys as filled with sediment		Alluvial and tidal inputs Peat accumulation	Upper Nanticoke River, MD; Anacostia River, DC	arrow arum (Peltandra virginica) pickerelweed (Pontederis cordata) arrowhead (Sagitarria spp.) bur-marigold (Bidens laevis) halberdleaf tearthumb (Polygonum arifolium) scarlet rose- mallow (Hibiscus coccineus) wild-rice (Zizannia aquatica) cattails (Typha spp.) giant cut grass (Zizaniopsis miliacea) big cordgrass (Spartina cynosuroides)
Tidal Fresh Forests (FF)	Develop in riparian zone along rivers and backwater areas beyond direct influence of seawater	Deepwater Swamps (permanently flooded) Bottomland Hardwood Forests (seasonally flooded)	Alluvial input Peat accumulation	Upper Raritan Bay, NJ; Upper Hudson River, NY	bald cypress (Taxodium distichum) blackgum (Nyssa sylvatica) oak (Quercus spp.) green ash (Fraxinus

143 of 800

Geomorphic Setting	Description	Sub- settings	Dominant processes	Example Site	Dominant vegetation
					pennsylvanica) (var. lanceolata)
Nontidal Brackish Marsh	Transgressive marshes bordering uplands in estuaries with restricted tidal signal		Alluvial input Peat accumulation	Pamlico Sound, NC	black needlerush (Juncus roemerianus) smooth cordgrass (Spartina alterniflora) spike grass (Distichlis spicata) salt hay (Spartina patens) big cordgrass (Spartina cynosuroides)
Nontidal Forests	Develop in riparian zone along rivers and backwater areas beyond direct influence of seawater in estuaries with restricted tidal signal	Bottomland Hardwood Forests (seasonally flooded)	Alluvial input Peat accumulation	Roanoke River, NC; Albemarle Sound, NC	bald cypress (Taxodium distichum) blackgum (Nyssa sylvatica) oak (Quercus spp.)
4. Delta	Develop on riverine sediments in shallow open water during active deposition; reworked by marine processes after abandonment		Alluvial input Peat accumulation Compaction/Subsidence Storm sedimentation Marine Processes	Mississippi Delta, LA	smooth cordgrass (Spartina alterniflora) black needlerush (Juncus roemerianus) spike grass (Distichlis spicata) salt hay (Spartina patens) glasswort (Salicornia spp.) saltwort (Batis maritima) maidencane (Panicum haemitomon) arrowhead (Sagitarria spp.)

3062

Do Not Cite or Quote


144 of 800

3063	
3064	3.1.2 Influence of Climate Change on Accretionary Drivers and Processes
3065	Projections of wetland sustainability are further complicated by the fact that sea-level rise
3066	is not the only climate-related factor influencing wetland accretionary dynamics and
3067	sustainability. The influence of sea-level rise and other climate-related environmental
3068	drivers on mineral sediment delivery systems is complex. For example, the balance of
3069	forces between river discharge and the tides controls the physical processes of water
3070	circulation and mixing, which in turn determines the fate of sediment within an estuary.
3071	Where river discharge dominates, highly stratified estuaries may develop, and where tidal
3072	motion dominates, well-mixed estuaries tend to develop (Dyer, 1995). Many mid-
3073	Atlantic estuaries are partially mixed systems because of the combination of river
3074	discharge and tides. River discharge is affected by interannual and seasonal changes in
3075	precipitation and evapotranspiration patterns and intensity that can be influenced by
3076	alterations in land use and control over river flows by impoundments, dams, and
3077	impervious surfaces. Sea-level rise can further change the balance between river
3078	discharge and tides by its effect on tidal range (Dyer, 1995). An increase in tidal range
3079	would increase tidal velocities and consequently tidal mixing and sediment transport, as
3080	well as extending landward the reach of the tide. In addition, sea-level rise can affect the
3081	degree of tidal asymmetry in an estuary (i.e., ebb versus flood dominance). In flood
3082	dominant estuaries, marine sediments are more likely to be imported to the estuary. But
3083	an increase in sea level without a change in tidal range may cause a shift toward ebb
3084	dominance, thereby reducing the input of marine sediments that might otherwise be

145 of 800

3085	deposited on intertidal flats and marshes (Dyer, 1995). Estuaries with relatively small
3086	intertidal areas and small tidal amplitudes would be particularly vulnerable in this regard.
3087	
3088	The degree of influence of sea-level rise on wetland flooding, sedimentation-erosion, and
3089	salinity is directly linked with the influence of altered river flows and storm impacts
3090	(Figure 3.2). Changes in freshwater inputs to the coast can affect coastal wetland
3091	community structure and function (Sklar and Browder, 1998) through fluctuations in the
3092	salt balance up and down the estuary. Particularly affected by increases in salinity are
3093	low-salinity and freshwater wetlands. In addition, the location of the turbidity maximum
3094	(the zone in the estuary where suspended sediment concentrations are higher than in
3095	either the river or sea) varies directly with river discharge. And the size of the turbidity
3096	maximum zone increases with increasing tidal ranges (Dyer, 1995). Heavy rains
3097	(freshwater) and tidal surges (salty water) from storms can exacerbate or alleviate (at
3098	least temporarily) salinity and inundation effects of altered freshwater input and sea-level
3099	rise in all wetland types. The direction of elevation change depends on the storm
3100	characteristics, wetland type, and local conditions at the area of storm landfall (Cahoon,
3101	2006). Predicted increases in the magnitude of coastal storms from higher sea surface
3102	temperatures (Webster et al., 2005) will likely increase storm-induced wetland
3103	sedimentation in the mid-Atlantic region. Increased storm intensity could increase
3104	resuspension of nearshore sediments and the storm-related import of oceanic sediments
3105	into tidal marshes.
3106	

146 of 800

3107

Figure 3.2 A conceptual diagram showing how environmental drivers and accretionary processesinfluence vertical wetland development.

3110

3111 3.2 WETLAND VULNERABILITY TO 20th CENTURY SEA-LEVEL RISE

- 3112 A recent global-scale evaluation of 49 salt marsh accretion and elevation trends,
- 3113 including sites from the Atlantic, Gulf of Mexico, and Pacific coasts of the United States,
- 3114 provides insights into the mechanisms and variability of wetland responses to 20th
- 3115 century trends of local sea-level rise (Cahoon et al., 2006). Globally, average surface
- 3116 accretion rates were greater than and positively related to local relative sea-level rise,
- 3117 suggesting that the marsh surface level was being maintained by surface accretion within
- 3118 the tidal range as sea level rose. In contrast, average rates of rise in elevation were not
- 3119 significantly related to sea-level rise and were significantly less than average surface

Do Not Cite or Quote

147 of 800

3120	accretion rates (indicating shallow soil subsidence occurs at many sites), although
3121	elevation change at many sites was greater than local sea-level rise (Cahoon et al., 2006).
3122	Hence understanding elevation change, and not just surface accretion, is important when
3123	determining wetland sustainability. Secondly, accretionary dynamics differed strongly
3124	among geomorphic settings, with deltas and embayments exhibiting high accretion and
3125	high shallow subsidence compared to backbarrier and estuarine settings (Figure 12.6 in
3126	Cahoon et al., 2006). Thirdly, strong regional differences in accretionary dynamics were
3127	observed for the North American salt marshes evaluated, with northeastern U.S. marshes
3128	exhibiting high rates of both accretion and elevation change, southeastern Atlantic and
3129	Gulf of Mexico salt marshes exhibiting high rates of accretion and low rates of elevation
3130	change, and Pacific salt marshes exhibiting low rates of both accretion and elevation
3131	change (Figure 12.7 in Cahoon et al., 2006). Those marshes with low elevation change
3132	rates are likely vulnerable to current and future sea-level rise, except those marshes in
3133	areas of coastal uplift such as the Pacific Northwest coast of the U.S.
3134	
3135	3.2.1 Sudden Marsh Dieback
3136	An increasing number of reports (http://wetlands.neers.org/, www.inlandbays.org,
3137	www.brownmarsh.net, www.lacoast.gov/watermarks/2004-04/3crms/index.htm) of
3138	widespread "sudden marsh dieback" and "brown marsh dieback" from Maine to
3139	Louisiana, along with published studies documenting losses of marshes dominated by
3140	Spartina alterniflora (as well as other halophytes), suggest that a wide variety of marshes
3141	may be approaching or have actually gone beyond their "tipping point" where they can
3142	continue to accrete enough inorganic material to survive (Delaune et al., 1983; Stevenson

148 of 800

3143	et al., 1985; Kearney et al., 1988; Mendelssohn & Mckee, 1988; Kearney et al., 1994;
3144	Hartig et al., 2002; McKee et al., 2004; Turner et al., 2004). Sudden dieback was
3145	documented over 40 years ago by marsh ecologists (Goodman & Williams, 1961).
3146	However, it is not known whether all recently identified events are in fact the same
3147	phenomenon and caused by the same factors. There likely are biotic factors, in addition to
3148	physical factors, that lead to sudden marsh dieback, including fungal diseases and
3149	overgrazing by animals such as waterfowl, nutria, and snails. Interacting factors may
3150	cause marshes to decline even more rapidly than we would predict from one driver such
3151	as sea-level rise. Details about the onset of sudden dieback have been elusive because
3152	most studies are done after the fact (Ogburn & Alber, 2006). Thus more research is
3153	needed to understand sudden marsh dieback. The apparent increased frequency of this
3154	phenomenon over the last several years certainly suggests an additional risk factor for
3155	marsh survival over the next century (Stevenson & Kearney, in press).
3156	
3157	3.3 PREDICTING FUTURE WETLAND SUSTAINABILITY
3158	Projections of future wetland sustainability on regional to national scales are constrained
3159	by the limitations of the two modeling approaches used to evaluate the relationship
3160	between future sea-level rise and coastal wetland elevation: landscape scale models and
3161	site-specific models. Large scale landscape models, such as the SLAMM model (Park et

- 3162 *al.*, 1989), simulate general trends at large spatial scales, but typically at a very coarse
- 3163 resolution. These landscape models do not mechanistically simulate the processes
- 3164 controlling wetland elevation, and thus do not account for low frequency events (*e.g.*,
- 3165 storms and floods) and elevation feedback effects on inundation and sedimentation. Nor

149 of 800

3166	are these models suitable for site-specific research and management problems because
3167	scaling down of results to the local level is not feasible. Thus, although landscape models
3168	can simulate wetland sustainability on broad spatial scales, their coarse resolution limits
3169	their accuracy and usefulness to the local manager.
3170	
3171	On the other hand, process oriented site-specific models (e.g., Morris et al., 2002;
3172	Rybczyk and Cahoon, 2002) are more mechanistic than landscape models and are used to
3173	simulate responses for a specific site with unique conditions and settings. These site-
3174	specific models can account for accretion events that occur over long return frequencies
3175	(e.g., hurricanes and major river floods), and the effects of elevation feedback on
3176	inundation and sedimentation that influence accretionary processes over timeframes of a
3177	century, making it possible to predict long-term sustainability of an individual wetland in
3178	a particular geomorphic setting. But, like the landscape models, site-specific models also
3179	have a scaling problem. Scaling up results from the individual wetland to long-term
3180	predictions at larger or even national spatial scales is problematic because accretionary
3181	and process data are not available across these larger-scale landscapes for calibrating and
3182	verifying models. Thus, although site-specific models provide high resolution simulations
3183	for a local site, future coastal wetland response to sea-level rise over large areas can be
3184	predicted with only low confidence at present.
3185	
3186	Recently, two different modeling approaches have been used to provide regional or
3187	national scale assessments of wetland response to climate change. In a bottom-up

3188 approach, detailed site specific models were parameterized with long-term data to

Do Not Cite or Quote

150 of 800

3189	generalize landscape-level trends with moderate confidence for inland wetland sites in
3190	the Prairie Pothole Region (Carroll et al., 2005; Voldseth et al., 2007; Johnson et al.,
3191	2005). The utility of this approach for coastal wetlands should be evaluated.
3192	Alternatively, a top down approach was used to assess coastal wetland vulnerability at
3193	regional to global scales from three broad environmental forcing factors: 1) ratio of
3194	relative sea-level rise to tidal range, 2) sediment supply, and 3) lateral accommodation
3195	space (i.e., barriers to wetland migration) (McFadden et al., 2007). This Wetland Change
3196	Model remains to be validated, however, and faces similar challenges when downscaling
3197	as do the previously described bottom-up models when scaling up.
3198	
3199	Given the limitations of current predictive modeling approaches, what can we say and
3200	with what confidence can we generalize about future wetland sustainability at the
3201	national scale?
3202	• It is virtually certain that tidal wetlands already experiencing submergence by sea-
3203	level rise and associated high rates of loss (e.g., Mississippi River Delta in
3204	Louisiana, Blackwater River marshes in Maryland) will continue to lose area under
3205	the influence of future accelerated rates of sea-level rise and changes in other
3206	climate and environmental drivers.
3207	• It is very unlikely that there will be a net increase in tidal wetland area on a national
3208	scale over the next 100 years, given current wetland loss rates and the relatively
3209	minor accounts of new tidal wetland development (e.g., Atchafalaya Delta in

151 of 800

3211	• Current model projections of wetland vulnerability on regional and national scales
3212	are uncertain because of the coarse level of resolution of landscape scale models. In
3213	contrast, site-specific model projections are quite good where local information has
3214	been acquired on factors that control local accretionary processes in specific wetland
3215	settings. However, we have low confidence that site-specific model simulations can
3216	be successfully scaled up to provide realistic projections at regional or national
3217	scales.
3218	
3219	What information is needed to improve our confidence about projections of future coastal
3220	wetland sustainability on regional and national scales?
3221	• <i>Models and validation data</i> . To scale up site-specific model outputs to a national
3222	scale with high confidence, we need detailed data on the various local drivers and
3223	processes controlling wetland elevation across all the tidal geomorphic settings of
3224	North America. Obtaining and evaluating the necessary data would be an
3225	enormous and expensive task, but not a totally impractical one. It would require
3226	substantial contributions from and coordination with various organizations, both
3227	private and government, to develop a large, query able database. Until such a
3228	database becomes a reality, current modeling approaches need to improve or
3229	adapt such that they can be applied across a broad spatial scale with better
3230	confidence. For example, evaluating the utility of applying the multi-tiered
3231	modeling approach used in the Prairie Pothole Region to coastal wetland systems
3232	and validating the Wetland Change Model for North American coastal wetlands
3233	would be important first steps. Our ability to predict coastal wetland sustainability

152 of 800

3234	with a higher level of confidence will improve as we gain understanding of the
3235	specific ecological and geological processes controlling accretion and their
3236	interactions on local and regional scales.
3237 •	Expert opinion. Although models driven by empirical data would be preferable,
3238	given the modeling limitations described, an expert opinion (<i>i.e.</i> , subjective)
3239	approach could be used today to develop spatially explicit landscape-scale
3240	predictions of coastal wetland responses to future sea-level rise with a low to
3241	moderate level of confidence. This approach requires convening a group of
3242	scientists with expert knowledge of coastal wetland geomorphic processes. The
3243	group's conclusions would be based on an understanding of the processes driving
3244	marsh survival during sea-level rise and how the magnitude and nature of these
3245	processes might change because of the effects of climate change and other factors.
3246	Because of the enormous complexity of these issues at the national scale, the
3247	expert opinion approach would be applied with greater confidence at the regional
3248	scale. Two case studies are presented below; one using the expert opinion
3249	approach applied to the mid-Atlantic region from New York to Virginia, the
3250	second a description of North Carolina wetlands from the Albemarle-Pamlico
3251	Region and an evaluation of their potential response to sea-level rise, based on a
3252	review of the literature. Wetlands of North Carolina were not included in the
3253	expert opinion mid-Atlantic regional analysis because of the unique physical
3254	setting (i.e., nontidal hydrologic regime) of the Albemarle–Pamlico Region.
3255 3256 3257 3258	

153 of 800

3260

- 3259 3.3.1 Case Study: Mid-Atlantic Regional Assessment, New York to Virginia
- 3261 A panel of scientists with diverse and expert knowledge of wetland accretionary
- 3262 processes was convened to develop spatially explicit landscape scale predictions of
- 3263 coastal wetland response to the three scenarios of sea-level rise assessed in this report
- 3264 (see Context Chapter) for the mid-Atlantic region from New York to Virginia. The results
- 3265 of this effort (Reed *et al.*, 2007) inform the assessment of coastal elevations and sea-level
- 3266 rise. The approach used by the scientific panel is described in Box 3.1.

Do Not Cite or Quote

154 of 800

BOX 3.1 EXPERT PANEL APPROACH

To ensure a systematic approach across the different settings of the mid-Atlantic region, (Roman *et al.*, 2000), the panel agreed upon the following procedures. See Reed *et al.* (2007) for a detailed explanation of the procedures.

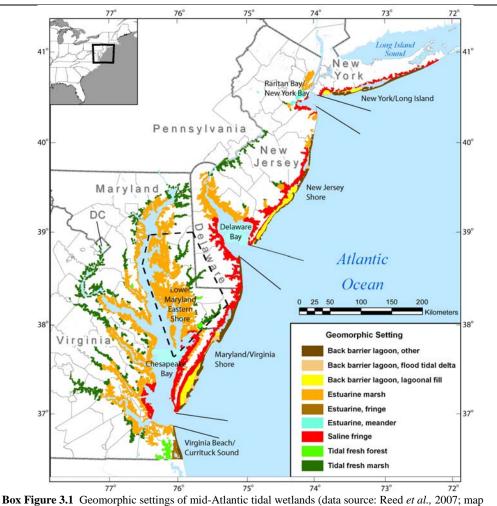
To assist in distinguishing between the different process regimes controlling wetland accretion, the panel identified a series of geomorphic settings and subsettings for the mid-Atlantic region (backbarrier lagoon and estuarine embayment, which includes saline fringe marsh and three types of stream channel wetlands: estuarine brackish marsh, tidal fresh marsh, and fresh forest) (Table 3.1, Box Figure 3.1, Part I Overview). The panel also identified nine processes that influence the ability of wetlands to keep pace with sea-level rise: storm sedimentation (sediment laden runoff, sediment resuspension, barrier overwash), tidal fluxes of sediment, riverine sediment input, oceanic sediment input, ice rafting, peat accumulation, nutrient input, groundwater (freshwater) input, and herbivory. The panel further recognized that accretionary processes differ among settings and that these processes will change in magnitude and direction with future climate change. The influence of erosional processes was not taken into consideration.

For example, the magnitude of coastal storms will increase as sea-surface temperatures increase (Webster *et al.*, 2005), likely resulting in an increase in storm sedimentation and oceanic sediment inputs. And the importance of peat accumulation is expected to increase in response to sea-level rise, up to a threshold rate. However, if salinities also increase in freshwater systems, elevation gains from increased peat accumulation could be offset by increased decomposition from sulfate reduction. Enhanced microbial breakdown of organic-rich soils is likely to be most important in formerly fresh and brackish environments where the availability of sulfate, and not organic matter, generally limits sulfate-reduction rates (Goldhaber and Kaplan, 1974). Increases in air and soil temperatures will diminish the importance of ice effects. Changes in precipitation and human land-use patterns will alter fluvial sediment inputs.

The panel reviewed the published wetland accretion literature (88 accretion rates from Long Island to Virginia), and then divided the mid-Atlantic region into a series of subregions based on similarity of accretionary process regime and current sea-level rise rates determined from tide gauge data (Box Figure 3.1). Geomorphic settings were delineated on 1:250,000 scale maps (Box Figure 3.1). After considering all information, the expert panel determined the fate of the wetlands for the three sea-level rise scenarios (Figure 3.3) by consensus opinion. The wetlands were classified as keeping pace, marginal, or loss (Reed *et al.*, 2007):

Do Not Cite or Quote

155 of 800


<u>Keeping pace</u> — Wetlands will not be submerged by rising sea levels and will be able to maintain their relative elevation.

<u>Marginal</u> — Wetlands will be able to maintain their elevation only under optimal conditions. Depending on the dominant accretionary processes, this could include inputs of sediments from storms or floods, or the maintenance of hydrologic conditions conducive for optimal plant growth. Given the complexity and inherent variability of climatic and other factors influencing wetland accretion, the panel cannot predict the fate of these wetlands. Under the best of circumstances they are expected to survive.

<u>Loss</u> — Wetlands will be subject to increased flooding beyond that normally tolerated by the vegetative communities, leading to deterioration and conversion to open water habitat.

Do Not Cite or Quote

156 of 800

Box Figure 3.1 Geomorphic settings of mid-Atlantic tidal wetlands (data source: Reed *et al.*, 2007; map source: Titus *et al.*, 2008).

Wetlands identified as marginal or loss will not become so uniformly; the rate and spatial distribution of change will vary within and among similarly designated areas. Wetland response to sea-level rise over the next century will vary spatially and temporally depending on the rate of sea-level rise, current wetland condition (*e.g.*, elevation relative to sea level), and local process controls. In addition, changes in flooding and salinity patterns may result in a change of dominant species (*i.e.*, high marsh species replaced by low marsh species), which could affect wetland sediment trapping and organic matter accumulation rates. A wetland is considered marginal when it becomes severely degraded (> 50 % of vegetated area is converted to open water) but still supports ecosystem functions associated with that wetland type. A wetland is considered lost when its function shifts primarily to that of shallow open water habitat.

3267

Do Not Cite or Quote

3268	There are notable caveats to the expert panel approach, interpretations, and application of
3269	findings. First, regional scale assessments are intended to provide a landscape scale
3270	projection of wetland vulnerability to sea-level rise (e.g., likely trends, areas of major
3271	vulnerability) and not to replace assessments based on local process data. Local
3272	exceptions to the panel's regional scale assessment exist in the published literature.
3273	Second, the panel's projections of backbarrier wetland sustainability assume that
3274	protective barrier islands remain stable. Should barrier islands collapse, the lagoonal
3275	marshes would be exposed to an increased wave energy environment and erosive
3276	processes, with massive marsh loss very likely over a relatively short period of time. (In
3277	such a case, vulnerability to marsh loss would be only one of a host of environmental
3278	problems.) Third, the regional projections of wetland sustainability assume that the health
3279	of marsh vegetation is not adversely affected by local outbreaks of disease or other biotic
3280	factors (e.g., sudden marsh dieback). Fourth, the panel considered the effects of a rate
3281	acceleration of 2 mm/y and 7 mm/y, but not rates in between. There are few estimates of
3282	the maximum rate at which marsh vertical accretion can occur (Bricker-Urso et al., 1989;
3283	Morris et al., 2002) and no studies addressing the thresholds for organic matter
3284	accumulation in the marshes considered by the panel. Determining wetland sustainability
3285	at sea-level rise rates between Scenarios 2 and 3 requires greater understanding of the
3286	variations in the maximum accretion rate regionally and among vegetative communities
3287	(Reed et al., 2007). Lastly, the panel recognized the serious limitations of scaling down
3288	their projections from the regional to local level and would place a low level of
3289	confidence on such projections in the absence of local accretionary and process data.

158 of 800

3290	Thus findings from this regional scale approach should not be used for local planning
3291	activities where local effects may over-ride regional controls.
3292	
3293	Findings. The panel developed a model for predicting wetland response to sea-level rise
3294	that was better constrained by available studies of accretion and accretionary processes in
3295	some areas of the mid-Atlantic region (e.g., Lower Maryland Eastern Shore) than in other
3296	areas (e.g., Virginia Beach/Currituck Sound). Given these inherent data and knowledge
3297	constraints, the authors classified the confidence level for all findings in Reed et al.
3298	(2007) as likely (<i>i.e.</i> , > 0.66 < 0.90).
3299	
3300	Figure 3.3 and Table 3.2 present the panel's consensus findings on wetland vulnerability
3301	of the mid-Atlantic region. The panel determined that a majority of tidal wetlands settings
3302	in the mid-Atlantic region (with some local exceptions) is likely keeping pace with
3303	Scenario 1 (Table 3.2, and areas depicted in brown, beige, yellow, and green in Figure
3304	3.3) through either mineral sediment deposition, organic matter accumulation, or both.
3305	However, extensive areas of estuarine marsh in Delaware Bay and Chesapeake Bay are
3306	marginal (areas depicted in red in Figure 3.3), with some areas currently being lost (areas
3307	depicted in blue in Figure 3.3). It is virtually certain that estuarine marshes currently
3308	being lost will not be rebuilt or replaced by natural processes. Human manipulation of

3309 hydrologic and sedimentary processes and the elimination of barriers to onshore wetland

- 3310 migration would be required to restore and sustain these degrading marsh systems. The
- 3311 removal of barriers to onshore migration invariably would result in land use changes that
- have other societal consequences.

Do Not Cite or Quote

3313	
3314	Under accelerated rates of sea-level rise, the panel agreed that wetland survival would
3315	very likely depend on optimal hydrology and sediment supply conditions. Wetlands
3316	primarily dependent on mineral sediment accumulation for maintaining elevation would
3317	be very unlikely to survive Scenario 3; a 7 mm/y increase in the rate of sea-level rise (<i>i.e.</i> ,
3318	\geq 10 mm/y rate of sea-level rise when combined with the 20th century rate). Exceptions
3319	may occur locally where sediment inputs from inlets, overwash events or rivers are
3320	substantial (e.g., backbarrier lagoon and lagoonal fill marshes depicted in green on
3321	western Long Island, Figure 3.3).
2222	
3322	
3322 3323	Wetland responses to sea-level rise are typically complex. A close comparison of Text
	Wetland responses to sea-level rise are typically complex. A close comparison of Text Box Figure 3.1 and Figure 3.3 reveals that marshes from all geomorphic settings, except
3323	
3323 3324	Box Figure 3.1 and Figure 3.3 reveals that marshes from all geomorphic settings, except
3323 3324 3325	Box Figure 3.1 and Figure 3.3 reveals that marshes from all geomorphic settings, except estuarine meander (which occurs in only one subregion), responded differently to sea-
3323332433253326	Box Figure 3.1 and Figure 3.3 reveals that marshes from all geomorphic settings, except estuarine meander (which occurs in only one subregion), responded differently to sea- level rise within and/or among subregions, underscoring the variability in the influence of
 3323 3324 3325 3326 3327 	Box Figure 3.1 and Figure 3.3 reveals that marshes from all geomorphic settings, except estuarine meander (which occurs in only one subregion), responded differently to sea- level rise within and/or among subregions, underscoring the variability in the influence of local processes and drivers. Given the variety of marsh responses to sea-level rise among

160 of 800

													Re	gion										
Geomorphic Setting	Lon	ig Isla NY	and,	Raritan Bay, NY			New Jersey			Delaware Bay			Maryland - Virginia			Chesapeake Bay			Lower Maryland Eastern Shore			Virginia Beach – Currituck Sound		
	slr	+2	+7	slr	+2	+7	slr	+2	+7	slr	+2	+7	slr	+2	+7	slr	+2	+7	slr	+2	+7	slr	+2	+7
Back barrier lagoon, other	K	K,M	K,L				K	М	L				К	М	L							М	M-L	L
Back barrier lagoon, flood tide delta	K	к	М				к	М	L				К	М	L									
Back barrier lagoon, lagoonal fill	K,L	M,L	L				К	М	L				К	М	L									
Estuarine marsh				K	М	L	K	М	L	K,M	M,L	L				K,M, L	M-L	L	L,M	L	L	K	М	L
Estuarine fringe				K	М	L	K	М	L													М	M-L	L
Estuarine meander				K	М	L	K	М	L															
Saline fringe	Κ	K,L	Μ	Κ	Μ	L	Κ	Μ	L	Κ	М	L	K,L	M,L	L									
Tidal fresh forest																			K	K	K	М	M-L	
Tidal fresh marsh				К	К	К	К	М	L	K	K	K				К	К	К	К	K	К	К	К	K

Table 3.2 The range of wetland responses to three sea level rise (slr) scenarios (20th Century rate, 20th Century rate + 2 mm/yr, and 20th Century rate + 7 mm/y) within and among geomorphic settings and subregions of the Mid-Atlantic Region from New York to Virginia

Do Not Cite or Quote

161 of 800

3331	
3332	The panel determined that tidal fresh marshes and forests in the upper reaches of rivers
3333	are likely to be sustainable (<i>i.e.</i> , less vulnerable to future sea-level rise than most other
3334	wetland types) (Table 3.1), because they have access to reliable and often abundant
3335	sources of mineral sediments. Even so, their sediments typically have 20 - 50 percent
3336	organic matter content indicating that large quantities of plant organic matter are also
3337	available. Assuming that salinities do not increase, a condition that may reduce soil
3338	organic matter accumulation rates, and current mineral sediment supplies are maintained,
3339	the panel considered it likely that tidal fresh marshes and forests would survive under
3340	Scenario 3. For example, some managed tidal fresh marshes positioned low in the tidal
3341	range in the high sediment-load Delaware River estuary exhibited rapid vertical accretion
3342	(> 1 cm per year) through the accumulation of both mineral and plant matter when
3343	normal tidal exchange was restored (Orson et al., 1992). Exceptions to this finding are
3344	noted for the New Jersey shore where tidal fresh marsh is considered marginal under
3345	Scenario 2 and lost under Scenario 3, and for Virginia Beach-Currituck Sound where
3346	fresh forest is marginal under Scenario 1,, marginal or lost under Scenario 2, and lost
3347	under Scenario 3.
3348	
3349	Marshes from backbarrier other, backbarrier lagoonal fill, estuarine marsh, and saline
3350	fringe settings responded differently to sea-level rise within at least one subregion as well
3351	as among subregions (Table 3.1). For example, backbarrier lagoonal fill marshes on Long
3352	Island, NY were classified as either keeping pace or lost at the current rate of sea-level
3353	rise. Those surviving under Scenario 1 were classified as either marginal (brown) or

Do Not Cite or Quote

162 of 800

3354	keeping up (beige and green) under Scenario 2 (Figure 3.3). Under Scneario 3,, only the
3355	lagoonal fill marshes depicted in green in Figure 3.3 are expected to survive.
3356	
3357	The management implications of these findings are important on several levels. The
3358	expert panel approach provides a regional assessment of future wetland resource
3359	conditions, defines likely trends in wetland change, and identifies areas of major
3360	vulnerability. But the wide variability of wetland responses to sea-level rise within and
3361	among subregions for a variety of wetland settings underscores not only the influence of
3362	local processes on wetland elevation but also the difficulty of scaling down predictions of
3363	wetland sustainability from the regional to the local scale in the absence of local
3364	accretionary data. Most importantly for managers, regional scale assessments such as this
3365	one should not be used to develop local management plans because local accretionary
3366	effects may override regional controls on wetland vertical development (McFadden et al.,
3367	2007). Instead, local managers are encouraged to acquire data on the factors influencing
3368	the sustainability of their local wetland site, including environmental stressors,
3369	accretionary processes, and geomorphic settings, as a basis for developing local
3370	management plans.
3371	

163 of 800

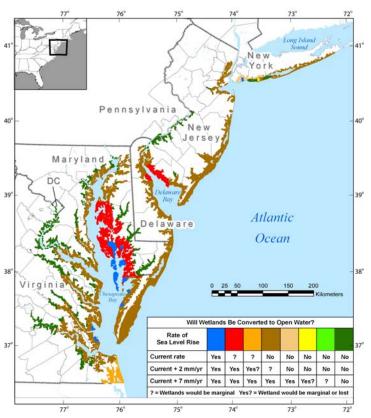


Figure 3.3 Wetland survival in response to three sea-level rise scenarios (data source: Reed *et al.*, 2007; map source: Titus *et al.*, 2008).

3376 3.3.2 Case Study: Albemarle–Pamlico Sound Wetlands and Sea-Level Rise

- 3377 The Albemarle–Pamlico (A–P) region of North Carolina is distinct in the manner and the
- 3378 extent to which rising sea level is expected to affect coastal wetlands. Wetlands of the
- region influenced by sea level are among the most extensive on the east coast of the U.S.
- because of large regions less than 3 m above sea level and flatness of the underlying
- 3381 surface. Further, the wetlands lack astronomic tides as a source of estuarine water to
- 3382 wetland surfaces in most of the A-P region. Instead, wind-generated water level
- 3383 fluctuations in the sounds and precipitation are the principal sources of water. This
- 3384 "irregular flooding" is the hallmark of the hydrology of these wetlands. Both forested

Do Not Cite or Quote

164 of 800

3385	wetlands and marshes can be found; variations in salinity of floodwater determine
3386	ecosystem type. This is in striking contrast to most other fringe wetlands on the east
3387	coast.
3388	
3389	3.3.2.1 Distribution of Wetland Types
3390	Principal flows to Albemarle Sound are from the Chowan and Roanoke Rivers, and to
3391	Pamlico Sound from the Tar and Neuse Rivers. Hardwood forests occupy the floodplains
3392	of these major rivers. Only the lower reaches of these rivers are affected by rising sea
3393	level. Deposition of riverine sediments in the estuaries approximates the rate of rising sea
3394	level (2-3 mm/yr) (Benninger and Wells, 1993). These sediments generally do not reach
3395	coastal marshes in part because they are deposited in subtidal areas and in part because
3396	astronomic tides are lacking to carry them to wetland surfaces. Storms, which generate
3397	high water levels (especially 'northeasters' and tropical storms), deposit sediments on
3398	shoreline storm levees and potentially onto marshes and wetland forests. Blackwater
3399	streams that drain pocosins (peaty, evergreen shrub and forested wetlands), as well as
3400	other tributaries that drain the coastal plain, are a minor supply of suspended sediment to
3401	the estuaries.
3402	
3403	Most wetlands in the A-P region were formed upon Pleistocene sediments deposited
3404	during multiple high stands of sea level. Inter-stream divides, typified by the Albemarle-
3405	Pamlico Peninsula, are flat and poorly drained, resulting in extensive developments of
3406	pocosin swamp forest habitats. The original accumulation of peat was not due to rising
3407	sea level but to poor drainage and climatic controls. Basal peat ages of even the deepest

165 of 800

deposits correspond to the last glacial period when sea level was over 100 m below its current position. Rising sea level has now intercepted some of these peatlands,
current position. Rising sea level has now intercepted some of these peatlands
current position. Histing see level has now intercepted some of these pearlands,
particularly those at lower elevations on the extreme eastern end of the A-P peninsula
(Riggs, in review). As a result, scarped peat shorelines are extensive with large volumes
of peat occurring below sea level (Riggs and Ames, 2003).
Large areas of nontidal marshes and forested wetlands in this area are exposed to the
influence of sea level. They can be classified as fringe wetlands because they occur along
the periphery of estuaries that flood them irregularly. Salinity, however, is the major
control that determines the dominant vegetation type. In the fresh to oligohaline
Albemarle Sound region, forested and shrub-scrub wetlands dominate. As the shoreline
erodes into the forested wetlands, bald cypress trees become stranded in the permanently
flooded zone and finally die and fall down. This creates a zone of complex habitat
structure of fallen trees and relic cypress knees in shallow water. Landward, a storm levee
of coarse sand borders the swamp forest in areas exposed to waves (Riggs and Ames,
2003).
Trees are killed by exposure to extended periods of salinity above 10 ppt (approximately
1/4-1/3 sea water), and most trees and shrubs have restricted growth and reproduction at
much lower salinities (Conner et al., 1997). In brackish water areas, marshes consisting
of halophytes replace forested wetlands. Marshes are largely absent from the shore of
Albemarle Sound and mouths of the Tar and Neuse Rivers where salinities are too low to
affect vegetation. In Pamlico Sound, however, large areas consist of brackish marshes

166 of 800

with few tidal creeks. Small tributaries of the Neuse and Pamlico River estuaries grade
from brackish marsh at estuary mouths to forested wetlands in oligohaline regions further
upstream (Brinson *et al.*, 1985).

3434

3435 3.3.2.2 Future Sea-Level Rise Scenarios

3436 Three scenarios were used to frame projections of the effects of rising sea level over the

3437 next few decades in the non-tidal coastal wetlands of North Carolina. The first is a non-

3438 drowning scenario that assumes rising sea level will maintain its 20th century, constant

3439 rate, of 2-4 mm/yr (Scenario 1). Predictions in this case can be inferred from wetland

3440 response to sea-level changes in the recent past (Spaur and Snyder, 1999). Accelerated

3441 rates of sea-level rise (Scenarios 2 and 3), however, may lead to a drowning scenario.

3442 This is more realistic if IPCC predictions and other climate change models prove to be

3443 correct (Church and White, 2006), and the Scenario 1 rates double or triple. An additional

3444 scenario possible in North Carolina whereby some of the barrier islands begin to collapse,

3445 as documented by Riggs and Ames (2003), is more daunting because it anticipates a state

3446 change from non-tidal to tidal regime. The underlying effects of these three scenarios and

3447 effects on coastal wetlands are summarized in Table 3.3.

Do Not Cite or Quote

167 of 800

Table 3.3 Comparison of three scenarios of rising sea level and their effects on coastal processes.

	Vertical accretion	Shoreline	
Scenario	of wetland surface	erosion rate	Sediment supply
Non-drowning: historical	Keeps pace with	Recent historical	Low due to a lack of sources;
exposure of wetlands (past	rising sea level	patterns are	vertical accretion mostly
hundreds to several thousand yrs)		maintained	biogenic
is predictive of future behavior.			-
Vertical accretion will keep pace			
with rising sea level (~2-4 mm/yr)			
Drowning: vertical accretion rates	Wetlands undergo	Rapid	Local increases of organic
cannot accelerate to match rates of	collapse and	acceleration when	and inorganic suspended
rising sea level; barrier islands	marshes break up	erosion reaches	sediments as wetlands erode
remain intact	from within	collapsed regions	
Barrier islands breached:	Biogenic accretion	Rapid erosion	Major increase in sediments
change to tidal regime throughout	replaced by	where high tides	and their redistribution; tidal
Pamlico Sound	inorganic sediment	overtop wetland	creeks develop along
	supply	shorelines	antecedent drainages mostly
			in former upland regions

3449

3450 Under the non-drowning scenario, vertical accretion would keep pace with rising sea

3451 level as it has for millennia. Current rates (Cahoon, 2003) and those based on basal peats

3452 suggest that vertical accretion roughly matches the rate of rising sea level (Riggs, in

3453 review; Riggs et al., 2000; Erlich, 1980; Whitehead and Oakes, 1979). Sources of

3454 inorganic sediment to supplement vertical marsh accretion are negligible due to both the

3455 large distance between the mouths of piedmont-draining Neuse, Tar, Roanoke and

3456 Chowan Rivers and the absence of both tidal currents and creeks to transport sediments to

3457 marsh surfaces.

3458

3459 Under the drowning scenario, the uncertainty of the effects of accelerated rates lies in the

3460 untested capacity of marshes and swamp forests to biogenically accrete organic matter at

3461 sea-level rise rates more rapid than experienced currently. It has been well established

3462 that brackish marshes of the Mississippi Delta cannot survive when subjected to relative

- 3463 rates of sea-level rise of 10 mm/y (Day et al., 2005), well over twice the rate currently
- 3464 experienced in Albemarle and Pamlico Sounds. As is the case for the Mississippi Delta

Do Not Cite or Quote

168 of 800

3465	(Reed et al., 2006), external sources of mineral sediments would be required to
3466	supplement or replace the process of organic accumulation that now dominates wetlands
3467	of the A-P region. Where abundant supplies of sediment are available and tidal currents
3468	strong enough to transport them, as in North Inlet, South Carolina, Morris et al. (2002)
3469	reported that the high salt marsh (dwarf Spartina) could withstand a 12 mm/yr rate. In
3470	contrast to fringe wetlands, swamp forest wetlands along the piedmont-draining rivers
3471	above the freshwater/seawater interface are likely to sustain themselves under drowning
3472	scenario conditions. This is due to the general abundance of mineral sediments during
3473	flood stage. This applies to regions within the floodplain but not at river mouths where
3474	shoreline recession occurs in response to more localized drowning.
3475	
3476	Pocosin peatlands and swamp forest at higher elevations of the coastal plain will continue
3477	to grow vertically since they are both independent of sea-level rise. Under the drowning
3478	scenario, however, sea-level influenced wetlands of the lower coastal plain would convert
3479	to aquatic ecosystems, and the large, low, and flat pocosin areas identified by Poulter
3480	(2005) would transform to aquatic habitat. In areas of pocosin peatland, shrub and forest
3481	vegetation first would be killed by brackish water. It is unlikely that pocosins would
3482	undergo a transition to marsh due to two factors: (1) the pocosin root mat would collapse
3483	due to plant mortality and decomposition causing a rapid subsidence of several
3484	centimeters, resulting in a transition to ponds rather than marshes and (2) brackish water
3485	may accelerate decomposition of peat due to availability of sulfate to drive anaerobic
3486	decomposition. With the simultaneous death of woody vegetation and elimination of
3487	potential marsh plant establishment, organic-rich soils would be exposed directly to

169 of 800

3488	decomposition, erosion, suspension, and transport without the stabilizing properties of
3489	vegetation.
3490	
3491	Under the "collapsed barrier island" scenario, the A-P regions would undergo a change
3492	from non-tidal estuary to one dominated by astronomic tides due to the collapse of some
3493	portions of the barrier islands. A transition of this magnitude is difficult to predict in
3494	detail. However, Poulter (2005), using the ADCIRC-2DDI model of Leutlich et al.
3495	(1992), estimated that conversion from a non-tidal to tidal estuary might flood hundreds
3496	of square kilometers. The effect was largely due to an increase in tidal amplitude that
3497	produced the flooding rather than a mean rise in sea level itself. While the mechanisms of
3498	change are speculative, it is doubtful that an intermediate stage of marsh colonization
3499	would occur on former pocosin and swamp forest areas because of the abruptness of
3500	change. Collapse of the barrier islands in this scenario would be so severe due to the
3501	sediment-poor condition of many barrier segments that attempts to maintain and/or repair
3502	them would be extremely difficult, or even futile (Riggs, in review).
3503	
3504	The conversion of Pamlico Sound to a tidal system would likely re-establish tidal
3505	channels where ancestral streams are located, as projected by Riggs and Ames (2003).
3506	The remobilization of sediments could then supply existing marshes with inorganic
3507	sediments. It is more likely, however, that marshes would become established landward
3508	on newly inundated mineral soils of uplands. Such a state change has not been observed
3509	elsewhere, and computer models are seldom robust enough to encompass such extreme
3510	hydrodynamic transitions.

170 of 800

3511	3.4 DATA NEEDS
3512	A few key uncertainties must be addressed to increase confidence in our predictions of
3513	wetland vulnerability to sea-level rise. First, determining the fate of coastal wetlands over
3514	a range of accelerated sea-level rise rates requires more information on variations in the
3515	maximum accretion rate regionally and among vegetative communities. To date, few
3516	studies have specifically addressed the maximum rates at which marsh vertical accretion
3517	can occur, particularly the thresholds for organic accumulation. Second, although the
3518	interactions among changes in wetland elevation, sea level, and wetland flooding patterns
3519	are becoming better understood, the interaction of these feedback controls on flooding
3520	with changes in other accretion drivers, such as nutrient supply, sulfate respiration, and
3521	soil organic matter accumulation is less well understood. Third, scaling up from
3522	numerical model predictions of local wetland responses to sea-level rise to long-term
3523	projections at regional or national scales is severely constrained by a lack of available
3524	accretionary and process data at these larger landscape scales. Newly emerging numerical
3525	models used to predict wetland response to sea-level rise need to be applied across the
3526	range of wetland settings. Fourth, we need to better understand the role of changing land
3527	use on tidal wetland processes, including space available for wetlands to migrate
3528	landward and alteration in the amount and timing of freshwater runoff and sediment
3529	supply. Last, sediment supply is a critical factor influencing wetland vulnerability, but the
3530	amount of sediments available for wetland formation and development is often poorly
3531	understood. Coastal sediment budgets typically evaluate coarse-grain sediments needed
3532	for beach and barrier development, and fine-grain cohesive sediments needed for wetland

171 of 800

3533	formation and development are typically not evaluated. Improving our understanding of
3534	each of these factors is critical for predicting the fate of tidal marshes.
3535	
3536 3537	CHAPTER 3 REFERENCES
3538	Allen, J.R.L., 1990: The formation of coastal peat marshes under an upward tendency of
3539	relative sea level. Journal of the Geological Society, 147(5), 743-745.
3540	Benninger, L.K. and J.T. Wells, 1993: Sources of sediment to the Neuse River estuary,
3541	North Carolina. Marine Chemistry, 43(1-4), 137-156.
3542	Bricker-Urso, S., S.W. Nixon, J.K. Cochran, D.J. Hirschberg, and C. Hunt, 1989:
3543	Accretion rates and sediment accumulation in Rhode Island salt marshes.
3544	<i>Estuaries</i> , 12(4) , 300-317.
3545	Brinson, M.M., H.D. Bradshaw, and M.N. Jones, 1985: Transitions in forested wetlands
3546	along gradients of salinity and hydroperiod. Journal of the Elisha Mitchell
3547	Scientific Society, 101, 76-94.
3548	Cahoon, D.R., J.R. French, T. Spencer, D. Reed, and I. Moller, 2000: Vertical accretion
3549	versus elevational adjustment in UK saltmarshes: an evaluation of alternative
3550	methodologies. In: Coastal and Estuarine Environments: Sedimentology,
3551	Geomorphology and Geoarchaeology. [Pye, K. and J.R.L. Allen (eds.)].
3552	Geological Society, London, 223-238.
3553	Cahoon, D.R., 2003: Storms as agents of wetland elevation change: their impact on
3554	surface and subsurface sediment processes. Proceedings of the International
3555	Conference on Coastal Sediments 2003, May 18-23, 2003, Clearwater Beach,
3556	Florida. World Scientific Publishing Corporation, Corpus Christi TX.
3557	Cahoon, D.R., P.F. Hensel, T. Spencer, D.J. Reed, K.L. McKee, and N. Saintilan, 2006:
3558	Coastal wetland vulnerability to relative sea level rise: wetland elevation trends
3559	and process controls. In: Wetlands and Natural Resource Management

172 of 800

CCSP	4.1

[Verhoeven, J.T.A., B. Beltman, R. Bobbink, and D. Whigham (eds.)]. Ecological
Studies v. 190, Springer, Berlin and New York, pp. 271-292.
Cahoon, D.R., 2006: A review of major storm impacts on coastal wetland elevation.
Estuaries and Coasts, 29(6A) , 889-898.
Carroll, R., G. Pohll, J. Tracy, T. Winter, and R. Smith, 2005: Simulation of a
semipermanent wetland basin in the Cottonwood Lake Area, east-central North
Dakota. Journal of Hydrologic Engineering, 10, 70-84.
Church, J.A. and N.J. White, 2006: A 20th century acceleration in global sea level rise.
Geophysical Research Letters, 33 (1), L01602, doi:10.1029/2005GL024826.
Conner, W.H., K.W. McLeod, and J.K. McCarron, 1997: Flooding and salinity effects
on growth and survival of four common forested wetland species. Wetlands
Ecology and Management, 5(2), 99–109.
Day, J.W., Jr., J. Barras, E. Clairain, J. Johnston, D. Justic, G.P. Kemp, JY. Ko, R.
Lane, W.J. Mitsch, G. Steyer, P. Templet, and A. Yañez-Arancibia, 2005:
Implications of global climatic change and energy cost and availability for the
restoration of the Mississippi delta. Ecological Engineering, 24(4), 253-265.
DeLaune, R.D., R.H. Baumann, and J.G. Gosselink, 1983: Relationships among vertical
accretion, coastal submergence, and erosion in a Louisiana Gulf Coast marsh.
Journal of Sedimentary Petrology, 53, 147-157.
Dyer, K., 1995: Response of estuaries to climate change. In: Climate Change: Impact on
Coastal Habitation [Eisma, D. (ed.)]. Lewis Publishers, Boca Raton, FL, pp. 85-
110.
Erlich, R.N., 1980: Early Holocene to Recent Development and Sedimentation of the
Roanoke River Area, North Carolina. M.S. thesis, Department of Geology,
University of North Carolina, Chapel Hill, 83 pp.

173 of 800

	CCSP 4.1 February 12, 200
3585	Goldhaber, M.B. and I.R. Kaplan, 1974: The sulfur cycle. In: Marine Chemistry.
3586	[Goldberg, E.D. (ed.)]. Wiley, New York, pp. 569-655.
3587	Goodman, P.J. and W.T. Williams, 1961: Investigations into 'die-back' of Spartina
3588	townsendii agg.: III. Physical correlates of 'die-back'. Journal of Ecology, 49(2),
3589	391-398.
3590	Hartig, E.K., V. Gornitz, A. Kolker, F. Muschacke, and D. Fallon, 2002: Anthropogenic
3591	and climate-change impacts on salt marshes of Jamaica Bay, New York City.
3592	<i>Wetlands</i> , 22(1) , 71-89.

- 3593 Johnson, W.C., B.V. Millett, T. Gilmanov, R.A. Voldseth, G.R. Guntenspergen, and 3594 D.E. Naugle, 2005: Vulnerability of northern prairie wetlands to climate change. 3595 Bioscience, 55(10), 863-872.
- 3596 Kearney, M.S., R.E. Grace, and J.C. Stevenson, 1988: Marsh loss in the Nanticoke 3597 Estuary, Chesapeake Bay. Geographical Review, 78, 205-220.
- 3598 Kearney, M.S., J.C. Stevenson, and L.G. Ward, 1994: Spatial and temporal changes in 3599 marsh vertical accretion rates at Monie Bay: implications for sea level rise. 3600 Journal of Coastal Research, 10, 1010-1020.
- 3601 Kirwan, M.L. and A.B. Murray, 2006: Response of an ecomorphodynamic model of 3602 tidal marshes to varying sea level rise rates. In River, Coastal and Estuarine 3603 Morphodynamics: RCEM 2005 [Parker G. and M.H. García (eds.)]. Taylor and
- 3604 Francis, London, pp. 629-634.
- 3605 Leuttich, R.A., Jr., J.J. Westerink, and N.W. Scheffener, 1992: ADCIRC: An Advanced 3606 Three-dimensional Circulation Model for Shelves, Coasts, and Estuaries. Report 3607 1: Theory and Methodology of ADCIRC-2DDI and ADCIRC-3DL. U.S. Army 3608 Engineers Waterways Experiment Station, Vicksburg, MS, 141 pp.
- 3609 McFadden, L., T. Spencer, and R.J. Nicholls, 2007: Broad-scale modelling of coastal 3610 wetlands: what is required? Hydrobiologia, 577, 5-15.

Do Not Cite or Quote

174 of 800

3611	McKee, K.L., I.A. Mendelssohn, and M.D. Materne, 2004: Acute salt marsh dieback in
3612	the Mississippi deltaic plain: a drought induced phenomenon? Global Ecology
3613	and Biogeography, 13(1) , 65-73.
3614	Mendelssohn, I.A. and K.L. McKee, 1988: Spartina alterniflora die-back in Louisiana:
3615	time-course investigation of soil waterlogging effects. Journal of Ecology, 76(2),
3616	509-521.
3617	Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon, 2002:
3618	Responses of coastal wetlands to rising sea level. <i>Ecology</i> , 83(10) , 2869-2877.
3619	Ogburn, M.B. and M. Alber, 2006: An investigation of salt marsh dieback in Georgia
3620	using field transplants. Estuaries and Coasts, 29, 665-673.
3621	Orson, R.A., R.L. Simpson, and R.E. Good, 1992: A mechanism for the accumulation
3622	and retention of heavy metals in tidal freshwater marshes of the upper Delaware
3623	River estuary. Estuarine, Coastal and Shelf Science, 34(2), 171-186.
3624	Park, R.A., M.S. Trehan, P.W. Mausel, and R.C. Howe, 1989: Coastal wetlands in the
3625	twenty-first century: profound alterations due to rising sea level. American Water
3626	Resources Association
3627	Pethick, J., 1981: Long-term accretion rates on tidal salt marshes. Journal of
3628	Sedimentary Petrology, 51 , 571-577.
3629	Poulter, B., 2005: Interactions Between Landscape Disturbance and Gradual
3630	Environmental Change: Plant Community Migration in Response to Fire and Sea
3631	Level Rise. Ph.D. Dissertation. Duke University, Durham, NC, 216 pp.
3632	Reed, D.J., 1989: Patterns of sediment deposition in subsiding coastal salt marshes,
3633	Terrebonne Bay, Louisiana: the role of winter storms. <i>Estuaries</i> , 12(4) , 222-227.
3634	Reed, D.J., M.S. Peterson, and B.J. Lezina, 2006: Reducing the effects of dredged
3635	material levees on coastal marsh function: Sediment deposition and nekton
3636	utilization. Environmental Management, 37(5), 671-685.

175 of 800

CCSP 4.1

3637	Reed. D.J., D. Bishara, D. Cahoon, J. Donnelly, M. Kearney, A. Kolker, L. Leonard,
3638	R.A. Orson, and J.C. Stevenson, 2007: Site-specific scenarios for wetlands
3639	accretion as sea level rises in the mid-Atlantic region. US Environmental
3640	Protection Agency
3641	Riggs, S. R., in review. Geologic Evolution of the Lower Roanoke River and Albemarle
3642	Sound Drainage System in Response to Climate Change and Sea-Level Rise. U.S.
3643	Geological Survey Scientific Investigations Report, 169 p.
3644	Riggs, S.R. and D.V. Ames, 2003: Drowning the North Carolina coast: sea-level rise
3645	and estuarine dynamics. Publication no. UNC-SG-03-04, North Carolina Sea
3646	Grant, Raleigh, NC, 152 pp.
3647	Riggs, S.R., G.L. Rudolph, and D.V. Ames, 2000: Erosional Scour and Geologic
3648	Evolution of Croatan Sound, Northeastern North Carolina. Report No.
3649	FHWA/NC/2000-002. North Carolina Department of Transportation, Raleigh,
3650	NC. 115 pp.
3651	Roman, C.T., N. Jaworski, F.T. Short, S. Findlay, and R.S. Warren, 2000: Estuaries of
3652	the northeastern United States: habitat and land use signatures. Estuaries, 23(6),
3653	743-764.
3654	Rybczyk, J.M. and D.R. Cahoon, 2002: Estimating the potential for submergence for two
3655	subsiding wetlands in the Mississippi River delta. Estuaries, 25(5), 985-998.
3656	Sklar, F.H. and J.A. Browder, 1998: Coastal environmental impacts brought about by
3657	alterations to freshwater flow in the Gulf of Mexico. Environmental Management,
3658	22(4) , 547-562.
3659	Spaur, C.C. and S.W. Snyder, 1999: Coastal wetlands evolution at the leading edge of
3660	the marine transgression: Jarrett Bay, North Carolina. Journal of the Elisha
3661	Mitchell Scientific Society, 115, 20-46.
3662	Stevenson, J.C., L.G. Ward, M.S. Kearney, and T.E. Jordan, 1985: Sedimentary
3663	processes and sea level rise in tidal marsh systems of Chesapeake Bay. In:
	Do Not City of Quests 176 of 900 Building Donate

176 of 800

CCSP 4	1

3664	Wetlands of the Chesapeake [Groman, H.A. (ed.)]. Environmental Law Institute,
3665	Washington DC, pp. 37-62.
3666	Stevenson, J.C. and M.S. Kearney. In press. Impacts of global change and sea level rise
3667	on tidal wetlands. In: Anthropogenic Impacts on Marshes [Silliman. B. et al.
3668	(eds.)]. University of California, Berkeley, Press, 49 pp.
3669	Titus, J. G., R. Jones, and R. Streeter, 2008: "Maps Depicting Site-Specific Scenarios for
3670	Wetlands Accretion as Sea Level Rises in the Mid-Atlantic Region," Section 2.2
3671	in Background Documents Supporting Climate Change Science Program
3672	Synthesis and Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea
3673	Level Rise, J.G. Titus and E.M. Strange (eds.), EPA430R07004, Washington,
3674	DC: U.S. EPA.
3675	Turner, R.E., E.M. Swenson, C.S. Milan, J.M. Lee, and T.A. Oswald, 2004: Below-
3676	ground biomass in healthy and impaired salt marshes. Ecological Research, 19(1),
3677	29-35.
3678	Voldseth, R.A., W.C. Johnson, T. Gilmanov, G. R. Guntenspergen, and B.V. Millet,
3679	2007: Model estimation of land use effects on water levels of northern prairie
3680	wetlands. Ecological Applications, 17(2), 527-540.
3681	Webster, P.J., G.J. Holland, J.A. Curry, and H.R. Chang, 2005: Changes in tropical
3682	cyclone number, duration, and intensity in a warming environment. Science,
3683	309(5742) , 1844-1846.
3684	Whitehead, D.R. and R.Q. Oaks, 1979: Developmental history of the Dismal Swamp. In:
3685	The Great Dismal Swamp [Kirk, P.W. (ed.)]. University Press of Virginia,
3686	Charlottesville, VA, pp. 25-43.
3687	

177 of 800

3688	Chapter 4. Vulnerable Species
3689	
3690	Authors: Ann Shellenbarger Jones, Industrial Economics, Inc.; Christina Bosch,
3691	Industrial Economics, Inc.; Elizabeth Strange, Stratus Consulting, Inc.
3692	
3693	KEY FINDINGS
3694	• The quality, quantity, and spatial distribution of coastal habitats will change as a
3695	result of shoreline erosion, salinity changes, and wetland loss. Species that rely on
3696	these habitats include both terrestrial and aquatic plants and animals. Depending on
3697	local conditions, habitat may be lost or migrate inland in response to sea-level rise. A
3698	key uncertainty and determinant of habitat and species loss is whether or not coastal
3699	landforms and present-day habitats will have space to migrate inland.
3700	• Loss of tidal marshes would seriously threaten coastal ecosystems, causing fish and
3701	birds to move or produce less offspring. Many estuarine beaches may also be lost,
3702	threatening species such as the terrapin and horseshoe crab.
3703	• Numerous bird species depend on tidal marshes for forage or nesting, including
3704	several marsh specialists: rails, the least bittern, Forster's tern, willets, seaside
3705	sparrows, and laughing gulls. Endangered beetles, horseshoe crabs, the red knot
3706	shorebird, and diamondback terrapins rely on sandy beach areas. Tidal marshes and
3707	submerged aquatic vegetation are important spawning, nursery, and shelter areas for
3708	fish and shellfish, including commercially important species like the blue crab.
3709	

Do Not Cite or Quote

178 of 800

3710	• Loss of bay islands already undergoing submersion will reduce available nesting for
3711	bird species that prefer island sites. Tidal freshwater swamp forests are considered
3712	globally uncommon to rare, and are at risk from sea-level rise among other threats.
3713	Seagrass beds may suffer from reduced sunlight for photosynthesis if water deepens
3714	over them or turbidity from sediment increases. Tidal flats, a rich source of
3715	invertebrate food for shorebirds, may be inundated, though new areas may be created
3716	as other shoreline habitats are submerged.
3717	
3718	INTRODUCTION
3719	Coastal ecosystems consist of a variety of environments, including tidal marshes, marsh
3720	and bay islands, tidal forests, seagrass beds, tidal flats, beaches, and cliffs, which provide
3721	important ecological and human use services, including habitat for endangered and
3722	threatened species. These ecosystem services, described in detail within this chapter,
3723	include not only those processes that support the ecosystem itself such as nutrient
3724	cycling, but also the human benefits derived from those processes, including fish
3725	production, water purification, water storage and delivery, and the provision of
3726	recreational opportunities that help promote human well-being. The high value that
3727	humans place on these services has been demonstrated in a number of studies,
3728	particularly of coastal wetlands (NRC, 2005).
3729	
3730	The services provided by coastal ecosystems could be affected in a number of ways by
3731	sea-level rise and coastal engineering projects designed to protect coastal properties from
3732	erosion and inundation. As seas rise, coastal habitats are subject to inundation, storm

Do Not Cite or Quote

179 of 800

3733	surges, saltwater intrusion, and erosion. The placement of hard structures along the
3734	shoreline may reduce sediment inputs from upland sources and increase erosion rates in
3735	front of the structures (USGS, 2003). If less sediment is available, marshes that are
3736	seaward of such structures may have difficulty maintaining appropriate elevations in the
3737	face of rising seas. Wetlands that are unable to either accrete sufficient substrate or
3738	migrate inland as sea level rises will gradually convert to open water, eliminating critical
3739	habitat for many coastal species. On the other hand, even where migration is possible,
3740	landward migration of wetlands may occur at the expense of other habitats (NRC, 2007).
3741	Shallow water and shoreline habitats are also affected by shoreline responses. Table 1 in
3742	Chapter 5 provides a preliminary overview of the expected environmental effects of
3743	human responses to sea-level rise.
3744	
5744	
3745	Habitat changes in response to sea-level rise and related processes may include structural
	Habitat changes in response to sea-level rise and related processes may include structural changes (such as shifts in vegetation zones or loss of vegetated area) and functional
3745	
3745 3746	changes (such as shifts in vegetation zones or loss of vegetated area) and functional
3745 3746 3747	changes (such as shifts in vegetation zones or loss of vegetated area) and functional changes (such as altered nutrient cycling). In turn, degraded ecosystem processes and
3745 3746 3747 3748	changes (such as shifts in vegetation zones or loss of vegetated area) and functional changes (such as altered nutrient cycling). In turn, degraded ecosystem processes and habitat fragmentation and loss may not only alter species distributions and relative
 3745 3746 3747 3748 3749 	changes (such as shifts in vegetation zones or loss of vegetated area) and functional changes (such as altered nutrient cycling). In turn, degraded ecosystem processes and habitat fragmentation and loss may not only alter species distributions and relative abundances, but may ultimately reduce local populations of the species that depend on
 3745 3746 3747 3748 3749 3750 	changes (such as shifts in vegetation zones or loss of vegetated area) and functional changes (such as altered nutrient cycling). In turn, degraded ecosystem processes and habitat fragmentation and loss may not only alter species distributions and relative abundances, but may ultimately reduce local populations of the species that depend on coastal habitats for feeding, nesting, spawning, nursery areas, protection from predators,
 3745 3746 3747 3748 3749 3750 3751 	changes (such as shifts in vegetation zones or loss of vegetated area) and functional changes (such as altered nutrient cycling). In turn, degraded ecosystem processes and habitat fragmentation and loss may not only alter species distributions and relative abundances, but may ultimately reduce local populations of the species that depend on coastal habitats for feeding, nesting, spawning, nursery areas, protection from predators,
 3745 3746 3747 3748 3749 3750 3751 3752 	changes (such as shifts in vegetation zones or loss of vegetated area) and functional changes (such as altered nutrient cycling). In turn, degraded ecosystem processes and habitat fragmentation and loss may not only alter species distributions and relative abundances, but may ultimately reduce local populations of the species that depend on coastal habitats for feeding, nesting, spawning, nursery areas, protection from predators, and other activities that affect growth, survival, and reproductive success.

180 of 800

3756	energy which decreases erosion of marsh edges. This chapter presents simplifications of
3757	these interactions in order to identify primary effects of both increased rates of sea-level
3758	rise and likely shore protections. In particular, sea-level rise is just one factor among
3759	many affecting coastal areas: sediment input, nutrient runoff, fisheries management, and
3760	other factors all contribute to the ecological condition of the various habitats discussed in
3761	this section. Under natural conditions, habitats are also continually shifting; the focus of
3762	this chapter is the effect that shoreline management will have on the ability for those
3763	shifts to occur (e.g., for marshes or barrier islands to migrate, for marsh to convert to tidal
3764	flat or vice versa) and any interruption to the natural shift. Scenarios are primarily
3765	presented broadly as habitat vulnerability rather then species vulnerability, since species
3766	generally have some versatility in their habitat usage, either by geography or by habitat
3767	type, and specific species data are limited.
3768	
3768 3769	Although these potential ecological effects are understood in general terms, few studies
	Although these potential ecological effects are understood in general terms, few studies have sought to demonstrate or quantify how sea-level rise and shoreline hardening in
3769	
3769 3770	have sought to demonstrate or quantify how sea-level rise and shoreline hardening in
3769 3770 3771	have sought to demonstrate or quantify how sea-level rise and shoreline hardening in combination may affect the ecosystem services provided by coastal habitats, and in
3769377037713772	have sought to demonstrate or quantify how sea-level rise and shoreline hardening in combination may affect the ecosystem services provided by coastal habitats, and in particular the abundance and distribution of animal species. While some studies have
 3769 3770 3771 3772 3773 	have sought to demonstrate or quantify how sea-level rise and shoreline hardening in combination may affect the ecosystem services provided by coastal habitats, and in particular the abundance and distribution of animal species. While some studies have looked at impacts of either sea-level rise (<i>e.g.</i> , Erwin <i>et al.</i> , 2006b; Galbraith <i>et al.</i> , 2002)
 3769 3770 3771 3772 3773 3774 	have sought to demonstrate or quantify how sea-level rise and shoreline hardening in combination may affect the ecosystem services provided by coastal habitats, and in particular the abundance and distribution of animal species. While some studies have looked at impacts of either sea-level rise (<i>e.g.</i> , Erwin <i>et al.</i> , 2006b; Galbraith <i>et al.</i> , 2002) or shore protections (<i>e.g.</i> , Seitz <i>et al.</i> , 2006), there is minimal literature available on the
 3769 3770 3771 3772 3773 3774 3775 	have sought to demonstrate or quantify how sea-level rise and shoreline hardening in combination may affect the ecosystem services provided by coastal habitats, and in particular the abundance and distribution of animal species. While some studies have looked at impacts of either sea-level rise (<i>e.g.</i> , Erwin <i>et al.</i> , 2006b; Galbraith <i>et al.</i> , 2002) or shore protections (<i>e.g.</i> , Seitz <i>et al.</i> , 2006), there is minimal literature available on the combined affects of rising seas and shore protections. Nonetheless, it is possible in some

181 of 800

- 3779 protection activities, and highlight those species that are a particular concern. In
- 3780 Appendices A-G of this report, we discuss in greater detail specific local habitats and
- animal populations that are at risk.

3783 4.1 TIDAL MARSHES

- 3784 In addition to their dependence on tidal influence, tidal marshes are defined primarily in
- 3785 terms of their salinity, and include salt, brackish, and freshwater wetlands immediately
- 3786 landward of the shoreline. Because of their direct connection to the ocean, tidal salt
- 3787 marshes are the most vulnerable of coastal habitats to rising seas.
- 3788
- 3789 Salt marshes are among the most productive systems in the world because of the
- 3790 extraordinarily high amount of above- and below-ground plant matter that they produce.
- 3791 In turn, this large reservoir of primary production supports a wide variety of
- invertebrates, fish, birds, and other animals that make up the estuarine food web (Teal,
- 3793 1986). Insects and other small invertebrates feed on the organic material of the marsh and
- provide food for larger organisms, including crabs, shrimp, and small fishes, which in
- turn provide food for larger consumers such as birds and estuarine fishes that move into
- the marsh to forage.

3797

- 3798 Although much marsh primary production is used within the marsh itself, some is
- 3799 exported to adjacent estuaries and marine waters. It is estimated that about 40% of the
- aboveground primary production is exported (Teal, 1986). In addition, some of the
- 3801 secondary production of marsh resident fishes, particularly mummichog, and of juveniles,

Do Not Cite or Quote

182 of 800

3802	such as blue crab, is exported out of the marsh to support both nearshore estuarine food

- 3803 webs as well as fisheries in coastal areas (Boesch and Turner, 1984; Knieb, 1997; Kneib,
- 3804 2000; Deegan *et al.*, 2000; Beck *et al.*, 2003; Dittel *et al.*, 2006; Stevens *et al.*, 2006)⁷. As
- 3805 studies of flood pulses have shown, the extent of the benefits provided by wetlands may
- 3806 be greater in regularly flooded tidal wetlands than in irregularly flooded areas (Bayley,
- 3807 1991; Zedler and Calloway, 1999).
- 3808

3809

Figure 4.1 Marsh and tidal creek, Mathews County, VA.

Do Not Cite or Quote

Tidal creeks and channels (Figure 4.1) frequently cut through low marsh areas, draining the marsh surface and serving as routes for nutrient-rich plant detritus to be flushed out into deeper water as tides recede and for small fish, shrimps, and crabs to move into the marsh during high tides (Lippson and Lippson, 2006). In addition to mummichog, fish species found in tidal creeks at low tide include Atlantic silverside, striped killifish, and sheepshead minnow (Rountree and Able, 1992). Waterbirds such as great blue herons and

⁷ See Glossary for a list of corresponding scientific names.

- 3818 egrets are attracted to marshes to feed on the abundant small fish, snails, shrimps, clams,
- and crabs found in tidal creeks and marsh ponds.

- 3821 As discussed in Chapter 3, tidal marshes can keep pace with sea-level rise through
- 3822 vertical accretion (*i.e.*, soil build up through sediment deposition and organic matter
- 3823 accumulation) or inland migration as long as a dependable sediment supply exists and
- inland movement is not impeded by shoreline structures (Figure 4.2) or by geology (e.g.
- 3825 sloped areas between geologic terraces, as found around Chesapeake Bay) (Ward *et al.*,
- 3826 1998). In areas where neither sufficient accretion nor migration can occur, increased tidal
- 3827 flooding may stress marsh plants through water logging and changes in soil chemistry,
- 3828 leading to a change in plant species composition and vegetation zones. If marsh plants
- 3829 become too stressed and die, the marsh will eventually convert to open water or tidal flat
- 3830 (Callaway *et al.*, 1996)⁸.

3831

Do Not Cite or Quote

⁸ The Plum Tree Island National Wildlife Refuge is an example of a marsh deteriorating through lack of sediment input and migration capacity, due to development on its landward side. Extensive mudflats front the marsh. See Appendix F for additional details.

¹⁸⁴ of 800

Figure 4.2 Fringing marsh and bulkhead, Monmouth County, New Jersey.

3835 Sea-level rise is also increasing salinity upstream in some rivers, leading to shifts in

3836 vegetation composition and the conversion of some tidal freshwater marshes into

3837 brackish marshes (Maryland DNR, 2005). At the same time, brackish marshes can

deteriorate as a result of ponding and smothering of marsh plants by beach wrack (aquatic

3839 plants that are carried on shore during high tide and are left behind when tides recede) as

3840 salinity increases and storms accentuate marsh fragmentation⁹. While this process may

allow colonization by lower marsh species, that outcome is not certain (Stevenson and

3842 Kearney, 1996). Low brackish marshes can change dynamically in area and composition

3843 as sea level rises. If they are lost, forage fish and invertebrates of the low marsh, such as

fiddler crabs, grass shrimp, and ribbed mussels, will no longer be available to predators.

3845 Though more ponding may provide some additional foraging areas as marshes

Do Not Cite or Quote

185 of 800

⁹ Along the Patuxent River, Maryland, refuge managers have noted marsh deterioration and ponding with sea level rise. See Appendix F for additional details.

3846	deteriorate, the associated increase in salinity due to evaporative loss can also inhibit the
3847	growth of marsh plants (Maryland DNR, 2005).

3849	Brackish marshes support many of the same wildlife species as salt marshes, with some
3850	notable exceptions. Bald eagles forage in brackish marshes and nest in nearby wooded
3851	areas. Because there are few resident mammalian predators, small herbivores such as
3852	meadow vole thrive in these marshes. Fish species common in the brackish waters of the
3853	Mid-Atlantic include striped bass and white perch, which move in and out of brackish
3854	waters year-round. Anadromous fish found in the Mid-Atlantic include herring and shad,
3855	while marine transients such as Atlantic menhaden and drum species are present in
3856	summer and fall (White, 1989).
3857	
3858	Freshwater tidal marshes are characteristic of the upper reaches of estuarine tributaries. In
3859	general, the plant species composition of freshwater marshes depends on the degree of
3860	flooding, with some species germinating well when completely submerged, while others
3861	are relatively intolerant of flooding (Mitsch and Gosselink, 2000). Freshwater tidal
3862	marshes have been shown to possess higher plant diversity than other tidal marsh types
3863	(Perry and Atkinson, 1997). The vegetative species composition of the higher elevation
3864	freshwater marsh typically includes abundances of jewelweed, (Impatiens capensis),
3865	green arrow arum (Peltandra virginica), knotweed, tearthumb and smartweed species
3866	(Polygonum spp.), river bulrush (Schoenoplectus fluviatilis), and narrowleaf cattail
3867	(Typha angustifolia). The low freshwater marsh includes common threesquare (Scirpus
3868	pungens), tidalmarsh amaranth (Amaranthus cannabinus), and wild rice (Zizania

Do Not Cite or Quote

186 of 800

20.00	
3869	aquatica) among others, depending on location, and salinity (NatureServe, accessed
3870	2008).
3871	
3872	Tidal freshwater marshes provide shelter, forage, and spawning habitat for numerous fish
3873	species, primarily cyprinids (minnows, shiners, carp), centrarchids (sunfish, crappie,
3874	bass), and ictalurids (catfish). In addition, some estuarine fish and shellfish species
3875	complete their life cycles in freshwater marshes. Freshwater tidal marshes are also
3876	important for a wide range of bird species. Some ecologists suggest that freshwater tidal
3877	marshes support the greatest diversity of bird species of any marsh type. The avifauna of
3878	these marshes includes waterfowl; wading birds; rails and shorebirds; birds of prey; gulls,
3879	terns, kingfishers, and crows; arboreal birds; and ground and shrub species. Perching
3880	birds such as red-winged blackbirds are common in stands of cattail. Tidal freshwater
3881	marshes support additional species that are rare in saline and brackish environments, such
3882	as frogs, turtles, and snakes (White, 1989).
3883	
3884	Effects of marsh inundation on fish and shellfish species are likely to be complex. In the
3885	short term, inundation may make the marsh surface more accessible, increasing
3886	production. However, benefits will decrease as submergence decreases total marsh
3887	habitat (Rozas and Reed, 1993). For example, deterioration and mobilization of marsh
3888	peat sediments increases the immediate biological oxygen demand and may deplete
3889	oxygen in marsh creeks and channels below levels needed to sustain fish. In these
3890	oxygen-deficient conditions, mummichogs and other killifish may be among the few
3891	species able to persist (Stevenson et al., 2002). Inadequate tidal flow can result in
3892	hypersaline conditions, leading to die-off of marsh vegetation, and loss of the network of

187 of 800

- 3893 tidal creeks characteristic of natural marshes. Fish production is known to be significantly
- lower in marshes that lack a high drainage density (Kneib, 1997).

3896	In areas where marshes are reduced, remnant marshes may provide lower quality habitat,
3897	fewer nesting sites, and greater predation risk for a number of bird species that are marsh
3898	specialists and are also important components of marsh food webs, including the clapper
3899	rail, black rail, least bittern, Forster's tern, willet, and laughing gull (Figure 4.3) (Erwin et
3900	al., 2006b). The majority of the Atlantic Coast breeding populations of Forster's tern and
3901	laughing gull are considered to be at risk because of loss of lagoonal marsh habitat due to
3902	sea-level rise (Erwin et al., 2006b). In a Virginia study, scientists found that the minimum
3903	marsh size to support significant marsh bird communities was 4.1-6.7 ha (Watts, 1993).
3904	Some species may require even larger marsh sizes; minimum marsh size for successful
3905	communities of the saltmarsh sharp-tailed sparrow and the seaside sparrow, both on the
3906	Partners in Flight WatchList, are estimated at 10 ha and 67 ha, respectively (Benoit and
3907	Askins, 2002).

3908

Do Not Cite or Quote

188 of 800

3910 **Figure 4.3** Marsh drowning and hummock in Blackwater Wildlife Refuge, Maryland.

3911

3912 4.2 MARSH AND BAY ISLANDS

- 3913 Marsh and bay islands are found throughout the mid-Atlantic study region, and are
- 3914 particularly vulnerable to sea-level rise. Islands are common features of salt marshes, and
- 3915 some estuaries and back barrier bays have islands formed by deposits of dredge spoil.
- 3916 Many islands are a mix of habitat types, with vegetated and unvegetated wetlands in
- 3917 combination with upland areas¹⁰. These isolated areas provide nesting sites for various
- 3918 bird species, particularly colonial nesting waterbirds, where they are protected from
- 3919 terrestrial predators such as red fox. Gull-billed terns, common terns, black skimmers,
- 3920 and American oystercatchers all nest on marsh islands (Rounds et al., 2004; Eyler et al.,
- 3921 1999).
- 3922

Do Not Cite or Quote

189 of 800

¹⁰ Thompson's Island in Rehoboth Bay, Delaware, is a good example of a mature forested upland with substantial marsh and beach area. The island hosts a large population of migratory birds. See Strange, E., D. Wilson, and C. Bason. 2006. Maryland and Delaware Coastal Bays: Supporting Document for CCSP 4.1, Question 8.

- 3923 Many islands along the Mid-Atlantic, and particularly in Chesapeake Bay, have already
- been lost or severely reduced as a result of erosion and flooding related to sea-level rise.
- 3925 Field studies indicate that the loss of wetland islands poses a serious, near-term threat for
- 3926 island-nesting bird species, and in some areas, diamond-back terrapins. Mainland
- 3927 marshes are often not a good substitute, because of $predators^{11}$.
- 3928

- **Figure 4.4** Cypress along Roanoke River, North Carolina.
- 3932 4.3 TIDAL FRESHWATER SWAMP FORESTS
- 3933 Limited primarily by their requirements for low salinity water in a tidal regime, tidal
- 3934 swamp forests occur primarily in upper regions of tidal tributaries in Virginia, Maryland,
- 3935 Delaware, New Jersey, and New York (NatureServe, 2006). The low-lying shorelines of
- 3936 North Carolina also contain large stands of forested wetlands, including cypress and
- 3937 pocosins (Figure 4.4). Also in the mid-Atlantic coastal plains (*e.g.*, around Barnegat Bay,
- 3938 NJ) are Atlantic white cedar swamps, found in areas where a saturated layer of peat
- 3939 overlays a sandy substrate (NatureServe, 2006).

Do Not Cite or Quote

190 of 800

¹¹e.g., see general discussion in McGowan, 2005.

3941	Tidal freshwater swamp forests face a variety of threats, including sea-level rise, and are
3942	currently considered globally uncommon to rare. The responses of these forests to sea-
3943	level rise may include retreat at the open-water boundary, drowning in place, or
3944	expansion inland. One study noted that, "Crown dieback and tree mortality are visible
3945	and nearly ubiquitous phenomena in these communities and are generally attributed to
3946	sea-level rise and an upstream shift in the salinity gradient in estuarine rivers" (Fleming
3947	et al., 2006). Figure 4.5 presents an example of inundation and tree mortality. Ecologists
3948	in Virginia have observed that where tree death is present, the topography is limiting
3949	inland migration of the hardwood swamp and the underbrush is being invaded by marsh
3950	plants ¹² .

3951

3952

3955

Do Not Cite or Quote

191 of 800

³⁹⁵³ Figure 4.5 Inundation and tree mortality in tidal freshwater swamp at Swan's Point, Lower Potomac3954 River.

¹² Gary Fleming, Vegetation Ecologist. Virginia Department of Conservation and Recreation, Division of Natural Heritage, written communication to Christina Bosch, Industrial Economics, September 11, 2006.

3956	4.4 SEA-LEVEL FENS
3957	Sea-level fens are a rare type of coastal wetland with a mix of freshwater tidal and
3958	northern bog vegetation and unique assemblage of vegetation including carnivorous
3959	plants such as sundew and bladderworts (Fleming et al., 2006; VNHR, 2006). The
3960	eastern mud turtle and the smallest northeastern dragonfly (Nanothemis bella) are among
3961	the animal species found in sea-level fens. Fens may occur in areas where soils are acidic
3962	and a natural seep from a nearby slope provides nutrient-poor groundwater (VNHR,
3963	2006). It is not clear what effect sea-level rise may have on these wetlands. Fens do not
3964	tolerate nutrient-rich ocean waters, and therefore if a fen is at an elevation where it can
3965	become inundated by rising seas it may not persist ¹³ . On the other hand, sea-level rise
3966	could cause the natural seep (groundwater discharge) to migrate upslope and increase in
3967	volume at some locations, which would benefit fens ¹⁴ .
3968	
3969	4.5 SUBMERGED AQUATIC VEGETATION
3970	Submerged aquatic vegetation (SAV) is distributed throughout the mid-Atlantic region,
3971	dominated by eelgrass in the higher-salinity areas and a large number of brackish and
3972	freshwater species elsewhere (e.g., widgeon grass, sea lettuce) (Hurley, 1990). SAV plays
3973	a key role in estuarine ecology, helping to regulate the oxygen content of nearshore
3974	waters, trapping sediments and nutrients, stabilizing bottom sediments, and reducing
3975	wave energy (Short and Neckles, 1999). SAV also provides food and shelter for a variety
3976	of fish and shellfish and the species that prey on them. Organisms that forage in SAV

¹³ Chris Bason, Delaware Inland Bays Program, written communication to EPA, May 14, 2007.

Do Not Cite or Quote

192 of 800

¹⁴ Barry Truitt, Chief Conservation Scientist, The Nature Conservancy, Virginia Coast Reserve, written communication to EPA, July 25, 2007.

3977	beds feed on the plants themselves, the detritus and the epiphytes on plant leaves, and the
3978	small organisms found within the SAV bed ¹⁵ . The commercially valuable blue crab hides
3979	in eelgrass during its molting periods, when it is otherwise vulnerable to predation. In
3980	Chesapeake Bay, summering sea turtles frequent eelgrass beds. The federally listed
3981	endangered Kemp's Ridley sea turtle forages in eelgrass beds and flats, feeding on blue
3982	crabs in particular (Chesapeake Bay Program [sea turtles], 2007). Various waterbirds
3983	feed on SAV, including brant, canvasback, and American black duck (Perry and Deller,
3984	1996).
3985	
3986	Forage for piscivorous birds and fish is also provided by residents of nearby marshes that
3987	move in and out of SAV beds with the tides, including mummichog, Atlantic silverside,
3988	naked goby, northern pipefish, fourspine stickleback, and threespine stickleback.
3989	Juveniles of many commercially and recreationally important estuarine and marine fishes
3990	(such as menhaden, herring, shad, spot, croaker, weakfish, red drum, striped bass, and
3991	white perch) and smaller adult fish (such as bay and striped anchovies) use SAV beds as
3992	nurseries (Chesapeake Bay Program [SAV], 2007; Wyda et al., 2002.). Adults of
3993	estuarine and marine species such as sea trout, bluefish, perch, and drum search for prey
3994	in SAV beds.
3995	
3006	Effects of see level rise on SAV bads are uncertain because most changes in SAV occur

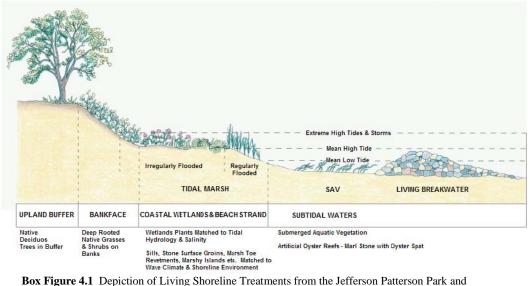
- 3996 Effects of sea-level rise on SAV beds are uncertain because most changes in SAV occur
- 3997 on a significantly shorter timescale than can be attributed to sea-level rise 16 . However,

¹⁵ See various sources, including Stockhausen, 2003 for blue crabs and Wyda, 2002 for fish.

¹⁶ For example, nutrient pollution from various sources is a common problem for SAV beds (USFWS, undated).

3998	Short and Neckles (1999) estimate that a 50 cm increase in water depth as a result of sea-
3999	level rise could reduce the available light in coastal areas by 50%, resulting in a 30-40%
4000	reduction in seagrass growth in current bed areas (Short and Neckles, 1999).
4001	
4002	Although plants in some portion of a SAV bed may decline as a result of such factors,
4003	landward edges may migrate inland depending on shore slope and substrate suitability.
4004	SAV growth is significantly better in areas where erosion provides sandy substrate, rather
4005	than fine-grained or high organic matter substrates (Stevenson et al., 2002).
4006	
4007	Sea-level rise effects on the tidal range could also impact SAV, although the effect may
4008	be detrimental or beneficial. In areas where the tidal range increases, plants at the lower
4009	edge of the bed will receive less light at high tide, increasing plant stress (Koch and Beer,
4010	1996). In areas where the tidal range decreases, the decrease in intertidal exposure at low
4011	tide on the upper edge of the bed will reduce plant stress (Short and Neckles, 1999).
4012	
4013	Shoreline construction and armoring will impede shoreward movement of SAV beds
4014	(Short and Neckles, 1999). First, hard structures tend to affect the immediate
4015	geomorphology as well as any adjacent seagrass habitats. Particularly during storm
4016	events, wave reflection off of revetments can increase water depth and magnify the inland
4017	reach of waves on downcoast beaches (Plant and Griggs, 1992; USGS, 2003; Small and
4018	Carman, 2005). Second, as sea level rises in armored areas, the nearshore area deepens
4019	and light attenuation increases, restricting and finally eliminating seagrass growth.
4020	Finally, high nutrient levels in the water are a limiting factor. Sediment trapping behind

194 of 800


- 4021 breakwaters, which increases the organic content, may limit eelgrass success. Low-
- 4022 profile armoring, including stone sills and other "living shorelines" projects, may be
- 4023 beneficial to SAV growth (NRC, 2007). Projects to protect wetlands and restore adjacent
- 4024 SAV beds are taking place and represent a potential protection against SAV loss (e.g.,
- 4025 U.S. Army Corps of Engineers restoration for Smith Island in Chesapeake Bay) (USACE,
- 4026 2004).
- 4027
- 4028 Loss of SAV affects numerous animals that depend on the vegetation beds for protection
- 4029 and food. By one estimate, a 50% reduction in SAV results in a roughly 25% reduction in
- 4030 striped bass production (Kahn and Kemp, 1985). For diving and dabbling ducks, a
- 4031 decrease in SAV in their diets since the 1960s has been noted (Perry and Deller, 1996).
- 4032 The decreased SAV in Chesapeake Bay is cited as a major factor in the substantial
- 4033 reduction in wintering waterfowl (Perry and Deller, 1996).
- 4034 **Box 4.1** Shore Protection Alternatives: Living Shorelines

4035Shore erosion and methods for its control are a major concern in estuarine and marine ecosystems.4036However, awareness has grown in recent years of the negative impacts that many traditional shoreline4037protection methods have, including loss of wetlands and their buffering capacities, impacts on4038nearshore biota, and ability to withstand storm events. Along all but the highest-energy shorelines (due4039to fetch or boat traffic), non-structural approaches are being considered, or hybrid-type projects that4040combine a marsh fringe with groins, sills, or breakwaters. The cost per foot for these projects is also4041significantly less than for bulkheads or stone reinforcements.

4043These projects typically combine marsh replanting (generally Spartina patens and Spartina4044alterniflora) and stabilization through sill, groins, or breakwaters. A survey of projects on the eastern4045and western sides of Chesapeake Bay (including Wye Island, Epping Forest near Annapolis, and the4046Jefferson Patterson Park and Museum on the Patuxent) found that the sill structures or breakwaters4047were most successful in attenuating wave energy and allowing the development of a stable marsh4048environment.

Do Not Cite or Quote

195 of 800

Box Figure 4.1 Depiction of Living Shore Museum, Patuxent River.

4052
4053
4054
4055
4055
4056
4056
4056
4056
4057
4058
4059
4059
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050
4050</l

4057 **4.6 TIDAL FLATS**

- 4058 Tidal flats are composed of mud or sand and provide habitat for a rich abundance of
- 4059 invertebrates. Tidal flats are critical foraging areas for numerous birds, including wading
- 4060 birds, migrating shorebirds, and dabbling ducks.
- 4061

4049 4050

4051

- 4062 In areas with low accretion rates, marsh will revert to unvegetated flats and eventually
- 4063 open water as seas rise (Brinson et al., 1995). For example, in New York's Jamaica Bay,
- 4064 several hundred acres of low saltmarsh have converted to open shoals¹⁷. Modeling by
- 4065 Galbraith et al. (2002) predicted that under a two degree Celsius global warming
- 4066 scenario, sea-level rise could inundate significant areas of intertidal flats in some regions

Do Not Cite or Quote

¹⁷ See Appendix B for additional details.

4067	(Galbraith et al., 2002). In some cases where tidal range increases with increased rates of
4068	sea-level rise; however, there may be a net increase in the acreage of tidal flats (Field et
4069	<i>al.</i> , 1991).
4070	
4071	In areas where sediments accumulate in shallow waters and shoreline protection prevents
4072	landward migration of salt marshes, flats may become vegetated as low marsh encroaches
4073	waterward. This will accelerate sediment deposition at the waterward edge of the
4074	vegetated area and increase low marsh at the expense of tidal flats (Redfield, 1972). If
4075	sediment inputs are not sufficient, tidal flats will convert to subtidal habitats, which may
4076	or may not be vegetated depending on substrate composition.
4077	
4078	Loss of tidal flats would eliminate a rich invertebrate food source for migrating birds,
4079	including insects and small crabs and other shellfish. As tidal flat area declines, increased
4080	crowding in remaining areas could lead to exclusion and reductions in local shorebird
4081	populations (Galbraith et al., 2002). At the same time, ponds within marshes may become
4082	more important foraging sites for the birds if flats are inundated by sea-level rise (Erwin
4083	<i>et al.</i> , 2004).
4084	

Do Not Cite or Quote

197 of 800

4086 **Figure 4.6** Estuarine beach and bulkhead along Arthur Kills.

4087

4088 **4.7 ESTUARINE BEACHES**

- 4089 Throughout most of the mid-Atlantic region and its tributaries, estuarine beaches front
- 4090 the base of low bluffs and high cliffs as well as bulkheads and revetments (see Figure
- 4091 4.6) (Jackson *et al.*, 2002). Estuarine beaches can also occur in front of marshes and on
- 4092 the mainland side of barrier islands.

4093

4094 **Figure 4.7** Dinner time along Peconic Estuary Beach, Long Island, NY.

Do Not Cite or Quote

198 of 800

4095	The most abundant beach organisms are microscopic invertebrates that live between sand
4096	grains, feeding on bacteria and single-celled protozoa. It is estimated that over two billion
4097	of these organisms are in a single square meter of sand (Bertness, 1999). They play a
4098	critical role in beach food webs as a link between bacteria and larger consumers such as
4099	sand diggers, fleas, crabs and other macroinvertebrates burrow in sediments or hide under
4100	rocks. Various rare and endangered beetles also live on sandy shores. Diamondback
4101	terrapin and horseshoe crabs bury their eggs in beach sands. In turn, shorebirds such as
4102	the piping plover, American oystercatcher, and sandpipers feed on these resources
4103	(USFWS, 1988). The insects and crustaceans found in deposits of wrack on estuarine
4104	beaches are also an important source of forage for birds (Figure 4.7) (Dugan et al., 2003).
4105	As sea levels rise, the fate of estuarine beaches depends on their ability to migrate and the
4106	availability of sediment to replenish eroded sands (Figure 4.8) (Jackson et al., 2002).
4107	Estuarine beaches continually erode, but under natural conditions the landward and
4108	waterward boundaries usually retreat by about the same distance. Shoreline protection
4109	structures may prevent migration, effectively squeezing beaches between development
4110	and the water. Armoring that traps sand in one area can limit or eliminate longshore
4111	transport, and, as a result, diminish the constant replenishment of sand necessary for
4112	beach retention in nearby locations. Areas with bulkheads frequently have artificially
4113	elevated land areas because not all structures are built in a straight line. In armored areas
4114	between headlands, the beach will likely become steeper and the sediments coarser
4115	(Jackson et al., 2002). Waterward of the bulkheaded headlands, the foreshore habitat will
4116	be lost, frequently even without sea-level rise. For areas between these headlands that are
4117	not armored, sediment input may be reduced and inundation may occur with rising sea

199 of 800

- 4118 level. In areas with sufficient sediment input relative to sea-level rise (e.g., upper
- 4119 tributaries and upper Chesapeake Bay) beaches may remain in place in front of armoring.
- 4120

4121

4122 **Figure 4.8** Beach with beach wrack and marsh in New Jersey.

4123

4124 In many developed areas, estuarine beaches may be maintained with beach nourishment

4125 if there are sufficient sources. However, the ecological effects of beach nourishment

4126 remain uncertain. Beach nourishment will allow retention in areas with a sediment

4127 deficit, but may reduce habitat value through effects on sediment characteristics and

4128 beach slope (Peterson and Bishop, 2005).

4129

- 4130 Beach loss will cause declines in local populations of rare beetles found in Calvert
- 4131 County, Maryland. While the Northeastern beach tiger beetle is able to migrate in
- 4132 response to changing conditions, suitable beach habitat must be available nearby
- 4133 (USFWS, 1994).
- 4134

Do Not Cite or Quote

200 of 800

4135	At present, the degree to which horseshoe crab populations will decline as beaches are
4136	lost remains unclear. Early research results indicate that horseshoe crabs may lay eggs in
4137	intertidal habitats other than estuarine beaches, such as sandbars and the sandy banks of
4138	tidal creeks (Loveland and Botton, 2007). Nonetheless, these habitats may only provide a
4139	temporary refuge for horseshoe crabs if they are inundated as well.
4140	
4141	Where horseshoe crabs decline because of loss of suitable habitat for egg deposition,
4142	there can be significant implications for migrating shorebirds, particularly the red knot, a
4143	candidate for protection under the federal Endangered Species Act, which feeds almost
4144	exclusively on horseshoe crab eggs during stopovers in the Delaware Estuary (Karpanty
4145	et al., 2006). In addition, using high-precision elevation data from nest sites, researchers
4146	are beginning to examine the effects that sea-level rise will have on oystercatchers and
4147	other shore birds (Rounds, 2002). To the extent that estuarine and riverine beaches,
4148	particularly on islands, survive better than barrier islands, shorebirds may be able to
4149	migrate to these shores (McGowan et al., 2005).
4150	
4151	4.8 CLIFFS
4152	Unvegetated cliffs and the sandy beaches sometimes present at their bases are constantly
4153	reworked by wave action, providing a dynamic habitat for cliff beetles and birds. Little
4154	vegetation exists on the cliff face due to constant erosion, and the eroding sediment
4155	augments nearby beaches. Cliffs are present on Chesapeake Bay's western shore and
4156	tributaries and its northern tributaries (see Figure 4.9), as well as in Hempstead Harbor on
4157	Long Island's North Shore.

201 of 800

4159

4160 Figure 4.9 Crystal Beach, along the Elk River, Maryland.4161

4101	
4162	If the cliff base is armored to protect against rising seas, erosion rates may decrease,
4163	eliminating the unvegetated cliff faces that are sustained by continuous erosion and
4164	provide habitat for species such as the Puritan tiger beetle and bank swallow. Naturally
4165	eroding cliffs are "severely threatened by shoreline erosion control practices" according
4166	to the Maryland DNR's Wildlife Diversity Conservation Plan (Maryland DNR, 2005).
4167	Shoreline protections may also subject adjacent cliff areas to wave undercutting and
4168	higher recession rates (Wilcock et al., 1998). Development and shoreline stabilization
4169	structures that interfere with natural erosional processes are cited as threats to bank-
4170	nesting birds as well as two species of tiger beetles (federally listed as threatened) at
4171	Maryland's Calvert Cliffs (USFWS, 1993; USFWS, 1994; CCB, 1996).

- 4172
- 4173

202 of 800

4174	4.9 SUMMARY	
4175	Based on the information currently available, it is possible to identify particular taxa and	
4176	even some individual species that appear to be at greatest risk if coastal habitats are	
4177	degraded or lost in response to sea-level rise and shoreline hardening:	
4178	• Degradation and loss of tidal wetlands will affect fish and shellfish production in both	
4179	the marshes themselves and adjacent estuaries.	
4180	• Bird species that are marsh specialists, including the clapper rail, black rail, least	
4181	bittern, Forster's tern, willet, and laughing gull, are particularly at risk. At present, the	
4182	majority of the Atlantic Coast breeding populations of Forster's tern and laughing	
4183	gull are considered to be at risk from loss of lagoonal marshes.	
4184	• Increased turbidity in nearshore areas and increased water depths may reduce light	
4185	penetration to seagrass beds, reducing photosynthesis and therefore the growth and	
4186	survival of seagrasses. Degradation and loss of seagrass beds will affect the numerous	
4187	organisms that feed, carry on reproductive activities, and seek shelter in seagrass	
4188	beds.	
4189	• Diamondback terrapin are at risk of losing both marsh habitat that supports growth	
4190	and adjoining beaches where eggs are buried.	
4191	• Many marsh islands along the Mid-Atlantic, and particularly in Chesapeake Bay,	
4192	have already been lost or severely reduced as a result of erosion and flooding related	
4193	to sea-level rise. Loss of such islands poses a serious, near-term threat for island-	
4194	nesting bird species such as gull-billed terns, common terns, black skimmers, and	
4195	American oystercatchers.	

203 of 800

4196	•	Tidal freshwater swamp forests are at risk from sea-level rise and a variety of other
4197		threats, and are now considered globally uncommon to rare.
4198	•	Shoreline stabilization structures interfere with natural erosional processes that
4199		maintain unvegetated cliff faces that provide habitat for bank-nesting birds and tiger
4200		beetles.
4201	•	Loss of tidal flats could lead to increased crowding of foraging birds in remaining
4202		areas, resulting in exclusion of many individuals; if alternate foraging areas are
4203		unavailable, starvation of excluded individuals may result, ultimately leading to
4204		reductions in local bird populations.
4205	•	Loss of estuarine beaches could cause declines in local populations of rare tiger
4206		beetles.
4207	•	Where horseshoe crabs decline because of loss of suitable beach substrate for egg
4207	•	where noisesnoe crabs decline because of loss of suitable beach substrate for egg
4208		deposition, there could be significant implications for migrating shorebirds,
4209		particularly the red knot, a candidate for protection under the federal Endangered
4210		Species Act. Red knot feed almost exclusively on horseshoe crab eggs during
4211		stopovers in the Delaware Estuary.
4212 4213 4214	Cl	HAPTER 4 REFERENCES
4215	Ba	yley, P.B., 1991: The flood pulse advantage and the restoration of river-floodplain
4216		systems. Regulated Rivers: Research and Management; 6, 75-86.
4217	Be	ck, M.W., K.L. Heck, Jr., K.W. Able, D.L. Childers, D.B. Eggleston, B.M. Gillanders,
4218		B.S. Halpern, C.G. Hays, K. Hoshino, T.J. Minello, R.J. Orth, P.F. Sheridan, and
4219		M.P. Weinstein, 2003: The role of nearshore ecosystems as fish and shellfish
4220		nurseries. Issues in Ecology; 11, 1-12.

Do Not Cite or Quote

204 of 800

С	CSP	4.1

4221	Benoit, L.K. and R.A. Askins, 2002: Relationship between habitat area and the
4222	distribution of tidal marsh birds. The Wilson Bulletin, 114(3), 314-323.
4223	Bertness, M.B., 1999: The Ecology of Atlantic Shorelines. Sinauer Associates Inc.,
4224	Sunderland, MA, 417 pp.
4225	Boesch, D.F. and R.E. Turner, 1984: Dependence of fishery species on salt marshes: the
4226	role of food. Estuaries, 7, 460-468.
4227	Brinson, M.M., R.R. Christian, and L.K. Blum, 1995: Multiple states in the sea level
4228	induced transition from terrestrial forest to estuary. Estuaries, 18(4), 648-659.
4229	Burke, D.G., E.W. Koch, J.C. Stevenson, 2005: Assessment of Hybrid Type Shore
4230	Erosion Control Projects in Maryland's Chesapeake Bay Phases I & II. Final
4231	Report Submitted to Chesapeake Bay Trust, Annapolis, MD.
4232	Callaway, J.C., J.A. Nyman, and R.D. DeLaune, 1996: Sediment accretion in coastal
4233	wetlands: A review and a simulation model of processes. Current Topics in
4234	Wetland Biogeochemistry, 2, 2-23.
4235	CCB (The Center for Conservation Biology) at William & Mary, 1996: Fieldwork
4236	concluded on bank-nesting bird study. Cornerstone Magazine. 2, 1. Accessed
4237	online at: https://www.denix.osd.mil/denix/Public/ESPrograms/
4238	Conservation/Legacy/Corner-stone/corner.html on June 21, 2006.
4239	Chesapeake Bay Program [sea turtles]. 2007. Sea turtles guide.
4240	http://www.chesapeakebay.net/seaturtle.htm. Accessed February 28, 2007.
4241	Chesapeake Bay Program [SAV]. 2007. SAV overview:
4242	http://noaa.chesapeakebay.net/HabitatSav.aspx. Accessed February 28, 2007
4243	Deegan, L.A., J.E., Hughes, and R.A. Rountree, 2000: Salt marsh ecosystem support of
4244	marine transient species. In: Concepts and Controversies in Tidal Marsh Ecology.
4245	[Weinstein, M.P. and D.A.Kreeger (eds.)]. Kluwer Academic, Dordrecht, The
4246	Netherlands, pp. 333-368.

205 of 800

4247	Dittel, A.I., C.E. Epifanio, and M.L. Fogel, 2006: Trophic relationships of blue crabs
4248	(<i>Callinectes sapidus</i>) in estuarine habitats. <i>Hydrobiologia</i> , 568 , 379-390.
4249	Dugan, J.E., D.M. Hubbard, M.D. McCrary, and M.O. Pierson, 2003: The response of
4250	macrofauna communities and shorebird communities to macrophyte wrack
4251	subsidies on exposed sandy beaches of southern California. Estuarine, Coastal,
4252	and Shelf Science, 58S , 25-40.
4253	Erwin, M.R., D.R. Cahoon, D.J. Prosser, G.M. Sanders, and P. Hensel, 2006a: Surface
4254	elevation dynamics in vegetated Spartina marshes versus unvegetated tidal ponds
4255	along the mid-Atlantic coast, USA, with implications to waterbirds. Estuaries and
4256	Coasts, 29 , 96-106.
4257	Erwin, R.M., G.M. Sanders, D.J. Prosser, and D.R. Cahoon, 2006b: High tides and rising
4258	seas: potential effects on estuarine waterbirds. In: Terrestrial Vertebrates in Tidal
4259	Marshes: Evolution, Ecology, and Conservation. [Greenberg, R. (ed.)]. Studies in
4260	Avian Biology No. 32, Cooper Ornithological Society, Camarillo, CA, pp. 214-
4261	228.
4262	Erwin, R.W., G.M. Sanders, and D.J. Prosser, 2004: Changes in lagoonal marsh
4263	morphology at selected northeastern Atlantic coast sites of significance to
4264	migratory waterbirds. <i>Wetlands</i> , 24(4) , 891-903.
4204	$\operatorname{Ingratory}_{\operatorname{wateronds}} \operatorname{wateronds}_{\operatorname{wateronds}} \operatorname{2-}(4), 001 003.$
4265	Eyler, T.B., R.M. Erwin, D.B. Stotts, and J.S. Hatfield, 1999: Aspects of hatching
4266	success and chick survival in gull-billed terns in coastal Virginia. Waterbirds, 22,
4267	54-59.
4268	Field, D.W., A.J. Reyer, P.V. Genovese, and B.D. Shearer, 1991: Coastal Wetlands of
4269	the United States. National Oceanic and Atmospheric Administration and U.S.
4270	Fish and Wildlife Service, [Washington, DC], 58 pages.
4271	Fleming, G.P., P.P. Coulling, K.D. Patterson, and K. Taverna, 2006: The natural
4272	communities of Virginia: classification of ecological community groups. Second
4273	approximation. Version 2.2. Virginia Department of Conservation and Recreation,

206 of 800

4274	Division of Natural Heritage, Richmond, VA.
4275	http://www.dcr.virginia.gov/dnh/ncintro.htm.
4276	Galbraith, H., R. Jones, P. Park, J. Clough, S. Herrod-Julius, B. Harrington, and G.
4277	Page, 2002: Global climate change and sea level rise: potential losses of intertidal
4278	habitat for shorebirds. Waterbirds, 25(2), 173-183.
4279	Hurley, L. M., 1990: Field Guide to the Submerged Aquatic Vegetation of Chesapeake
4280	Bay. USFWS, Chesapeake Bay Estuary Program, Annapolis, MD, 48 pp.
4281	Jackson, N.L., K.F. Nordstrom, and D.R. Smith, 2002: Geomorphic-biotic interactions
4282	on beach foreshores in estuaries. Journal of Coastal Research, 36, 414-424.
4283	Kahn, J.R. and W.M. Kemp, 1985: Economic losses associated with the degradation of
4284	an ecosystem: the case of submerged aquatic vegetation in Chesapeake Bay.
4285	Journal of Environmental Economics and Management, 12, 246-263.
4286	Karpanty, S.M., J.D. Fraser, J.M. Berkson, L. Niles, A. Dey, and E.P. Smith, 2006:
4287	Horseshoe crab eggs determine red knot distribution in Delaware Bay habitats.
4288	Journal of Wildlife Management, 70(6), 1704–1710.
4289	Kneib, R.T., 1997: The role of tidal marshes in the ecology of estuarine nekton.
4290	Oceanography and Marine Biology, 35, 163-220.
4291	Kneib, R.T., 2000: Salt marsh ecoscapes and production transfers by estuarine nekton in
4292	the southeastern U.S. In: Concepts and Controversies in Tidal Marsh Ecology.
4293	[Weinstein, M.P. and D.A. Kreeger (eds.)]. Kluwer Academic, Dordrecht, The
4294	Netherlands, pp. 267-291.
4295	Koch and Beer, 1996: Referenced in Short, F.A., and H.A. Neckles. 1999. The effects of
4296	global climate change on seagrasses. Aquatic Botany, 63, 169-196.
4297	Lippson, A.J. and R.L. Lippson, 2006: Life in the Chesapeake Bay. The Johns Hopkins
4298	University Press, Baltimore, 3 rd ed., pp. 202-203.

Do Not Cite or Quote

207 of 800

CCSP 4.1	

4299	Loveland, R.E. and M.L. Botton, 2007: The importance of alternative habitats to
4300	spawning horseshoe crabs (Limulus polyphemus) in lower Delaware Bay, New
4301	Jersey. Presentation at the Delaware Estuary Science Conference, Cape May,
4302	New Jersey, January 2007. Program available online at
4303	$www.delaware estuary.org/pdf/ScienceConferenceProgram 2007.pdf\ (Accessed to the second sec$
4304	January 9, 2008).
4305	Maryland DNR (Department of Natural Resources), 2005: Maryland DNR Wildlife
4306	Conservation Diversity Plan — Final Draft. Available at:
4307	http://www.dnr.state.md.us/wildlife/divplan_wdcp.asp (Accessed February 28,
4308	2007).
4309	McGowan, C.P., T.R. Simons, W. Golder, and J. Cordes, 2005: A comparison of
4310	American oystercatcher reproductive success on barrier beach and river island
4311	habitats in coastal North Carolina. Waterbirds, 28, 150-155.
4312	Mitsch, W. J., and J.G. Gosselink, 2000: Wetlands. Van Nostrand Reinhold, New York,
4313	NY, 3 rd ed., 920 pp.
4314	NatureServe, 2006: NatureServe Explorer: An online encyclopedia of life [web
4315	application]. Version 5.0. NatureServe, Arlington, Virginia. Available
4316	http://www.natureserve.org/explorer. Accessed September 1, 2006. "Northern
4317	Atlantic Coastal Plain Tidal Swamp" CES203.282
4318	http://www.natureserve.org/explorer/servlet/NatureServe?searchSystemUid =
4319	ELEMENT_GLOBAL.2.723205.
4320	NatureServe, 2008: NatureServe Explorer: An online encyclopedia of life [web
4321	application]. Version 6.2. Last updated October 6, 2007. Available at:
4322	http://www.natureserve.org/explorer. Accessed January 17, 2008. "Freshwater
4323	tidal mixed high marsh" CEGL006325 and "Atlantic Coast Brackish Tidal
4324	Marsh" CEGL004188.

208 of 800

CCSP	4.1

4325	NRC (National Research Council), 2005: Valuing Ecosystem Services: Toward Better
4326	Environmental Decision-Making. National Academies Press, Washington, DC,
4327	277 pp.
4328	NRC (National Research Council), 2007: Mitigating Shore Erosion Along Sheltered
4329	Coasts. National Academies Press, Washington, DC, 174 pp.
4330	Perry, M.C. and A.S. Deller, 1996: Review of factors affecting the distribution and
4331	abundance of waterfowl in shallow-water habitats of Chesapeake Bay. Estuaries,
4332	19 , 272-278.
4333	Perry, J.E., and R.B. Atkinson, 1997: Plant diversity along a salinity gradient of four
4334	marshes on the York and Pamunkey rivers in Virginia. <i>Castanea</i> , 62(2) , 112-118.
4335	Peterson, C.H., and M.J. Bishop, 2005: Assessing the environmental impacts of beach
4336	nourishment. BioScience, 55, 887-896.
4337	Plant, N.G. and G.B. Griggs, 1992: Interactions between nearshore processes and beach
4338	morphology near a seawall. Journal of Coastal Research, 8, 183-200.
4339	Redfield, A.C., 1972: Development of a New England salt marsh. Ecological
4340	Monographs, 42, 201-237.
4341	Rozas, L.P., and D.J. Reed, 1993: Nekton use of marsh-surface habitats in Louisiana
4342	(USA) deltaic salt marshes undergoing submergence. Marine Ecology Progress
4343	Series, 96 , 147-157.
4545	Series, 70 , 147-157.
4344	Rounds, R.A., R.M. Erwin, and J.H. Porter, 2004: Nest-site selection and hatching
4345	success of waterbirds in coastal Virginia: some results of habitat manipulation.
4346	Journal of Field Ornithology, 75 , 317-329.
4347	Rountree, R.A. and K.W. Able, 1992: Fauna of polyhaline subtidal marsh creeks in
4348	southern New Jersey: composition, abundance and biomass. <i>Estuaries</i> , 15 , 171-
4349	185.

209 of 800

CCSP	4.1

4350	Seitz, R.D., R.N. Lipcius, N.H. Olmstead, M.S. Seebo, and D.M. Lambert, 2006:
4351	Influence of shallow-water habitats and shoreline development on abundance,
4352	biomass, and diversity of benthic prey and predators in Chesapeake Bay. Marine
4353	Ecology Progress Series, 326 , 11–27.
4354	
4355	Short, F.T. and H.A. Neckles, 1999: The effects of global climate change on seagrasses.
4356	Aquatic Botany, 63 , 169-196.
4357	Small and Carman, 2005: Marine Shoreline Armoring in Puget Sound and the
4358	Washington State Hydraulic Code. Conference Report.
4359	Stevens, P.W., C.L. Montague, and K.J. Sulak, 2006: Fate of fish production in a
4360	seasonally flooded saltmarsh. Marine Ecology Progress Series, 327, 267-277.
4361	Stevenson, J.C. and M.S. Kearney, 1996: Shoreline dynamics on the windward and
4362	leeward shores of a large temperate estuary. In: Estuarine Shores: Evolution,
4363	Environments, and Human Alterations. [Nordstrom, K.F. and C.T. Roman (eds.)].
4364	Wiley, New York, pp. 233-259.
4365	Stevenson, J.C., M.S. Kearney, and E.W. Koch, 2002: Impacts of sea level rise on tidal
4366	wetlands and shallow water habitats: a case study from Chesapeake Bay.
4367	American Fisheries Society Symposium, 32 , 23-36.
4368	Stockhausen, W.T. and R.N. Lipcius, 2003: Simulated effects of seagrass loss and
4369	restoration on settlement and recruitment of blue crab postlarvae and juveniles in
4370	the York River, Chesapeake Bay. Bulletin of Marine Science, 72(2), 409-422.
4371	Teal, J.M., 1986: The Ecology of Regularly Flooded Salt Marshes of New England: A
4372	community profile. Biological Report 85(7.4), U.S. Fish and Wildlife Service,
4373	Washington, DC, 69 pp.
4374	Teal, J.M., 1962: Energy flow in the salt marsh ecosystem of Georgia. Ecology, 43, 614-
4375	624.

210 of 800

4376	Rounds, R. and R.M. Erwin, 2002: Presentation at Waterbird Society Meeting.
4377	November 2002. Available online at
4378	http://www.vcrlter.virginia.edu/presentations/rounds0211/rounds0211.pdf.
4379	USACE (U.S. Army Corps of Engineers), 2004: Smith Island, Maryland Environmental
4380	Restoration and Protection Project.
4381	http://www.nab.usace.army.mil/projects/Maryland/smithisland.htm, accessed
4382	January 13, 2008.
4383	USFWS (U.S. Fish and Wildlife Service), Undated: Nutrient Pollution. Prepared by the
4384	USFWS Chesapeake Bay Field Office,
4385	http://www.fws.gov/chesapeakebay/nutrient.htm, accessed on 20 July 2006.
4386	USFWS (U.S. Fish and Wildlife Service), 1988: Endangered Species Information
4387	Booklet: Piping Plover. U.S. Fish and Wildlife Service Arlington, Virginia.
4388	USFWS (U.S. Fish and Wildlife Service), 1993: Puritan Tiger Beetle (Cicindela puritana
4389	G. Horn) Recovery Plan. Hadley, Massachusetts. 45pp.
4390	USFWS (U.S. Fish and Wildlife Service), 1994: Recovery Plan for the Northeastern
4391	Beach Tiger Beetle (Cicindela dorsalis dorsalis). Hadley, Massachusetts.
4392	USGS (U.S. Geological Survey), 2003: A Summary Report of Sediment Processes in
4393	Chesapeake Bay and Watershed. Water Resources Investigations Report 03-4123.
4394	VNHR (Virginia Natural Heritage Program), Virginia Department of Conservation and
4395	Recreation. Natural Heritage Resources Fact Sheet: Virginia's rare natural
4396	environments: Sea-level fens. Accessed at:
4397	http://www.state.va.us/dcr/dnh/index.html on August 22, 2006.
4398	Ward, L.G., M.S. Kearney, and J.C. Stevenson, 1998: Variations in sedimentary
4399	environments and accretionary patterns in estuarine marshes undergoing rapid
4400	submergence, Chesapeake Bay. Marine Geology, 151, 111-134.

211 of 800

4401	Watts, B.D., 1993: Effects of marsh size on incidence rates and avian community
4402	organization within the lower Chesapeake Bay. Center for Conservation Biology
4403	Technical Report CCBTR-93-03, College of William and Mary, Williamsburg,
4404	VA, 53 pp.
4405	White, C.P., 1989: Chesapeake Bay: Nature of the Estuary: A Field Guide. Tidewater
4406	Publishers, Centreville, MD, 212 pp.
4407	Wilcock, P.R., D.S. Miller, R.H. Shea, and R.T. Kerhin, 1998: Frequency of effective
4408	wave activity and the recession of coastal bluffs: Calvert Cliffs, Maryland.
4409	Journal of Coastal Research, 14(1), 256-268.
4410	Wyda, J.C., L.A. Deegan, J.E. Hughes, M.J. Weaver, 2002: The response of fishes to
4411	submerged aquatic vegetation complexity in two ecoregions of the mid-Atlantic
4412	bight: Buzzards Bay and Chesapeake Bay. Estuaries, 25, 86-100.
4413	Zedler, J.B. and J.C. Callaway, 1999: Tracking wetland restoration: do mitigation sites

follow desired trajectories? *Restoration Ecology*, **7**(1), 69-73.

Do Not Cite or Quote

212 of 800